
TREMA-UNH at CAR 2019

Jordan Ramsdell, Sumanta Kashyapi, Shubham Chatterjee,
Pooja Oza, Laura Dietz

{jsc57, sk1105, sc1242, pho1003}@wildcats.unh.edu, dietz@cs.unh.edu

TREMA lab, University of New Hampshire, U.S.A

Abstract

This notebook describes the submissions of team TREMA-UNH to the
TREC Complex Answer Retrieval, TREC News, TREC Conversational
Assistance, and TREC Deep Learning tracks in 2019. We explore passage
retrieval systems, passage similarity metrics, and neural network methods
that address the task statements of these tracks.

1 Introduction

This year, team TREMA-UNH from the University of New Hampshire,
USA, participated in the following TREC tracks described as follows:

• Complex Answer Retrieval: Retrieval of passages that are rele-
vant to a given topic, and then ordering these passages into a com-
prehensive article.

• Conversational Assistance: Using dialogue and its context, re-
trieve and rank passages from a large corpus that satisfy the infor-
mational needs of the dialogue.

• News: Given a news article and a corpus of entities, retrieve and
rank entities that are relevant to the content of the news article.

• Deep Learning: Information retrieval with a large training data
set. Primarily focused on neural network methods.

2 Complex Answer Retrieval

Answers to difficult questions can be complex, requiring that the user
understands multiple topics addressed by the answer. The information
needs of a user may not be by traditional retrieval methods: giving a
user a ranked list of documents relevant to their question does not mean
that the user will understand the answer. For example, some documents
may logically precede others, such as those that introduce a topic that is
expanded on by later documents. If a user reads these documents out of
order, then the answer can be difficult to comprehend. There is a need,
then, for answers structured in a way that is easy for a user to understand.

1

Wikipedia pages provide a good example of structured information:
the page is divided into multiple sections that address topics relevant to
understanding the subject of the page. Passages are logically ordered
in each section such that they intro and then expand on the topic of
the section. Using structured information can make the task of finding
relevant information easier for the user to determine which topics are
relevant to their question, and only read documents pertaining to these
topics.

Our work in the Complex Answer Retrieval track uses structured in-
formation to address the following task.

Task. Given a topic and an outline consisting of section headings,
retrieve up to 20 passages and organize them in a topically coherent way.

2.1 UNH-bm25-ecmpsg

For each topic, T , we retrieve the top 1000 passages, PT , that are rel-
evant to the topic with respect to the Lucene’s1 implementation of the
BM25 metric. These passages contain entities (links to Wikipedia), and
we denote EPT as the set of all entities contained in passages retrieved
for the given topic. We measure the relevance of an entity ei ∈ EPT to
the topic T using the set of passages, Pei in PT that link to entity ei, and
the following formula:

RelevanceT (ei) =
∑

pj∈Pei

BM25T (pj)

Where BM25T (pj) is the relevance score of a passage with respect to
a topic using BM25. Therefore, an entity’s relevance score is equal to the
sum of the BM25 scores of all the passages in the candidate set that link
to the entity.

We take the top 100 entities with respect to their relevance to a topic
and expand the initial BM25 passage query with the names of these enti-
ties. Using the expanded query and BM25, produce a ranking of passages
given a topic. We convert this ranking to an ordering of 20 passages using
the conversion script2 provided by TREC CAR Y3.

2.2 Reordering Passage Rankings Based on Sim-
ilarity

In this section, we describe methods of reordering a candidate set of pas-
sages retrieved from section path queries. We reorder candidate sets of
passages based on a passage similarity metric, such that passages that are
similar to each other are grouped together.

1Lucene can be found at https://lucene.apache.org/
2The script can be found at https://github.com/TREMA-UNH/car-convert-ranking-to-

ordering

2

2.2.1 Generating Candidate Passage Sets

We form each section path query by concatenating the name of the topic
to each section header present in the outlines. In TREC CAR Y3, we are
limited to retrieving up to 20 passages per topic, and so our candidate
sets of passages consist of the top n passages from each section query,
where n = 20

of sections
. When this results in fewer than 20 passages, we

randomly pick the remaining passages from the section path queries

2.2.2 Reordering Candidate Passages

For each candidate set of passages, we begin by randomly picking a passage
from the candidate set, which we denote the seed passage. Using a passage
similarity metric, we then find the passage in the remaining candidate set
that is most similar to the seed passage and place it next in the ordering,
where it becomes the new seed passage. We repeat this process, retrieving
the next passage that is most similar to the current seed passage, until
we have ordered all 20 passages from the candidate set.

