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Kurzfassung

In derzeitigen drahtlosen Kommunikationssystemen wird gewöhnlich die sogenannte

Punkt-zu-Punkt Übertragungstechnik verwendet. In Fällen, in denen diese Technik

eine direkte Übertragung zwischen zwei Knoten S1 und S2 nicht ermöglicht, da bei-

spielsweise eine Abschattung des Empfängers durch Hindernisse oder eine zu geringe

Sendeleistung vorliegen, stellen Zwei-Hop Relaisverfahren eine vielversprechende Alter-

native dar. Bei den Zwei-Hop Relaisverfahren wird die Übertragung zwischen S1 und S2

durch eine zwischengeschaltete Relaisstation (RS) unterstützt. In dieser Arbeit werden

nicht-regenerative Zwei-Hop Relaisverfahren betrachtet, wobei nicht-regenerativ be-

deutet, dass das Empfangssignal an der RS weder dekodiert noch neu kodiert wird,

sondern nur lineare Signalverarbeitung (SV) an der RS angewendet wird. Erst seit

kurzem werden Zwei-Hop Relaisverfahren auch in Verbindung mit Mehrantennenver-

fahren untersucht, wodurch erhebliche Gewinne bezüglich der erreichbaren Datenraten

erwartet werden. In dieser Arbeit werden an S1, S2 und der RS mehrere Antennen be-

nutzt, um räumliche Multiplexverfahren mit adaptiver Strahlformung (SF) verwenden

zu können.

Die vorliegende Arbeit untersucht zwei verschiedene Zwei-Hop Relaisverfahren für

die bidirektionale Übertragung zwischen S1 und S2, welche Ein-Weg und Zwei-Wege

Relaisverfahren genannt werden. Beim Ein-Weg Relaisverfahren werden wegen des

Halbduplexbetriebes ein Zeitschlitz für die Übertragung von S1 zur RS und ein weiterer

Zeitschlitz für die Übertragung von der RS zu S2 benötigt. Aufgrund der bidirektionalen

Übertragung werden zwei weitere Zeitschlitze für die Übertragung von S2 über die RS

zu S1 benötigt. Vergleicht man mit der bidirektionalen Punkt-zu-Punkt Übertragung

zwischen S1 und S2, bei der nur ein Zeitschlitz für die Übertragung von S1 zu S2 und

ein weiterer Zeitschlitz für die Übertragung von S2 zu S1 benötigt werden, wird beim

Ein-Weg Relaisverfahren insgesamt die doppelte Menge an Zeitschlitzen benötigt. Das

kürzlich vorgestellte Zwei-Wege Relaisverfahren ist bei bidirektionaler Übertragung

sehr vielversprechend, da es nur zwei Zeitschlitze benötigt. Bei diesem Relaisverfahren

senden S1 und S2 ihr jeweiliges Signal gleichzeitig im ersten Zeitschlitz zur RS, die

dann die Summe der Signale von S1 und S2 im zweiten Zeitschlitz zurücksendet. So-

mit enthält das Empfangssignal an jedem Knoten auch das Signal, das vom jeweiligen

Empfangsknoten selbst gesendet wurde. Falls ausreichend Kanalzustandsinformation

(KZI) am Empfangsknoten verfügbar ist, kann dieser das gewünschte Signal bestim-

men, indem er das eigene Signal subtrahiert. Dieses Verfahren wird Subtraktion der

Duplexstörung (SDS) genannt.

In dieser Arbeit wird ein einheitliches Systemmodell für das Ein-Weg und Zwei-
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Wege Relaisverfahren entwickelt. Für beide Relaisverfahren ist es von besonderem In-

teresse, auf welche Art adaptiver SF die Summenrate des Systems maximiert werden

kann. Die erzielbare Summenrate hängt wesentlich von den Systemfähigkeiten ab, die

durch die Verfügbarkeit von KZI und die SV Fähigkeiten an S1, S2 und der RS defi-

niert werden. Da die Systemfähigkeiten die anwendbaren SF Algorithmen beeinflussen,

werden neue Summenraten-Maximierungsprobleme identifiziert. Zur Einordnung dieser

Probleme werden folgende vier Fälle von Systemfähigkeiten unterschieden:

• Ein System mit unbeschränkten Fähigkeiten, in dem S1 und S2 adaptive SF und

SDS anwenden und die RS adaptive SF anwendet.

• Ein System mit eingeschränkten Fähigkeiten an der RS, in dem nur S1 und S2

adaptive SF und SDS anwenden.

• Ein System mit eingeschränkten Fähigkeiten an S1 und S2, in dem nur die RS

adaptive SF anwendet.

• Ein System mit lokaler KZI, in dem S1 und S2 SDS anwenden und nur die RS

adaptive SF anwendet.

Diese verschiedenen Fälle werden für das Ein-Weg und Zwei-Wege Relaisverfahren be-

trachtet und die entsprechenden maximalen Summenraten werden bestimmt. Für das

Ein-Weg Relaisverfahren wird ein bereits bekannter analytischer SF Algorithmus zur

Summenratenmaximierung in dem System mit unbeschränkten Fähigkeiten analysiert.

Für alle anderen neu auftretenden Fälle werden numerische Lösungen der Probleme

präsentiert. Für das System mit eingeschränkten Fähigkeiten an der RS werden neue

suboptimale analytische SF Algorithmen mit einem nahezu optimalen Ergebnis vor-

geschlagen. Es wird gezeigt, dass der maximale räumliche Multiplexgewinn für das

Ein-Weg Relaisverfahren dem Minimum der Anzahl der Antennen an der RS und der

Anzahl der Antennen an S1 und S2 entspricht, und für das Zwei-Wege Relaisverfahren

dem Minimum der Anzahl der Antennen an der RS und der doppelten Anzahl der

Antennen an S1 und S2. Desweiteren wird gezeigt, dass im Zwei-Wege Relaisverfahren

die Summenrate beinahe doppelt so hoch ist wie im Ein-Weg Relaisverfahren.

Neben den adaptiven SF Algorithmen, die die Summenrate maximieren, sind andere

adaptive SF Algorithmen, die den mittleren quadratischen Fehler (MQF) minimieren,

den MQF unter der Zero-Forcing Bedingung minimieren und das Signal-zu-Rausch-

Verhältnis maximieren, dafür bekannt, dass sie gute Ergebnisse für die Punkt-zu-Punkt

Übertragung liefern. Da adaptive SF, die nur an S1 und S2 angewendet wird, bereits

vielfach für die Punkt-zu-Punkt Übertragung untersucht wurde, wird in dieser Arbeit
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besonderes Augenmerk auf das neue Feld der Systeme, in denen adaptive SF nur an

der RS angewendet wird, gerichtet. Für diese Systeme werden sowohl im Ein-Weg als

auch im Zwei-Wege Relaisverfahren die zuvor erwähnten Optimierungsprobleme neu

formuliert, gelöst und analysiert. Vielversprechende Ergebnisse werden vor allem mit

dem adaptiven SF Algorithmus, der den MQF minimiert, erzielt.

Um KZI in den verschiedenen Fällen von Systemfähigkeiten zu erlangen, werden

neue Pilotübertragungsverfahren und die zugehörigen Kanalschätzalgorithmen ent-

wickelt. Desweiteren werden die Auswirkungen nicht-perfekter KZI betrachtet. Zu-

letzt wird anhand von zwei beispielhaften Szenarien mit zusätzlichen Knoten ein erster

Einblick in Problemstellungen gewährt, die sich durch Vielfachzugriffe im Zwei-Wege

Relaisverfahren ergeben.
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Abstract

In today’s wireless communication systems, usually the point-to-point transmission

technique is used for the transmission between two nodes S1 and S2. If a point-to-

point transmission between S1 and S2 is not possible, e.g., due to shadowing or limited

transmit powers, two-hop relaying is a promising technique, in which the transmission

between S1 and S2 is assisted by an intermediate relay station (RS). In this thesis,

non-regenerative two-hop relaying is considered which means that the received signals

at the RS are neither decoded nor re-encoded, but only linear signal processing (SP) is

employed at the RS. Just recently, two-hop relaying has been investigated in conjunc-

tion with multiple-antenna techniques which promises significant performance gains in

terms of achievable data rates. In this work, multiple antennas are used at S1, S2 and

the RS in order to perform spatial multiplexing by adaptive beamforming (BF).

This thesis investigates two different two-hop relaying schemes for bi-directional

transmission between S1 and S2, namely one-way and two-way relaying. In one-way

relaying due to the half-duplex constraint, one time slot is required for the first hop

transmission from S1 to the RS, and another time slot is required for the second hop

transmission from the RS to S2. For bi-directional transmission, another two time slots

are required for the transmission from S2 via the RS to S1 resulting in a requirement of

four time slots in total. Thus, compared to a bi-directional point-to-point transmission

between S1 and S2, which requires only one time slot for the transmission from S1 to

S2 and another time slot for the transmission from S2 to S1, the number of required

time slots is doubled in one-way relaying. In case of bi-directional transmission, the

recently proposed two-way relaying scheme is a very promising scheme in terms of

resource efficiency since it requires only two time slots. In two-way relaying, S1 and S2

transmit their signals simultaneously in the first time slot to the RS which retransmits

a superposition of the signals of S1 and S2 in the second time slot. Thus, the received

signal at each node contains the signal which has been transmitted by the respective

receive node itself. If sufficient channel state information (CSI) is available at the

receive node, it can determine the desired signal by subtracting the own transmitted

signal. This subtraction is termed cancellation of duplex interference (CDI).

In this work, a unified system model for one-way and two-way relaying is developed.

For both relaying schemes, it is of particular interest how the sum rate of the system can

be maximized by adaptive BF. The achievable sum rates depend considerably on the

system capabilities, which are defined by the CSI availability and the SP capabilities

at S1, S2 and the RS. Since the system capabilities influence the applicable adaptive

BF algorithms, novel sum rate maximization problems are identified and classified by

a framework consisting of four different cases of system capabilities:
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• A system with full capabilities, in which S1 and S2 perform adaptive BF and

CDI, and the RS performs adaptive BF.

• A system with limited capabilities at the RS, in which only S1 and S2 perform

adaptive BF and CDI.

• A system with limited capabilities at S1 and S2, in which only the RS performs

adaptive BF.

• A system with local CSI at S1 and S2, in which S1 and S2 perform CDI, and

only the RS performs adaptive BF.

The different cases are considered for one-way and two-way relaying, and the re-

spective maximum sum rates are determined. In one-way relaying, an analytical BF

algorithm for maximizing the sum rate in the system with full capabilities is reviewed.

For the other new cases of system capabilities in one-way and two-way relaying, numer-

ical solutions to the sum rate maximization problems are given. For the systems with

limited capabilities at the RS in one-way and two-way relaying, new sub-optimum an-

alytical BF algorithms with close-to-optimum performances are proposed. It is shown

that the maximum spatial multiplexing gain corresponds to the minimum of the num-

ber of antennas at the RS and the number of antennas at S1 and S2 in one-way relaying,

and to the minimum of the number of antennas at the RS and twice the number of an-

tennas at S1 and S2 in two-way relaying. Furthermore, it is demonstrated that the sum

rate in two-way relaying is almost twice as high as the sum rate in one-way relaying.

Beside the adaptive BF algorithms maximizing the sum rate, other adaptive BF

algorithms minimizing the mean square error (MSE), minimizing the MSE under the

zero forcing constraint, and maximizing the signal-to-noise ratio are known to provide

reasonable performance in point-to-point transmission. Since adaptive BF only per-

formed at nodes S1 and S2 has already been investigated in several works regarding

point-to-point transmission, in this thesis special attention is paid to the recent field

of systems in which adaptive BF is only performed at the RS. For such systems in

one-way as well as in two-way relaying, the aforementioned optimization problems, are

newly formulated, solved, and analyzed. Promising performance results are especially

obtained by the adaptive BF algorithm minimizing the MSE.

In order to obtain CSI in the different cases of system capabilities, novel pilot

transmission schemes and the respective channel estimation algorithms are developed.

Furthermore, the impact of imperfect CSI on the performance of two-way relaying is

considered. Finally, two scenarios with multiple nodes are introduced exemplarily in

order to give a first insight into the problems arising from multiple access in two-way

relaying.
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Chapter 1

Introduction

1.1 Multiple-antenna two-hop relaying for bi-

directional transmission

1.1.1 Scenario

One major challenge for future wireless communication systems is the ubiquitous de-

mand of high transmission rates [STMLM02, IST07b]. In present wireless communica-

tion systems, typically point-to-point transmission is used which means that a source

node directly transmits its data to the corresponding destination node. However, due

to the requirement of high transmission rates at any location of the system the point-

to-point transmission technique meets its limits.

In order to establish a reliable transmission, which means that the destination node

can determine the data of the source node with a tolerable error rate, the destination

node requires a sufficient receive power of the desired signal. In case of a sufficient

receive power, the desired signal may be detected within the mixture of signals and

inherent receiver noise [Pro01] at the destination node. However, a sufficient receive

power cannot always be provided by the point-to-point transmission technique. In

order to obtain a sufficient receive power at the destination node, two effects of the

radio channel between transmitter and receiver have to be taken into account. Firstly,

the receive power decreases with the increasing distance squared between the source

and destination node in free space. Due to reflection, diffraction and shadowing by

obstacles, the receive power decreases even more rapidly [STIST05]. Secondly, the

receive power decreases with increasing center frequency which is a critical issue since

future wireless communication systems are expected to be operated at higher center

frequencies than the frequencies in today’s systems. For example, center frequencies

of about 5GHz are proposed for the fourth generation (4G) [STIST07a] of wireless

communication systems while the third generation (3G) [GP3GP06] is operated at

about 2GHz. Since the receive power at the destination node increases with increasing

transmit power of the source node, one could suggest to increase the transmit power as

a counter measure to the two aforementioned effects. However, as the transmit power

in wireless transmissions cannot be increased arbitrarily, e.g., due to electromagnetic

compatibility (EMC) reasons or due to health reasons or due to cost reasons [Loy01,
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S1 S2

RS

Figure 1.1. Two-hop relaying in an urban cellular scenario with insufficient receive
power at node S2 for a point-to-point transmission from node S1 to node S2.

Lin03, Tim05, ZK01], increasing the transmit power is no feasible counter measure.

Thus, the receive power at the destination node is a critical issue and techniques in order

to obtain a sufficient receive power are required if high transmission rates are desired

[PWS+04]. Figure 1.1 depicts a typical urban scenario in a cellular system which

exemplifies the problem of insufficient receive power for the point-to-point transmission

of two nodes S1 and S2. Let us consider the transmission from node S1 which is a base

station to node S2 which is a mobile user node. In this example, S1 corresponds to

the source node and S2 corresponds to the destination node. Nodes S1 and S2 form a

source-destination pair. Due to the shadowing by the high building, the receive power

at the destination node, is such low that a point-to-point transmission from the source

node to the destination node is not possible. Note that S1 and S2 may exchange

their roles while still being faced with the problem of insufficient receive power due to

shadowing in the scenario of Figure 1.1. Throughout the thesis, it is assumed that a

point-to-point transmission between source and destination node is impossible.

Nevertheless, a reliable transmission from the source node to the destination node

can still be established if another node which is termed relay station (RS) assists the

transmission. In the depicted scenario of Figure 1.1, the source node can establish a

reliable transmission to the RS, and the RS can establish a reliable transmission to the

destination node. Thus, the RS receives the data of the source node and retransmits

the data to the destination node. Since the overall transmission requires two hops,

one from the source node to the RS and another from the RS to the destination

node, the technique is termed two-hop relaying [LLW+03]. For multi-hop relaying
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Figure 1.2. Considered bi-directional two-hop relaying scenario with source and desti-
nation nodes S1 and S2, and the RS, all equipped with multiple antennas.

[DLV+06,BFY04], there are multiple RSs between source and destination node, i.e., the

data is retransmitted several times until it is received at the destination node. However,

this thesis only considers two-hop relaying, since every additional hop increases the

delay between the transmission of the source node and the reception at the destination

node, and since two hops are reasonable in many application cases. Furthermore, the

generalization from two-hop relaying to multi-hop relaying is straightforward in most of

the cases. In cellular scenarios, either dedicated nodes with fixed locations [PWS+04,

SPI03,HU06] as depicted in Figure 1.1 and/or mobile user nodes [Yan02] may serve as a

RS. Relaying can also be applied in sensor networks as proposed in [DLV+06,LVZD07],

for example. Figure 1.1 gives only one descriptive example for a possible application of

two-hop relaying in cellular networks, but the two-hop relaying techniques presented

in this thesis can also be applied in many other wireless communication systems.

In the following, the system which is considered throughout the thesis is intro-

duced. The system consists of three nodes, namely S1, S2, and the RS. In the system,

bi-directional transmission [OB08] is performed which means that S1 transmits data

to S2, and S2 transmits data to S1. Hence, S1 and S2 are source nodes as well as

destination nodes. Throughout the thesis, the terms source node S1 (S2) and des-

tination node S1 (S2) are used if it is important which role is taken by S1 (S2) in

the current context. If it is not important, simply the term S1 (S2) is used. Typical

services requiring bi-directional transmissions with high transmission rates are video

conferencing and gaming, for example. Figure 1.2 gives a schematic representation of

the system under consideration. The two gray arrows from the left to the right and

the two gray arrows from the right to the left indicate the four required transmissions

for one overall bi-directional transmission between S1 and S2. In order to enable the

four transmissions, channel resources in time and frequency need to be allocated to

them. Since the resources in time and frequency are interchangeable in most of the

cases, only one frequency resource and multiple time resources which are named time
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slots are considered throughout the thesis.

Besides channel resources in time and frequency, channel resources may also be

defined in the spatial domain by using multiple-input-multiple-output (MIMO) tech-

niques [Tel99, KBB+05]. From point-to-point transmissions, it is known that MIMO

techniques promise significant performance gains in terms of achievable transmission

rate. Just recently, MIMO techniques are also applied in two-hop relaying expect-

ing similar performance gains [HKE+07,DGA03]. In order to exploit the spatial do-

main, the different nodes need to be equipped with multiple antennas indicated by

the big dots in Figure 1.2. These multiple antennas enhance the performance of the

transmission by exploiting spatial diversity [PNG03] and/or applying spatial multiplex-

ing [Tel99, LT02]. In case of spatial diversity schemes, the transmission rate may be

improved by smartly transmitting and/or receiving one data stream at several antennas

which provides several independent replicas of the same data stream at the receiver.

In order to apply spatial diversity schemes, the transmitter does not need to know

the current transfer function of the time variant and frequency selective radio channel

between transmitter and receiver. This knowledge is defined as transmit channel state

information (CSI) and can be obtained by pilot assisted channel estimation (PACE) for

example [TSD04]. However, if the transmitter has transmit CSI, significantly higher

performance gains in terms of transmission rate can be achieved by applying spatial

multiplexing schemes. In case of spatial multiplexing schemes, multiple data streams

are transmitted simultaneously on the same channel resources in time and frequency

by separating the data streams in the spatial domain. This means that the required

amount of channel resources in time and frequency needs not to be increased in order

to increase the transmission rate. Since high transmission rates are desired for the

systems of this thesis, only spatial multiplexing schemes are regarded in the following.

Separating multiple data streams in the spatial domain can be achieved by adaptive

beamforming (BF). In order to apply adaptive BF at the transmitter side which is

also referred to as spatial precoding [MBQ04,JUN05,PNG03], the transmitter requires

transmit CSI. In order to apply adaptive BF at the receiver side which is also referred

to as joint decoding [Mue01, HM72], the receiver needs to know the current transfer

function of the radio channel between transmitter and receiver. This knowledge is

defined as receive CSI and can be obtained by PACE, too. Throughout the thesis,

channel reciprocity is assumed since the time between transmission and reception of a

node is chosen to be shorter than the channel coherence time [Pro01]. This means that

the transmit CSI equals the receive CSI. Unless otherwise stated, the term CSI is used

for both kinds of CSI in the following. The investigations of this thesis are limited to a

single source-destination pair since the challenges for adaptive BF in two-hop relaying

already appear for this simple system and the developed BF algorithms can be used
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as a basis for an extension to multiple source-destination pairs.

1.1.2 Considered two-hop relaying techniques

In this section, the considered two-hop relaying techniques are presented. There exist

many two-hop relaying techniques which can be classified by two criteria, namely the

signal processing (SP) approach at the RS and the relaying scheme which is defined by

the channel resource allocation [ZK01]. In the following, firstly the SP approaches are

considered, and secondly the relaying schemes.

There exist two main approaches for the SP at the RS, which define how the

received data streams at the RS are processed before the retransmission. For the

regenerative approach which is also referred to as decode-and-forward (DF) or digi-

tal relaying [Yan02, OB06], the received data streams from the source node are de-

coded and re-encoded at the RS before the retransmission to the destination node.

For the non-regenerative approach which is sometimes referred to as analog relay-

ing [BUK+09, Yan02], the received data streams at the RS are neither decoded nor

re-encoded, but only linear SP is employed. A well-known non-regenerative approach

is amplify-and-forward (AF) relaying [PSP06,PS07] where the received data streams

are just amplified by a weighting factor at the RS before the retransmission to the

destination node. Other non-regenerative approaches employ advanced linear SP at

the RS, e.g, linear adaptive BF where linear combinations of the received data streams

can be retransmitted from the RS [HW06,TH07,UK08a].

In regenerative relaying, the receiver noise at the RS is eliminated due to decoding.

In this case, decoding errors may appear. In non-regenerative relaying, the receiver

noise at the RS is propagated to the destination node. Intuitively, one might expect

that regenerative relaying always outperforms non-regenerative relaying due to the

elimination of the receiver noise at the RS. However, there exist several works which

show that this is not necessarily the case [Yan02, FATY07]. For example, the RS

selection in regenerative relaying is a more challenging task than the RS selection in

non-regenerative relaying since the selection of an improper RS causes decoding errors

at the RS which propagate to the destination node [LTW04].

In regenerative relaying, the decoding and re-encoding of the data streams at the

RS cause additional delay to the overall transmission from the source node to the

destination node, while the linear SP in non-regenerative relaying is less critical in

terms of delay. Time diversity in fading radio channels can be exploited by introducing
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temporal interleaving [JT94] in conjunction with channel coding. Especially if the

temporal interleaving depth is high, the delay caused by decoding and re-encoding at

the RS increases.

In regenerative relaying, the RS needs to know and support the modulation and

coding schemes [BHIM05] agreed between source and destination node, while non-

regenerative relaying is transparent regarding the modulation and coding schemes.

Let us consider a system which consists of source and destination nodes of different

capabilities, e.g., some mobile nodes are able to support high transmission rates using

advanced modulation and coding schemes while other mobile nodes do not support

these advanced modulation and coding schemes. In regenerative relaying, the RS needs

to support all modulation and coding schemes used in the system, otherwise it cannot

decode and re-encode the received data streams. In non-regenerative relaying, the

RS can support all modulation and coding schemes inherently without knowing them

since the RS only retransmits linearly processed versions of the received data streams

without considering the actual modulation and coding scheme. Due to the mentioned

advantages of non-regenerative relaying, this thesis focuses on non-regenerative relaying

exclusively.

In the following, the second criterion for the classification of the relaying techniques

is considered, namely the relaying scheme. There exist several relaying schemes which

differently allocate the channel resources to the different transmissions in the system.

There exists a hardware limitation which imposes a constraint on all relaying schemes.

Due to the high dynamic range between the signal powers of received and transmit-

ted signals, typical transceivers at S1, S2, and the RS cannot receive and transmit

simultaneously. This constraint is often referred to as half-duplex constraint [RW07]

and is typically solved by transmitting and receiving on two orthogonal time slots. In

this thesis, two relaying schemes satisfying the half-duplex constraint are investigated,

namely one-way relaying and two-way relaying. The time slot allocation of the one-way

relaying scheme is depicted in the upper part of Figure 1.3. The name on the left of the

arrow gives the respective transmit node and the name on the right of the arrow gives

the respective receive node of the transmission of the regarded time slot. Since spa-

tial multiplexing is applied in the system, each transmission of a single time slot may

consist of multiple data streams. The first and second time slot are allocated to the

two-hop transmission from S1 to S2 and the third and fourth time slot are allocated to

the two-hop transmission from S2 to S1. More precisely, the first time slot is allocated

to the transmission of the data streams from S1 to the RS. In the second time slot, the

RS retransmits a linear combination of its received data streams of the first time slot to

S2. The third time slot is allocated to the transmission of the data streams from S2 to

the RS. In the fourth time slot, the RS retransmits a linear combination of its received
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Figure 1.3. Time slot allocation for the one-way and the two-way relaying schemes
with time slots TSt, t = 1, . . . , 4.

data streams of the third time slot to S1. Compared to a bi-directional point-to-point

transmission between S1 and S2 without intermediate RS, which requires only one time

slot for the transmission from S1 to S2 and another time slot for the transmission from

S2 to S1, the number of required time slots is doubled in one-way relaying.

In case of bi-directional transmission between S1 and S2, two-way relaying which

has been first proposed by Rankov and Wittneben [RW05] is a very promising scheme

in terms of resource efficiency since it requires only two time slots. The time slot

allocation of the two-way relaying scheme is depicted in the lower part of Figure 1.3.

In the first time slot, the source nodes S1 and S2 transmit simultaneously to the RS

which retransmits a superposition of the data streams of S1 and S2 in the second

time slot. The destination nodes S1 and S2 can determine the desired data streams

by subtracting their own transmitted but interfering data streams from the received

superposition of the data streams of S1 and S2 [RW07]. This kind of self interference

which only appears in two-way relaying and not in one-way relaying is termed duplex

interference and the applied subtraction is termed cancellation of duplex interference

(CDI) in the following.

1.1.3 System capabilities

In this section, a new framework for classifying systems with different capabilities in

one-way and two-way relaying is introduced. There are two main criteria which define

the system capabilities, namely if CSI can be made available at S1, S2 and/or the RS,

and the SP capabilities at S1, S2 and the RS. Before introducing the different system

capabilities, CSI availability and SP capabilities are explained in detail.

In the considered system of Figure 1.2, either no CSI or local CSI or global CSI may

be available at the nodes. If no CSI is available at a node, the node has no knowledge
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about the channels. If local CSI is available at a node, the node knows the channel

which is used for the transmission and reception of the node. Regarding Figure 1.2,

knowing the channel between S1 (S2) and the RS at S1 (S2) corresponds to local CSI

at S1 (S2), and knowing the channels between the RS and S1 and between the RS and

S2 at the RS corresponds to local CSI at the RS. If global CSI is available at a node,

the node knows all channels in the system. Regarding Figure 1.2, global CSI at S1

(S2) corresponds to knowledge about the channel between S1 (S2) and the RS, and

the channel between S2 (S1) and the RS. Finally, from the definition of local CSI and

global CSI it becomes obvious that both correspond to each other at the RS. However,

only the term global CSI at the RS is used in the following. Obtaining local CSI is

relatively simple for all nodes since the nodes can directly ’see’ the respective channels.

Obtaining global CSI at S1 and S2 is more challenging since both nodes also require

CSI about a channel which they do not ’see’ directly.

In order to perform adaptive BF at S1 and S2 which is adapted to both hops of

a two-hop transmission, global CSI is required at S1 and S2. In order to perform

adaptive BF for both directions of the bi-directional transmission at the RS, global

CSI is required at the RS. In order to apply CDI in two-way relaying, only local CSI

is required at S1 and S2.

