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ABSTRACT

Team heatwave (of the University of Cambridge) submitted 3 automatic runs to the TREC
2022 Conversational Assistance Track. This paper discusses our approach to the challenge
of conversational informational retrieval. We first describe our four stage approach of query
reformulation, BM25 retrieval, passage reranking, and response extraction. Our experiments
then show that our multi-query approach, which uses the raw concatenated conversational
context for BM25 and the rewritten query for reranking, shows considerable performance
improvement over a single-query approach, where our best performing system achieves a
NDCG@3 of 0.440 in the 2022 CAsT challenge.

1 INTRODUCTION

The Conversational Assistance Track (CaST) is an annual challenge that encourages progress in information
retrieval for conversations. The aim is to develop an automatic system that can retrieve passages relevant to a
request in conversational form. Given a current query utterance, conversational history, and a large document
archive, the automatic system must retrieve a set of useful passages that meets the information needs of the user.
The 2022 challenge ['| differs to the 2021 challenge (Dalton et al., [2022) by assessing the quality of generated
responses, having multiple conversations per topic and by using a larger document archive.

This paper focuses on our approach to the 2022 CAsT challenge. We investigated several different aspects of
conversational retrieval including: 1) using different queries at retrieval and reranking 2) looking at the impact
of k between retrieval and reranking and 3) investigating whether various systems are complimentary when
combined. Our best performing system used the concatenated contextual history as queries for BM25 retrieval
and rewritten queries for a DuoT5 reranker, and achieved a NDCG @20 of 0.389 and NDCG@3 of 0.440 on
the 2022 challenge data.

2 METHODOLOGY

Our approach follows the three stage pipeline commonly used by previous successful teams (Lin et al., [2020)
consisting of: (1) query rewriting, (2) document retrieval, and (3) reranking. This year, the output is expected
to be a short response, and so a final generation/extraction head is also used to generate the returned response.
This section briefly describes the purpose of each component and considered approaches.
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Figure 1: System Pipeline
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2.1 QUERY REWRITING

The objective of query rewriting is to create a query ¢ that encapsulates all previous contextual information.
That is, all ambiguities and anaphoras present in the current utterance uy, are resolved to create the query gy,
such that gj, contains all information required to identify the best next response of the system. Let ctx-n-m refer
to concatenating the previous n user utterances and m system responses (as well as the current user utterance)
in chronological order:

ctx-2-2 = U 2P TP Ug_1 DBTr_1 D uk (D)
ctx-2-1 = up_—2 @ UL—1 DTr—1 D Uk 2

We use TS5 systems (Raffel et al., [2020) to generate a rewritten query gj, from ctx-4-2. We also look at using
the raw conversational context ctx-5-3 and ctx-3-1 as a baseline for retrieval.

2.2 PASSAGE RETRIEVAL

The second stage retrieves a batch of passages that are relevant to the current query. For a given query, every
passage in the archive is scored and the top-k passages are passed on in the pipeline. If S1(d, ¢) is a scoring
function that measures the relevance of passage d for query ¢, and R is the entire document archive, then the
returned corpus Rp—r is the top-k most relevant passages as predicted by the retrieval approach. Our

Riop—k = {1 | S1(r, i) > S1(ri,¢i) Ve € RN Ryop—i } 3)

In this stage, millions of documents per query must be scored, and so the scoring function has to be very
efficient. We therefore consider the popular approach of BM25 (Robertson et al., [2009) — an unsupervised
lexical method. We initially also considered a sparse retrieval approach of ANCE (Xiong et al., 2020), however
initial results were worse and this investigation was discontinued.

2.3 PASSAGE RE-RANKING

Re-ranking, as well, scores passages by their relevance to the current query. However, instead of scoring all the
passages in the archive, only the top-k passages (returned by the previous retrieval stage) are rescored. Since
the number of passages to score is massively smaller, a more powerful and accurate scoring function can be
used.

We consider three deep learning systems: SentenceBERT (Reimers et al.l 2019), MonoT5 (Nogueira et al.
2020) and DuoT5 (Pradeep et al.l 2021)). SentenceBERT encodes each query and response into vectors, where
the relevance score is the inner product of the two. MonoT5 is a T5 based system, with the query and response
are concatenated as the input and the decoder predicts the relevance score. DuoT5 consists of two reranking
stages, where first MonoT5 is used to select the top n documents, then pairwise ranking is used to re-rank the
top n documents.

We also investigate using different queries at retrieval and reranking. Instead of using the same query rewriting
system to generate a single query used for both retrieval and reranking, we consider having different queries ¢;
and g» for the different stages, as shown in Figure
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Figure 2: Set up for using different queries for retrieval and reranking



2.4 RESPONSE GENERATION

New to CAsT 2022, a response different to the raw passage can be returned. This can be a generated response,
which may be based on a single or multiple retrieved passages. We use a very simple answer extraction
approach (Clark et al.; 2020) to generate our response. The context for the question answering system is the
predicted relevant passage, and the query is used as the question. The answer span is then returned as the
response.