2.2.3 Passage Similarity Metrics

We use the following passage similarity metrics to reorder the candidate
passage sets. These metrics are named according to the names of the runs
submitted to TREC CAR Y3 that utilize them.

2.2.4 UNH-tfidf-[stem/lem/ptsim]

The UNH-tfidf passage similarity metric represents passages as vectors
using the bag-of-words model. Each component of the vector is a unique
term contained in the passage, the coefficients of which are equal to the
term-frequency-inverse document frequency of each unique term. We then
calculate the similarity between a pair of passages using cosine similarity
based on their vector representations:

cos(pi, pj) =
~pi · ~pj
‖~pi‖‖~pj‖

We evaluate the TFIDF cosine similarity metric with respect to three
methods of pre-processing paragraph text:

• stem: Passages in the corpus are first stemmed using Lucene’s En-
glish Analyzer.

• lem: Passages in the corpus are first lemmatized.

• ptsim: Passages in the corpus are not pre-processed: only the raw
terms are used.

2.2.5 UNH-bm25-[stem/lem]

Our UNH-bm25 method uses Lucene’s implementation of BM25 as a pas-
sage similarity metric. Let (pi, pj) be a pair of passages from the para-
graph corpus. Then BM25(pi, pj) is the BM25 score of passage pj with

3

respect to treating the text contained in pi as the query. Note how-
ever that BM25 is not a symmetric metric. We construct the BM25 pas-
sage similarity metric by making BM25 symmetrical: BM25sim(pi, pj) =
BM25(pi,pj)+BM25(pj ,pi)

2

We evaluate the UNH-bm25 similarity metric with respect to two
methods of pre-processing paragraph text:

• stem: Passages in the corpus are first stemmed using Lucene’s En-
glish Analyzer.

• lem: Passages in the corpus are first lemmatized.

2.2.6 UNH-dl[layer size]

We use the similarity score obtained from Section 3.1.1 to reorder the
passages. Based on the layer size of the dense layers used in the model
we have two variants: dl100 and dl300.

2.3 UNH-ecn

We start with an entity and passage run. For every query-entity pair,
we create an Entity Context Document(ECD). To construct this ECD, we
filter all passages which mention the entity and ”stitch” them together into
one ”document” about the entity. All entities which occur in this ECD
co-occur with the target entity (the entity the ECD is about). We derive a
distribution over these co-occurring entities by using the frequency of these
entities, that is, the number of times the entity occurs in the ECD. For
every passage in an ECD, its score is equal to the sum of the frequency
scores of the entities in the passage. We rank the passages using this
score. This gives us a passage ranking for every query-entity pair. We call
this ranking as a support passage ranking. We obtain a passage ranking
from this support passage ranking by marginalizing over the entities. We
convert this ranking to an ordering of 20 passages using the conversion
script provided by TREC CAR Y3.

2.4 UNH-qee

As in Section 2.3, we obtain a distribution over the co-occurring entities
with a given entity using the frequency of occurrence of these entities. In
this method, we rank the co-occurring entities using this score. We use
the top 20 entities from this ranking to expand the query and retrieve
passages with the expanded query using BM25. As in Section 2.3, this
gives us a support passage ranking. We obtain a passage ranking from
this support passage ranking by marginalizing over the entities. We con-
vert this ranking to an ordering of 20 passage using the conversion script
provided by TREC CAR Y3.

2.5 UNH-neural

In this method, we construct a neural network to score the relevance of
passages with respect to a query. We construct an embedding of each

4

Table 1: Results of TREC CAR Y3 methods, where facet overlap
and relevance are the evaluations metrics measured using for eval-
uating submissions. Bold values indicate the method with the best
performance with respect to an evaluation metric. Asterisks indicate
methods where there is no statistically significant difference to the
best method with respect to standard deviation.