Furthermore, the applied SP at the nodes does not only depend on the available

CSI, but also on the SP capabilities of the nodes where the SP capabilities reflect

the computational effort that can be spent at the nodes. In the following, the SP

capabilities of the nodes are defined which may be either full or limited. It is assumed

that source and destination nodes with full SP capabilities can perform adaptive BF,

i.e., the source nodes can perform spatial precoding and the destination nodes can

perform joint decoding. A RS with full SP capabilities can also perform adaptive

BF. In the following, the applied SP at a source node, a destination node or a RS

with full SP capabilities is always termed adaptive BF. It is assumed that source and

destination nodes with limited SP capabilities cannot perform adaptive BF. In this

case, it is assumed the source node only distributes the available transmit power equally

between all transmit antennas and each antenna transmits one data stream. Analogous

to the SP at the source node, the destination node with limited SP capabilities only

performs an equal weighting of each received data stream. It is assumed that a RS with

limited SP capabilities cannot perform adaptive BF. Thus, the RS only distributes the

available transmit power equally between all transmit antennas and an amplified replica

of the received data streams is retransmitted from each antenna. In the following, the

applied SP at a source node, a destination node or a RS with limited SP capabilities is

always termed equal weighting. It is assumed that limited SP capabilities are already

sufficient in order to apply CDI at the destination nodes since CDI only requires a
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Figure 1.4. Overview of considered optimization problems depending on the system
capabilities and the relaying schemes.

simple subtraction of the own data streams which are multiplied with the local CSI.

Due to the symmetry in bi-directional transmissions, S1 and S2 are always assumed to

have the same capabilities.

With the above given explanation of CSI availability and SP capabilities, the new

framework can be summarized by Figure 1.4. The matrix organization of the figure

can be read as follows. The vertical axis with the dark gray shade gives the considered

relaying scheme which is either one-way or two-way relaying. The horizontal axis with

the light gray shade consists of three lines which are linked to the system capabilities.

The first and second line of the horizontal axis in the figure give the available CSI and

the SP capabilities at the nodes, respectively. The third line gives the SP applied at
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S1 and S2, and the RS, which results from the assumptions in the first and second line.

Depending on the available CSI and the SP capabilities of the nodes, four different

cases of system capabilities are defined at the bottom of Figure 1.4 which correspond

to the four columns outlined by the thick black frames:

• System with full capabilities: Global CSI is available at S1, S2, and the RS.

S1, S2, and the RS have full SP capabilities. Thus, all nodes perform adaptive

BF.

• System with limited capabilities at the RS: Global CSI is available at

S1 and S2, and S1 and S2 have full SP capabilities. Thus, S1 and S2 perform

adaptive BF. No CSI is available at the RS, and the RS has only limited SP

capabilities. Thus, the RS only performs equal weighting.

• System with limited capabilities at S1 and S2: No CSI is available at

S1 and S2, and S1 and S2 have limited SP capabilities. Thus, S1 and S2 only

perform equal weighting. Global CSI is available at the RS, and the RS has full

SP capabilities. Thus, the RS performs adaptive BF.

• System with local CSI at S1 and S2: Only local CSI is available at S1 and

S2, and S1 and S2 have limited SP capabilities. Thus, S1 and S2 only perform

equal weighting and CDI. Global CSI is available at the RS, and the RS has full

SP capabilities. Thus, the RS performs adaptive BF.

In Figure 1.4, the matrix with the two rows corresponding to the two different relaying

schemes and the four columns corresponding to the four different system capabilities

consists of seven boxes with a thick black frame where each box contains typical op-

timization problems in the system of Figure 1.2. One typical optimization problem is

given by the maximization of the sum rate where the sum rate gives the sum of the

transmission rates of the two directions of transmission in bi-directional transmissions.

Other typical optimization problem known from point-to-point transmissions are the

minimization of the mean square error (MSE), the minimization of the MSE under the

zero forcing (ZF) constraint, and the maximization of the signal-to-noise ratio (SNR).

The formulation of the optimization problems depends on the system capabilities and

the relaying schemes. All optimization problems indicated in Figure 1.4 are considered

in detail in the following sections. Since duplex interference does not appear in one-

way relaying, a system with local CSI and limited SP capabilities at S1 and S2 is not

reasonable in one-way relaying. Thus, no optimization problems are formulated for a

system with local CSI at S1 and S2, cf. first row and fourth column of the framework

in Figure 1.4.
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1.2 State-of-the-art

This section gives a review on the state-of-the-art regarding the one-way and two-way

relaying schemes.

In [vdM71], the relay channel has been investigated for the first time assuming

uni-directional transmission which means that only one direction of the transmission

is considered. It is assumed that the transmission between the single-antenna source

node and the single-antenna destination is assisted by the single-antenna RS. In general,

the relay channel consists of three links: the direct link from the source node to the

destination node which is indicated by the dashed line in Figure 1.1, the link from the

source node to the RS, and the link from the RS to the destination node. Assuming

these links, cooperation is a promising technique in order to improve the performance

of the transmission between source and destination node [LW03,LTW04]. In the relay

channel, cooperation implies that the source node and the RS jointly optimize their

transmissions to the destination node and the destination node exploits that the desired

signals are received over two independent links. Thus, cooperation exploits two main

characteristics of relaying: it exploits the broadcast nature of the wireless channel and

the diversity coming from the relay channel [ZHF03,HZF04b,ZHF04]. The capacity of

the described relay channel is still unknown and only bounds are given [CEG79,CT06].

Thus, the term maximum transmission rate and not capacity is used in the following.

The maximum transmission rate and the maximum sum rate may be determined under

the assumption of a specific relaying technique classified by the SP approach and the

relaying scheme.

In the following, firstly two-hop relaying schemes for single-antenna nodes are re-

viewed, and secondly a review on literature about multiple-antenna two-hop relaying

is given.

The one-way relaying scheme as introduced by the time slot allocation of Fig-

ure 1.3 is the most simple relaying scheme since only the link from the source node

to the RS, and the link from the RS to the destination node are considered. There

exist several cooperative relaying schemes which are based on the one-way relaying

scheme and which exploit different cooperation gains. Cooperation between mul-

tiple RSs assisting the transmission between one source-destination pair may pro-

vide spatial diversity [DDA02,DGA03], e.g., by applying distributed space-time cod-

ing [MH04, YSL06, UK07c, UK06]. A scheme which saves time-slots for one source-

destination pair assisted by two RSs is proposed in [RW07]. This scheme is termed

two-path relaying. In the first time slot, one RS receives from the source node and
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the other RS transmits to the destination node. In the second time slot, the RSs

change their roles. Since the source node may transmit in every time slot, the number

of required time slots is the same as in point-to-point transmissions. However, since

the two RSs use the same time slots, there may exist co-channel interference. Further

work on the two-path relaying scheme considering the direct link between the source

node and the destination node in order to exploit additional cooperation gains is pre-

sented in [FWTP07]. Cooperation between multiple users in one-way relaying provides

user cooperative diversity [SEA03a,SEA03b]. Cooperative relaying schemes which save

time slots in one-way relaying by making a smart reuse of the time slots for multiple

source-destination pairs are proposed in [SAY06,MVA04,HYFP04]. In [SAY06], mul-

tiple RSs are divided into two groups that alternately receive and transmit signals,

i.e., while one group is receiving signals from the source nodes, the other group is

transmitting signals to the destination nodes. Since the source nodes transmit all the

time in this scheme, the number of required time slots is the same as in point-to-point

transmissions. However, the performance of the scheme can be significantly degraded

by co-channel interference between the two groups of RSs. In [MVA04], one source

node communicates with K different destination nodes via K different RSs. Firstly,

the source node transmits consecutively to the K RSs using K time slots. Secondly,

all RSs transmit simultaneously to their assigned destination nodes in the relay time

slot K + 1. Obviously, this scheme does not require double number of time slots com-

pared to a point-to-point transmission, but only (K + 1)/K-times more. However, the

performance may be significantly degraded by co-channel interference from the RSs

at the destination nodes. The problem of co-channel interference is also addressed

in [HYFP04], where the co-channel interference is kept low by a smart selection of

simultaneously transmitting RSs in the relay time slot.

All aforementioned schemes aim at saving time slots in two-hop relaying by modi-

fying the one-way relaying scheme. Two-way relaying [RW05] constitutes a completely

new scheme which is especially developed for bi-directional transmissions. From Fig-

ure 1.3, it can be seen that two-way relaying requires the same number of time slots as

a bi-directional point-to-point transmission. The two-way relaying scheme can be com-

bined with a regenerative and a non-regenerative SP approach at the RS, respectively.

Furthermore, two-way relaying is closely connected to network coding [ACLW00]. Orig-

inally, in network coding data packets of different sources in a multi-node computer

network are jointly encoded at intermediate network nodes, thus saving network re-

sources. Applying network coding for wireless communications is referred to as physical

layer network coding [DEH+05]. Beside two-way relaying, there exist other schemes

which also apply physical layer network coding. In all schemes, there exist two phases,

namely the multiple access phase for the transmission from S1 and S2 to the RS and the
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broadcast phase for the transmission from the RS to S1 and S2. In the single-antenna

regenerative relaying schemes of [PY07,LJS06,HH06], three orthogonal time slots are

used. The first two time slots are allocated to the multiple access phase which means

that S1 transmits in the first time slot to the RS and S2 transmits in the second time

slot to the RS. At the RS, the decoded data streams of S1 and S2 are combined by an

bit-wise exclusive OR (XOR) operation. The third time slot is used for the broadcast

phase of the combined data streams. The destination nodes may determine the desired

data stream by a bit-wise XOR operation of the received data stream and the own

known data stream. In [PY07], the regenerative relaying scheme with three time slots

is compared to non-regenerative two-way relaying. The comparison in [PY07] shows

that non-regenerative two-way relaying provides a better performance for low noise

levels at the RS than the regenerative relaying scheme with three time slots due to the

smaller number of required time slots in non-regenerative two-way relaying.

In regenerative two-way relaying which also uses two time slots as introduced in

Figure 1.3, the simultaneously transmitted data streams of S1 and S2 in the first

time slot have to be separated by the decoding at the RS. As in the regenerative

relaying scheme proposed in [PY07], the decoded data streams of S1 and S2 are re-

combined by an bit-wise XOR operation before the retransmission in the second time

slot. The destination nodes may determine the desired data stream by a bit-wise

XOR operation of the received data stream and the own known data stream. In

[RW06,OB07], the achievable rate regions of regenerative two-way relaying for single-

antenna nodes are investigated. The optimal relative sizes of the first and second time

slot in order to maximize the achievable sum rate of regenerative two-way relaying is

given in [OB07, OB08]. A more practical issue is addressed in [KEHW06], where it

is shown how regenerative two-way relaying can be integrated into the existing IEEE

802.11n (WLAN) standard promising an improved resource efficiency and a reduced

delay for two-hop transmissions in IEEE 802.11n.

All of the aforementioned works on one-way and two-way relaying are restricted

to single-antenna nodes. In the following, firstly the literature regarding optimization

problems for systems with multiple antennas in one-way relaying, and secondly the

literature regarding optimization problems for systems with multiple antennas in two-

way relaying are reviewed using the framework of Figure 1.4.

Maximizing the transmission rate for non-regenerative one-way relaying with mul-

tiple antenna nodes in a system with full capabilities, cf. the box in the first row and

first column in Figure 1.4, is considered in several works. The adaptive BF algorithms

in order to maximize the transmission rate are given in [MVA05,MVA07,HW06,TH07].

In [MVA05,MVA07], the optimum BF at the RS is derived for a fixed BF at the source
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node. The authors in [HW06] give the optimum BF at the source node if the BF at

the RS is fixed. Furthermore, they present the joint optimization of the BF at the

source node and the BF at the RS which finally gives the maximum transmission rate.

While the joint optimization requires global CSI at all nodes, the schemes with fixed

BF either at the source node or at the RS require global CSI at the RS and only local

CSI at S1 and S2. In [Her05], the impact of average CSI instead of instantaneous CSI

at the RS on the achievable transmission rate is investigated.

In [HZF04a], it is shown how the transmission rate can be determined for non-

regenerative one-way relaying in a system with limited capabilities at the RS, cf. the

first row and the second column of Figure 1.4. BF is only performed at the source

and destination nodes and the received data streams at the RS are retransmitted with

an equal weighting factor at all antennas of the RS. The authors in [HZF04a] only

give the calculation of the transmission rate, but the BF algorithm which maximizes

the transmission rate is not considered. Linear transmit and receive BF algorithms in

point-to-point transmissions which minimize the MSE, minimize the the MSE under

the ZF constraint and maximize the SNR for either source nodes or destination nodes

with limited capabilities are considered in [MBQ04,Joh04,JUN05]. Applying these BF

algorithms in a system with limited capabilities at the RS is straightforward.

A system setup similar to a system with limited capabilities at S1 and S2, cf. the

first row and the third column in Figure 1.4, is addressed in [BW05,OP06,EBW07].

In these works, BF is exclusively performed by multiple single-antenna RSs by jointly

adapting the phases and amplitudes of the weighting factors at each single-antenna

RS assuming availability of global CSI at the RSs. Since the antennas at the RSs are

not co-located, they cannot exchange the currently received data streams. Thus, only

an adaptation of the BF to the CSI but not to the currently received data streams is

possible.

Just recently, two-way relaying with multiple-antenna nodes has attracted atten-

tion. Thus, there exist only few works on this topic and a detailed classification of

these works according to the framework of Figure 1.4 is only possible in parts.

While this thesis considers multiple antennas at all nodes, [LZ08] assumes single

antennas at S1 and S2 and multiple antennas only at the RS in non-regenerative two-

way relaying. For single-antenna source and destination nodes, the maximization of

the sum rate by exclusive BF at the RS and applying CDI at the destination nodes is

considered in [LZ08]. The problem corresponds to a system with full capabilities, cf.

second row and first column of Figure 1.4, as well as to a system with local CSI at S1

and S2, cf. second row and fourth column in Figure 1.4, since single-antenna source and
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destination nodes can only apply equal weighting in the system with full capabilities,

too. The proposed sub-optimum BF algorithm by [LZ08] based on a matched filter

approach [Pro01] for the sum rate maximization works well in systems with similar link

qualities for the transmissions from S1 to the RS and from S2 to the RS, respectively.

However, for different link qualities the performance of this algorithm degrades.

Maximizing the sum rate for a system with full capabilities in regenerative multiple-

antenna two-way relaying is addressed in [HKE+07]. The sum rates for two different

precoding schemes exploiting global CSI at the RS are analyzed. In the first precoding

scheme, the sum of individually precoded data streams for each direction of transmis-

sion is retransmitted by the RS. In the second precoding scheme, the bit-wise XOR of

the data streams of each direction of transmission is retransmitted. The rate regions of

regenerative two-way relaying using multiple-antenna nodes are derived in [WOB08].

In [VH07], it is shown how the sum rate in regenerative MIMO two-way relaying scales

with the number of antennas at the RS and with the number of RSs. For large networks

with multiple RSs between the source node and the destination node, the achievable

sum rate scales linearly with the number of antennas at the RS and logarithmically

with the number of RSs. Recently, the multiple access problem in regenerative multiple-

antenna two-way relaying has been addressed in [EW08]. The sum rate maximization

problem in a cellular scenario with a single base station, a single RS, and multiple

mobile nodes is solved by an iterative algorithm based on semi-definite programming.

1.3 Open problems

In this section, the open problems coming from the comparison of the review of ex-

isting literature in Section 1.2 with the framework for systems of different capabilities

introduced in Figure 1.4 are summarized:

1. A system model is required which allows to describe one-way and two-way relay-

ing in a common framework. With the system model, it has to be possible to

describe several linear optimization problems where the different system capabil-

ities of Figure 1.4 are considered by introducing additional constraints.

2. The maximum sum rates in one-way relaying for all cases of system capabilities

need to be determined, cf. first row and first three columns in Figure 1.4. While

the BF algorithm which maximizes the sum rate in a system with full capabilities

is well-known [HW06], the BF algorithms which maximize the sum rate for the
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systems with limited capabilities at the RS and limited capabilities at S1 and S2

have to be derived.

3. In one-way relaying, linear BF algorithms are required for the system with limited

capabilities at S1 and S2, cf. first row and third column in Figure 1.4. Typical

optimization problems in point-to-point transmissions whose solutions are known

to provide reasonable performance need to be adapted to the constraints and re-

quirements of a system with limited capabilities at S1 and S2 in one-way relaying.

A formulation of the optimization problems and the BF algorithms solving the

problems are required.

4. BF algorithms which maximize the sum rate in non-regenerative two-way relay-

ing are required for all defined cases of system capabilities. Thus, all sum rate

maximization problems of the second row in Figure 1.4 need to be formulated

and solved. Especially, the sub-optimum BF algorithm at the RS for the sum

rate maximization in case of single-antenna source and destination nodes intro-

duced in [LZ08] has to be improved in order to support systems with different

link qualities of the transmissions from S1 to the RS and from S2 to the RS,

respectively.

5. In two-way relaying, linear BF algorithms are required for the systems with lim-

ited capabilities at S1 and S2, cf. second row and third column in Figure 1.4.

Typical optimization problems in point-to-point transmissions whose solutions

are known to provide reasonable performance need to be adapted to the con-

straints and requirements of a system with limited capabilities at S1 and S2

in two-way relaying. A formulation of the optimization problems and the BF

algorithms solving the problems are required.

6. In two-way relaying, linear BF algorithms are required for the systems with local

CSI at S1 and S2, cf. second row and fourth column in Figure 1.4. Typical

optimization problems in point-to-point transmissions whose solutions are known

to provide reasonable performance need to be adapted to the constraints and

requirements of a system with local CSI at S1 and S2 in two-way relaying. A

formulation of the optimization problems and the BF algorithms solving the

problems are required.

7. In order to give a fair comparison between the systems of different capabilities,

the required effort for providing CSI to the nodes has to be considered. For

that purpose, schemes in order to provide the CSI need to be developed and the

resulting effort has to be considered in the determination of the sum rates.
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8. The impact of imperfect CSI, e.g., due to noisy channel estimates or outdated

estimates, on the considered BF algorithms is an open question which needs to

be addressed.

9. Since the multiple access problem has only been addressed for regenerative two-

way relaying so far, multiple access for non-regenerative two-way relaying is an

open problem which needs to be considered.

1.4 Thesis contributions and overview

This section gives an overview of the thesis by summarizing the main contributions

which solve the open problems introduced in Section 1.3.

1. A system model which allows to describe one-way and two-way relaying in a

common framework is given in Chapter 2. All optimization problems presented

in Figure 1.4 may be described by using this system model. Furthermore, the

sum rate is defined in Chapter 2. For the sum rate maximization problems in one-

way and two-way relaying, a general formulation of the optimization problems

is given in Chapters 3 and 4, respectively. Different system capabilities may be

considered by introducing additional constraints to the general formulation.

2. A sub-optimum analytical BF algorithm for maximizing the sum rate in one-way

relaying for a system with limited capabilities at the RS is proposed in Chapter 3.

For the system with limited capabilities at S1 and S2, a numerical solution to

the sum rate maximization problem is given and it is shown how the number of

required optimization variables for the numerical solution may be reduced. The

sum rate performances of the different system capabilities are compared to each

other by means of computer simulations in the same chapter.

3. In Chapter 3, also the typical optimization problems from point-to-point trans-

missions which describe the minimization of the MSE, the minimization of the

MSE under the ZF constraint, and the maximization of the SNR are adapted to

the requirements of the system with limited capabilities at S1 and S2 in one-way

relaying. The BF algorithms solving these optimization problems are also de-

rived. The sum rate and the bit error rate (BER) performances of the different

algorithms are compared to each other by means of computer simulations.

4. For all cases of system capabilities in two-way relaying, the maximum sum rates

are determined by numerical methods in Chapter 4. It is shown how the number
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of required optimization variables in the numerical solution may be reduced for

the system with full capabilities, the system with limited capabilities at S1 and S2

and the system with local CSI at S1 and S2. For the system with limited capabili-

ties at the RS, a sub-optimum analytical BF algorithm is proposed. Furthermore,

a sub-optimum analytical BF algorithm at the RS in case of single-antenna source

and destination nodes is proposed which outperforms the BF algorithm of [LZ08]

if there are different link qualities of the transmissions from S1 to the RS and

from S2 to the RS, respectively. The sum rate performances of the different BF

algorithms are compared to each other by means of computer simulations in the

same chapter.

5. In Chapter 4, also the typical optimization problems from point-to-point trans-

missions which minimize the MSE, minimize the MSE under the ZF constraint,

and maximize SNR are adapted to the requirements of the system with limited

capabilities at S1 and S2 in two-way relaying. The BF algorithms solving these

optimization problems are also derived. The sum rate and the BER performances

of the different algorithms are compared to each other by means of computer sim-

ulations.

6. In Chapter 4, also the typical optimization problems from point-to-point trans-

missions which minimize the MSE, minimize the MSE under the ZF constraint,

and maximize SNR are adapted to the requirements of the system with local

CSI at S1 and S2 in two-way relaying. The BF algorithms solving these opti-

mization problems are also derived. The sum rate and the BER performances

of the different algorithms are compared to each other by means of computer

simulations.

7. In Chapter 5, pilot transmission schemes and channel estimation algorithms for

PACE are proposed which are used to provide the required CSI for the different

cases of system capabilities in two-way relaying. In order to give a fair comparison

of the different cases of system capabilities, a measure for considering the effort

of PACE in the sum rate is presented.

8. The impact of imperfect CSI on the sum rate performance of the considered BF

algorithms is investigated by means of computer simulations in Chapter 5, too.

9. In Chapter 5, also two scenarios with multiple source-destination pairs are intro-

duced exemplarily in order to give a first insight into the problems arising from

multiple access in non-regenerative two-way relaying.
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Chapter 2

System model

2.1 Introduction

This chapter presents the derivation of a common system model for one-way and two-

way relaying. In [HZF04a], a system model for multiple-antenna one-way relaying is

given while [RW05] provides a system model for single-antenna two-way relaying. This

chapter provides a system model which jointly describes both relaying schemes for

multiple-antenna nodes. Furthermore, the system model is applicable to any of the

four system capabilities in the introduced framework of Figure 1.4.

In this chapter, the sum rate is introduced as a performance measure for the two

relaying schemes in the systems of different capabilities. The determination of the sum

rate for the cases allowing adaptive BF at the source and destination nodes, cf. the

first two columns in Figure 1.4, is different compared to the determination of the sum

rate for the cases only allowing an equal weighting of data streams at the source and

destination nodes, cf. the last two columns of Figure 1.4. This chapter presents how

the sum rates are determined for adaptive BF and for equal weighting at S1 and S2.

The chapter is organized as follows. Section 2.2 discusses the system assumptions for

the system introduced in Figure 1.2. The general system model is given in Section 2.3.

The determination of the sum rate is explained in Section 2.4, and the application of the

general system model in one-way relaying and two-way relaying is given in Section 2.5.

2.2 System assumptions

Throughout the thesis unless otherwise stated, the system which is introduced in Sec-

tion 1.1.1 and depicted in Figure 1.2 is considered. There are two multiple-antenna

nodes S1 and S2 which establish a bi-directional transmission via a multiple-antenna

RS since a point-to-point transmission from S1 to S2 is not possible. In this section,

the assumptions for this system are given.

S1 and S2 are equipped with M (1) and M (2) antennas, respectively. From point-to-

point transmissions it is known that a source node which is equipped with M̃ antennas
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can multiplex M̃ data streams simultaneously if the different radio channels between the

antennas are uncorrelated [PNG03]. In order to separate the data streams multiplexed

by the source node, the destination node requires at least M̃ antennas, too. Since both

nodes, S1 and S2, are source node as well as destination node, the maximum number of

multiplexed data streams by a source node is given by the minimum of M (1) and M (2) in

general. This characteristic from point-to-point transmissions is also valid for two-hop

relaying as long as the number of antennas L at the RS is sufficiently high. How much

antennas are needed at the RS in order to multiplex the minimum of M (1) and M (2)

data streams depends on the relaying scheme and is considered in Chapters 3 and 4.

In the following, the assumptions regarding the number of antennas, the transmit

powers of the nodes, the considered radio channels, the synchronization of the nodes

and the considered BF algorithms are presented which are valid throughout the thesis

unless otherwise stated.

• For simplicity but without loss of generality, it is assumed that S1 and S2 are

equipped with the same number of antennas, i.e., M (1) = M (2) = M . Thus, it

is ensured that none of the source nodes transmits more data streams than the

respective destination node can separate spatially. For M (1) > M (2), a precoding

which distributes M (2) data streams over M (1) antennas would be required at S1

and vice versa [PNG03].

• It is assumed that each node has a transmit power constraint. The power values

E(1), E(2), and E(0) denote the maximum transmit powers of S1, S2, and the RS,

respectively.

• A flat fading channel is assumed. The reason for this assumption is explained in

the following. In an orthogonal frequency division multiplexing (OFDM) system

[vNP00] which is proposed for 4G wireless communication systems for example,

the available bandwidth is divided into a number of orthogonal sub-carriers. If the

bandwidth of the sub-carriers is smaller than the channel coherence bandwidth

[Pro01], flat fading may be assumed which means that each sub-carrier is such

narrow that its transfer function is well approximated by one complex channel

fading coefficient in the frequency domain.

• It is assumed that the overall channel resources are divided into small units which

are orthogonal in time and frequency and denoted as time-frequency units. A sin-

gle time-frequency unit corresponds to one time slot as introduced in Figure 1.3

and one sub-carrier. In OFDM for example, the sub-carriers are orthogonal inher-

ently [PNG03]. In a time-dispersive channel, temporal intersymbol interference
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is circumvented by introducing a guard interval as a cyclic prefix whose duration

is longer than the maximum channel delay [vNP00].

• It is assumed that a source node always transmits M data symbols per time-

frequency unit if the time-frequency unit is allocated to the respective source

node, i.e., from each transmit antenna of the source node one data symbol is

transmitted per sub-carrier and during one time slot. Since the time-frequency

units are orthogonal to each other, transmitting NM data symbols within N

time-frequency units is straightforward and omitted in this thesis.

• It is assumed that the transfer functions of all considered radio channels are

constant during one bi-directional transmission interval, where one bi-directional

transmission interval consists of the transmission of M data symbols from S1 to

S2 and M data symbols from S2 to S1. This means that the channel coherence

time is greater than the time required to transmit M data symbols from S1 to S2

plus the time required to transmit M data symbols from S2 to S1. Considering

the time slot allocation of Figure 1.3, the radio channels are constant during at

least four time slots in one-way relaying and at least two time slots in two-way

relaying.

• Channel reciprocity is assumed which means that the channel fading coefficient

for the transmission from an antenna m at node S1 (S2) to an antenna l at the RS

equals the channel fading coefficient for the transmission from the same antenna

l at the RS to the same antenna m at node S1 (S2) [CLW+06]. With the previ-

ous assumption of constant radio channels during one bi-directional transmission

interval, channel reciprocity is inherently obtained.

• It is assumed that if CSI is available at a node, this CSI corresponds to the

instantaneous channel transfer function. Unless otherwise stated, the CSI is

error-free which is often referred to as perfect CSI.