3 EXPERIMENTAL SETUP

3.1 CAST DATASETS

Archive

The archive to retrieve from is a mix of highly informative content such as news and Wikipedia articles. The
archive is made up of three corpora: MSMARCO, KILT and Washington Post. For 2021, there are 9 million
documents present in the archive, while 2022 had 17 million documents. The difference in the 2021 and 2022
archive is that 2021 uses MSMARCO v1 while 2022 uses MSMARCO v2.

Development

Two CaST datasets were used for development: The final 2021 challenge data, EVAL-21, and the 2022
challenge data along with the canonical answers, DEV-22. EVAL-21 had a full list of relevant documents and
relevance scores for each conversational query. To compare our systems with last year systems, we follow
the same set up as in final evaluation, which used binary relevance scores thresholded at 2. For the 2022
challenge data with the canonical documents (which was available before submission), 1-3 relevant documents
were provisionally marked for each query, which is much sparser than the relevance list used in final evaluation.

Although the three stage pipeline (of figure|l) was used for both the EVAL-21 and DEV-22, there were differ-
ences in the two set ups. For EVAL-21 BM25 was done at the document level, and the re-ranker then operated
at the passage level, while DEV-22 split documents into passages before BM25. Initial development initially
focused on performance on EVAL-21, while later development focused on DEV-22.

Evaluation

Final evaluation, done after submission, was done on the 2022 challenge data, EVAL-22. EVAL-22 had a full
list of relevant passages and relevance scores for each query. EVAL-22 and DEV-22 use the same set of queries,
however DEV-22 only had the canonical documents, and so only had sparse query labels.

3.2 SYSTEMS CONFIGURATION

Query Rewriting

The query rewriter is trained on one of two different query reformulation datasets, either canard (Elgohary
et al.l |2019) or qrecc (Anantha et al.l [2020). We investigated fine-tuning both T5-base (Raffel et al., [2020)
and T5-large (Raffel et al., [2020) systems, where the T5-large systems were used since they showed better
downstream performance. As a baseline, we also consider using ctx-5-3 and ctx-3-1 directly as the ‘rewritten

query’.
Retrieval

We use the beir framework (Thakur et al., [2021) implementation of BM25 for retrieval, and use the default
parameters of (k = 0.9 and b = 0.4).

Reranker

MSMARCO (Nguyen et al., | 2016) was used as the retrieval training data for all the different rerankers. Our
rerankers were downloaded from the huggingface hub (SBERT [} monot5 [} duoT5 [f), where the rerankers
were all trained at the passage level.

Reponse Generator
Reponses were generated using a question answer extraction system, trained on (Rajpurkar et al.| [2016). The

Zhttps://huggingface.co/sentence-transformers/msmarco-distilbert-dot-v5
3https://huggingface.co/castorini/monot5-base-msmarco
*https://huggingface.co/castorini/duot3-3b-msmarco



query was then used as the question, the most relevant document as the context, and returned the extracted
answer span was the response.

4 EXPERIMENTAL RESULTS

EVAL-21 DEV-22
Query R@lk R@500 NDCG@3 | R@lk R@500 NDCG@3

T5-canard | 0.672  0.596 0.324 0458  0.387 0.068
T5-grecc - - - 0.460  0.397 0.060
ctx3-1 0.709  0.637 0.296 0.572 0488 0.135
ctx_5.3 0.734  0.648 0.248 0.583  0.495 0.094

automatic | 0.650  0.581 0.326 | 0.485 0.419 0.072

Table 1: Retrieval results when using BM25 for different queries

Best retrieval query: We first investigate the rewriting system for retrieval. The query rewriter generates a
query, which is used by BM25 to return the highest scoring 1000 passages. The objective after retrieval is to
preserve as many relevant documents in the top-1000 as possible, irrespective of ranking since the next stage
will re-score all top 1000 documents. Therefore emphasis is on recall@ 1000 (R @1k). Table [T] shows retrieval
performance for the different query rewriting systems, where the baseline of raw concatenated conversational
context clearly showed best performance for both EVAL-21 and DEV-22.
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Figure 3: Retrieval Top-k results on DEV-22

Retrieval top-k: We next look into whether returning the top 1000 passages at retrieval is a sensible decision. If
more passages are returned at retrieval, the number of relevant passages that the re-ranker scores will be larger,
which may benefit down stream performance. Figure [3a] shows how recall scales roughly with O(log(k)).
Figure 3B shows the downstream MonoT5 performance on DEV-22, using ctx-5-3 queries at retrieval and T5
rewritten queries for the re-ranker, and sweeping over k. 1000 therefore seemed to be a sensible choice for the
size of retrieval list, with performance not improving for larger k. We therefore stick with top-1000 documents
at retrieval for all future results.