Method Facet Overlap Relevance
UNH-bm25-ecmpsg 0.0295 ± 0.0065* 0.0931 ± 0.0175
UNH-bm25-rm 0.0658 ± 0.0114* 0.1297 ± 0.0170*
UNH-bm25-stem 0.0622 ± 0.0096* 0.1141 ± 0.0165
UNH-dl100 0.0403 ± 0.0072 0.1134 ± 0.0165*
UNH-dl300 0.0335 ± 0.0065 0.1093 ± 0.0159*
UNH-ecn 0.0016 ± 0.0010 0.0188 ± 0.0040
UNH-neural 0.0295 ± 0.0065 0.0931 ± 0.0139
UNH-qee 0.0427 ± 0.0079 0.1201 ± 0.0162*
UNH-tfidf-lem 0.0686 ± 0.0105* 0.1150 ± 0.0165*
UNH-tfidf-ptsim 0.0756 ± 0.0115* 0.1230 ± 0.0174*
UNH-tfidf-stem 0.0674 ± 0.0105* 0.1168 ± 0.0165*

passage using ELMo [1]. ELMo produces an embedded word vector for
each word in a sentence based on the word’s context in the sentence. We
construct a sentence embedding by taking the mean of the word vectors in
a sentence, and a passage embedding by taking the mean of the sentence
embeddings contained in the passage. We also embed each query via
ELMo by treating it as a sentence. In addition to passage and query
embeddings, we create a passage relevance vector for each passage that
represents the relevance of the passage given the query. Each element of
the passage relevance vector corresponds to the inverse rank score of the
paragraph, with respect to the query, under a particular passage retrieval
system (for example, BM25).

The input layer of our neural network is a fully connected linear layer,
in which the passage embedding, passage relevance, and query embedding
vectors are mapped onto three vectors of length 100. We use tanh as the
activation function for this layer. This is used as the input of the second
layer, which is a weighted trilinear product between the three vectors. We
then apply the logistic function to the output of the trilinear function.

We train the neural network using logistic regression: passages are
labeled with a 1 if they are relevant with respect to a query, or 0 otherwise,
according to the TREC CAR Y1 train section-level passage qrels. Once
trained, we use the neural network to rank a candidate set of passage
for each query (retrieved using BM25). We convert these rankings to an
ordering of 20 passages using the conversion script provided by TREC
CAR Y3.

5

2.6 Results from the CAR Evaluation

We use the following two metrics to evaluate the performance of our TREC
CAR Y3 submissions.

Facet Overlap. For an ordering of 20 passages retrieved for a topic
and a section outline, we define facet overlap as the number of transitions
between passages that are in the same section over the total number of
transitions between passages. We obtain the final score by averaging over
the facet overlap scores across all topics in Trec Car Y3 Test.

Relevance. We define relevance as the number of relevant passages
retrieved over the total number of passages retrieved for a topic. We
determine relevance of a passage to a topic by using the Trec Car Y3 Test
qrels. We obtain the final score by averaging over the relevance scores
across all topics in Trec Car Y3 Test.

Table 1 shows our results for TREC CAR Y3 with respect to the
facet overlap and relevance evaluation metrics. We see that UNH-tfidf-
ptsim performs best with respect to the facet overlap metric, and that
UNH-bm25-rm is the best method with respect to the relevance metric.
However, these methods are not significantly better than many of the
other methods (marked with asterisks in Table 1) with respect to the
standard deviation of the metrics. This discrepancy is most likely due to
the small number of topics (55 in total from Y3 Test) used for evaluation.

We also see that UNH-tfidf-ptsim is significantly better than UNH-
bm25-ecmpsg with respect to facet overlap. This is noteworthy because
the UNH-tfidf-ptsim method uses UNH-bm25-ecmpsg to retrieve a candi-
date set of passage, and then reorders the passages based on the TFIDF
cosine similarity metric (see sections 2.2.2 and 2.2.4).

2.7 Conclusion

Retrieving and rankings passages based on relevance to a topic does not
necessarily produce an understandable summary. We assume that if a
topic has multiple aspects (such those described by section headers in a
page), that passages of the same aspect should be grouped together, mak-
ing it easier for the user to identify what aspects are relevant to their
question. Our passage similarity methods address this by reordering re-
trieved passages in such a way that similar passages are grouped together,
under the assumption that similar passages belong to the same aspect. We
demonstrate that this can directly improve an existing passage retrieval
system (in particular, UNH-bm25-ecmpsg) with respect to our facet over-
lap and relevance evaluation metrics. Furthermore, these methods can
work with any passage retrieval system, implying that they can improve
other passage retrieval systems. In the future, we hope to find better
passage similarity metrics for use in reordering passages: we expect that
such metrics would drastically improve the results seen in our paper.