• It is assumed that the transmitted OFDM symbols of the nodes are synchronized

in time. In an OFDM system, the impact of imperfect time synchronization of

the OFDM symbols can be minimized by an appropriate length of the guard

interval. The duration of the guard interval has to be greater than the maximum

channel delay, and additionally the duration of the guard interval needs to cover

the maximum time offset between the transmitter and the receiver. For prac-

tical applications, there exist several techniques which enable the required time

synchronization [MVBL03].

• It is assumed that the transmitted and received signals at the nodes are frequency

synchronous. The frequency shifts between the transmitted signal and the re-
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ceived signal, e.g., due to imperfect oscillators [vNP00], can be compensated by

frequency synchronization techniques [MVBL03]. Furthermore, the impact of the

Doppler spread [vNP00] can be neglected in scenarios with nodes of low mobility

and needs to be compensated in scenarios with nodes of higher mobility [EBP00].

• It is assumed that the transmitted and received signals at the co-located an-

tennas of each node are phase synchronous. In practical applications, phase

synchronization over co-located transmit and receive antennas, respectively, is

inherently achieved due to one central clock at each node [BW08].

• Only linear BF algorithms are assumed in the following. In general, the lin-

ear BF algorithms can be outperformed by non-linear BF algorithms, like the

Tomlinson-Harashima precoding [Tom71,HM72], at the cost of significantly in-

creased computational complexity [Joh04].

2.3 General system model

In this section, a general system model is developed for the scenario depicted in Fig-

ure 1.2 with bi-directional transmission between S1 and S2 via the RS under the as-

sumptions of Section 2.2. The general system model is valid for one-way relaying as

well as for two-way relaying.

Figure 2.1 presents the general system model. The upper two blocks on the left-

hand side which are framed by the dashed lines denote the receiver and transmitter

part of node S1, respectively, while the lower two blocks on the left-hand side denote

the receiver and transmitter part of S2, respectively. The single block on the right-hand

side which is framed by the dashed lines corresponds to the RS which also consists of

a transmitter and a receiver part. The transmitters and receivers are linked via the

respective radio channels between them.

Throughout the thesis, the equivalent low-pass frequency domain is considered

[Pro01, Kes07]. Signals and radio channels are represented by their complex valued

samples in the frequency domain. Each sample is valid for one specific time-frequency

unit. Lower case bold face letters and upper case bold face letters denote complex val-

ued vectors and matrices, respectively. Let [·]T, [·]∗, [·]H, E {·}, IM , and 0L×M denote

the transpose, the conjugate, the Hermitian, the expectation, an identity matrix of size

M , and an all-zero matrix with L rows and M columns.
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Figure 2.1. General system model valid for one-way and two-way relaying.

Data vector

x(i) =
[

x
(i)
1 , . . . , x

(i)
M

]T

(2.1)

consists of the data symbols x
(i)
m , m = 1, . . . ,M, and is transmitted from source node

Si to destination node Sk for

k =

{

1 if i = 2,
2 if i = 1.

(2.2)

In the following, index (i) always corresponds to the source node and index (k) which

depends on index (i) via Eq. (2.2) corresponds to the respective destination node. Thus,

matrices and vectors corresponding to the transmission from source node Si to the RS

are denoted by index (i), and matrices and vectors corresponding to the transmission

from the RS to destination node Sk are denoted by index (k). The data symbols x
(i)
m ,

m = 1, . . . ,M , are zero-mean, independent, circularly symmetric, complex Gaussian

random variables with variance one. Hence, the covariance matrix Rx(i) of x(i) results
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β(1) β(2)

one-way relaying: S1 to S2 1 0
one-way relaying: S2 to S1 0 1
two-way relaying 1 1

Table 2.1. The different directions of transmission in one-way and two-way relaying
described by the choice of β(1) and β(2).

in

Rx(i) = E
{

x(i)x(i)H
}

= IM . (2.3)

In Figure 2.1, factors β(i) ∈ {0, 1}, i = 1, 2, represent switches which either let

pass a signal for β(i) = 1 or block a signal for β(i) = 0. By the joint choice of factors

β(1) and β(2) depending on the relaying scheme, one can determine which direction of

transmission is considered in the system model of Figure 2.1. The factors β(i) are also

a representation of the time slot allocation of Figure 1.3. Table 2.1 summarizes how

β(1) and β(2) have to be chosen in order to describe the transmissions in one-way and

two-way relaying, respectively. For the transmission from S1 to S2 in one-way relaying,

only data vector x(1) is transmitted by source node S1, i.e., β(1) = 1 and β(2) = 0. For

the transmission from S2 to S1 in one-way relaying, only data vector x(2) is transmitted

by source node S2, i.e., β(1) = 0 and β(2) = 1. In two-way relaying, data vectors x(1)

and x(2) are transmitted simultaneously, i.e., β(1) = β(2) = 1.

Before the transmission over the radio channel, the data vector x(i) is spatially

precoded which is indicated by the transmit BF matrix Q(i) ∈ C
M×M . The transmit

BF matrix Q(i) may be optimized depending on the optimization problems introduced

in the framework of Figure 1.4. The radio channel for the transmission from node Si

to the RS is described by the channel matrix

H(i) =
[

h
(i)
1 ,h

(i)
2 , . . . ,h

(i)
M

]

∈ C
L×M , (2.4)

with channel vectors

h(i)
m =

[

h
(i)
1,m, h

(i)
2,m, . . . , h

(i)
L,m

]T

, m = 1, 2, . . . ,M, (2.5)

where h
(i)
l,m for l = 1, . . . , L and m = 1, . . . ,M are complex fading coefficients describing

the fading channel between transmit antenna m and receive antenna l. The noise at the

receive antennas of the RS is assumed as additive white Gaussian noise (AWGN) and

described by vector n(0) ∈ C
L×1 where the elements of n(0) are zero-mean, independent,

circularly symmetric, complex Gaussian random variables with variance σ2
n(0) yielding

the noise covariance matrix

Rn(0) = E
{

n(0)n(0)H
}

= σ2
n(0)IL. (2.6)
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The received data streams at the RS are sums of all data streams transmitted simulta-

neously by the source nodes over the respective radio channels plus the AWGN at the

RS. Before the retransmission, the received data streams are filtered by a linear BF

matrix Ḡ ∈ C
L×L. The BF matrix Ḡ at the RS depends on the relaying scheme, i.e.,

it also depends on the choice of the factors β(i), i = 1, 2. Furthermore, matrix Ḡ may

be optimized depending on the optimization problems introduced in the framework of

Figure 1.4. Due to the assumption of constant radio channels during one bi-directional

transmission interval and due to the assumption of channel reciprocity, the channel

matrix for the transmission from the RS to node Sk is given by H(k)T . At the receive

antennas of Sk, AWGN with variance σ2

n
(k)
R

is assumed which is described by the noise

vector n
(k)
R ∈ C

M×1 with noise covariance matrix

R
n

(k)
R

= E
{

n
(k)
R n

(k)H

R

}

= σ2

n
(k)
R

IM . (2.7)

Let diagb [Z1,Z2, . . . ,ZN ] denote a block diagonal matrix given by

diagb [Z1,Z2, . . . ,ZN ] =















Z1 0 0 · · · 0
0 Z2 0 · · · 0

0 0
. . . 0

...
...

... 0 ZN−1 0
0 0 · · · 0 ZN















,

where the all-zero matrices 0 have to be adapted to the sizes of the arbitrarily sized

complex matrices Zn, n = 1, . . . , N . Furthermore, let diag [·] denote a diagonal matrix

consisting of the main diagonal matrix elements if the argument is a matrix, and

consisting of the vector elements if the argument is a vector. The noise at the RS and

the noise at the destination node Sk, which are mutually independent, are concatenated

to the overall noise vector

n(k) =
[

n(0)T ,n
(k)T

R

]T

∈ C
(M+L)×1, (2.8)

with the overall noise covariance matrix

Rn(k) = diagb

[

σ2
n(0)IL, σ2

n
(k)
R

IM

]

. (2.9)

In order to describe the output of the receiver Sk, the following matrices are required.

Matrix T(k) ∈ C
M×M is introduced in order to describe the application of CDI at

the destination node Sk. The receive BF matrix P(k) ∈ C
M×M is applied after the

application of CDI. The CDI matrix T(k) and the receive BF matrix P(k) at the receiver

in Figure 2.1 depend on the relaying scheme and may be optimized depending on the
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optimization problems introduced in Figure 1.4. Furthermore, matrices

A(k) = diag
[

H(k)TḠH(i)Q(i)
]

∈ C
M×M , (2.10a)

F(k) = H(k)TḠH(i)Q(i) − A(k) ∈ C
M×M , (2.10b)

D(k) = H(k)TḠH(k)Q(k) + T(k) ∈ C
M×M , (2.10c)

B(k) =
[

H(k)TḠ, IM

]

∈ C
M×(M+L), (2.10d)

are linked with the desired data vector x(i), with the intersymbol interference between

the data symbols of the data symbol vector x(i), with the duplex interference vector

containing the interference caused by the data vector x(k), and with the overall noise

vector n(k), respectively. Using these definitions, the estimate x̂(i) of data vector x(i)

at the output of receiver Sk is given by

x̂(i) = P(k)
((

A(k) + F(k)
)

x(i) + D(k)x(k) + B(k)n(k)
)

. (2.11)

2.4 Sum rate definition

In the following, the sum rate of the system in Figure 1.2 is defined. The sum rate

is a measure how much information can be exchanged between S1 and S2 per time-

frequency unit in the bi-directional scenario of Figure 1.2. It depends on the time slot

allocation of the relaying scheme depicted in Figure 1.3 and on the system capabilities

defined in the framework of Figure 1.4.

Regarding the time slot allocation, one-way relaying and two-way relaying require

a different overall number S of time slots for one bi-directional transmission interval.

This fact is considered by the sum rate normalization factor r which is defined as

r =
1

S
. (2.12)

In [HZF04a], the transmission rate of a non-regenerative MIMO two-hop relaying sys-

tem is considered. In order to determine the transmission rate with the approach

from [HZF04a], one needs to identify the useful signals at the destination node and the

disturbances at the destination node consisting of AWGN and interferences. With the

general system model for one-way and two-way relaying in Eq. (2.11), it possible to

determine the useful signals and the disturbances.

Regarding the system capabilities, two cases have to be distinguished in order to

determine the sum rate. Firstly, for the system with full capabilities and the system
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with limited capabilities at the RS which correspond to the first and second column

in Figure 1.4, respectively, adaptive BF can be applied at S1 and S2 since both nodes

have full SP capabilities. Secondly, for the system with limited capabilities at S1 and

S2 and the system with local CSI at S1 and S2 which correspond to the third and

fourth column in Figure 1.4, respectively, only equal weighting of the data streams can

be applied at S1 and S2 since both nodes have only limited SP capabilities and limited

CSI. In the following, the sum rate is firstly determined for adaptive BF at S1 and S2,

and secondly for equal weighting of the data streams at S1 and S2.

In case of adaptive BF at S1 and S2, beside the useful signal indicated by matrix

P(k)A(k) in Eq. (2.11) the intersymbol interference represented by matrix P(k)F(k) can

also be exploited by applying joint decoding at destination node Sk [Mue01]. Thus,

the overall matrix linked with useful signal vector x(i) is given by

P(k)Ã(k) = P(k)
(

A(k) + F(k)
)

. (2.13)

The disturbances at the destination node Sk consist of the duplex interference repre-

sented by matrix P(k)D(k) and the AWGN represented by matrix P(k)B(k). Thus, using

adaptive BF at S1 and S2 in the system described by Eq. (2.11), yields the following

transmission rate for the uni-directional transmission from node Si to node Sk:

C
(k)
BF = log2

(

det

[

IM +
(

Ã(k)Rx(i)Ã(k)H
)(

D(k)Rx(k)D(k)H + B(k)Rn(k)B(k)H
)−1
])

,

(2.14)

[HZF04a], where log2 (·) and det [·] denote the logarithm to the base 2 and the determi-

nant, respectively. Note that the receive BF matrix P(k) is not included in Eq. (2.14)

since the useful signal part corresponding to the term Ã(k)Rx(i)Ã(k)H and the overall

disturbances corresponding to the term D(k)Rx(k)D(k)H + B(k)Rn(k)B(k)H are both fil-

tered by the same BF matrix P(k). Thus, matrix P(k) does not change the determinant

in Eq. (2.14). With the transmission rate C
(k)
BF of Eq. (2.14), the sum rate in case of

adaptive BF at S1 and S2 for one-way as well as for two-way relaying results in

C
(sum)
BF = r

(

C
(1)
BF + C

(2)
BF

)

. (2.15)

In Eq. (2.15), the sum rate normalization factor r of Eq. (2.12) is included as a pre-

factor.

If equal weighting of the data streams is applied at S1 and S2, the precoding matrix

Q(i) at source node Si is represented by one scalar weighting factor q(i) assuming that

the transmit power E(i) of Si is equally distributed between all transmit antennas since

no CSI is available at Si and since Si has only limited capabilities, i.e., Q(i) = q(i)IM

with q(i) =
√

E(i)/M . Furthermore, the receive BF matrix at destination node Sk is



28 Chapter 2: System model

represented by one scalar weighting factor p(k), i.e., P(k) = p(k)IM . As the useful signal

and the disturbances are both multiplied with the scalar receive filter p(k), the filter is

omitted in the following derivation of the sum rate in case of equal weighting.

Although the receive nodes do not have global CSI in case of equal weighting, the

channel decoders of the destination nodes have to be provided with the overall channel

q(i)H(k)TḠH(i). This problem can only be circumvented if the channel decoders may

assume a pre-defined overall channel, e.g., q(i)H(k)TḠH(i) = I. In this case, the BF

matrix Ḡ at the RS has to ensure that this pre-defined overall channel is achieved.

This assumption is valid for all proposed analytical BF algorithms of this thesis.

If equal weighting of the data streams is applied at S1 and S2, it is defined that

the m-th transmit antenna of the source node Si and the m-th receive antenna of the

destination node Sk form a transmit-receive antenna pair. This means that the data

stream transmitted by the m-th transmit antenna of the source node Si is dedicated

to the m-th receive antenna of the destination node Sk. Pairing the m-th transmit

antenna with the m-th receive antenna is reasonable, since no global CSI is available

at the source and destination nodes. Of course, if CSI was available at S1 and S2 the

pairing of the transmit and receive antennas could be optimized. The transmission rate

of the data stream of each transmit-receive antenna pair can be treated independently

from the other transmission rates. In order to determine the transmission rate of

each single data stream, the signal-to-noise-plus-interference ratio (SINR) of each data

stream at the corresponding receive antenna of destination node Sk is required.

The SINR gives the ratio between the useful power and the sum power of all dis-

turbances consisting of interference and noise. The required powers are derived in the

following. For each antenna at the destination node, only one data stream is desired.

The power of the desired data stream at the m-th antenna of node Sk is given by

A(k)
m = q(i)2h(k)T

m Ḡh(i)
m h(i)H

m ḠHh(k)∗

m , (2.16)

which corresponds to the average power of the m-th row of the vector A(k)x(i) in

Eq. (2.11). In contrast to the case of adaptive BF at S1 and S2, intersymbol interference

power coming from the sum of the M − 1 interfering data streams dedicated to the

M −1 other antennas of Sk has to be considered as a part of the disturbances in case of

equal weighting of the data streams at S1 and S2. The intersymbol interference power

is given by

F (k)
m = q(i)2h(k)T

m Ḡ







M
∑

l=1,
l 6=m

h
(i)
l h

(i)H

l






ḠHh(k)∗

m , (2.17)
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which corresponds to the average power of the m-th row of the vector F(k)x(i) in

Eq. (2.11). Furthermore, the duplex interference power coming from the M transmitted

data streams of Sk dedicated to Si has to be considered. Let t
(k)T

m denote the m-th row

of CDI matrix T(k). Then, the duplex interference power is given by

D(k)
m =

(

q(k)h(k)T

m ḠH(k) − t(k)T

m

)(

q(k)h(k)T

m ḠH(k) − t(k)T

m

)H

. (2.18)

The duplex interference power D
(k)
m corresponds to the average power of the m-th row

of vector D(k)x(k) in Eq. (2.11). Finally, the overall noise power has to be considered

which is given by

B(k)
m =

(

σ2
n(0)h

(k)T

m ḠḠHh(k)∗

m + σ2

n
(k)
R

)

, (2.19)

which corresponds to the average power of the m-th row in vector B(k)n(k) of Eq. (2.11).

With these powers, the SINR at the m-th receive antenna of destination node Sk results

in

SINR(k)
m =

A
(k)
m

F
(k)
m + D

(k)
m + B

(k)
m

. (2.20)

The transmission rate for the transmission from source node Si to destination node Sk

is the sum of the independent transmission rates of each transmit-receive antenna pair

given by

C
(k)
EW =

M
∑

m=1

log2

(

1 + SINR(k)
m

)

. (2.21)

With the transmission rate of Eq. (2.21), the sum rate in case of equal weighting of

the data streams at S1 and S2 in one-way and two-way relaying results in

C
(sum)
EW = r

(

C
(1)
EW + C

(2)
EW

)

, (2.22)

with the sum rate normalization factor r as introduced in Eq. (2.12).

2.5 Application of the general system model to par-

ticular relaying schemes

2.5.1 One-way relaying

In this section, the general system model of Section 2.3 is applied to the one-way

relaying scheme. The BF matrix Ḡ can be individually adapted for both transmissions

from Si to Sk, for i = 1, 2. Hence, BF matrix Ḡ at the RS depends on the choice of the
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factors β(i). The following denotation is made in order to distinguish both directions

of the transmission:

Ḡ =

{

G(2,1) for β(1) = 1, β(2) = 0,
G(1,2) for β(1) = 0, β(2) = 1.

(2.23)

In Eq. (2.23), BF matrix G(2,1) corresponds to the transmission from S1 to S2 and BF

matrix G(1,2) corresponds to the transmission from S2 to S1.

In one-way relaying, S1 and S2 do not transmit simultaneously which means that

there exists no duplex interference from x(k) at Sk due the orthogonal transmission in

time domain. Hence, no gains can be achieved by knowing x(k) at Sk and CDI matrix

T(k) is set to zero yielding

T(k) = D(k) = 0M×M . (2.24)

From the time slot allocation for the one-way relaying scheme as depicted in the upper

part of Figure 1.3, it can be seen that each source node transmits one data symbol

vector during S = 4 orthogonal time slots. Hence, the sum rate normalization factor

of Eq. (2.12) results in

rOW =
1

4
. (2.25)

2.5.2 Two-way relaying

In this section, the general system model of Section 2.3 is applied to the two-way

relaying scheme. BF matrix Ḡ can only be adapted to the sum of both transmitted

signals. Hence, BF matrix Ḡ is valid for both directions of the transmission, namely

from S1 to S2 and from S2 to S1, and is denoted by

Ḡ = G for β(1) = β(2) = 1, (2.26)

in the following.

In contrast to one-way relaying, S1 and S2 transmit simultaneously in two-way re-

laying. For that reason, duplex interference from x(k) may appear at Sk. Depending on

the considered system capabilities of the framework in Figure 1.4, this duplex interfer-

ence can either be cancelled by CDI at the destination nodes or not. The application

of CDI requires an appropriate choice of CDI matrix T(k). CDI is applied in the cases

of the first, second, and fourth column of Figure 1.4, which yields the following set of

equations

T(k) = −H(k)TGH(k)Q(k), (2.27)

D(k) = 0M×M . (2.28)
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If CDI cannot be applied at the destination nodes, which corresponds to the case in

the third column of Figure 1.4, the following set of equations is applied:

T(k) = 0M×M , (2.29)

D(k) = H(k)TGH(k)Q(k). (2.30)

From the time slot allocation for the two-way relaying scheme as depicted in the lower

part of Figure 1.3, it can be seen that each source node transmits one data symbol

vector during S = 2 orthogonal time slots. Hence, the sum rate normalization factor

of Eq. (2.12) results in

rTW =
1

2
. (2.31)
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Chapter 3

One-way relaying

3.1 Introduction

In this chapter, all optimization problems in one-way relaying introduced in the first

row of the matrix organization in Figure 1.4 are considered. Firstly, the optimization

problems are formulated, and secondly, the respective BF algorithms which solve the

problems are derived.

For one-way relaying, three systems of different capabilities are considered, namely

the system with full capabilities, the system with limited capabilities at the RS, and the

system with limited capabilities at S1 and S2. For all three systems which correspond

to the first three columns in Figure 1.4, the maximization of the sum rate is considered

in Section 3.2. Among those three, the system with full capabilities achieves the highest

sum rate since all nodes have full SP capabilities and global CSI is provided to all nodes.

Thus, all nodes may perform adaptive BF. In the system with limited capabilities at the

RS, the RS cannot perform adaptive BF and in the system with limited capabilities

at S1 and S2, the source and destination nodes cannot perform adaptive BF. The

limited capabilities in both systems correspond to additional constraints in the sum

rate maximization problems. These constraints are defined in Section 3.2 and included

into the optimization problems.

Depending on the considered system capabilities, the optimum BF algorithms can

be described analytically or only numerical solutions are available. For the system

with full capabilities, an analytical BF algorithm in order to maximize the sum rate

is presented. However, for the system with limited capabilities at the RS and the sys-

tem with limited capabilities at S1 and S2, only numerical solutions to the sum rate

maximization problem can be given. Since numerical methods require high computa-

tional effort, analytical solutions are desired which may even provide a sub-optimum

performance if the computational effort is reduced significantly. Thus, for the system

with limited capabilities at the RS a sub-optimum analytical BF algorithm in order to

maximize the sum rate is derived. For the system with limited capabilities at S1 and

S2, further optimization problems whose solutions are known to provide reasonable

performance in point-to-point transmissions are newly formulated for one-way relaying

in Section 3.3, and the corresponding BF algorithms are derived. These optimization
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problems can also be formulated for the system with limited capabilities at the RS.

Since the problems can be solved by straightforward adaptations of transmit and re-

ceive BF algorithms known from point-to-point transmissions [MBQ04,Joh04,JUN05],

they are omitted for the system with limited capabilities at the RS in this thesis.

The performances of the proposed BF algorithms are investigated in Section 3.4

and the main conclusions of this chapter are drawn in Section 3.5.

3.2 Maximization of the sum rate

3.2.1 General problem formulation

In this Section 3.2, the maximization of the sum rate for the three different cases of

system capabilities in one-way relaying is considered, which corresponds to the sum

rate maximization problems in the first three columns of the first row in the matrix

organization of Figure 1.4.

The sum rates defined in Section 2.4 can be maximized by adapting the BF ma-

trices Q(i) and G(k,i) at the source node Si and at the RS, respectively, introduced in

Figure 2.1. From the sum rate definitions in Section 2.4, it is known that the sum rate

is always independent of the receive BF matrix P(k). Thus, P(k) can be omitted in

the sum rate maximization problems. Due to the orthogonality between the transmis-

sions from S1 to S2 and from S2 to S1 in one-way relaying, transmission rate C(2) is

independent of transmission rate C(1). In this case, the sum rate is maximized if each

transmission rate is maximized individually, and the BF matrices G(2,1) and Q(1) can

be designed independently of G(1,2) and Q(2).

Based on the aforementioned assumptions, a general sum rate maximization prob-

lem with transmit power constraints is formulated which can be adapted to each case of

system capabilities by introducing additional constraints to the problem and by using

the respective sum rate of Section 2.4, i.e., either Eq. (2.15) for adaptive BF at S1

and S2 or Eq. (2.22) for equal weighting at S1 and S2. Let arg max
{a}

b return the value

of a which maximizes b and let tr {·} denote the trace of a matrix. The general sum

rate maximization problem consists of two independent transmission rate maximiza-

tion problems where each of the problems with i = 1, 2 and k according to Eq. (2.2)
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may be formulated in the following way:

{

G
(k,i)
opt ,Q

(i)
opt

}

= arg max
{G(k,i),Q(i)}

C(k), (3.1a)

subject to: tr
{

Q(i)Rx(i)Q(i)H
}

= E(i), (3.1b)

tr
{

G(k,i)
(

H(i)Q(i)Rx(i)Q(i)HH(i)H + Rn(0)

)

G(k,i)H
}

= E(0).

(3.1c)

Eq. (3.1b) corresponds to the transmit power constraint at the source node Si and

Eq. (3.1c) corresponds to the transmit power constraint at the RS.

3.2.2 System with full capabilities

In this section, the BF algorithm for the maximization of the transmission rate in

problem (3.1) is given for a system with full capabilities. The problem corresponds to

the optimization problem in the first row and the first column of Figure 1.4. Note that

the maximization of the transmission rate in a system with full capabilities is completely

described by the problem formulation (3.1) without any additional constraint. The BF

matrices Q(i) and G(k,i) of Figure 2.1 which provide the maximum transmission rate in

one-way relaying with full capabilities at S1, S2, and the RS have already been derived

in [HW06]. In [HW06], three different algorithms are proposed. The first BF algorithm

determines the optimum BF matrix at the RS for a fixed BF matrix at the source node.

The second BF algorithm determines the optimum BF matrix at the source node for

a fixed BF matrix at the RS. This second BF algorithms works according to the same

principles as the first BF algorithm. The third BF algorithm jointly optimizes the

BF matrix at the source node and the BF matrix at the RS by alternating between

the solutions of the first and the second BF algorithm. While the third BF algorithm

providing the optimum solution requires global CSI at all nodes, the first and second

scheme require global CSI at the RS and only local CSI at S1 and S2. In [HW06], it is

shown that the first and second BF algorithm come very close to the optimum solution

of the third BF algorithm requiring significantly less computational effort than the third

BF algorithm. Since the basic idea behind all three BF algorithms is the same, only

the first BF algorithm is presented in this section. It is used to give some insight into

the differences between maximizing the sum rate in one-way relaying and maximizing

the sum rate in two-way relaying which is regarded in Chapter 4.