DuoT5topk | NDCG@20 NDCG@10 NDCG@3

20 0.199 0.220 0.162
30 0.231 0.222 0.169
50 0.230 0.218 0.170

Table 2: Reranking results when varying the DuoT5 top k on DEV-22

DuoTS5 top-k: DuoT5 does pairwise comparisons between passages, and therefore scales with O(N?) instead
of the O(N') of MonoT5. One has to therefore use much shorter top-k lists for DuoT5. DuoTS5 is applied after
MonoT5 scoring, where Table [2] shows reranking performance for the top 20, 30 or 50 passages. Using top-20
was significantly worse than using the top-30 or top-50, while the top-30 and top-50 were comparable with
top-30 being marginally better. As top-50 is also considerably more computationally expensive, we therefore
use the top-30 in all DuoT5 systems considered.

EVAL-21 DEV-22
query 1 query 2 reranker MAP NDCG@20 NDCG@3 | MAP NDCG@20 NDCG@3
1 1 - 0.168 0.261 0.324 0.076 0.098 0.068
T5-canard T5-canard  MonoT5 0.288 0.407 0.450 0.152 0.190 0.140
1 1 sbert 0.204 0.309 0.349 - - -
7 T - 0.165 0.248 0.248 0.094 0.130 0.094
ctx-5-3 T5-canard  MonoT5 0.310 0.430 0.489 0.175 0.221 0.164
1 1 + DuoT5 - - - 0.184 0.231 0.169
1 1 - - - - 0.094  0.130 0.094
ctx-5-3 TS-qrecc MonoT5 - - - 0.179 0.218 0.177
1 1 + DuoT5 - - - 0.166 0.211 0.161

Table 3: Reranking results

Reranker results: Table[3|shows the performance of the different rerankers for different retrieval outputs. The
concatenated contextual query seems to be optimal for the retrieval, with notable performance improvement
over using only a single rewritten query. At the reranker, both the T5-canard and T5-qrecc rewriting systems
performed similarly for DEV-22, as did the monoT5 and duoT5 systems. Canard + duoT5 had the best all
round performance, while qrecc + monoT5 had the best NDCG@3 performance, and hence these two were
submitted.

NDCG@20 NDCG@3 MAP
query 1 query 2 reranker | DEV-22 EVAL-22 | DEV-22 EVAL-22 | DEV-22 EVAL-22

monoT5 0.221 0.236 0.164 0.274 0.175 0.136
+ duoT5 | 0.231 0.389 0.169 0.440 0.184 0.200

monoT5 0.218 0.261 0.177 0.320 0.179 0.139
+ duoT5 | 0.211 0.364 0.161 0.423 0.166 0.189

ctx-5-3  T5-canard

ctx-5-3  TS5-qrecc

Table 4: Reranking results for DEV-22 and EVAL-22.

Reranker Results on EVAL-22: Although pre-submission analysis suggested that both monoT5 and duoT5
had comparable performance, on EVAL-22 (Table[d) DuoT5 performed significantly better. The only difference
between DEV-22 and EVAL-22 is that EVAL-22 had very sparse results, and it is hypothesized that this sparsity
meant that the passages marked relevant in DEV-22 were passages with high relevance. Mono-T5 may therefore
be able to identify clearly relevant passages, however DuoT5 may have a better understanding when it comes
to documents which are relevant but of lower score.



NDCG @20 NDCG@3 MAP
query 1 query 2 reranker DEV-22 EVAL-22 | DEV-22 EVAL-22 | DEV-22 EVAL-22

runl  ctx-5-3  T5-qrecc MonoT5 0.218 0.261 0.177 0.320 0.179 0.139
run2  ctx-5-3  T5-canard + DuoT5 | 0.231 0.389 0.169 0.440 0.184 0.200
run3  ctx-5-3 - combine 0.228 0.384 0.167 0.439 0.183 0.197
rund  gold gold MonoT5 | 0.306 0.365 | 0.238 0.405 | 0.246 0.217

Table 5: submitted systems final performance

Final Performance of Submitted Systems: Table |5|shows the performance of our submitted systems. We
additionally submitted a combined system which averaged the normalised scores of the MonoT5 and DuoT5
systems, even though analysis done on DEV22 did not show clear benefit in system combination (which we
looked at multiple different levels). Overall we found that DuoT5 which used multiple queries was our best
performing system, and achieved a MAP of 0.200, NDCG @20 of 0.389 and NDCG @3 of 0.440.

5 CONCLUSIONS

In this notebook, we follow a four stage pipeline that returns a relevant response for conversational queries. Our
experimental results show that using different queries at retrieval and re-ranking can be largely advantageous,
and that the concatenated conversational context serves as a good query for BM25 retrieval. We further find that
DuoTS5 outperforms monoT5 in the 2022 CAsT challenge data. Future work could investigate this performance
difference, and to consider efficient modifications on duoT5 to instead operate with O(N) and therefore rescore
more documents.
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