3 Deep Learning

This track studies how Information Retrieval can benefit from large train-
ing data and which methods in particular perform well in this setting. The

6

track has two different tasks each with two different subtasks: Document
ranking and Passage ranking and their corresponding full-ranking and
re-ranking subtask. However, we only participate in passage re-ranking
task.

Task Given an initial ranking of 1000 passages, we have to re-rank
these passages based on their likelihood of containing an answer to the
question.

3.1 Methods

3.1.1 Siamese neural model with ELMo embeddings

Siamese neural architecture is a family of neural architecture for which
there exists at least one pair of layer which are identical or in other words
share the same parameter values. Our intuition is if two passages are
similar in the context of belonging to the same Wikipedia section, then
there exists an embedding space where their corresponding representation
will be closer than other passage pairs which are not similar. The job of
any model that attempts to learn the similarity metric discussed here has
to learn this embedding space. Siamese network allows us to look at both
passage representation in a pair of input data sample at once. Hence for
any kind of pairwise similarity modeling, it is natural for a siamese network
to learn an embedding space which projects similar data points close by
and dissimilar data points far apart. Also as both of the input layer in a
siamese network share the learned parameters the resulting model will be
symmetric which means it will produce the same output even if the order
of two passages in a pair is switched.

Detailed architecture
Figure 1 depicts the detailed architecture which is used for our experi-

ments. The model accepts a pair of passages from the training set in form
of ELMo vectors. They are fed to two siamese dense layers (share learned
parameters), DL1a, DL1b and DL2a, DL2b. The output from these layers
are concatenated and fed to another dense layer, DL3. Finally its output
is fed to DL4 which yields the output for the model. Table ?? gives the
details of each layers in terms of tunable parameters. We tried various
combinations of layer numbers and sizes but found the setting described
here to be most effective in terms of validation loss and convergence time.

Training For training we use passage representations of 80% samples
of balanced y1 train parapair dataset and use rest of it as validation set.
For passage representation we use concatenated ELMo vectors. For exam-
ple let a sample in our training dataset is the passage pair (p1, p2). We ob-
tain 3 layers of ELMo vectors for each passage ([E1

p1 , E
2
p1 , E

3
p1], [E1

p2 , E
2
p2 , E

3
p2])

each of length 1024 and concatenate for each passage to obtain (Ep1 , Ep2)
where E is the concatenation of the three ELMo layer vectors E1, E2, E3.
Hence each passage representation is a vector of length 3072.

Reducing overfitting To reduce overfitting in training we use regu-
larization, dropout and early stopping. The regularization for each layer
in the model is set to 0.0001 and one dropout layer is introduced for each
input layer with a dropout rate of 0.5 to prevent overfitting. We also
employ early stopping to stop the training some iterations after the vali-

7

Figure 1: Siamese architecture

Table 2: Results of the methods submitted for DL track

Method AP mean NDCG mean P@10
UNH-bm25 0.2565 0.5546 0.3465
UNH-exDL-bm25 0.0364 0.14 0.0605

dation f1 score stops increasing. The performance of the resulting model
is measured in terms of AUC score and the resulting best model is used
for the TRECCAR task.

3.1.2 Query expansion using Siamese DL model

As discussed in the previous section, we model a similarity metric using
siamese neural model. We use this similarity metric to find the most
similar passage from the TRECCAR benchmark Y1 dataset and use it to
expand the query. Then we use the expanded query to retrieve passage
ranking. We refer to this method as UNH-exDL-bm25.

3.2 Results

We submit runs obtained from two of our methods: UNH-bm25 (BM25
baseline method) and UNH-exDL-bm25. Results obtained for our meth-
ods are described in Table ??. The average of the median of all the sub-
missions are the following: AP 0.3864, NDCG 0.6457 and P@10 0.5651.

8

3.3 Conclusion

We observe that our query expansion model performs poorly on the re-
ranking task. This suggests that our choice of knowledge base for the
query expansion (TRECCAR benchmark Y1) is not suitable for the task.

4 Conversational Assistance

Task. The task of Conversational Assistance is to retrieve the passages
using contextual information provided by series of queries on a given topic.
Three automatic runs were submitted.