Since there are no capability constraints, all nodes are provided with CSI and may

perform adaptive BF in order to maximize the transmission rates at S1 and S2 given
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by Eq. (2.14). In order to determine the optimum BF matrix at the RS for a fixed

BF matrix at the source node Si, the spatial sub-channels, which correspond to the

eigenmodes of the channels between source node and destination node, need to be

orthogonalized [Ham06]. In the following, it is assumed that the rank of the channel

is given by M which means that there exist M spatial sub-channels if all channel

coefficients are uncorrelated and L ≥ M . In order to orthogonalize the M sub-channels,

the singular value decomposition (SVD) of the first hop channel H(i) is required. In

the following, the columns of matrix U(i) ∈ C
L×L denote the left eigenvectors of H(i),

the columns of matrix V(i) ∈ C
M×M denote the right eigenvectors of H(i), and the

diagonal matrix

Λ(i)
1/2

= diag

[
√

λ
(i)
1 , . . . ,

√

λ
(i)
M

]

, (3.2)

contains the square roots of the eigenvalues λ
(i)
m , m = 1, . . . ,M , of H(i). Thus, the SVD

of the channel H(i) is given by

H(i) = U(i)

[

Λ(i)
1/2

0(L−M)×M

]

V(i)H . (3.3)

Due to the assumed channel reciprocity, the SVD of the second hop channel H(k)T is

given by

H(k)T = V(k)∗
[

Λ(i)
1/2

,0M×(L−M)

]

U(k)T . (3.4)

The BF matrix G(k,i) at the RS which needs to be optimized is separated into three

parts [Ham06] given by the receive BF matrix G
(i)
R , the transmit BF matrix G

(k)
T ,

and the RS power allocation matrix W(k,i) = diag
[

w
(k,i)
1 , . . . , w

(k,i)
L

]

, with the positive

real-valued power allocation factors w
(k,i)
m ∈ R

+, m = 1, . . . ,M . This separation yields

G(k,i) = G
(k)
T W(k,i)G

(i)
R . (3.5)

In [Ham06], it is proposed to use the following BF matrices in order to orthogonalize

the spatial sub-channels:

Q(i) =

√

E(i)

M
V(i), (3.6a)

G
(i)
R = U(i)H , (3.6b)

G
(k)
T = U(k)∗ , (3.6c)

P(k) = V(k)T . (3.6d)

Intuitively, the BF matrices Q(i) and G
(i)
R orthogonalize the first hop channel H(i) by

a transmit-side and a receive-side adaptation to the eigenmodes of H(i). Furthermore,

BF matrices G
(k)
T and P(k) perform a transmit-side and a receive-side adaptation to
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the eigenmodes of the second hop channel H(k)T . Note that any other BF matrix

P(k), which contains neither an all-zero column vector nor an all-zero row vector, could

have been chosen at the destination node Sk in order to maximize the transmission

rate which is independent of P(k). However, only the choice of Eq. (3.6d) orthogo-

nalizes the spatial sub-channels and allows to use a channel decoder which decodes

each data stream separately. Otherwise, joint decoding is required at the destination

nodes [Mue01]. BF matrix Q(i) already fulfills the transmit power constraint (3.1b) at

the source node Si and is not changed in the following optimization process. Inserting

the BF matrices of (3.6) into Eq. (2.14), the transmission rate results in

C
(k)
BF =

M
∑

m=1

log2






1 +

E(i)

M

∣

∣

∣w
(k,i)
m

∣

∣

∣

2

λ
(i)
m λ

(k)
m

∣

∣

∣w
(k,i)
m

∣

∣

∣

2

λ
(k)
m σ2

n(0) + σ2

n
(k)
R






, (3.7)

where |·| denotes the absolute value. Note that the sorting of the eigenvalues in the

SVDs of Eqs. (3.3) and (3.4) has to be such that the resulting pairs of eigenmodes of the

first and second hop channel provide the highest transmission rate [MVA07]. In order

to maximize Eq. (3.7) under the remaining transmit power constraint (3.1c) at the RS,

the power allocation factors
∣

∣

∣w
(k,i)
m

∣

∣

∣

2

have to be determined, i.e., instead of optimizing

the BF matrix G(k,i) only the power allocation matrix W(k,i) needs to be optimized

due to the separation of Eq. (3.5). This kind of problem is similar to the famous

waterfilling problem in point-to-point transmission [PF05]. The second summand in

the logarithm of Eq. (3.7) corresponds to a SNR value. The useful signal power at Sk

given in the numerator contains the eigenvalues λ
(i)
m and λ

(k)
m of the first and second

hop channel, respectively, which are weighted by the power allocation factor
∣

∣

∣
w

(k,i)
m

∣

∣

∣

2

.

The denominator contains the overall noise at the destination node Sk. In contrast to

the point-to-point transmission, the noise does not only consist of the receiver noise

but also of the noise at the RS which is also weighted by the eigenvalue λ
(k)
m of the

second hop channel and the power allocation factor
∣

∣

∣
w

(k,i)
m

∣

∣

∣

2

. Thus, the mathematical

structure of the rate maximization problem with objective function (3.7) is different and

more complicated compared to the waterfilling problem in point-to-point transmission.

However, the solution can be determined as follows. Let ρ(k) be defined by

ρ(k) =
σ2

n
(k)
R

σ2
n(0)

. (3.8)

Furthermore, (y)+ denotes

(y)+ =

{

y for y ≥ 0,
0 for y < 0.

(3.9)
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Since Eq. (3.7) is concave in
∣

∣

∣
w

(k,i)
m

∣

∣

∣

2

, the maximum transmission rate C
(k)
BF under the

RS transmit power constraint (3.1c) can be found by Lagrangian optimization, yielding

∣

∣w(k,i)
m

∣

∣

2
=

[

√

(

ρ(k) E(i)λ
(i)
m

2Mλ
(k)
m

)2

+ µ(k)ρ(k) E(i)λ
(i)
m

Mλ
(k)
m

− ρ(k) E(i)λ
(i)
m

2Mλ
(k)
m

−
σ2

n

(k)
R

λ
(k)
m

]+

E(i)

M
λ

(i)
m + σ2

n(0)

, (3.10)

[Ham06]. Similar to the waterfilling problem, the Lagrangian multiplier µ(k) has to be

chosen such that the RS transmit power constraint (3.1c) is satisfied.

3.2.3 System with limited capabilities at the RS

In this section, a BF algorithm for the maximization of the transmission rate in prob-

lem (3.1) is proposed for a system with limited capabilities at the RS. The optimization

problem can be found in the first row and the second column of Figure 1.4. In a sys-

tem with limited capabilities at the RS, only S1 and S2 perform BF. Since precoding

and joint decoding are possible in this system, the transmission rate is determined by

Eq. (2.14). The RS with limited SP capabilities cannot retransmit linear combinations

of the received data streams of each receive antenna. Thus, each antenna of the RS

retransmits its received data stream which is simply amplified by a positive real-valued

weighting factor g(k,i) equal for all antennas. Note that weighting factor g(k,i) could also

be complex-valued. But since any phase rotation due to a complex weighting factor at

the RS can be compensated at the destination node, weighting factor g(k,i) is restricted

to positive real values. Thus, the BF matrix G(k,i) at the RS simplifies to

G(k,i) = g(k,i)IL, g(k,i) ∈ R
+. (3.11)

With this constraint on the system with limited capabilities at the RS, problem (3.1)

may be rewritten as follows:
{

g
(k,i)
opt ,Q

(i)
opt

}

= arg max
{g(k,i),Q(i)}

C
(k)
BF , (3.12a)

subject to: tr
{

Q(i)Rx(i)Q(i)H
}

= E(i), (3.12b)

tr
{

g(k,i)2
(

H(i)Q(i)Rx(i)Q(i)HH(i)H + Rn(0)

)}

= E(0). (3.12c)

Since the BF matrix G(k,i) of Eq. (3.11) cannot be adapted to the eigenmodes of

the first hop and second hop channels, an orthogonalization of the sub-channels as

introduced in Section 3.2.2 is not possible. The weighting factor g(k,i) directly depends
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on the BF matrix Q(i) via the RS transmit power constraint (3.12c) which requires

a joint optimization of Q(i) and g(k,i). In order to solve problem (3.12), numerical

methods are required since the problem in its current formulation is neither convex nor

concave [BV04]. As the problem may have several minima or maxima, it is difficult

to determine if the numerical optimization finds the global or a local optimum. Since

numerical methods require high computational effort, analytical solutions are desired

which may even provide a sub-optimum performance if the computational effort is

reduced significantly.

In the following, a new sub-optimum analytical BF algorithm for the maximization

of the sum rate in a system with limited capabilities at the RS is proposed. Since

the received signal at the RS is simply amplified by a real-valued weighting factor

g(k,i), the overall channel between the source node and the destination node is just a

multiplication of the first hop channel H(i) with the second hop channel H(k)T scaled by

g(k,i). Except for the retransmission of the noise and the adaptive weighting factor g(k,i)

at the RS, the transmission in a system with limited capabilities at the RS corresponds

to a point-to-point transmission from the source node to the destination node using

the overall channel

H(k,i) = H(k)TH(i). (3.13)

Thus, the well-known BF algorithm which maximizes the transmission rate in point-

to-point transmissions [PNG03] is partly adapted to the transmission in a system with

limited capabilities at the RS in the following. Let U(k,i) ∈ C
M×M denote the left

eigenvectors and V(k,i) ∈ C
M×M denote the right eigenvectors of the overall channel

H(k,i), and let

Λ(k,i)
1/2

= diag

[
√

λ
(k,i)
1 ,

√

λ
(k,i)
2 , . . . ,

√

λ
(k,i)
M

]

, (3.14)

contain the square roots of the eigenvalues λ
(k,i)
m , for m = 1, 2, . . . ,M . Then, the SVD

of the overall channel H(k,i) is given by

H(k,i) = U(k,i)Λ(k,i)
1/2

V(k,i)H . (3.15)

Now, the transmission from Si to Sk is adapted to the eigenmodes of the overall channel

H(k,i). As known from the point-to-point transmission, a power allocation matrix S(i)

at source node Si is required in order to distribute the overall transmit power E(i) at

Si with respect to the weights of the eigenmodes of the overall channel H(k,i). Thus,

power allocation matrix S(i) is defined as

S(i) = diag
[

s
(i)
1 , s

(i)
2 , . . . , s

(i)
M

]

, (3.16)
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with the positive real-valued power allocation factors s
(i)
m ∈ R

+, m = 1, . . . ,M . Fur-

thermore, the BF matrices at Si and Sk are chosen according to

Q(i) = V(k,i)S(i), (3.17)

P(k) = U(k,i)H . (3.18)

By the choices of Eqs. (3.17) and (3.18), and after calculating the noise covariance

matrix R
ñ

(k)
R

at the destination node Sk by

R
ñ

(k)
R

= g(k,i)2σ2
n(0)U

(k,i)HH(k)TH(k)∗U(k,i) + σ2

n
(k)
R

IM , (3.19)

the transmission rate of Eq. (2.14) results in

C
(k)
BF = log2

(

det

[

IM + g(k,i)2Λ(k,i)S(i)2R−1

ñ
(k)
R

])

. (3.20)

Although the M data streams of source node Si are orthogonalized by the choices

of Eqs. (3.17) and (3.18), the noise at the destination node is no longer spatially

white since the noise of the RS is transmitted over the second hop channel H(k)T .

This can be seen from the first summand in the noise covariance matrix R
ñ

(k)
R

in

Eq. (3.19). However, in order to provide an approximate analytical solution to the

sum rate maximization problem in a system with limited capabilities at the RS, the

noise is assumed to be spatially white Gaussian with the average noise power

σ2

ñ
(k)
R

=
tr
{

R
ñ

(k)
R

}

M
, (3.21)

per receive antenna. After substituting R
ñ

(k)
R

of Eq. (3.19) by σ2

ñ
(k)
R

IM in Eq. (3.20), the

following simplified version of optimization problem (3.12) for a system with limited

capabilities at the RS is obtained:

{g(k,i)
opt , s

(i)
m,opt} = arg max

{

g(k,i),s
(i)
m

}

M
∑

m=1

log2



1 +
g(k,i)2

σ2

ñ
(k)
R

λ(k,i)
m s(i)2

m



 , (3.22a)

subject to:
M
∑

m=1

s(i)2

m = E(i), (3.22b)

g(k,i)2tr
{

H(i)V(k,i)S(i)S(i)HV(k,i)HH(i)H + Rn(0)

}

= E(0). (3.22c)

In problem (3.22), the weighting factor g(k,i) at the RS and the power allocation factors

s
(i)
m at the source node Si still have to be optimized jointly. It is proposed to separate the

problem into two sub-problems and to solve the two sub-problems alternately which

may yield a sub-optimum solution to problem (3.22). Firstly, the sub-problem of
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determining g(k,i) for fixed power allocation factors s
(i)
m and the corresponding power

allocation matrix S(i) of Eq. (3.16) is solved. By using the constraint (3.22c), g(k,i) is

calculated as

g(k,i) =

√

E(0)

tr
{

H(i)V(k,i)S(i)S(i)HV(k,i)HH(i)H + Rn(0)

} . (3.23)

The initial power allocation factors s
(i)
m at Si are very important because an eigenmode

will never be used if zero power is allocated to it initially. For that reason, it is

proposed to start with an equal power allocation to the eigenmodes which means that

no eigenmode is preferred in the beginning, i.e., s
(i)2

m = E(i)

M
. Secondly, the sub-problem

given by (3.22a) and (3.22b) is solved for the fixed weighting factor g(k,i) at the RS

which means that the RS power constraint (3.22c) is omitted for the optimization of

s
(i)
m . Since the resulting problem is a typical waterfilling problem, the solution to the

power allocation factors s
(i)2

m is given by

s(i)2

m =



µ(i) −
σ2

ñ
(k)
R

g(k,i)2λ(k,i)





+

, (3.24)

[PF05]. The coefficients s
(i)2

m and the waterfilling level µ(i) are found by the well-known

iterative waterpouring algorithm [PF05] where µ(i) is chosen to satisfy the transmit

power constraint (3.22b) at Si. After the power allocation factors s
(i)
m and the cor-

responding power allocation matrix S(i) have been determined, the weighting factor

g(k,i) can be determined by using Eq. (3.23) again. This alternation between the two

sub-problems is repeated until the solutions for s
(i)
m and g(k,i) do not change more than

tolerated by a predefined accuracy. Typically, two to four alternations are required in

order to obtain a relative change of g(k,i) which is less than 10−4. Since the optimiza-

tion result depends on the initial power allocation at Si, it cannot be guaranteed that

the alternation between the calculation of weighting factor g(k,i) and the calculation

of the power allocation factors at Si yields an optimum of the relaxed problem (3.22).

Nevertheless, the simulation results show that the performance of the algorithm comes

close to the numerical solution to the original optimization problem (3.12).

3.2.4 System with limited capabilities at S1 and S2

In this section, the linear BF for the maximization of the transmission rate in prob-

lem (3.1) is considered for a system with limited capabilities at S1 and S2. The op-

timization problem is mentioned in the first row and the third column of Figure 1.4.

In a system with limited capabilities at S1 and S2, no CSI is available at S1 and S2.
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The source node Si assigns the same weighting factor q(i) to all transmit antennas and

from each transmit antenna one data stream is transmitted. Thus, the BF matrix Q(i)

simplifies to

Q(i) = q(i)IM . (3.25)

The destination node Sk cannot perform a joint decoding of the incoming data streams

since no CSI is available at S1 and S2. The destination node Sk assigns the same

weighting factor p(k) to all receive antennas and each antenna receives one dedicated

data stream. Thus, the receive BF matrix P(k) at Sk is simplified to

P(k) = p(k)IM . (3.26)

Since the scalar value p(k) does not influence the problem of maximizing the transmis-

sion rate, it can be chosen arbitrarily except for p(k) = 0. The transmission rate for a

system with limited capabilities at S1 and S2 is determined with respect to Eq. (2.21).

With these constraints on the system with limited capabilities at S1 and S2, prob-

lem (3.1) may be rewritten as follows:
{

G
(k,i)
opt , q

(i)
opt

}

= arg max
{G(k,i),q(i)}

C
(k)
EW , (3.27a)

subject to: tr
{

q(i)2Rx(i)

}

= E(i), (3.27b)

tr
{

G(k,i)
(

q(i)2H(i)Rx(i)H(i)H + Rn(0)

)

G(k,i)H
}

= E(0). (3.27c)

In order to satisfy the transmit power constraint (3.27b) at Si, the scalar weighting

factor is chosen as follows:

q
(i)
opt =

√

E(i)

M
, (3.28)

which means that the overall transmit power E(i) is equally distributed between all

transmit antennas of Si. Hence, the optimum weighting factor q
(i)
opt in problem (3.27)

is already determined and the transmit power constraint (3.27b) at the source node is

satisfied by the choice of q
(i)
opt in Eq. (3.28). This means that constraint (3.27b) needs

not to be considered in the following.

As in the previous case of Section 3.2.3, the sub-channels of the first and second hop

channels cannot be orthogonalized if BF can only be performed either at the receiver-

side or the transmitter-side of a link. To the best of the author’s knowledge, the

optimum BF matrix G(k,i) which solves problem (3.27) can only be found by numerical

methods.

However, the optimization problem (3.27) can be transformed into an equivalent

and simpler optimization problem, if the RS is equipped with more antennas than the
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source and destination nodes, i.e., for the case L > M . In this case, the channel has only

M eigenmodes in maximum while G(k,i) ∈ C
L×L could be adapted to L eigenmodes.

Hence, there are linear dependencies between the variables in G(k,i). These linear

dependencies may be removed by the following BF approach. Let Ũ(i) ∈ C
L×M contain

the first M left eigenvectors corresponding to the range of channel matrix H(i) and let

matrix Ū(i) ∈ C
L×(L−M) contain the last L−M left eigenvectors corresponding to the

null space of H(i). Thus, the SVD of the first hop channel H(i) of Eq. (3.3) can be

modified to

H(i) =
[

Ũ(i), Ū(i)
]

[

Λ(i)
1/2

0(L−M)×M

]

V(i)H . (3.29)

Similarly, the SVD of the second hop channel H(k)T of Eq. (3.4) can be modified to

H(k)T = V(k)∗
[

Λ(i)
1/2

,0M×(L−M)

]

[

Ũ(k)T

Ū(k)T

]

. (3.30)

Since Matrix Ũ(i) forms an orthogonal basis for the range of H(i), matrix Ũ(i)H may be

used as an adaptation to the non-zero eigenmodes of the first hop channel H(i) at the

RS. For the same reason, matrix Ũ(k)∗ may be used as an adaptation to the non-zero

eigenmodes of the second hop channel H(k)T at the RS. In the equivalent optimization

problem, the BF matrix G(k,i) is separated into three parts, namely the receive BF

matrix Ũ(i)H , the transmit BF matrix Ũ(k)∗ and an unknown matrix G̃(k,i) ∈ C
M×M .

Thus, matrix G(k,i) is given by

G(k,i) = Ũ(k)∗G̃(k,i)Ũ(i)H . (3.31)

Due to the unitary BF in Eq. (3.31) by the matrices Ũ(i)H and Ũ(k)∗ , the non-zero eigen-

modes of the first hop channel H(i) and the second hop channel H(k)T are preserved.

By the BF approach of Eq. (3.31) the original sum rate maximization problem (3.27)

with BF matrix G(k,i) is transformed into an equivalent optimization problem where

the unknown BF matrix G(k,i) is replaced by the unknown BF matrix G̃(k,i). Since

BF matrix G̃(k,i) only contains M2 complex optimization variables, the equivalent op-

timization problem is simpler compared to the original one where BF matrix G(k,i)

contains L2 complex optimization variables. Nevertheless, BF matrix G̃(k,i) has to be

determined by numerical methods, e.g., by sequential quadratic programming (SQP)

algorithms which can be found in the Matlab
R© optimization toolbox.
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3.3 Linear beamforming in a system with limited

capabilities at S1 and S2

3.3.1 Introduction

In this section 3.3, three additional optimization problems in the system with limited

capabilities at S1 and S2 are considered. The three optimization problems consider

the minimization of the MSE, the minimization of the MSE under the ZF constraint,

and the maximization of the SNR, cf. first row and third column of the framework

in Figure 1.4. In Section 3.2.4, no analytical solution to the maximization of the

sum rate in the system with limited capabilities at S1 and S2 could be found. How-

ever, the three additional optimization problems are well-known from point-to-point

transmissions and the corresponding BF algorithms are known to provide reasonable

performance in point-to-point transmissions. For that reason, the optimization prob-

lems are newly formulated for the one-way relaying scheme with exclusive BF at the

RS, and the respective BF algorithms are derived.

Since source node Si is assumed to be a source node with limited SP capabilities

and without CSI, the source node Si assigns the same weighting factor q(i) to all

transmit antennas, and from each transmit antenna one data stream is transmitted.

From the transmit power constraint (3.1b) at Si, the optimum q
(i)
opt is directly given

by Eq. (3.28). Thus, the transmit power constraint at the source node Si can be

omitted in the following optimization problems and q(i) = q
(i)
opt can be assumed as a

fixed parameter in the optimization problems.

Since Sk is assumed to be a destination node with limited capabilities, the receive

BF matrix P(k) is given by Eq. (3.26), which means that the weighting factor p(k) is

equal for all receive antennas. Besides the optimization of the BF matrix G(k,i) at the

RS, the proposed BF algorithms which minimize the MSE, minimize the MSE under

the ZF constraint, and maximize the SNR consider the optimization of the weighting

factor p(k) explicitly. Since the destination nodes are not provided with CSI according

to the classifications of Figure 1.4, p(k) cannot be determined by the destination nodes

by using CSI. Thus, another approach is required which is explained in the following.

For practical implementations, the weighting factor p(k) at the destination nodes

can be chosen arbitrarily if all symbols of the modulation alphabet have the same

amplitude which is the case for all phase shift keying (PSK) modulation schemes for

example [Pro01]. For modulation schemes with symbols of different amplitudes, the
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weighting factor p(k) is required in order to resize the received symbols to the original

constellation of the transmitted symbols. Without CSI, p(k) can be determined by an

observation of the received power of multiple received symbols under the assumption

that all symbols are equiprobable. In this case, the weighting factor p(k) corresponds

to the ratio between the expected average received power and the actually average

received power at destination node Sk. Thus, weighting factor p(k) is chosen as p(k) =

E
{

y(k)Hx(i)
}

/E
{

y(k)Hy(k)
}

where y(k) is the received vector at the receive antennas

of Sk before the weighting factor p(k) is applied.

3.3.2 Minimization of the MSE

In this section, the problem of minimizing the MSE is formulated and the respective

MMSE-BF algorithm which solves the problem is derived. In literature, there exist

MSE minimizations for point-to-point transmissions which are unconstrained concern-

ing the transmit power, e.g., in [VJ98]. These optimizations may lead to unfeasible

solutions since the available transmit power can be exceeded. For point-to-point trans-

mission, the transmit power constraint can also be included into the optimization

problem. In [Joh04], for example, the resulting solution is referred to as Wiener fil-

ter solution [Wie40]. The MMSE-BF of this section is derived considering the same

principles as in [Joh04].

The BF matrix G(k,i) at the RS and the weighting factor p(k) at destination node Sk

have to be designed such that the MSE between the transmitted vector x(i) of Eq. (2.1)

and the estimated vector x̂(i) of Eq. (2.11) is minimized under the RS transmit power

constraint. Let ‖·‖2
2 and ℜ{·} denote the Euclidean norm of a vector and the real value

of the complex-valued argument, respectively. Thus, the minimization of the MSE is

formulated as follows:

{

p
(k)
MMSE,G

(k,i)
MMSE

}

= arg min
{p(k),G(k,i)}

E
{

∥

∥x(i) − x̂(i)
∥

∥

2

2

}

, (3.32a)

subject to: tr
{

G(k,i)
(

q(i)2H(i)Rx(i)H(i)H + Rn(0)

)

G(k,i)H
}

= E(0),

(3.32b)

where Eq. (3.32b) constitutes the RS transmit power constraint.

In the following, the MMSE-BF algorithm which provides the solution to optimiza-

tion problem (3.32) is derived. By applying the definitions of Eqs. (2.10a) to (2.10d)
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and inserting x̂(i) of Eq. (2.11) into the MSE objective function in Eq. (3.32a), the

MSE at the receiver output of Sk results in

E
{

∥

∥x̂(i) − x(i)
∥

∥

2

2

}

= tr {Rx(i)} − 2ℜ
{

p(k)q(i)tr
{

H(k)TG(k,i)H(i)Rx(i)

}}

+ p(k)2q(i)2tr
{

H(k)TG(k,i)H(i)Rx(i)H(i)HG(k,i)HH(k)∗
}

+ p(k)2tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

. (3.33)

In [Joh04], it is shown that the MSE objective function in point-to-point transmissions

is neither convex nor concave, since the objective function is quadratic in the opti-

mization variable. Since the MSE of Eq. (3.33) is also quadratic in G(k,i), the MSE

minimization problem for the one-way relaying scheme is neither convex nor concave,

too. Nevertheless, as introduced in [Joh04] for point-to-point transmission, Lagrangian

optimization [BV04] is applied knowing that the resulting solution is not necessarily

unique. Let Υ(i) denote the covariance matrix of the received signal at the RS which

is given by

Υ(i) = E
{

(

q(i)H(i)x(i) + n(0)
) (

q(i)H(i)x(i) + n(0)
)H
}

= q(i)2H(i)Rx(i)H(i)H + Rn(0) .

(3.34)

With Eq. (3.34), the Lagrangian function for problem (3.32) yields

L
(

p(k),G(k,i), η(k)
)

= tr {Rx(i)} − 2ℜ
{

p(k)q(i)tr
{

H(k)TG(k,i)H(i)Rx(i)

}}

+ p(k)2q(i)2tr
{

H(k)TG(k,i)H(i)Rx(i)H(i)HG(k,i)HH(k)∗
}

+ p(k)2tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

+ η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

− E(0)
)

, (3.35)

with the Lagrangian multiplier η(k). The Karush-Kuhn-Tucker (KKT) conditions

[BV04] are only necessary conditions for the global optimum and are given by

∂L

∂p(k)
= − q(i)tr

{

H(k)TG(k,i)H(i)Rx(i)

}

+ p(k)∗
∣

∣q(i)
∣

∣

2
tr
{

H(k)TG(k,i)H(i)Rx(i)H(i)HG(k,i)HH(k)∗
}

+ p(k)∗tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

!
= 0, (3.36a)

∂L

∂G(k,i)
=
∣

∣p(k)
∣

∣

2
H(k)H(k)HG(k,i)∗Υ(i)T − p(k)q(i)H(k)RT

x(i)H
(i)T + η(k)G(k,i)∗Υ(i)T !

= 0,

(3.36b)

η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

− E(0)
)

!
= 0. (3.36c)

Let matrix Υ(k) be defined as

Υ(k) = H(k)∗H(k)T +
tr
{

R
n

(k)
R

}

E(0)
IL. (3.37)
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With Υ(k) of Eq. (3.37), the solution to problem (3.32) results in

G
(k,i)
MMSE =

q(i)

p
(k)
MMSE

Υ(k)−1

H(k)∗Rx(i)H(i)HΥ(i)−1

, (3.38)

and

p
(k)
MMSE =

√

q(i)2tr
{

H(i)Rx(i)H(k)TΥ(k)−2H(k)∗Rx(i)H(i)HΥ(i)−1
}

E(0)
∈ R

+. (3.39)

The derivation of the BF matrix G
(k,i)
MMSE at the RS and the weighting factor p

(k)
MMSE

at Sk from the KKT conditions (3.36) can be found in Appendix A.1. Note that the

proposed MMSE-BF algorithm requires knowledge about the noise covariance matrix

Rn(0) of the RS which can be estimated by the RS itself, but also about the noise

covariance matrix R
n

(k)
R

of the destination node Sk. Assuming AWGN, this means

that the noise variance σ2

n
(k)
R

, which is estimated at Sk, needs to be signaled via a

feedback channel from destination nodes Sk to the RS. However, the effort for such a

feedback is very low.

In order to give an insight into the derived MMSE-BF algorithm, BF matrix G(k,i)

is separated into a receive BF matrix G
(i)
R and a transmit BF matrix G

(k)
T yielding

G(k,i) = G
(k)
T G

(i)
R . (3.40)

Identifying the receive BF matrix

G
(i)
R,MMSE = q(i)Rx(i)H(i)HΥ(i)−1

, (3.41)

and the transmit BF matrix

G
(k)
T,MMSE =

1

p
(k)
MMSE

Υ(k)−1

H(k)∗ , (3.42)

in Eq. (3.38), it turns out that the receive BF matrix G
(i)
R,MMSE is only linked with the

first hop transmission from Si to the RS, and that the transmit BF matrix G
(k)
T,MMSE

is only linked with the second hop transmission from the RS to Sk.

3.3.3 Minimization of the MSE under the ZF constraint

In this section, the minimization of the MSE under the ZF constraint is considered

for a system with limited capabilities at S1 and S2 in one-way relaying, and the cor-

responding ZF-BF algorithm is derived. The minimization of the MSE under the ZF
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constraint is a modification of the minimization of the MSE presented in Section 3.3.2.

Due to the ZF constraint, the whole intersymbol interference between simultaneously

transmitted data streams is removed additionally [PNG03]. In other words, the ZF con-

straint means that in case of zero AWGN, the transmitted and received data streams

are equal. In the following, the ZF constraint is introduced as an additional constraint

to the MSE optimization problem (3.32). Thus, the minimization of the MSE under

the ZF constraint is formulated as follows:

{

p
(k)
ZF ,G

(k,i)
ZF

}

= arg min
{p(k),G(k,i)}

E
{

∥

∥x(i) − x̂(i)
∥

∥

2

2

}

, (3.43a)

subject to: x̂(i) = x(i) for n(0) = 0L×1 and n
(k)
R = 0M×1, (3.43b)

tr
{

G(k,i)
(

q(i)2H(i)Rx(i)H(i)H + Rn(0)

)

G(k,i)H
}

= E(0), (3.43c)

where Eq. (3.43b) is the mentioned ZF constraint.

In the following, the ZF-BF algorithm which provides the solution to the optimiza-

tion problem (3.43) is given. With Eqs. (2.10) and (2.11), the ZF constraint (3.43b)

can also be described by

p(k)q(i)H(k)TG(k,i)H(i) = IM . (3.44)

By applying the definitions of Eqs. (2.10a) to (2.10d) and inserting x̂(i) of Eq. (2.11)

into the MSE objective function (3.43a) and using Eq. (3.44), it turns out that the

MSE corresponds to the overall noise power at the receiver output of Sk. Thus, the

MSE under the ZF constraint is given by

E
{

∥

∥x̂(i) − x(i)
∥

∥

2

2

}

= p(k)2tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

. (3.45)

As for the minimization of the MSE in Section 3.3.2, the objective function (3.45)

is neither convex nor concave since the function is quadratic in G(k,i). Furthermore,

the ZF constraint is a complex-valued constraint. With the definition of Lagrangian

functions for complex-valued constraints [Joh04], the Lagrangian function yields

L
(

p(k),G(k,i),Γ(k), η(k)
)

=p(k)2tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

− 2ℜ
{

tr
{

Γ(k)
(

q(i)p(k)H(k)TG(k,i)H(i) − IM

)}}

+ η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

−E(0)
)

, (3.46)

with the Lagrangian multipliers Γ(k) and η(k). The KKT conditions are only necessary
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conditions for the global optimum and are given by

∂L

∂p(k)
= p(k)∗tr

{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗+R
n

(k)
R

}

−tr
{

Γ(k)H(k)TG(k,i)H(i)
}

!
=0,

(3.47a)

∂L

∂G(k,i)
=p(k)2H(k)H(k)HG(k,i)∗RT

n(0) − p(k)q(i)H(k)Γ(k)TH(i)T + η(k)G(k,i)∗Υ(i)T !
= 0,

(3.47b)

∂L

∂Γ(k)
= p(k)q(i)H(i)TG(k,i)TH(k) − IM

!
= 0, (3.47c)

η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

− E(0)
)

!
= 0. (3.47d)

The solution to problem (3.43) is obtained under the simplifying assumption that the

noise n(0) at the RS does not contribute to the MSE of Eq. (3.45), cf. Appendix A.2.

In this case, problem (3.43) is solved by

G
(k,i)
ZF =

1

p
(k)
ZFq(i)

H(k)∗
(

H(k)TH(k)∗
)−1 (

H(i)HR−1
n(0)H

(i)
)−1

H(i)HR−1
n(0) , (3.48)

and

p
(k)
ZF =

1

q(i)

√

√

√

√

tr
{

(

H(i)HΥ(i)-1H(i)
)−1 (

H(k)TH(k)∗
)−1
}

E(0)
∈ R

+. (3.49)

The derivation of the BF matrix G
(k,i)
ZF at the RS and the weighting factor p

(k)
ZF at Sk

from the KKT conditions (3.47) can be found in Appendix A.2. In contrast to the

MMSE-BF algorithm of Section 3.3.2, the ZF-BF algorithm only requires knowledge

about the noise covariance matrix Rn(0) of the RS, but not about the noise covariance

matrix R
n

(k)
R

of the destination node Sk, i.e., no feedback from Sk to the RS is required.

As for the MMSE-BF algorithm of Section 3.3.2, in order to give an insight into

the derived ZF-BF algorithm, BF matrix G(k,i) is separated into a receive BF matrix

G
(i)
R and a transmit BF matrix G

(k)
T introduced in Eq. (3.40). Identifying the receive

BF matrix

G
(i)
R,ZF =

1

q(i)

(

H(i)HR−1
n(0)H

(i)
)−1

H(i)HR−1
n(0) , (3.50)

and the transmit BF matrix

G
(k)
T,ZF =

1

p
(k)
ZF

H(k)∗
(

H(k)TH(k)∗
)−1

, (3.51)

in Eq. (3.48), it turns out that the receive BF matrix G
(i)
R,ZF is only linked with the

first hop transmission from Si to the RS, and that the transmit BF matrix G
(k)
T,ZF is

only linked with the second hop transmission from the RS to Sk.
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3.3.4 Maximization of the SNR

In this section, the problem of maximizing the SNR at the receiver output of Sk is

formulated for a system with limited capabilities at S1 and S2 in one-way relaying.

The corresponding BF algorithm is derived, too. In literature, the BF algorithm which

maximizes the SNR is also known as the matched filter (MF) solution. Thus, the

BF algorithm which maximizes the SNR is termed MF-BF algorithm in the following.

The receive MF [Pro01] and the transmit MF [Cav00] are well-known BF approaches

in point-to-point multiple-antenna systems. From [Joh04], it is known that receive

and transmit filters are based on similar optimization approaches. In this section, the

MF definitions of [Joh04] are adapted to the one-way relaying problem with BF matrix

G(k,i) at the RS. In one-way relaying, the SNR gives the ratio between the average power

of the useful signal part in the estimated data vector x̂(i) and the average power of the

noise parts at the receiver output. After separating x̂(i) of Eq. (2.11) into the useful

signal parts and the noise parts using the definitions in Eqs. (2.10a) to (2.10d), the

maximization of the SNR under the RS transmit power constraint may be formulated

as follows:

{

p
(k)
MF,G

(k,i)
MF

}

= arg max
{p(k),G(k,i)}

∣

∣

∣
E
{

x(i)Hx̂(i)
}∣

∣

∣

2

E
{

‖x(i)‖2
2

}

E

{

∥

∥

∥p(k)
(

H(k)TG(k,i)n(0) + n
(k)
R

)∥

∥

∥

2

2

} ,

(3.52a)

subject to: tr
{

G(k,i)
(

q(i)2H(i)Rx(i)H(i)H + Rn(0)

)

G(k,i)H
}

= E(0). (3.52b)

In the following, the MF-BF algorithm is derived which provides the solution to the

optimization problem (3.52). Firstly, with Eqs. (2.10) and (2.11) the three expectation

values in Eq. (3.52a) are determined as follows:
∣

∣

∣
E
{

x(i)Hx̂(i)
}∣

∣

∣

2

=p(k)2q(i)2
∣

∣

∣
tr
{

H(k)TG(k,i)H(i)Rx(i)

}∣

∣

∣

2

, (3.53a)

E
{

∥

∥x(i)
∥

∥

2

2

}

= tr {Rx(i)} , (3.53b)

E

{

∥

∥

∥
p(k)

(

H(k)TG(k,i)n(0)+n
(k)
R

)∥

∥

∥

2

2

}

=p(k)2tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗+R
n

(k)
R

}

.

(3.53c)

Secondly, with the results of Eqs. (3.53a) to (3.53c) the Lagrangian function can be

written as

L
(

p(k),G(k,i), η(k)
)

= −
q(i)2

∣

∣

∣tr
{

H(k)TG(k,i)H(i)Rx(i)

}∣

∣

∣

2

tr {Rx(i)} tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

}

+ η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

−E(0)
)

, (3.54)



3.3 Linear beamforming in a system with limited capabilities at S1 and S2 51

with the Lagrangian multiplier η(k). Obviously, the Lagrangian function is independent

of the weighting factor p(k), which means that p(k) is arbitrary and the solution to the

optimization problem (3.52) is not unique. Using the following definition

α(k) =
tr
{

H(k)TG(k,i)H(i)Rx(i)

}

tr {Rx(i)} tr
{

H(k)TG(k,i)Rn(0)G(k,i)HH(k)∗ + R
n

(k)
R

} , (3.55)

the KKT conditions are given by

∂L

∂G(k,i)
= − q(i)2α(k)∗H(k)RT

x(i)H
(i)T + q(i)2

∣

∣α(k)
∣

∣

2
tr {Rx(i)}H(k)H(k)HG(k,i)∗RT

n(0)

+ η(k)G(k,i)∗Υ(i)T !
= 0, (3.56a)

η(k)
(

tr
{

G(k,i)Υ(i)G(k,i)H
}

−E(0)
)

!
= 0. (3.56b)

The MF-BF algorithm which solves problem (3.52) is obtained under the assumption

that the noise n(0) at the RS does not contribute to the overall noise at the receiver

output given in the denominator of the objective function (3.52a), cf. Appendix A.3.

In this case, problem (3.52) is solved by

G
(k,i)
MF =

1

p
(k)
MF

H(k)∗Rx(i)H(i)HΥ(i)−1

, (3.57)

and

p
(k)
MF =

√

tr
{

H(k)∗Rx(i)H(i)HΥ(i)−1H(i)Rx(i)H(k)T
}

E(0)
∈ R

+. (3.58)

The derivation of BF matrices G
(k,i)
MF at the RS and the weighting factor p

(k)
MF at Sk

from the KKT conditions (3.56) can be found in Appendix A.3. In contrast to the

MMSE-BF algorithm of Section 3.3.2, the MF-BF algorithm only requires knowledge

about the noise covariance matrix Rn(0) of the RS, but not about the noise covariance

matrix R
n

(k)
R

of the destination node, i.e., no feedback from Sk to the RS is required.

As for the MMSE-BF algorithm and the ZF-BF algorithm, in order to give an

insight into the derived MF-BF algorithm, BF matrix G(k,i) is separated into a receive

BF matrix G
(i)
R and a transmit BF matrix G

(k)
T introduced in Eq. (3.40). Identifying

the receive BF matrix

G
(i)
R,MF = q(i)Rx(i)H(i)HΥ(i)−1

, (3.59)

and the transmit BF matrix

G
(k)
T,MF =

1

p
(k)
MF

H(k)∗ , (3.60)

in Eq. (3.57), it turns out that the receive BF matrix G
(i)
R,MF is only linked with the

first hop transmission from Si to the RS, and that the transmit BF matrix G
(k)
T,MF is

only linked with the second hop transmission from the RS to Sk.
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3.4 Performance analysis

3.4.1 Simulation assumptions

In this Section 3.4, the BF algorithms of Sections 3.2 and 3.3 are analyzed by means

of simulations. The presented results are obtained by Monte Carlo simulations assum-

ing Rayleigh block fading channels [KS95]. The channel coefficients of channels H(1)

and H(2) are zero-mean, independent, circularly symmetric, complex Gaussian random

variables with variance σ(1)2 and σ(2)2 , respectively. Nodes S1, S2, and the RS use the

same transmit powers, i.e., E(0) = E(1) = E(2) = E = 1, and the same noise variances

are assumed at all nodes, i.e., σ2
n(0) = σ2

n(1) = σ2
n(2) = σ2

n = 1. Due to the assumption

of channel reciprocity introduced in Section 2.2, the average SNR for the transmission

from Si to the RS is equal to the average SNR for the transmission from the RS to Si.

Thus, the average SNR(i) of the link between Si and the RS is defined by:

SNR(i) = σ(i)2 , for i = 1, 2. (3.61)

The three different cases of system capabilities in one-way relaying are distinguished

by the following notation:

• Case1: system with full capabilities,

• Case2: system with limited capabilities at the RS,

• Case3: system with limited capabilities at S1 and S2.

Concerning the maximization of the sum rate, the following abbreviations indicate

how the respective results are obtained: All results which are obtained by numerical

methods of the Matlab
R© optimization toolbox are denoted by N-BF, and all results

obtained by analytical BF algorithms proposed in Section 3.2 are denoted by A-BF.

3.4.2 Sum rate analysis

In this section, the average sum rates of the different BF algorithms in one-way relaying

introduced in Sections 3.2 and 3.3 are analyzed. The average sum rate is obtained by

averaging over the instantaneous sum rates of multiple channel realizations defined in

Eqs. (2.15) and (2.22). Since the transmission from S1 to S2 is independent of the
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Figure 3.1. Average maximum sum rate vs. SNR(2) for Case1, Case2, and Case3,
M = 2 and L = 4, dashed lines: SNR(1) = 10dB, solid lines: SNR(1) = 20dB.

transmission from S2 to S1, one could only consider the individual transmission rate

for one of the two transmissions in order to compare different BF algorithms in one-way

relaying. However, for the sake of comparison to the performance results of two-way

relaying, where only the sum rate provides a reasonable performance measure for the

whole system, the BF algorithms in one-way relaying are also compared to each other

by means of the sum rate.

In the following, the average maximum sum rates of Case1, Case2, and Case3

are considered so that the different cases of system capabilities in one-way relaying

introduced in the new framework of Figure 1.4 can be investigated jointly. Figure 3.1

gives the average maximum sum rate in bit/s/Hz vs. SNR(2) in dB for Case1, Case2,

and Case3, for two fixed values of SNR(1), namely SNR(1) = 10dB and SNR(1) = 20dB.

Nodes S1 and S2 are equipped with M = 2 antennas and the RS is equipped with

L = 4 antennas. The maximum sum rate of Case1 is obtained by the A-BF algorithm

proposed by [HW06], and the sum rates of Case2 and Case3 are obtained by numerical

methods. Note that the applied SQP algorithms [BV04] of the Matlab
R© optimization

toolbox provide an optimum which is not necessarily the global one.

In any of the cases, the maximum sum rate is limited. For each direction of the

transmission, the data streams are transmitted over both channels H(1) and H(2).

Hence, even if the SNR value of one channel goes to infinity, the SNR value of the
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worse channel limits the achievable sum rate in both directions of the transmission,

i.e., the maximum sum rate converges to an upper bound for increasing SNR(2) if

SNR(1) is fixed to a certain value.

In the following, the different cases of system capabilities are compared to each

other. For both values of SNR(1), the relations between the average maximum sum rates

of the different cases are the same. The best performance is obtained in Case1, since

adaptive BF can be applied at S1, S2, and the RS. In Case3, the RS can also perform

adaptive BF. However, since equal weighting is applied at S1 and S2, which means that

the data streams are encoded and decoded stream-wise for each antenna at the source

and destination node, respectively, the performance is degraded compared to Case1.

Compared to Case1, the relative loss in sum rate is about 5% for SNR(1) = 20dB as

well as for SNR(1) = 10dB and all values of SNR(2) in Case3. In Case2, adaptive BF

can be applied at the source and destination nodes but the RS only retransmits the

received data streams with a constant weighting factor equal at all antennas of the RS.

In this case, the high number L of antennas at the RS cannot be exploited and the

performance is considerably degraded by about 20% in average sum rate compared to

Case1 for SNR(1) = 20dB.

In the following, the influence of the number L of antennas at the RS on the sum

rate performance is investigated which provides an insight to the different performance

gains, namely multiplexing gain, array gain, and diversity gain, which can be obtained

due to multiple antennas at the RS in one-way relaying. In Figure 3.2, the average

maximum sum rate vs. the number L of antennas at the RS is depicted for Case1

with the A-BF algorithm proposed by [HW06], Case2 with the N-BF solution, Case2

with the proposed sub-optimum A-BF algorithm of Section 3.2.3, and Case3 with the

N-BF solution. The SNR values are fixed to SNR(1) = SNR(2) = 10dB, and the number

of antennas at S1 and S2 is fixed to M = 2.

In any case of system capabilities for L = 1 antenna at the RS, only one data

stream can be transmitted by the M = 2 antennas of the source node since the rank

of the channel is limited by the minimum of L and M . In the particular case of L = 1,

this means that only one spatial sub-channel is available for the transmission from the

source to the destination node. For L = 1 in Case1 and Case2 where adaptive BF can

be applied at S1 and S2, the sum rate is higher than the sum rate in Case3 due to the

fact that diversity and array gains are provided by the M = 2 antennas at the source

node and at the destination node. The spatial diversity is provided since the source

node transmits from two antennas, and the array gain is provided since the destination

node receives with two antennas increasing the overall received power [PNG03]. For

Case3, the sum rate is lower than in Case1 and Case2, since S1 and S2 cannot
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Figure 3.2. Average maximum sum rate vs. number L of antennas at the RS for Case1,
Case2, and Case3, SNR(1) = SNR(2) = 10dB, M = 2.

perform adaptive BF due to their limited SP capabilities and the RS cannot perform

adaptive BF since only L = 1 antenna is available at the RS. This means that neither

diversity and array gain nor spatial multiplexing gain can be expected in a system with

limited capabilities at S1 and S2 for L = 1.

Increasing the number L of antennas at the RS from L = 1 to L = 2, provides

spatial multiplexing gain for all cases of system capabilities. This can be seen especially

for Case3 where one additional antenna at the RS increases the sum rate by almost

1bit/s/Hz, i.e., one additional data stream may be transmitted for one additional

antenna so that two data streams can be transmitted by the source node for L = 2.

The increase in the sum rate for Case1 and Case2 is lower than 1bit/s/Hz, since for

L = 1 spatial diversity and array gain can already be obtained by BF at the source

and destination node. However, for L = 2 no spatial diversity and no array gain are

exploited in Case1 and Case2 but only spatial multiplexing gain. From the fact that

the sum rate does not increase by 2bit/s/Hz if the number L of antennas at the RS is

increased by two from L = 2 to L = 4 it can be seen that the full spatial multiplexing

gain is already obtained if L = M . The maximum spatial multiplexing gain is limited

by the minimum number of antennas per node which is given by M = 2 at S1 and S2 in

Figure 3.2. Nevertheless, for L > M in Case1 and Case3, the sum rate increases with

increasing number L of antennas at the RS. This increase is coming from the array
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gain at the receive antennas of the RS and the spatial diversity for the retransmission

from the RS. Furthermore, the sum rate in Case3 converges to the sum rate in Case1

for high numbers L of antennas at the RS. For high values of L, the equal weighting

with stream-wise encoding and decoding at S1 and S2 in Case3 performs as well as

the adaptive BF at S1 and S2 for M = 2 data streams. This means that the spatial

separation of the data streams by the BF at the RS in both cases improves with the

number L of antennas at the RS since sharper beams may be transmitted by the RS.

Simultaneously, the influence of the additional coding gain which can be obtained in

Case1 is decreasing so that the sum rate performances of Case1 and Case3 converge.

For L = M = 2, Case2 achieves the full spatial multiplexing gain corresponding

to the two transmit and receive antennas at the source and destination node. The

performance is slightly better than in Case3. This shows that spatial precoding at the

source node and joint decoding at the destination node provide a coding gain which

cannot be obtained by the spatial separation of the data streams by exclusive adaptive

BF at the RS. However, with increasing number L of antennas at the RS this drawback

of Case3 can be compensated, and for L > 3, Case3 already outperforms Case2. For

L > M , the sum rate of Case2 is significantly smaller than the sum rates of Case1 and

Case3, and for L > 4 it is even constant. This effect can be explained as follows. For

equal weighting at the transmit antennas of the source node, the potential of multiple

antennas at the RS is not exploited. In Case2, increasing the number L of antennas

at the RS does not provide array and diversity gains since no adaptation to the current

channel fading is applied. In order to achieve some array gain, e.g., maximum-ratio

combining [Pro01] would be required for the receive signal at the RS. In order to achieve

some diversity gain, e.g., space-time coding [PNG03] applied to the transmit signal of

the RS would be required. Since none of these combining and/or diversity techniques

are applied at the RS, no gains can be expected. In Case2, the performance of the

proposed analytical BF algorithm of Section 3.2.3 comes very close to the performance

of the numerical solution. The performance degradation of the A-BF algorithm comes

from the two simplifying assumptions for the A-BF algorithm, namely the assumption

of spatially white noise at the destination node and the assumption that the two sub-

problems of determining the weighting factor g(k,i) at the RS and determining the power

allocation at the source node are independent of each other.

In the following, the sum rate performances of the MMSE-BF, ZF-BF, and MF-BF

algorithms in Case3 derived in Section 3.3 are considered. On the one hand, the sum

rates of these BF algorithms which are known from point-to-point transmission shall

be compared among each other, and on the other hand the sum rates shall be compared

to the maximum achievable sum rate in Case3 known from the previous two figures.

In Figure 3.3, the average sum rate vs. SNR(2) is depicted for SNR(1) = 20dB and
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Figure 3.3. Average sum rate vs. SNR(2) for different BF algorithms in Case3,
SNR(1) = 20dB, L = 4, dashed lines: M = 1, solid lines: M = 2.

L = 4. S1 and S2 are equipped with either M = 1 (dashed lines) or M = 2 (solid lines)

antennas.

For M = 1, all BF algorithms provide the same performance. This comes from the

fact that intersymbol interference cannot appear if only one data stream is transmitted

in each time slot. In this case, the MMSE-BF and the ZF-BF algorithm provide the

same BF solution as the MF-BF algorithm which is optimum for M = 1. Hence, the

three analytical BF algorithms perform as well as the N-BF algorithm. If the number

M of antennas at S1 and S2 is increased to M = 2, the MMSE-BF algorithm achieves

almost the same performance as the numerical solution. In this case, L = 4 antennas

at the RS may be used in order to separate M = 2 data streams. Since there are

significantly more antennas at the RS than data streams to transmit, the data streams

can be separated very efficiently in space. For the case M = L, which is omitted here, it

can be shown more clearly that the sum rate performance of the MMSE-BF algorithm

is worse than the sum rate performance of the N-BF solution since there are only as

much antennas at the RS as data streams to transmit. For M = 2, the ZF-BF algorithm

has a slightly degraded sum rate performance compared to the MMSE-BF algorithm.

Due to the ZF constraint, some power is spent in order to completely suppress the

intersymbol interference which reduces the power efficiency compared to the MMSE-BF

algorithm which does not completely suppress the intersymbol interference. Obviously
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for M = 2, the MF-BF algorithm performs considerably worse compared to the MMSE-

BF algorithm and the ZF-BF algorithm. This comes from the fact that only the

SNR is maximized. Since the intersymbol interference is not considered in case of the

MF-BF algorithm, the intersymbol interference increases which leads to a significant

performance degradation.

3.4.3 Bit error rate analysis

In this section, the average uncoded bit error rate (BER) of the linear BF algorithms

of Section 3.3 for Case3 is analyzed. The individual uncoded BER corresponds to the

ratio of the number of incorrectly detected bits at a destination node divided by the

number of overall transmitted bits by the respective source node. Beside the individual

uncoded BER at S1 and S2, respectively, the joint uncoded BER of S1 and S2 is of

particular interest. It gives the ratio of the sum of incorrectly detected bits at both

destination nodes divided by the sum of transmitted bits by both source nodes. All

BER results are presented for quadrature phase shift keying (QPSK) modulated data

bit streams.

In the following, the average joint uncoded BERs of the MMSE-BF, ZF-BF, and

MF-BF algorithm are considered in order to evaluate the performances of the algo-

rithms in case of different numbers of antennas at S1, S2, and the RS. Figure 3.4 gives

the average joint uncoded BER vs. SNR(2) for M = 1 antenna at S1 and S2, and

L = 4 antennas at the RS for two different values of SNR(1), namely SNR(1) = 10dB

and SNR(1) = 20dB. The joint BER is depicted for the three proposed BF algorithms

of Section 3.3, namely the MMSE-BF, ZF-BF, and MF-BF algorithm.

In case of M = 1 antenna at S1 and S2, only one data stream is transmitted by the

source node. For that reason, intersymbol interference does not exist. Without inter-

symbol interference, the SNR is maximized by all three BF algorithms and, accordingly,

the same BER performance is obtained by all algorithms. For SNR(1) = 10dB, an er-

ror floor can be observed in the BER performance. As the sum rate, the joint BER is

also limited by the worst value of SNR(1) and SNR(2). For SNR(1) = 20dB, there also

exists an error floor, but since SNR(1) of the channel between S1 and the RS is already

relatively high, the error floor is below 10−6 and cannot be seen in Figure 3.4.

In the following, the number of antennas at S1 and S2 is increased in order to inves-

tigate the impact of intersymbol interference on the performance of the BF algorithms.

In Figure 3.5, the average joint uncoded BER vs. SNR(2) for M = 2 antennas at S1

and S2 is given. All other parameters are chosen as introduced for Figure 3.4.
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Figure 3.4. Average joint uncoded BER vs. SNR(2) for different BF algorithms, M = 1
and L = 4, dashed lines: SNR(1) = 10dB, solid lines: SNR(1) = 20dB.

For the parameters of Figure 3.5, the source node transmits two independent data

streams and intersymbol interference may appear. Since intersymbol interference is

treated differently in the considered BF algorithms, they provide different performance

results. As for M = 1, the error floor in the BER comes from the limitation by the

worst value of SNR(1) and SNR(2). Since M = 2 data streams have to be separated

spatially by the BF algorithms at the RS, the performance of all algorithms is worse

than in case of M = 1 where the antennas at the RS need not to be used for spatial

multiplexing, but can be used exclusively in order to maximize the effective SNR at

the destination node. For M = 2, the best performance is achieved by the MMSE-BF

algorithm. The ZF-BF algorithm comes quite close to this performance. The difference

between both BF algorithms comes from the fact that for the ZF-BF algorithm some

power is spent in order to completely suppress the intersymbol interference which is

unnecessary for the MMSE-BF algorithm. The MF-BF algorithm provides the worst

performance due to the disregard of the intersymbol interference.

In the following, the impact of the number of antennas at S1, S2 and the RS on

the BER performance is investigated in order to identify diversity and array gains in

the BER results. Figure 3.6 exclusively considers the BER performance of the MMSE-

BF algorithm for SNR(1) = 20dB for four different antenna configurations. The ZF-BF

algorithm and the MF-BF algorithm are omitted here since the relative behavior of the

performances of the different antenna configurations is the same as for the MMSE-BF



60 Chapter 3: One-way relaying

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

SNR(2) in dB

av
er

ag
e

jo
in

t
u
n
co

d
ed

B
E

R

MMSE-BF
ZF-BF
MF-BF

Figure 3.5. Average joint uncoded BER vs. SNR(2) for different BF algorithms, M = 2
and L = 4, dashed lines: SNR(1) = 10dB, solid lines: SNR(1) = 20dB.

algorithm. The case M = 1 antenna at S1 and S2 and L = 2 antennas at the RS,

provides the worst BER performance. Increasing the number L of antennas at the RS

from L = 2 to L = 4 improves the performance significantly since the BF algorithm

provides sharper antenna beams, i.e., the antenna beams can be steered more precisely

into the direction of the source and destination nodes. The increase of the slope of the

curve corresponds to a diversity gain coming from multiple independent propagation

paths and the shift to the left corresponds to an array gain coming from the increased

received power at the RS.