4.1 Methods

UNH-trema-rel For each query, we retrieve feedback passages P by
using BM25. We then generate a candidate entity list E which consists of
all the entity mentions present in the feedback passages. For every entity
ei of the candidate entity list E, we create an entity-pair (ei, ej) with
every other entity of the candidate list. For every entity-pair (ei, ej) we
check the presence of both entities ei and ej in passage. If the entity-pair
is present in the passage, then the score of the entity-pair is:

fecr(ei, ej) =
∑

∀P :ei,ej∈P

1

rank(P)
, i 6= j

The score of each entity ei is calculated as:

~fei =

∑E
j=1(f(ei, ej) + f(ej , ei))

|E| , i 6= j

We rank the entities based on the above score and select top 100 entities.
For every passage in the feedback passages P , we check the existence of
the top 100 entities and if the entity exists we add the score the entity
with the initial BM25 score. We re-rank the passages based on the new
score.

UNH-trema-ecn We start with an entity and passage run. For ev-
ery query-entity pair, we create an Entity Context Document(ECD). To
construct this ECD, we filter all passages which mention the entity and
”stitch” them together into one ”document” about the entity. All entities
which occur in this ECD co-occur with the target entity (the entity the
ECD is about). We derive a distribution over these co-occurring entities
by using the frequency of these entities, that is, the number of times the
entity occurs in the ECD. For every passage in an ECD, its score is equal
to the sum of the frequency scores of the entities in the passage. We
rank the passages using this score. This gives us a passage ranking for
every query-entity pair. We call this ranking as a support passage rank-
ing. We obtain a passage ranking from this support passage ranking by
marginalizing over the entities.

9

MAP P@R MRR

UNH-trema-rel 0.07 0.14 0.53
UNH-trema-ecn 0.07 0.14 0.51
UNH-trema-ent 0.08 0.14 0.54

Table 3: Results from TREC CAST

UNH-trema-ent We rank passages for a query-entity pair by the
number of relevant entities in the passage. For example, if a passage
p contains entities {e1, e2} and the entities {e1, e2, e3, e4} have been re-
trieved for the query q, then the score of p for each of the query-entity
pairs is fqe1(p) = fqe2(p) = 2 because the passage has two entities in
common with the list retrieved for q. This gives us a passage ranking for
every query-entity pair. We call this ranking as a support passage rank-
ing. We obtain a passage ranking from this support passage ranking by
marginalizing over the entities.

4.2 Results

5 News

Entity-Ranking Task. In the news track, participants were given news
articles and list of referenced entities in articles. The task is to rank the
list of referenced entities according to the relevance of each entity to each
article.

We submitted 1 automatic run UNH-Trema-News.

5.1 UNH-Trema-News

As a pre-processing step for every passage in every article, we first an-
notate the passages with DBpedia Spotlight and store it in the index.
In the method, we first retrieve query-relevant feedback passages using
BM25. We create a candidate entity list which consists of all the entities
present in the feedback passages. For every entity in the candidate list,
we generate an entity-pair, with every other entity in the candidate list.
We check the existence of the entity pair i.e. whether both entities of the
entity-pair exists in the feedback passage. In simpler terms, we check the
co-occurrence of entities in the feedback passages. If the entity-pair co-
occurs in a passage, then we propagate the retrieval score of the passage
as the entity-pair score.

To calculate the score of each entity, we accumulate the score of every
entity-pair and average it with the length of the entity candidate list.

We take the given input list of entities of each query and check the
existence of the each input entity in the ranked entities list, if the input
entity exists then we take the entity score as the score of the input entity
else 0 is assigned as the score. We rank the entities based on these scores.
The results are given in ??.

10

MAP P@R MRR

UNH-trema-news 0.547 0.424 0.647

Table 4: Results from TREC NEWS - EntityRanking Task

References

[1] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proc. of NAACL, 2018.

11

	Introduction
	Complex Answer Retrieval
	UNH-bm25-ecmpsg
	Reordering Passage Rankings Based on Similarity
	Generating Candidate Passage Sets
	Reordering Candidate Passages
	Passage Similarity Metrics
	UNH-tfidf-[stem/lem/ptsim]
	UNH-bm25-[stem/lem]
	UNH-dl[layer size]

	UNH-ecn
	UNH-qee
	UNH-neural
	Results from the CAR Evaluation
	Conclusion

	Deep Learning
	Methods
	Siamese neural model with ELMo embeddings
	Query expansion using Siamese DL model

	Results
	Conclusion

	Conversational Assistance
	Methods
	Results

	News
	UNH-Trema-News