If the number M of antennas at S1 and S2 is increased from M = 1 to M = 2

while L is fixed to L = 4, the BER is degraded again since two data streams are

transmitted by the source node. This means that the L = 4 antennas at the RS are

now required in order to multiplex two different data streams in space. Hence, for

each single data stream the antenna beam is widened again leading to a performance

degradation. Intuitively, it can be assumed for M = 2 and L = 4 that two antennas at

the RS are required in order to multiplex two data streams by BF at the RS and the

remaining two antennas can be used to sharpen the antenna beams of the two data

streams. Increasing the number L of antennas at the RS also provides a diversity gain

which can be seen from the increased slope of the BER curve for M = 2 and L = 4

compared to the BER curve for M = 1 and L = 2. Finally, the case M = 2 and L = 8

provides the best BER performance since the array gain is increased compared to the
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Figure 3.6. Average joint uncoded BER vs. SNR(2) for MMSE-BF for different antenna
configurations, SNR(1) = 20dB.

case M = 2 and L = 4 and the diversity gain is increased compared to the case M = 1

and L = 4.

The introduced joint uncoded BER is strongly influenced by the destination node

with the worst channel conditions. Hence, the joint uncoded BER as well as the sum

rate reflect the overall system performance of the applied BF algorithms. However,

since S1 and S2 are two independent destinations nodes, their average individual un-

coded BER performances are of interest, too. Thus, the individual BER performances

at S1 and S2 are considered in the following. The solid lines in Figure 3.7 give the av-

erage individual uncoded BER vs. SNR(2) at destination node S1 and the dashed lines

give the average uncoded BER vs. SNR(2) at destination node S2 for SNR(1) = 10dB.

Nodes S1 and S2 are equipped with M = 2 antennas and the RS is equipped with

L = 4 and L = 8 antennas, respectively.

The results are obtained for the MMSE-BF algorithm, but concerning the relative

behavior between the BER at S1 and the BER at S2, the ZF-BF and MF-BF algorithms

provide similar results. Furthermore, the BER performances at S1 and S2 show the

same relative behavior for L = 4 and L = 8 so that both cases can be analyzed together.

The ratio between the BER at S1 and the BER at S2 depends on the ratio between

SNR(1) and SNR(2). For SNR(1) = SNR(2) = 10dB, both BER values are the same. For

SNR(2) > SNR(1), the BER at S1 is lower than the BER at S2 and vice versa. While
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Figure 3.7. Average individual uncoded BER vs. SNR(2) for MMSE-BF,
SNR(1) = 10dB, dashed lines: BER at S2, solid lines: BER at S1.

SNR(2) is the SNR for the first hop of the transmission from S2 to S1, SNR(1) is the

SNR for the second hop of the transmission from S2 to S1. This means that the SNR

for the first hop has a higher impact on the BER than the SNR for the second hop

because bad first hop channel conditions cannot be compensated by good second hop

channel conditions. Indeed, a bad SNR for the first hop causes that the high noise

value at the RS is amplified and retransmitted on the second hop.

3.5 Conclusions

This chapter has been about linear BF in non-regenerative one-way relaying with

multiple-antenna nodes. The sum rate maximization problem has been considered

for three different cases of system capabilities which have been newly defined in the

framework of Figure 1.4. For a system with full capabilities, a review of the BF al-

gorithm which maximizes the sum rate has been given [Ham06]. For the system with

limited capabilities at the RS, a novel sub-optimum analytical BF algorithm has been

proposed in order to maximize the sum rate. Furthermore, the BF algorithms which

minimize the MSE, minimize the MSE under the ZF constraint, and maximize the SNR

by BF at the RS have been newly derived for the system with limited capabilities at
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S1 and S2. The analyses of the different proposed BF algorithms provide the following

main conclusions:

• The highest sum rate in multi-antenna one-way relaying is only achieved if BF

is performed at all nodes of the system. In this case, all nodes have to provide

full SP capabilities and need to be provided with global CSI. The optimum BF

algorithm can be determined by analytical methods.

• The full spatial multiplexing gain in one-way relaying for independently Rayleigh

fading channel coefficients corresponds to the minimum of the number L of an-

tennas at the RS and the number M of antennas at S1 and S2.

• In case of limited capabilities at the RS and in case of limited capabilities at S1

and S2, the maximum sum rate needs to be determined by numerical methods.

However, for a system with limited capabilities at S1 and S2, the MMSE-BF

algorithm almost achieves the maximum sum rate for equal weighting at the

source and destination nodes, respectively.

• For high numbers L of antennas at the RS, the system with limited capabilities

at S1 and S2 outperforms the system with limited capabilities at the RS, since

BF at the RS provides significant diversity and array gains in addition to the

multiplexing gains available in both systems.

• The MMSE-BF algorithm outperforms the ZF-BF algorithm and the MF-BF

algorithm in the system with limited capabilities at S1 and S2.
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Chapter 4

Two-way relaying

4.1 Introduction

In this chapter, all optimization problems in two-way relaying introduced in the second

row of the matrix organization in Figure 1.4 are considered. Firstly, the optimization

problems are formulated, and secondly, the respective BF algorithms which solve the

problems are derived.

For two-way relaying, four different cases of system capabilities are considered,

namely the system with full capabilities, the system with limited capabilities at the

RS, the system with limited capabilities at S1 and S2, and the system with local

CSI at S1 and S2. The system with local CSI at S1 and S2 which corresponds to

the fourth column in Figure 1.4 constitutes an additional case compared to one-way

relaying where only the first three cases are considered. The reasons for this additional

case are explained in the following. In two-way relaying, a significant performance gain

can be obtained if CDI is performed at the destination nodes. In order to perform

CDI, local CSI is required at the destination nodes while global CSI is not required.

Hence, a system with local CSI at S1 and S2 but without global CSI at S1 and S2

is defined as an additional case of system capabilities compared to one-way relaying

where CDI is not required. This system has more capabilities than the system with

limited capabilities at S1 and S2 since local CSI is available at the destination nodes

so that CDI can be performed, but it has less capabilities than the system with full

capabilities since global CSI is not available at S1 and S2 so that no adaptive BF can

be applied at S1 and S2.

For all four cases which correspond to the four columns in Figure 1.4, the maxi-

mization of the sum rate is considered in Section 4.2. Among those four, the system

with full capabilities achieves the highest sum rate since all nodes may apply adaptive

BF and CDI can be performed. In the system with limited capabilities at the RS,

the RS cannot perform BF while BF and CDI can be applied at S1 and S2. In the

system with limited capabilities at S1 and S2, the RS can perform BF, but S1 and

S2 cannot perform BF and CDI cannot be applied, too. In the system with local CSI

at S1 and S2, the RS can perform BF. Although S1 and S2 cannot perform BF, CDI

can be applied at the destination nodes. The limited capabilities in the systems of
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the last three columns of Figure 1.4 correspond to additional constraints in the sum

rate maximization problems. These constraints are defined in Section 4.2 and included

into the optimization problems. There are significant differences in the mathematical

structure of the sum rate maximization problems in two-way relaying compared to

one-way relaying of Chapter 3. These differences are explained and it is shown that

there exist only numerical solutions which maximize the sum rate in two-way relaying

for every case of system capabilities. Therefore, either BF algorithms which minimize

the effort for the numerical solution, or BF algorithms which provide sub-optimum an-

alytical solutions requiring less effort are proposed depending on the respective system

capabilities.

For the system with limited capabilities at S1 and S2 and the system with local CSI

at S1 and S2, additional optimization problems whose analytical solutions are known to

provide reasonable performance in point-to-point transmissions are newly formulated

for two-way relaying in Sections 4.3 and 4.4, respectively. The corresponding BF

algorithms solving the problems are derived, too.

The performances of the proposed BF algorithms are investigated in Section 4.5,

and the main conclusions of this chapter are drawn in Section 4.6.

4.2 Maximization of the sum rate

4.2.1 General problem formulation

In this Section 4.2, the sum rate maximization problems are considered for the four

different cases of system capabilities in two-way relaying, which are denoted in the four

columns of the second row in the matrix organization of Figure 1.4. Our work [UK08b]

addresses the maximization of the sum rate for a system with full capabilities and a

system with limited capabilities at S1 and S2.

In contrast to the one-way relaying scheme, the transmission from S1 to S2 is not

orthogonal to the transmission from S2 to S1 since both transmissions are performed

within the same time slots. For that reason, the transmission rates C(1) and C(2)

are not independent of each other. Maximizing only C(1) would result in a low C(2)

and vice versa. From the system perspective, maximizing the sum of both individual

transmission rates is a more reasonable optimization goal than maximizing only one



4.2 Maximization of the sum rate 67

individual transmission rate. The sum rates defined in Section 2.4 can only be maxi-

mized by simultaneously adapting the BF matrices Q(1), Q(2) and G at the nodes S1,

S2 and at the RS, respectively, introduced in the system model of Figure 2.1. In order

to maximize the sum rate in two-way relaying, it may also be beneficial not to exploit

the maximum transmit powers of nodes S1 and S2. For a large difference between the

individual transmission rates C(1) and C(2) due to different SNRs of the channels H(1)

and H(2), reducing the transmit power of the node with the higher transmission rate

leads only to a small degradation of its own transmission rate while the other node

can increase its transmission rate significantly due to the reduced interference of the

first node. This fact has to be reflected by the transmit power constraints of nodes S1

and S2. As for one-way relaying, the sum rate in two-way relaying is also maximized if

the maximum transmit power of the RS is exploited. From the sum rate definitions in

Section 2.4 it is known that the sum rate is always independent of the receive BF ma-

trices P(1) and P(2). Thus, P(1) and P(2) can be omitted in the sum rate maximization

problems.

In the following, a general sum rate maximization problem with transmit power

constraints is formulated which can be adapted to each case of system capabilities by

introducing additional constraints to the problem and by using the respective sum rate

of Section 2.4, i.e., either C
(sum)
BF of Eq. (2.15) for adaptive BF at S1 and S2 or C

(sum)
EW

of Eq. (2.22) for equal weighting at S1 and S2. The general sum rate maximization

problem in two-way relaying for the simultaneous transmission from S1 to S2 and from

S2 to S1 can be written as follows:
{

Gopt,Q
(1)
opt,Q

(2)
opt

}

= arg max
{G,Q(1),Q(2)}

C(sum), (4.1a)

subject to: tr
{

Q(i)Rx(i)Q(i)H
}

≤ E(i), i = 1, 2, (4.1b)

tr

{

G

(

2
∑

i=1

H(i)Q(i)Rx(i)Q(i)HH(i)H +Rn(0)

)

GH

}

=E(0),

(4.1c)

where the sum rate is maximized under the two transmit power constraints (4.1b) at

the source nodes Si, i = 1, 2, which are inequalities, and the transmit power con-

straint (4.1c) at the RS which is an equality. In contrast to one-way relaying, the

transmit power constraint (4.1c) at the RS includes both transmit BF matrices Q(1)

and Q(2), since the data streams of S1 and S2 are received simultaneously.

In order to understand some characteristics of two-way relaying in more detail,

an equivalent system model of the system introduced in Chapter 2 is proposed in the

following. This equivalent system model is only valid for two-way relaying and allows to
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describe the simultaneous transmission from S1 and S2 to the RS and the simultaneous

retransmission from the RS to S1 and S2. All vectors and matrices corresponding either

to S1 or to S2 in the original system model of Figure 2.1 are considered jointly in the

equivalent system model. The joint data vector is defined by

x =
[

x(1)T ,x(2)T
]T

, (4.2)

with the joint data covariance matrix

Rx = diagb [Rx(1) ,Rx(2) ] . (4.3)

The joint transmit BF matrix of the source nodes S1 and S2 is defined by the block

diagonal matrix

Q = diagb

[

Q(1),Q(2)
]

. (4.4)

The joint first hop channel matrix HR for the simultaneous transmission from S1 and

S2 to the RS is a concatenation of H(1) and H(2) which is given by

HR =
[

H(1),H(2)
]

∈ C
L×2M . (4.5)

Let matrices VR and UR contain the right and left eigenvectors of HR, respectively.

Furthermore, let matrix Λ
1/2
R contain the singular values of HR. Thus, the SVD of the

joint first hop channel HR yields

HR = URΛ
1/2
R VH

R. (4.6)

The joint second hop channel matrix HT for the retransmission from the RS to S1 and

S2 is a concatenation of H(2)T and H(1)T which is given by

HT =

[

H(2)T

H(1)T

]

∈ C
2M×M . (4.7)

Due to the channel reciprocity, HT is a simple permutation of HR. Using permutation

matrix

Π =

[

0M×M IM

IM 0M×M

]

, (4.8)

HT may also be described by

HT = ΠHT
R. (4.9)

Since the joint second hop channel matrix HT is a simple permutation of HR according

to Eq. (4.9), the SVD of HT is just the transpose of the SVD of HR in Eq. (4.6) and

both channels possess the same eigenmodes. Note that the eigenmodes of the joint

channel are completely different compared to the eigenmodes of the two individual

channels H(1) and H(2). In the equivalent system model, the joint receive BF matrix

P at the destination nodes is defined by a block diagonal matrix

P = diagb

[

P(2),P(1)
]

, (4.10)



4.2 Maximization of the sum rate 69

and the joint CDI matrix T is also given by a block matrix

T =

[

0M×M T(2)

T(1) 0M×M

]

. (4.11)

The joint noise vector

nR =
[

n
(2)T

R ,n
(1)T

R

]T

, (4.12)

denotes the overall noise vector of S2 and S1 with joint noise covariance matrix

RnR
= diagb

[

R
n

(1)
R

,R
n

(2)
R

]

. (4.13)

With the definitions of Eqs. (4.2) to (4.13), the joint estimated data vector

x̂ =
[

x̂(1)T , x̂(2)T
]T

, (4.14)

may be described by

x̂ = P
(

(HTGHRQ + T)x + HTGn(0) + nR

)

. (4.15)

While Eq. (2.11) gives an individual description of each direction of the transmission,

Eq. (4.15) gives a joint description of both directions of the transmission. Depending

on the considered problem either the individual description or the joint description is

preferable.

4.2.2 System with full capabilities

In this section, the sum rate maximization problem (4.1) in two-way relaying for a

system with full capabilities is considered, cf. the second row and first column of Fig-

ure 1.4. In this system, adaptive BF may be performed at all nodes since global CSI

is available at all nodes and all nodes have full SP capabilities. Hence, the sum rate

is determined by Eq. (2.15). Furthermore, the duplex interference can be completely

cancelled by CDI at the destination nodes by choosing CDI matrix T(k) according

to Eq. (2.27), which is introduced as an additional constraint to the general problem

formulation (4.1). With these constraints on the system with full capabilities, prob-

lem (4.1) may be rewritten as follows:
{

Gopt,Q
(1)
opt,Q

(2)
opt

}

= arg max
{G,Q(1),Q(2)}

C
(sum)
BF , (4.16a)

subject to: T(k) = −P(k)H(k)TGH(k)Q(k), k = 1, 2, (4.16b)

tr
{

Q(i)Rx(i)Q(i)H
}

≤ E(i), i = 1, 2, (4.16c)

tr

{

G

(

2
∑

i=1

H(i)Q(i)Rx(i)Q(i)HH(i)H +Rn(0)

)

GH

}

=E(0).

(4.16d)
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In order to give an upper bound for the achievable sum rate in two-way relaying,

the individual description of each direction of the transmission given by the system

model of Eq. (2.11) is used. Let us concentrate on a single receive node Sk for that

purpose. On the one hand, Sk may cancel the duplex interference of its own data

streams by CDI so that it is not disturbed by the simultaneous retransmission into

both directions by the RS. However, from the perspective of destination node Sk the

RS wastes some part of its overall available transmit power in order to retransmit

already known data streams yielding D(k)x(k) in Eq. (2.11). Hence, the individual

transmission rate for the transmission from Si to Sk in two-way relaying is smaller

than the individual transmission rate for the transmission from Si to Sk in one-way

relaying where all the available transmit power at the RS can be used to transmit the

unknown data streams yielding
(

A(k) + F(k)
)

x(i) in Eq. (2.11). For that reason, an

upper bound for the achievable sum rate in two-way relaying is given by the sum of the

two individual transmission rates coming from the orthogonal transmission in one-way

relaying where each direction of transmission is optimized independently.

The maximum sum rate in two-way relaying is achieved if the maximum spatial

multiplexing gain is exploited. In order to give the maximum spatial multiplexing gain

in two-way relaying, the joint description of both directions of the transmission by

Eq. (4.15) is used. Since the sum rate is linked with both directions of the transmission,

the joint description of Eq. (4.15) allows to consider the maximum spatial multiplexing

gain in two-way relaying. The maximum spatial multiplexing gain corresponds to

the number of independent sub-channels of the simultaneously used radio channels.

For that reason, the maximum spatial multiplexing gain is given by the rank of the

joint channels HR and HT which is the same for both channels due to the identity of

Eq. (4.9). Assuming that all channel coefficients are uncorrelated, the rank of the joint

channels HR and HT corresponds to the minimum of L and 2M , i.e., the maximum

spatial multiplexing gain in two-way relaying is given by the minimum of L and 2M .

In order to provide an insight into the BF algorithm which maximizes the sum rate

in two-way relaying, the corresponding BF algorithm for one-way relaying introduced in

Section 3.2.2 is reviewed. As shown in Section 3.2.2, the sum rate in one-way relaying is

maximized by BF matrices adapted to the eigenmodes of the first hop channel H(i) and

by BF matrices adapted to the eigenmodes of the second hop channel H(k)T . Applying

these adaptations to the eigenmodes, the two channels can be separated into their

spatial sub-channels. In two-way relaying, S1 and S2 transmit simultaneously to the RS

over two independent first hop channels H(1) and H(2). These transmissions correspond

to a multiple access phase in two-way relaying. Due to this multiple access phase,

the BF at the RS cannot be adapted simultaneously to the independent eigenmodes

of the two first hop channels. Furthermore, in two-way relaying the RS transmits
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simultaneously to S1 and S2 over two independent second hop channels H(1)T and

H(2)T . These transmissions correspond to a broadcast phase in two-way relaying. As

in the multiple access phase, the BF at the RS cannot be adapted simultaneously to

the eigenmodes of the two second hop channels in the broadcast phase. Nevertheless,

in two-way relaying, an adaptation to the eigenmodes of the joint first hop channel

and the joint second hop channel with the SVD of Eq. (4.6) could be performed at

the RS. However, since the source nodes S1 and S2 do not cooperate with each other,

the joint transmit BF matrix Q of Eq. (4.4) cannot be adapted to the joint channels.

The problem of optimizing block diagonal matrix Q with sub-matrices Q(1) and Q(2)

corresponds to a multiple access problem which has even no closed-form solution in

point-to-point transmission [KBB+05]. In conjunction with the optimization of the

BF matrix G at the RS, the multiple access problem even becomes more complicated.

To the best of the author’s knowledge, the optimum BF matrices Q(1), Q(2), and G

solving the sum rate maximization problem (4.16) can only be determined by numerical

methods.

Although there exist only numerical solutions to the sum rate maximization prob-

lem (4.16) in the system with full capabilities, the optimization problem can be trans-

formed into an equivalent and simpler optimization problem, if the RS is equipped

with more antennas than the sum of the antennas at S1 and S2, i.e., if L > 2M . The

proposed transformation is based on a similar approach introduced in one-way relay-

ing for the system with limited capabilities at S1 and S2 in Section 3.2.4. For the

transformation, the joint description of both directions of the transmission according

to Eq. (4.15) is required. For L > 2M , let matrices ŨR ∈ C
L×2M and ŪR ∈ C

L×(L−2M)

contain the first 2M left eigenvectors corresponding to the range of HR and the last

L − 2M left eigenvectors corresponding to the null space of HR, respectively. Thus,

the SVD of the joint first hop channel HR may be rewritten as

HR =
[

ŨR, ŪR

]

[

Λ
1/2
R

0(L−2M)×M

]

VH
R. (4.17)

For L > 2M , the joint channels HR and HT have only a maximum of 2M eigenmodes

while G ∈ C
L×L could be adapted to L eigenmodes. Hence, there are linear depen-

dencies between the variables in G. These linear dependencies may be removed by

the following BF approach. The BF matrix G is separated into three parts, namely

the receive BF matrix GR ∈ C
2M×L, the transmit BF matrix GT ∈ C

L×2M and an

unknown matrix G̃ ∈ C
2M×2M , yielding

G = GTG̃GR. (4.18)

The receive BF matrix GR is used as a projection to the range of the joint first hop

channel HR which has only 2M dimensions. Furthermore, the transmit BF matrix GT
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is used as a projection to the range of the joint second hop channel HT which has only

2M dimensions, too. Since matrix ŨR of Eq. (4.17) forms an orthogonal basis for the

range of HR, it may be used as an adaptation to the non-zero eigenmodes of the joint

first hop channel HR, which leads to the following choice of GR:

GR = ŨH
R. (4.19)

Since matrix ŨT
R forms an orthogonal basis for the range of HT, it may be used as

an adaptation to the non-zero eigenmodes of the joint second hop channel HT, which

leads to the following choice of GT:

GT = Ũ∗
R. (4.20)

Due to the unitary BF by the matrices ŨH
R and Ũ∗

R, the non-zero eigenmodes of the

joint first hop channel HR and the joint second hop channel HT are preserved. By the

BF approach of Eqs. (4.18) to (4.20) the original sum rate maximization problem (4.16)

with BF matrix G is transformed into an equivalent optimization problem where the

unknown BF matrix G is replaced by the unknown BF matrix G̃. Since BF matrix

G̃ only contains (2M)2 complex optimization variables, the equivalent optimization

problem is simpler compared to the original one where BF matrix G contains L2

complex optimization variables. Nevertheless, BF matrix G̃ has to be determined by

numerical methods.

In the following, a sub-optimum analytical BF algorithm for the particular case of

single-antenna S1 and S2, i.e., M = 1, is proposed which comes close to the perfor-

mance of the numerical solution of the sum rate maximization problem. For M = 1,

the transmit BF matrices at S1 and S2 are reduced to scalar weighting factors. The

weighting factors are chosen to fulfill the transmit power constraints at source nodes Si

with equality yielding Q(i) = q(i) =
√

E(i), for i = 1, 2. Note that assuming equality in

the transmit power constraints at source nodes Si is already a sub-optimum approach

which reduces the complexity of the problem. For M = 1, channel matrices H(i) and

H(k)T are reduced to channel vectors H(i) = h(i) and H(k)T = h(k)T , respectively. The

duplex interference indicated by D(k) in Eq. (2.11) is always cancelled by CDI at the

destination nodes. Furthermore, there exists no intersymbol interference indicated by

F(k) in Eq. (2.11), since only one data stream is transmitted per source node. Without

interference, the SINR value of Eq. (2.20) reduces to a SNR value and the transmis-

sion rate C
(k)
BF of Eq. (2.14) equals the transmission rate C

(k)
EW of Eq. (2.21). For the

sub-optimum BF algorithm, it is proposed to adapt the BF at the RS to the joint first

hop and joint second hop channel. For that purpose, the BF matrix G at the RS is

again decomposed into three parts according to Eq. (4.18). Firstly, matrices GR and

GT are determined in order to maximize the SNR of the first hop transmissions and
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the second hop transmissions, respectively. Secondly, matrix G̃ is used to combine the

SNR maximization of the first and second hop.

Matrices GR and GT are determined as follows: The receive SNR of data symbol

x
(i)
1 at the RS is maximized for the receive MF h(i)H matched to channel h(i) [Pro01].

Hence, the overall receive MF matrix GR applied to the two received data streams of

the RS is a concatenation of the MFs to channels h(1) and h(2) given by

GR =

[

h(1)H

h(2)H

]

. (4.21)

The receive SNR at node Sk for data symbol x
(i)
1 is maximized for the transmit MF

h(k)∗ matched to channel h(k)T [Cav00]. Hence, the overall transmit MF matrix GT

applied to the two transmitted data streams of the RS is a concatenation of the MFs

to channels h(2)T and h(1)T given by

GT =
[

h(2)∗ ,h(1)∗
]

. (4.22)

After maximizing the SNR of the first hop and the second hop transmission by the

MFs of Eqs. (4.21) and (4.22), the optimum linear combination of the two received

data streams at the RS has to be determined in order to maximize the sum rate.

The optimum linear combination is described by matrix G̃ ∈ C
2×2 consisting of four

complex optimization variables and can only be determined by numerical methods.

Since there are only two data streams at the RS, the following approximation can be

performed: Instead of finding the optimum linear combination, simply different powers

could be allocated to the two data streams. This leads to the following simplification

of matrix G̃:

G̃ = diag [w1, w2] , (4.23)

with real-valued power allocation factors w1 ∈ R
+ and w2 ∈ R

+. With this simpli-

fication, the number of optimization variables in the numeric optimization is further

reduced to two real-valued power allocation factors. In the following, an analytical

approach for determining the power allocation factors is proposed. With the receive

and transmit MFs of Eqs. (4.21) and (4.22), respectively, the transmission rates C
(k)
BF

of Eq. (2.21) result in

C
(k)
BF =

1

2
log2



1 +
E(i)

∣

∣h(i)
∣

∣

4 ∣
∣h(k)

∣

∣

4
w2

i

σ2
n(0)h(k)TGGHh(k)∗ + σ2

n
(k)
R



 , i = 1, 2. (4.24)

For G of Eq. (4.18) and G̃ of Eq. (4.23), the filtered noise of the RS which is the

first summand in the denominator of Eq. (4.24) depends on wi and wk. With respect

to the absolute value
∣

∣h(k)
∣

∣, this first summand is a polynomial of the order four.
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Considering only the summand of the highest order, i.e.,
∣

∣h(k)
∣

∣

4
, which is the dominant

one, Eq. (4.24) may be approximated by

C
(k)
BF ≈ 1

2
log2



1 +
E(i)

∣

∣h(i)
∣

∣

4 ∣
∣h(k)

∣

∣

4
w2

i

σ2
n(0) |h(k)|4 w2

i + σ2

n
(k)
R



 . (4.25)

Now, the transmission rate C
(k)
BF only depends on power allocation factor wi. For

maximizing the sum rate of Eq. (4.25) under the RS power constraint (4.1c), power

allocation factor wi can be determined by Lagrangian optimization. Since Eq. (4.25)

has the same structure as Eq. (3.7), the derivation of the power allocation factor wi

is similar to the derivation of the power allocation factors in Eq. (3.10). Thus, the

derivation is omitted here. With

ν(i) = E(i)

∣

∣h(i)
∣

∣

2

|h(k)|4
, (4.26)

and

ρ(k) =
σ2

n
(k)
R

σ2
n(0)

, (4.27)

the power allocation factors wi, i = 1, 2, result in

w2
i =

[

√

(

ρ(k)ν(i)

2

)2

+ µ̃ρ(k)ν(i) − ρ(k)ν(i)

2
−

σ2

n

(k)
R

|h(k)|4
]+

E(i) |h(i)|4 + σ2
n(0) |h(i)|2

. (4.28)

The Lagrangian multiplier µ̃ has to be chosen such that the RS power constraint (4.1c)

is satisfied. With wi of Eq. (4.28), G̃ of Eq. (4.23), GT of Eq. (4.22), and GR of

Eq. (4.21), the sub-optimum BF matrix G of Eq. (4.18) can be determined for M = 1.

A similar sub-optimum BF algorithm which combines receive and transmit MFs

for M = 1 in two-way relaying is proposed in [LZ08], namely maximal-ratio recep-

tion maximal-ratio transmission (MRR-MRT). In MRR-MRT two-way relaying, also

receive and transmit MFs as given by Eqs. (4.21) and (4.22) are used at the RS, but

the combination of the two independent MF solutions by an adaptation of matrix G̃

is omitted. This means that G̃ = wI2 is chosen inherently in [LZ08], where w ∈ R
+ is

chosen to satisfy the RS transmit power constraint (4.1c). In the performance evalua-

tion of Section 4.5, it is shown that MRR-MRT two-way relaying only performs well if

the SNRs of the channels h(1) and h(2) are in a similar range.

4.2.3 System with limited capabilities at the RS

In this section, a BF algorithm for the maximization of the sum rate in problem (4.1)

is proposed for a system with limited capabilities at the RS. The optimization problem
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is introduced in the second row and the second column of Figure 1.4. In a system with

limited capabilities at the RS, S1 and S2 can perform adaptive BF. Furthermore, the

duplex interference can be completely cancelled by CDI at the destination nodes by

choosing CDI matrix T(k) according to Eq. (2.27). Due to the joint precoding and the

joint decoding, the sum rate is determined by Eq. (2.15). Since no CSI is available at

the RS and since the RS has only limited SP capabilities, the RS cannot retransmit

linear combinations of the received data streams of each receive antenna, but at each

antenna of the RS its received data stream is only amplified by a positive real-valued

weighting factor g, which is equal for all antennas and chosen to satisfy the RS transmit

power constraint (4.1c). In this case, the BF matrix at the RS simplifies to

G = gI, g ∈ R
+. (4.29)

With these constraints on the system with limited capabilities at the RS, problem (4.1)

may be rewritten as follows:
{

gopt,Q
(1)
opt,Q

(2)
opt

}

= arg max
{g,Q(1),Q(2)}

C
(sum)
BF , (4.30a)

subject to: T(k) = −gP(k)H(k)TH(k)Q(k), k = 1, 2, (4.30b)

tr
{

Q(i)Rx(i)Q(i)H
}

≤ E(i), i = 1, 2, (4.30c)

tr

{

g2

(

2
∑

i=1

H(i)Q(i)Rx(i)Q(i)HH(i)H +Rn(0)

)}

=E(0). (4.30d)

Since the RS cannot apply BF, an adaptation to the eigenmodes of the joint first hop

channel HR of Eq. (4.5) and the joint second hop channel HT of Eq. (4.7) as introduced

in Section 4.2.2 is not possible in order to solve problem (4.30). Furthermore, the

weighting factor g directly depends on the two BF matrices Q(1) and Q(2) via the RS

transmit power constraint (4.1c) which requires a joint optimization of Q(1), Q(2) and g.

This optimization requires numerical methods, and since problem (4.30) in its current

formulation is neither convex nor concave [BV04], several minima or maxima may

exist. As numerical methods require high computational effort, analytical solutions

are desired which require less computational effort.

In the following, a new sub-optimum analytical BF algorithm for the maximization

of the sum rate in case of limited capabilities at the RS is proposed which is based on

the algorithm introduced for one-way relaying in Section 3.2.3. In the one-way relay-

ing case, the sum rate can be maximized by maximizing each transmission rate C
(k)
BF

of Eq. (2.14) individually due to the orthogonality of the transmissions. In two-way

relaying, the transmissions from S1 to S2 and from S2 to S1 are no longer orthogo-

nal. However, due to the fact that the RS only performs a weighting of the received
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data streams by the scalar g and due to the fact that CDI is applied at the destina-

tion nodes, the two transmission rates are only coupled via the RS transmit power

constraint (4.1c). For both transmissions from S1 to S2 as well as from S2 to S1, the

overall channel between source node Si and destination node Sk is just a multiplication

of the respective first hop channel H(i) with the respective second hop channel H(k)T

scaled by weighting factor g. Except for the retransmission of the noise and the cou-

pling by the adaptive weighting factor g at the RS, the two transmissions in a system

with limited capabilities at the RS correspond to a point-to-point transmission from

the source node to the destination node using the overall channels H(k,i) of Eq. (3.13)

for i = 1, 2. Thus, the well-known BF algorithm which maximizes the transmission rate

in point-to-point transmissions [PNG03] is adapted to two-way relaying in a system

with limited capabilities at the RS in the following. For simplification, it is assumed

that source nodes S1 and S2 both transmit with their maximum available transmit

power. The BF matrices Q(i) and P(k) are chosen as proposed for the respective one-

way relaying problem yielding Eqs. (3.17) and (3.18), respectively. Following the steps

in one-way relaying from Section 3.2.3, the sum rate maximization problem (4.30) for

a system with limited SP capabilities at the RS in two-way relaying results in

{gopt, s
(1)
m,opt, s

(2)
m,opt} = arg max

{

g,s
(1)
m ,s

(2)
m

}

1

2

2
∑

i=1

M
∑

m=1

log2



1 +
g2
opt

σ2

ñ
(k)
R

λ(k,i)
m s(i)2

m



 , (4.31a)

subject to:
M
∑

m=1

s(i)2

m = E(i), i = 1, 2, (4.31b)

g2 tr

{

2
∑

i=1

H(i)V(k,i)S(i)S(i)HV(k,i)HH(i)H + Rn(0)

}

= E(0),

(4.31c)

where all variables are defined in the same way as introduced in Section 3.2.3. In

problem (4.31), the weighting factor g at the RS and the power allocation factors s
(i)
m

at both source nodes Si, i = 1, 2, have to be optimized jointly.

It is proposed to approximate problem (4.31) by separating it into two independent

sub-problems which are solved alternately. Firstly, the sub-problem of satisfying the

RS transmit power constraint (4.31c) by weighting factor g is solved for fixed power

allocation factors s
(i)
m at source nodes Si, i = 1, 2. By using the constraint (4.31c), g is

calculated as

g =

√

√

√

√

√

√

E(0)

tr

{

2
∑

i=1

H(i)V(k,i)S(i)S(i)HV(k,i)HH(i)H + Rn(0)

} . (4.32)
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As in one-way relaying, the initial power allocation factors at S1 and S2 are very impor-

tant because if a sub-channel is allocated zero power initially, it will never be used. For

that reason, it is proposed to start with an equal power allocation to the sub-channels

at Si which means that no sub-channel is preferred in the beginning, i.e., s
(i)2

m = E(i)

M
.

Secondly, the sub-problem with objective function (4.31a) and constraint (4.31b) is

solved for the fixed weighting factor g at the RS. Since C
(1)
BF only depends on s

(2)
m and

C
(2)
BF only depends on s

(1)
m , both transmission rates in the sum of Eq. (4.31a) can be max-

imized independently, yielding two typical waterfilling problems, which can be solved

in parallel. The solutions to the power allocation factors s
(i)2

m , i = 1, 2, are given by

s(i)2

m =



µ(i) −
σ2

ñ
(k)
R

g2λ(k,i)





+

, i = 1, 2, (4.33)

[PF05]. The coefficients s
(i)2

m and the waterfilling levels µ(i) are found by the well-known

iterative waterpouring algorithm [PF05] where µ(1) and µ(2) are chosen to satisfy the

transmit power constraints (4.31b) at source nodes S1 and S2, respectively. After the

power allocation factors s
(i)
m , for i = 1, 2, and the corresponding power allocation ma-

trices S(i), for i = 1, 2, have been determined, the weighting factor g can be determined

from Eq. (4.32) again. This alternation between the two sub-problems is repeated until

the solutions to s
(i)
m and g do not change more than tolerated by a predefined accuracy.

Typically, two to four alternations are required in order to obtain a relative change of

g which is less than 10−4. Since the optimization result depends on the initial power

allocation at S1 and S2, it cannot be guaranteed that the alternation between the cal-

culation of weighting factor g and the calculation of the power allocation factors s
(1)
m

and s
(2)
m at S1 and S2 yields an optimum of the relaxed problem (4.31).

4.2.4 System with limited capabilities at S1 and S2

In this section, the sum rate maximization problem of Eq. (4.1) for a system with

limited capabilities at S1 and S2 in two-way relaying is considered. The problem is

depicted in the second row and third column of Figure 1.4. In such a system without

CSI at the source nodes Si, i = 1, 2, each source node uses the maximum available

transmit power E(i) and assigns the same weighting factor q(i), i = 1, 2, to all its

transmit antennas and from each transmit antenna one data stream is transmitted.

Thus, the transmit power constraints of Eq. 4.1b are satisfied with equality and the

BF matrices Q(i), i = 1, 2, simplify to

Q(i) = q(i)IM , i = 1, 2. (4.34)
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The destination nodes cannot perform a joint decoding of the received data streams

since no CSI is available at S1 and S2. Due to the equal weighting by a single scalar

p(k), k = 1, 2, at all receive antennas of Sk, the receive BF matrices P(k) simplify to

P(k) = p(k)IM , k = 1, 2. (4.35)

As in one-way relaying, the scalar weighting factor p(k) does not influence the trans-

mission rate for the transmission from Si to Sk. Due to the equal weighting, the sum

rate in the system with limited capabilities at S1 and S2 is given by Eq. (2.22). Since

no CSI is available at S1 and S2, the duplex interference caused by node Sk cannot be

cancelled at Sk by CDI, i.e., T(k) = 0M×M . With these constraints on the system with

limited capabilities at S1 and S2, problem (4.1) may be rewritten as follows:

{

Gopt, q
(1)
opt, q

(2)
opt

}

= arg max
{G,q(1),q(2)}

C
(sum)
EW , (4.36a)

subject to: T(k) = 0M×M , k = 1, 2, (4.36b)

tr
{

q(i)2Rx(i)

}

= E(i), i = 1, 2, (4.36c)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0), (4.36d)

In order to satisfy the transmit power constraints (4.36c) at nodes Si, the scalar

weighting factors are chosen as follows:

q
(i)
opt =

√

E(i)

M
, i = 1, 2, (4.37)

which means that the overall transmit power E(i) is equally distributed between all

transmit antennas of source node Si. Hence, the optimum weighting factors q
(i)
opt in

problem (4.36) are already determined and the transmit power constraints (4.36c) at

the source nodes are satisfied by the choices of q
(i)
opt in Eq. (4.37). This means that

constraints (4.36c) need not to be considered in the following.

With constraint (4.36b), the duplex interference caused by data streams of Sk can

be treated exactly as the intersymbol interference caused by data streams of Si. Thus,

all 2M received data streams at the RS from S1 and S2 have to be spatially separated

by BF at the RS which has global CSI and full SP capabilities. In order to separate 2M

data streams by BF, the RS has to be equipped with L ≥ 2M antennas. Regarding the

sum rate maximization problem (4.36), the BF approach at the RS with BF matrix G

of Eqs. (4.18) to (4.20) can also be applied in a system with limited capabilities at S1

and S2. This means that by an adaptation to the non-zero eigenmodes of the joint first
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and second hop channels the number of optimization variables can be reduced from

L2 in BF matrix G to (2M)2 in BF matrix G̃ for L > 2M . As in the system with

full capabilities, numerical methods are required in order to determine the optimum

BF matrix G̃. However, the numerical effort is significantly lower for the system with

limited capabilities at S1 and S2, since BF matrices Q(1) and Q(2) are already given

by Eq. (4.34) which means that G̃ can be determined independently and no joint

optimization of Q(1), Q(2), and G̃ is required.

4.2.5 System with local CSI at S1 and S2

This section considers the sum rate maximization problem of Eq. (4.1) for a system

with local CSI at S1 and S2 in two-way relaying. In this system, S1 and S2 cannot

perform BF, since global CSI would be required for that purpose. Without global

CSI each source node Si uses the maximum available transmit power E(i), so that the

source nodes transmit one data stream per transmit antenna assigning equal weighting

factors to all transmit antennas. As for the system with limited capabilities at S1 and

S2 in Section 4.2.4, the transmit BF matrices Q(i), i = 1, 2, are given by Eq. (4.34) and

the receive BF matrices P(k), k = 1, 2, are given by Eq. (4.35). Since equal weighting

is performed at S1 and S2, the sum rate for the system with local CSI at S1 and S2

is determined by Eq. (2.22). In contrast to the system with limited capabilities at S1

and S2, the destination nodes may cancel the duplex interference by CDI in the system

with local CSI at S1 and S2. In order to apply CDI which requires the calculation

of matrices T(k), k = 1, 2, with respect to Eq. (2.27), local CSI is sufficient at the

destination nodes. With these constraints on the system with local CSI at S1 and S2,

problem (4.1) may be rewritten as follows:
{

Gopt, q
(1)
opt, q

(2)
opt

}

= arg max
{G,q(1),q(2)}

C
(sum)
EW , (4.38a)

subject to: T(k) = −pq(k)H(k)TGH(k), k = 1, 2, (4.38b)

tr
{

q(i)2Rx(i)

}

= E(i), i = 1, 2, (4.38c)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.38d)

In order to satisfy the transmit power constraints (4.38c) at nodes Si, the optimum

scalar weighting factors q
(i)
opt are given by Eq. (4.37). Hence, the optimum weighting

factors q
(i)
opt in problem (4.38) are already determined and the transmit power con-

straints (4.38c) at the source nodes are satisfied by the choices of q
(i)
opt in Eq. (4.37).

This means that constraints (4.38c) need not to be considered in the following.
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The optimum BF matrix G at the RS for maximizing the sum rate can only be

determined by numerical methods again. But as in Sections 4.2.2 and 4.2.4, the number

of optimization variables can be reduced from L2 in BF matrix G to (2M)2 in BF matrix

G̃ for L > 2M by using the adaptation to the non-zero eigenmodes of the joint first-hop

and second-hop channels described by the BF matrix G of Eqs. (4.18) to (4.20).

4.3 Linear beamforming in a system with limited

capabilities at S1 and S2

4.3.1 Introduction

In this Section 4.3, three additional optimization problems in the system with lim-

ited capabilities at S1 and S2 are considered. The optimization problems consider

the minimization of the MSE, the minimization of the MSE under the ZF constraint,

and the maximization of the SNR, cf. second row and third column of the frame-

work in Figure 1.4. In Section 4.2.4, no analytical solution to the maximization of

the sum rate in the system with limited capabilities at S1 and S2 could be found.

However, the three additional optimization problems are well-known from point-to-

point transmission and the corresponding BF algorithms are known to provide rea-

sonable performance in point-to-point transmission. For that reason, the optimization

problems are newly formulated for the two-way relaying scheme with exclusive BF

at the RS in a system with limited capabilities at S1 and S2, and the respective BF

algorithms are derived. The BF algorithm which minimizes the MSE and the BF

algorithm which minimizes the MSE under the ZF constraint are introduced in our

works [UK07d,UK07b,UK07a,UK08a].

Since it is assumed that no CSI is available at source nodes Si, i = 1, 2, each source

node Si uses the maximum available transmit power E(i) and assigns the same weighting

factor q(i) to all transmit antennas. Furthermore, one data stream is transmitted

from each transmit antenna. From the transmit power constraints (4.36c) at nodes

Si, i = 1, 2, the optima q
(i)
opt are directly given by Eq. (4.37). Thus, the transmit

power constraints at the source nodes Si, i = 1, 2, can be omitted in the following

optimization problems and q(i) = q
(i)
opt, i = 1, 2, can be assumed as fixed parameters in

the optimization problems.

Since S1 and S2 are assumed to have limited SP capabilities, the receive BF ma-

trices P(k), k = 1, 2, are given by Eq. (4.35), which means that the weighting factors
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p(k) are equal for all receive antennas of the respective destination node. Furthermore,

p(1) = p(2) = p is assumed in the following. Besides the optimization of the BF ma-

trix G at the RS, the proposed BF algorithms which minimize the MSE, minimize the

MSE under the ZF constraint, and maximize the SNR explicitly consider the optimiza-

tion of the weighting factor p. Since no CSI is available at the destination nodes, p

cannot be calculated by the destination nodes by using CSI. However, as introduced in

Section 3.3.1 the weighting factor p corresponds to the ratio between the expected av-

erage received power and the actually average received power at the destination nodes.

Thus, p can be easily determined at the destination nodes after measuring the received

power.

Since no CSI is available at S1 and S2, CDI cannot be applied at the destination

nodes. In this case, the CDI matrices T(k), k = 1, 2, are set to zero, i.e., T(k) is chosen

according to Eq. (2.29). In the following optimization problems for a system with

limited capabilities at S1 and S2, Eq. (2.29) is always included as a constraint.

4.3.2 Minimization of the MSE

In this section, the problem of minimizing the MSE is considered for a system with

limited capabilities at S1 and S2 in two-way relaying, and the corresponding MMSE-BF

algorithm solving the problem is given.

For one-way relaying in a system with limited capabilities at S1 and S2, the MSE is

minimized independently for the transmission from S1 to S2 and for the transmission

from S2 to S1 as introduced in Section 3.3.2. In two-way relaying, both transmissions

are processed simultaneously. Thus, BF matrix G of Eq. (2.26) at the RS and the

scalar weighting factor p at the destination nodes have to be designed such that the

MSE between the joint data vector x of Eq. (4.2) and the joint estimated vector x̂ of

Eq. (4.15) is minimized. Furthermore, it has to be considered that S1 and S2 transmit

simultaneously to the RS which increases the overall received power at the RS and

changes the RS transmit power constraint. Thus, the minimization of the MSE is

formulated as follows:

{pMMSE,GMMSE} = arg min
{p,G}

E
{

‖x − x̂‖2
2

}

, (4.39a)

subject to: T(k) = 0M×M , k = 1, 2, (4.39b)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.39c)



82 Chapter 4: Two-way relaying

In the following, the MMSE-BF algorithm which solves problem (4.39) is given. For

that purpose, the equivalent system model for the joint description of both directions

of the transmission in Section 4.2.2 is reviewed for the system with limited capabilities

at S1 and S2. With P = pIM and T = 02M×2M in the system with limited capabilities

at S1 and S2, the joint estimated data vector x̂ of Eq. (4.15) simplifies to

x̂ = p
(

HTGHRQx + HTGn(0) + nR

)

. (4.40)

Now, the joint estimated data vector x̂ of Eq. (4.40) is compared to the estimated data

vector x̂(i) of Eq. (2.11) for one-way relaying in the system with limited capabilities at

S1 and S2. Knowing that Q(i) = q(i)IM , P(k) = p(k)IM , and T(k) = D(k) = 0M×M as

introduced in Eq. (2.24), x̂(i) of Eq. (2.11) simplifies to

x̂(i) = p(k)
(

H(k)TG(k,i)H(i)q(i)x(i) + H(k)TG(k,i)n(0) + n
(k)
R

)

. (4.41)

Comparing Eq. (4.40) and Eq. (4.41) shows that both system equations have exactly

the same mathematical structure. For example, the joint data vector x and the joint

estimated data vector x̂ in two-way relaying correspond to the data vector x(i) and the

estimated data vector x̂(i) in one-way relaying, respectively. Table 4.1 summarizes all

correspondences between the variables of Eq. (4.40) and Eq. (4.41).

one-way relaying two-way relaying

x(i) ⇐⇒ x
x̂(i) ⇐⇒ x̂
n(0) ⇐⇒ n(0)

n
(k)
R ⇐⇒ nR

H(i)q(i) ⇐⇒ HRQ

H(k)T ⇐⇒ HT

G(k,i) ⇐⇒ G
p(k) ⇐⇒ p
Rx(i) ⇐⇒ Rx

Rn(0) ⇐⇒ Rn(0)

R
n

(k)
R

⇐⇒ RnR

Υ(i) ⇐⇒ ΥR

Υ(k) ⇐⇒ ΥT

Table 4.1. Correspondences between one-way relaying and two-way relaying for a
system with limited capabilities at S1 and S2

Furthermore, it gives the resulting correspondences of the respective covariance

matrices, where the covariance matrix ΥR of the received signal at the RS is given by

ΥR = HRQRxQ
HHH

R + Rn(0) , (4.42)
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and matrix ΥT is defined as

ΥT = HH
THT +

tr {RnR
}

E(0)
IL. (4.43)

Due to the same mathematical structure of Eqs. (4.40) and (4.41), the derivation of

the BF matrix G and the scalar weighting factor p for the minimization of the MSE in

two-way relaying follows the same steps as the derivation of the BF matrix G(k,i) and

the scalar weighting factor p(k) for the minimization of the MSE in one-way relaying

presented in Section 3.3.2. With the correspondences of Table 4.1, all variables of the

MMSE-BF algorithm in one-way relaying which is given by Eqs. (3.38) and (3.39) can

be replaced by their correspondences in two-way relaying, which leads to the following

MMSE-BF algorithm in two-way relaying:

GMMSE =
1

pMMSE

Υ−1
T HH

TRxQ
HHH

RΥ−1
R , (4.44)

with

pMMSE =

√

tr
{

HRQRxHTΥ−2
T HH

TRxQHHH
RΥ−1

R

}

E(0)
∈ R

+. (4.45)

As explained for the MMSE-BF algorithm in one-way relaying in Section 3.3.2, a

feedback of the noise variance σ2

n
(k)
R

from nodes Sk to the RS is required for the MMSE-

BF algorithm in two-way relaying. Furthermore, two parts can be identified in the BF

matrix GMMSE of Eq. (4.44), namely the receive BF matrix

GR,MMSE = RxQ
HHH

RΥ−1
R , (4.46)

and the transmit BF matrix

GT,MMSE =
1

pMMSE

Υ−1
T HH

T. (4.47)

4.3.3 Minimization of the MSE under the ZF constraint

This section considers the minimization of the MSE under the ZF constraint for a sys-

tem with limited capabilities at S1 and S2 in two-way relaying, and the corresponding

ZF-BF algorithm is given. The optimization problem is a modification of the mini-

mization of the MSE in Section 4.3.2 where all interferences, namely intersymbol and

duplex interferences, between simultaneously transmitted data streams are removed ad-

ditionally. For that purpose, the MSE optimization problem (4.39) is extended by the
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additional ZF constraint. Thus, the minimization of the MSE under the ZF constraint

is formulated as follows:

{pZF,GZF} = arg min
{p,G}

E
{

‖x − x̂‖2
2

}

, (4.48a)

subject to: T(k) = 0M×M k = 1, 2, (4.48b)

x̂ = x for n(0) = 0L×1 and nR = 02M×1, (4.48c)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.48d)

In the following, the solution to optimization problem (4.48) is given. As introduced

for the MMSE-BF algorithm in Section 4.3.2, the derivation of the BF matrix G and

the scalar weighting factor p for the minimization of the MSE under the ZF constraint

in two-way relaying follows the same steps as the derivation of the BF matrix G(k,i)

and the scalar weighting factor p(k) for the minimization of the MSE under the ZF

constraint in one-way relaying presented in Section 3.3.3. With the correspondences of

Table 4.1, all variables of the ZF-BF algorithm in one-way relaying which is given by

Eqs. (3.48) and (3.49) can be replaced by their correspondences in two-way relaying,

which leads to the following ZF-BF algorithm in two-way relaying:

GZF =
1

pZF

HH
T

(

HTHH
T

)−1 (
QHHH

RR−1
n(0)HRQ

)−1
QHHH

RR−1
n(0) , (4.49)

with

pZF =

√

√

√

√

tr
{

(

QHHH
RΥ−1

R HRQ
)−1

(HTHH
T)

−1
}

E(0)
∈ R

+. (4.50)

As explained for the ZF-BF algorithm in one-way relaying in Section 3.3.3, no feedback

of the noise variances σ2

n
(k)
R

from nodes Sk to the RS is required for the ZF-BF algorithm

in two-way relaying. Furthermore, two parts can be identified in the BF matrix GZF

of Eq. (4.49), namely the receive BF matrix

GR,ZF =
(

QHHH
RR−1

n(0)HRQ
)−1

QHHH
RR−1

n(0) , (4.51)

and the transmit BF matrix

GT,ZF =
1

pZF

HH
T

(

HTHH
T

)−1
. (4.52)

4.3.4 Maximization of the SNR

In this section, the maximization of the SNR is considered for a system with limited

capabilities at S1 and S2 in two-way relaying. In two-way relaying, the SNR gives the
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ratio between the average power of the useful signal part in the joint estimated data

vector x̂ and the average power of the overall noise of both receiver outputs of the

destination nodes. Hence, the maximization of the SNR is formulated as follows:

{pMF,GMF} = arg max
{p,G}

∣

∣E
{

xHx̂
}∣

∣

2

E
{

‖x‖2
2

}

E
{

‖pHTGn(0) + PnR‖2
2

} , (4.53a)

subject to: T(k) = 0M×M k = 1, 2, (4.53b)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.53c)

In the following, the MF-BF algorithm solving the optimization problem (4.53) is

given. As introduced for the MMSE-BF algorithm in Section 4.3.2, the derivation of

the BF matrix G and the scalar weighting factor p for the maximization of the SNR in

two-way relaying follows the same steps as the derivation of the BF matrix G(k,i) and

the scalar weighting factor p(k) for the maximization of the SNR in one-way relaying

presented in Section 3.3.4. With the correspondences of Table 4.1, all variables of the

MF-BF algorithm in one-way relaying which is given by Eqs. (3.57) and (3.58) can be

replaced by their correspondences in two-way relaying, which leads to the following

MF-BF algorithm in two-way relaying:

GMF =
1

pMF

HH
TRxQ

HHH
RΥ−1

R , (4.54)

and

pMF =

√

tr
{

HH
TRxQHHH

RΥ−1
R HRQRxHT

}

E(0)
∈ R

+. (4.55)

As explained for the MF-BF algorithm in one-way relaying in Section 3.3.4, no feedback

of the noise variances σ2

n
(k)
R

from nodes Sk to the RS is required for the MF-BF algorithm

in two-way relaying. Furthermore, two parts can be identified in the BF matrix GMF

of Eq. (4.54), namely the receive BF matrix

GR,MF = RxQ
HHH

RΥ−1
R , (4.56)

and the transmit BF matrix

GT,MF =
1

pMF

HH
T. (4.57)
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4.4 Linear beamforming in a system with local CSI

at S1 and S2

4.4.1 Introduction

In this Section 4.4, three additional optimization problems in the system with local CSI

at S1 and S2 are considered. The optimization problems consider the minimization of

the MSE, the minimization of the MSE under the ZF constraint, and the maximiza-

tion of the SNR, cf. second row and fourth column of the framework in Figure 1.4. In

Section 4.2.5, no analytical solution to the maximization of the sum rate in the system

with local CSI at S1 and S2 could be found. However, the three additional optimization

problems are well-known from point-to-point transmission and the corresponding BF

algorithms are known to provide reasonable performance in point-to-point transmis-

sion. For that reason, the optimization problems are newly formulated for the two-way

relaying scheme with exclusive BF at the RS in a system with local CSI at S1 and S2,

and the respective BF algorithms are derived.

Since it is assumed that only local CSI is available at source nodes Si, i = 1, 2,

each source node Si uses the maximum available transmit power E(i) and assigns the

same weighting factor q(i) to all transmit antennas. Furthermore, one data stream is

transmitted from each transmit antenna. From the transmit power constraints (4.38c)

at Si, i = 1, 2, the optima q
(i)
opt are directly given by Eq. (4.37). Thus, the transmit

power constraints at the source nodes Si, i = 1, 2, can be omitted in the following

optimization problems and q(i) = q
(i)
opt, i = 1, 2, can be assumed as fixed parameters in

the optimization problems.

Since it is assumed that only local CSI is available at S1 and S2, the receive BF

matrices P(k), k = 1, 2, are given by Eq. (4.35). As already proposed for the system

with limited capabilities at S1 and S2 in Section 4.3, the weighting factors p(1) and

p(2) are assumed to be equal, i.e., p(1) = p(2) = p. Besides the optimization of the

BF matrix G of Eq. (2.26), the proposed BF algorithms which minimize the MSE,

minimize the MSE under the ZF constraint, and maximize the SNR explicitly consider

the optimization of the weighting factor p. As introduced in Section 3.3.1, the weighting

factor p corresponds to the ratio between the expected average received power and

the actually average received power at the destination nodes. Thus, p can be easily

determined at the destination nodes after measuring the received power.

In contrast to the system with limited capabilities at S1 and S2, the duplex inter-

ference can be cancelled at the destination nodes Sk, k = 1, 2, by applying CDI in the
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system with local CSI at S1 and S2, since local CSI is sufficient in order to determine

matrices T(k), k = 1, 2, according to Eq. (2.27). The application of CDI in the system

with local CSI can be included into the following optimization problems by introducing

Eq. (2.27) for k = 1, 2, as additional constraints.

4.4.2 Minimization of the MSE

In this section, the minimization of the MSE is considered for a system with local CSI

at S1 and S2 in two-way relaying, and the respective MMSE-BF algorithm solving

the problem is derived. The application of CDI is included into the optimization

problem (4.39) by changing the additional constraints for CDI matrices T(k), k = 1, 2,

of Eq. (2.29) to Eq. (2.27). Furthermore, the MSE is written such that the contribution

of the transmission from S1 to S2 can be distinguished from the contribution of the

transmission from S2 to S1 which means that the overall MSE is given by the sum of

the two individual MSEs of the two transmissions yielding

E
{

‖x − x̂‖2
2

}

= E

{

2
∑

i=1

∥

∥x(i) − x̂(i)
∥

∥

2

2

}

. (4.58)

Thus, the minimization of the MSE in a system with local CSI at S1 and S2 can be

written as follows:

{pMMSE,GMMSE} = arg min
{p,G}

E

{

2
∑

i=1

∥

∥x(i) − x̂(i)
∥

∥

2

2

}

, (4.59a)

subject to: T(k) = −pq(k)H(k)TGH(k), k = 1, 2, (4.59b)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.59c)

In the following, the MMSE-BF algorithm solving problem (4.59) is derived. Com-

pared to the BF algorithm proposed in Section 4.3.2 without CDI at the destina-

tion nodes, the constraint (4.59b) significantly changes the MMSE-BF algorithm for

the minimization of the MSE in a system with local CSI at S1 and S2. The con-

straint (4.59b) which describes the application of CDI at the destination nodes yields

D(k) = 0M×M , for k = 1, 2, in Eq. (2.11). Using D(k) = 0M×M , and inserting
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Eqs. (2.10) and (2.11) into the MSE of the objective function (4.59a), yields

E
{

‖x̂ − x‖2
2

}

=
2
∑

i=1

tr {Rx(i)} − 2ℜ
{

p

2
∑

i=1

q(i)tr
{

H(k)TGH(i)Rx(i)

}

}

+ p2

2
∑

i=1

q(i)2tr
{

H(k)TGH(i)Rx(i)H(i)HGHH(k)∗
}

+ p2

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

. (4.60)

Since the MSE of Eq. (4.60) is quadratic in G, the MSE minimization problem for

two-way relaying is neither convex nor concave. Nevertheless, as introduced in [Joh04]

for point-to-point transmission, Lagrangian optimization is applied knowing that the

resulting solution is not necessarily unique. The overall covariance matrix Υ of the

received signal at the RS is given by

Υ =
2
∑

i=1

∣

∣q(i)
∣

∣

2
H(i)Rx(i)H(i)H + Rn(0) . (4.61)

Using covariance matrix Υ of Eq. (4.61) in Eq. (4.60) and rewriting the RS transmit

power constraint (4.59c) by considering Υ, the Lagrangian function results in

L (p,G, η) =
2
∑

i=1

tr {Rx(i)} − 2ℜ
{

p
2
∑

i=1

q(i)tr
{

H(k)TGH(i)Rx(i)

}

}

+ p2

2
∑

i=1

tr
{

H(k)TGΥ(i)GHH(k)∗ + R
n

(k)
R

}

+ η
(

tr
{

GΥGH
}

− E(0)
)

,

(4.62)

with the Lagrangian multiplier η and Υ(i) of Eq. (3.34). From the Lagrangian function,

the KKT conditions which are only necessary conditions for the global optimum result

in

∂L

∂p
= −

2
∑

i=1

q(i)tr
{

H(k)TGH(i)Rx(i)

}

+ p∗
2
∑

i=1

tr
{

H(k)TGΥ(i)GHH(k)∗+R
n

(k)
R

}

!
= 0,

(4.63a)

∂L

∂G
= − p

2
∑

i=1

q(i)H(k)RT
x(i)H

(i)T + |p|2
2
∑

i=1

H(k)H(k)HG∗Υ(i)T + η G∗ΥT !
= 0, (4.63b)

η
(

tr
{

GΥGH
}

− E(0)
) !

= 0. (4.63c)

With the definitions of the vectorization vec [·], its reversion vec−1
L,L [·], and the Kro-

necker product Z ⊗ X of two matrices Z and X, that can be found in Appendix A.4,
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matrix K is defined as

K =
2
∑

i=1

(

Υ(i)T ⊗
(

H(k)∗H(k)T
))

+

(

Υ ⊗ 1

E(0)
tr

{

2
∑

k=1

R
n

(k)
R

}

IL

)

. (4.64)

Using Eq. (4.64), the BF matrix at the RS for the MMSE-BF algorithm which solves

problem (4.59) is given by

GMMSE =
1

pMMSE

vec−1
L,L

[

K−1 vec

[

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

]]

. (4.65)

With auxiliary matrix

G̃MMSE = vec−1
L,L

[

K−1 vec

[

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

]]

, (4.66)

the scalar weighting factor pMMSE results in

pMMSE =

√

√

√

√

tr
{

G̃MMSEΥG̃H
MMSE

}

E(0)
∈ R

+. (4.67)

The derivation of the BF matrix GMMSE and the scalar weighting factor pMMSE from

the KKT conditions (4.63) can be found in Appendix A.5. Note that the proposed

MMSE-BF algorithm requires knowledge about the noise covariance matrix Rn(0) of

the RS which can be estimated by the RS itself, but also about the noise covariance

matrices R
n

(k)
R

, k = 1, 2, of the destination nodes. Assuming AWGN, this means that

the noise variances σ2

n
(k)
R

, k = 1, 2, which are estimated at Sk need to be signaled via

a feedback channel from nodes Sk to the RS. However, the effort expected for such a

feedback is very low.

4.4.3 Minimization of the MSE under the ZF constraint

In this section, the minimization of the MSE under the ZF constraint is considered for

a system with local CSI at S1 and S2 in two-way relaying. The corresponding ZF-BF

algorithm which solves the problem is derived in this section, too. In contrast to the

minimization of the MSE of Eq. (4.59), two additional ZF constraints are introduced

which ensure that data streams of the same source node are orthogonalized by the BF

at the RS. An orthogonalization of the data streams of different source nodes by the

BF at the RS as introduced for a system with limited capabilities at S1 and S2 in

Section 4.3.3 is not required since the destination nodes can apply CDI. Under these
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assumptions, the minimization of the MSE under the ZF constraint may be formulated

as follows:

{pZF,GZF} = arg min
{p,G}

E

{

2
∑

i=1

∥

∥x(i) − x̂(i)
∥

∥

2

2

}

, (4.68a)

subject to: T(k) = −pq(k)H(k)TGH(k), k = 1, 2, (4.68b)

x̂(i) = x(i) for n(0) = 0L×1 and n
(k)
R = 0M×1, i = 1, 2, (4.68c)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.68d)

The ZF-BF algorithm solving problem (4.68) is derived in the following. Using

Eqs. (2.10) and (2.11), the two ZF constraints of Eq. (4.68c) can also be described by

pq(i)H(k)TGH(i) = IM , i = 1, 2. (4.69)

Note that Eq. (4.69) contains two ZF constraints which are coupled via G. This

coupling complicates the optimization problem compared to one-way relaying where

only one overall ZF constraint is considered in Eq. (3.44). With the two ZF constraints

of Eq. (4.69), Eq. (2.10) and Eq. (2.11), the MSE objective function of Eq. (4.68a)

corresponds to the overall noise power at the receiver output of Sk, and reads as

E







∥

∥

∥

∥

∥

2
∑

i=1

x̂(i) − x(i)

∥

∥

∥

∥

∥

2

2







= p2

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

. (4.70)

The Lagrangian function of problem (4.68) results in

L
(

p,G, η,Γ(1),Γ(2)
)

=p2

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

− 2ℜ
{

2
∑

i=1

tr
{

Γ(k)
(

pq(i)H(k)TGH(i) − IM

)}

}

+ η
(

tr
{

GΥGH
}

− E(0)
)

, (4.71)

with the Lagrangian multiplier η coming from the RS power constraint and the two

Lagrangian multipliers Γ(k), k = 1, 2, coming from the two complex-valued ZF con-

straints (4.69). The KKT conditions are only necessary conditions for the global opti-
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mum and are given by

∂L

∂p
= p∗

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

−
2
∑

i=1

tr
{

Γ(k)H(k)TGH(i)
}

!
= 0,

(4.72a)

∂L

∂G
= p2

2
∑

k=1

H(k)H(k)HG∗RT
n(0) − p

2
∑

i=1

q(i)H(k)Γ(k)TH(i)T + ηG∗ΥT !
= 0, (4.72b)

∂L

∂Γ(k)
= p q(i)H(i)TGTH(k) − IM

!
= 0, i = 1, 2, (4.72c)

η
(

tr
{

GΥGH
}

− E(0)
) !

= 0, (4.72d)

where Eq. (4.72c) gives two independent KKT conditions for i = 1, 2. An analytical

solution to problem (4.68) can only be provided under the assumption that the noise

at the RS does not contribute to the MSE in Eq. (4.70), cf. Appendix A.6. Thus,

the following ZF-BF algorithm provides a sub-optimum solution to problem (4.68).

Defining the matrices

X
(k)
0 = H(k)TH(i)∗

(

H(i)TH(i)∗
)−1(

H(k)HΥ−1H(k)
)−1

H(k)HΥ−1H(i), (4.73a)

X
(k)
1 = q(i)H(k)TH(k)∗ , (4.73b)

X
(k)
2 = H(i)HΥ−1H(i), (4.73c)

X
(k)
3 = q(k)H(k)TH(i)∗

(

H(i)TH(i)∗
)−1

H(i)TH(k)∗ , (4.73d)

X
(k)
4 = H(i)HΥ−1H(k)

(

H(k)HΥ−1H(k)
)−1

H(k)HΥ−1H(i), (4.73e)

and the modified Lagrangian multipliers

Γ̃(k)H = vec−1
M,M

[

((

X
(k)T

2 ⊗ X
(k)
1

)

−
(

X
(k)T

4 ⊗ X
(k)
3

))−1

vec

[

1

q(k)
IM − X

(k)
0

]]

,

(4.74)

the BF matrix at the RS yields

GZF =
1

pZF

2
∑

i=1

q(i)H(k)∗Γ̃(k)HH(i)HΥ−1. (4.75)

With auxiliary matrix

G̃ZF =
2
∑

i=1

q(i)H(k)∗Γ̃(k)HH(i)HΥ−1, (4.76)

the scalar weighting factor pZF results in

pZF =

√

√

√

√

tr
{

G̃ZFΥG̃H
ZF

}

E(0)
∈ R

+. (4.77)
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The derivation of the ZF-BF algorithm from the KKT conditions (4.72) can be found

in Appendix A.6. In contrast to the MMSE-BF algorithm of Section 4.4.2, the ZF-BF

algorithm only requires knowledge about the noise covariance matrix Rn(0) of the RS

but not about the noise covariance matrices R
n

(k)
R

, k = 1, 2, of the destination nodes,

i.e., no feedback from Sk to the RS is required.

4.4.4 Maximization of the SNR

In this section, the maximization of the SNR is considered for a system with local

CSI at S1 and S2 in two-way relaying and the corresponding MF-BF algorithm is

derived. As in a system with limited capabilities at S1 and S2, the SNR gives the

ratio between the average power of the useful signal part in the joint estimated data

vector x̂ of Eq. (4.15) and the average power of the overall noise at the receiver output.

The constraints for CDI matrices T(k), k = 1, 2, in problem (4.53), are changed from

Eq. (2.29) to Eq. (2.27) due to the application of CDI at the destination nodes. Thus,

the problem is formulated as follows:

{pMF,GMF} = arg max
{p,G}

∣

∣E
{

xHx̂
}∣

∣

2

E
{

‖x‖2
2

}

E







∥

∥

∥

∥

∥

2
∑

k=1

pH(k)TGn(0) + pn
(k)
R

∥

∥

∥

∥

∥

2

2







, (4.78a)

subject to: T(k) = −pq(k)H(k)TGH(k), k = 1, 2, (4.78b)

tr

{

G

(

2
∑

i=1

q(i)2H(i)Rx(i)H(i)H +Rn(0)

)

GH

}

=E(0). (4.78c)

In the following, the MF-BF algorithm solving problem (4.78) is derived. For the

maximization of the SNR in the system with local CSI at S1 and S2, the application

of CDI indicated by constraint (4.78b) only changes the numerator in the objective

function (4.78a) compared to the objective function (4.53a) in the system with lim-

ited capabilities at S1 and S2. In the system with limited capabilities at S1 and

S2, the numerator contains the duplex interference power while this power is sub-

tracted in the system with local CSI where D(k) = 0M×M in Eq. (2.11). Regarding

the overall noise power in the denominator, both systems are the same. Hence, with
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Eqs. (2.10) and (2.11), the expectation values of Eq. (4.78a) are given by

∣

∣E
{

xHx̂
}∣

∣

2
=

2
∑

i=1

∣

∣

∣E
{

x(i)Hx̂(i)
}∣

∣

∣

2

=p2

2
∑

i=1

q(i)2
∣

∣

∣tr
{

H(k)TGH(i)Rx(i)

}∣

∣

∣

2

, (4.79a)

E
{

‖x‖2
2

}

=
2
∑

i=1

tr {Rx(i)} , (4.79b)

E

{

2
∑

k=1

∥

∥

∥pH(k)TGn(0) + pn
(k)
R

∥

∥

∥

2

2

}

=p2

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

.

(4.79c)

The Lagrangian function can be written as

L (p,G, η) = −

2
∑

i=1

q(i)2
∣

∣

∣
tr
{

H(k)TGH(i)Rx(i)

}∣

∣

∣

2

(

2
∑

i=1

tr {Rx(i)}
)(

2
∑

k=1

tr
{

H(k)TGRn(0)GHH(k)∗ + R
n

(k)
R

}

)

+ η
(

tr
{

GΥGH
}

− E(0)
)

, (4.80)

with the Lagrangian multiplier η. Obviously, the Lagrangian function is independent

of the scalar weighting factor p, which means that p can be chosen arbitrarily, except

for p = 0, and the solution to the optimization problem (4.78) is not unique. Defining

α(i) =
tr
{

H(k)TGH(i)Rx(i)

}

(

2
∑

l=1

tr {Rx(l)}
)(

2
∑

l=1

tr
{

H(l)TGRn(0)GHH(l)∗ + R
n

(l)
R

}

) , i = 1, 2, (4.81)

the KKT conditions result in

∂L

∂G
= −

2
∑

i=1

q(i)2α(i)∗H(k)RT
x(i)H

(i)T

+

(

2
∑

i=1

tr {Rx(i)}
)(

2
∑

i=1

q(i)2
∣

∣α(i)
∣

∣

2

)(

2
∑

k=1

H(k)H(k)HG∗RT
n(0)

)

+η G∗ΥT !
= 0,

(4.82a)

η
(

tr
{

GΥGH
}

− E(0)
) !

= 0. (4.82b)

An analytical solution to problem (4.78) can only be provided under the assumption

that the noise at the RS which is retransmitted to the destination nodes does not

contribute to the overall noise at the destination node, i.e., Rn(0) = 0L×L in Eq. (4.79c),

cf. Appendix A.7. With this assumption, the BF matrix of the MF-BF algorithm is

given by

GMF =
1

pMF

2
∑

i=1

H(k)∗Rx(i)H(i)HΥ−1. (4.83)
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With auxiliary matrix

G̃MF =
2
∑

i=1

H(k)∗Rx(i)H(i)HΥ−1, (4.84)

the scalar weighting factor pMF results in

pMF =

√

√

√

√

tr
{

G̃MFΥG̃H
MF

}

E(0)
∈ R

+. (4.85)

The derivation of the MF-BF algorithm from the KKT conditions (4.82) for a sys-

tem with local CSI at S1 and S2 can be found in Appendix A.7. In contrast to the

MMSE-BF algorithm of Section 4.4.2, the MF-BF algorithm only requires knowledge

about the noise covariance matrix Rn(0) of the RS but not about the noise covariance

matrices R
n

(k)
R

, k = 1, 2, of the destination nodes, i.e., no feedback from Sk to the RS is

required. Obviously, the BF matrix GMF of Eq. (4.83) consists of two summands. The

first summand corresponds to the receive MF to channel H(1) in conjunction with the

transmit MF to channel H(2)T for the transmission from S1 to S2. The second sum-

mand corresponds to the receive MF to channel H(2) in conjunction with the transmit

MF to channel H(1)T for the transmission from S2 to S1.

4.5 Performance analysis

4.5.1 Simulation assumptions

In this Section 4.5, the BF algorithms of Sections 4.2, 4.3, and 4.4 are analyzed by

means of simulations. The assumed channel model and the definition of SNR(i) is

exactly the same as introduced for one-way relaying in Eq. 3.61. The transmit power

of the RS is assumed as E(0) = 1, and the noise variances of all nodes are assumed

as σ2
n(0) = σ2

n(1) = σ2
n(2) = σ2

n = 1. The transmit powers of Si, i = 1, 2, are given by

E(i) ≤ 1 considering the fact that the transmission powers of Si may be below the

maximum transmission powers in two-way relaying. The four different cases of system

capabilities in two-way relaying are distinguished by the following notation:

• Case1: system with full capabilities,

• Case2: system with limited capabilities at the RS,

• Case3: system with limited capabilities at S1 and S2,
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• Case4: system with local CSI at S1 and S2,

where Case1, Case2, and Case3 directly correspond to the same cases of system

capabilities in one-way relaying. As introduced in Section 3.4.1, all results which are

obtained by numerical methods from the Matlab
R© optimization toolbox are denoted

by N-BF, and all results obtained by analytical BF algorithms proposed in Section 4.2

are denoted by A-BF.

4.5.2 Sum rate analysis

In this section, the average sum rates of the different BF algorithms in two-way relaying

introduced in Sections 4.2, 4.3, and 4.4 are analyzed. The sum rate is a reasonable

performance measure for two-way relaying since both transmissions, namely from S1

to S2 and from S2 to S1, are performed during the same time slots.

In the following, the average maximum sum rates of Case1, Case2, Case3, and

Case4 are considered so that the performances of the different cases of system ca-

pabilities in two-way relaying introduced in the new framework of Figure 1.4 can be

compared to each other. In Figure 4.1, the average maximum sum rate vs. SNR(2) is

depicted for Case1, Case2, Case3, and Case4 for M = 2 antennas at S1 and S2 and

L = 4 antennas at the RS. For the sake of clarity, the sum rate performance is only

presented for one value of SNR(1), namely SNR(1) = 20dB. As for one-way relaying,

other values of SNR(1) do not provide new observations since the relative behavior of

the curves does not change. The sum rates of all four cases are determined by nu-

merical methods. Furthermore, Figure 4.1 contains the upper bound for the maximum

sum rate in two-way relaying which comes from the sum of two independent one-way

relaying transmissions as discussed in Section 4.2.2.

As expected, the highest sum rate is obtained in Case1 where adaptive BF is

performed at S1, S2 and the RS. For all values of SNR(2) in Case1, there exists a

relative loss in sum rate of about 10% compared to the upper bound. As explained

in Section 4.2.2, this loss comes from the fact that some fraction of the RS transmit

power is used to transmit information to the destination nodes which they already

know. In other words, two-way relaying cannot completely double the sum rate of

one-way relaying but it compensates a significant fraction of the loss in sum rate due

to the half-duplex constraint in two-hop relaying. These results show that in case of bi-

directional transmission, two-way relaying considerably outperforms one-way relaying

and should be preferred.
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Figure 4.1. Average maximum sum rate vs. SNR(2) for Case1, Case2, Case3, Case4,
and the upper bound, SNR(1) = 20dB, M = 2 and L = 4.

Compared to Case1, the relative loss in sum rate is about 6% for all values of

SNR(2) in Case4. This loss is caused by the equal weighting at S1 and S2 which implies

that no coding gain due to joint decoding at the destination nodes can be obtained.

In Case2 as known from one-way relaying, the high number L of antennas at the RS

cannot be exploited since the RS cannot perform adaptive BF but only equal weighting.

This fact leads to the strong degradation compared to Case1 and Case4. The worst

performance is obtained in Case3 since the duplex interference is not eliminated at

the destination nodes, and all antennas at the RS are required in order to multiplex

the 2M data streams transmitted by the two source nodes. For those reasons, Case3

performs worse than Case2 in two-way relaying, while Case3 performes better than

Case2 in one-way relaying where no duplex interference appears, and only M data

streams transmitted by one source node have to be multiplex, cf. Figure 3.1.

In the following, the influence of the number L of antennas at the RS on the sum rate

performance is investigated which provides an insight into the different performance

gains, namely multiplexing gain, array gain, and diversity gain, which can be obtained

due to multiple antennas at the RS in two-way relaying. Figure 4.2 gives the average

maximum sum rate vs. the number L of antennas at the RS for all cases of system

capabilities obtained by numerical methods and for the introduced upper bound which

comes from the sum of two independent one-way relaying transmissions. Additionally,

the sum rate performance for the A-BF algorithm proposed for Case2 in Section 4.2.3
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Figure 4.2. Average maximum sum rate vs. number L of antennas at the RS
for Case1, Case2 (N-BF and A-BF), Case3, Case4, and the upper bound,
SNR(1) = SNR(2) = 10dB, M = 2.

is depicted in the figure. The SNR values are fixed to SNR(1) = SNR(2) = 10dB, and

the number M of antennas at S1 and S2 is fixed to M = 2.

The relative difference between the sum rate in Case1 and the upper bound is

between 10% for high numbers L of antennas at the RS and 15% for small numbers L

of antennas at the RS. The relative difference comes from the transmit power loss at the

RS due to the retransmission of already known information by the RS. Furthermore,

for Case1 it can be seen that the sum rate increases by 2bit/s/Hz if the number L

of antennas at the RS is increased from L = 2 to L = 4 which corresponds to a

spatial multiplexing gain of two. This means that the full spatial multiplexing gain

in two-way relaying is not achieved until L ≥ 2M . This observation constitutes a

significant difference to one-way relaying where the full spatial multiplexing gain is

already obtained for L ≥ M . For L > 2M , the increase in sum rate in two-way

relaying is coming from the array gain for the reception at the RS and the spatial

diversity gain for the retransmission from the RS.

In Case3 and Case4, the full spatial multiplexing gain is obtained for L ≥ 2M ,

too. Furthermore, both cases converge against the sum rate of Case1 since the an-

tenna beams are becoming sharper for higher numbers L of antennas at the RS. As in

one-way relaying, the influence of the additional coding gain which can be obtained in
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Case1 is decreasing so that the sum rate performances of Case1, Case3, and Case4

converge. However, the sum rate in Case4 converges faster since the duplex interfer-

ence is cancelled by CDI at the destination nodes in Case4 while the 2M data streams

of the two source nodes have to be separated exclusively by adaptive BF at the RS in

Case3.

For L = M = 2, the N-BF solution in Case2 provides almost the same performance

as the N-BF solution in Case1, and the performance in Case2 is slightly better than

in Case3. As in one-way relaying, this shows that spatial precoding at the source

nodes and joint decoding at the destination nodes provide a coding gain which cannot

be obtained by the spatial separation of the data streams by exclusive adaptive BF at

the RS. However, for L > M the performance in Case2 is considerably worse than

the performance in all other cases, even Case3, since the array gain and the spatial

diversity cannot be exploited for an equal weighting at all antennas of the RS. As in

one-way relaying, no diversity gain can be achieved for the equal weighting at the RS

in Case2 which means that the sum rate remains constant even if the number L of

antennas at the RS is increased. The highest sum rate is already obtained for L = 4

where the full spatial multiplexing gain can be exploited by the adaptive BF at the

source and destination nodes. The performance of the proposed A-BF algorithm of

Section 4.2.3 comes close to the performance of the N-BF solution, especially for L = 1

and L = 2. For L ≥ 4, the relative difference between the sum rate of the proposed

A-BF algorithm and the sum rate of the N-BF solution is about 8% which comes from

the two simplifying assumptions of the A-BF algorithm, namely the assumption of

spatially white noise at the destination nodes and the assumption that the two sub-

problems of determining the weighting factor g at the RS and determining the power

allocations at the source nodes are independent of each other. Nevertheless, due the

considerably lower computational effort compared to the N-BF algorithm, the A-BF

algorithm is of particular interest for practical applications, in which there are limited

capabilities at the RS, i.e., in Case2.

In the following, the transmission powers of the source nodes S1 and S2 are con-

sidered. In Section 4.2, it is explained that reducing the transmit power of the source

node with the higher transmission rate may improve the overall sum rate in case of

significantly different values of SNR(1) and SNR(2). Of course, S1 and S2 can adapt

their transmission power only if global CSI is available at the source nodes which is

valid for Case1 and Case2. If no global CSI is available at the source nodes, which

is assumed in Case3 and Case4, the maximum transmission power has to be used.

Since the evaluation of the sum rates of the different cases of system capabilities in the

previous two figures does not include the required transmission powers in the differ-

ent cases, Figure 4.3 gives the average required transmission powers Ē(i), i = 1, 2, vs.
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Figure 4.3. Average transmitted power Ē(i) vs. SNR(2) for Case1 and Case2,
SNR(1) = 20dB, M = 2 and L = 4.

SNR(2) for Case1 and Case2. The RS is equipped with L = 4 antennas, and S1 and

S2 are equipped with M = 2 antennas. SNR(1) is fixed to SNR(1) = 20dB.

Without adaptation, the transmission powers of Si, i = 1, 2, are always given by

Ē(i) = 1 in Case3 and Case4. From Figure 4.3, it can be seen that a significant

amount of the average transmit power may be saved in Case1 and Case2, if the

values of SNR(1) and SNR(2) are significantly different. For SNR(2) < SNR(1), the

average transmit power of node S1 may be reduced and for SNR(2) > SNR(1), the

average transmit power of node S2 may be reduced. This means that the source node

which transmits over the better channel to the RS, should reduce its own transmit

power and transmission rate in order to reduce the interference at the RS and to allow

the other node a higher transmission rate which yields a higher overall sum rate. If

SNR(2) = SNR(1), both source nodes should transmit with their maximum power in

order to obtain the maximum sum rate.

In Figure 4.3, it can also be seen that the reduction of the transmit powers is

significantly higher for Case2 than for Case1. This may be explained as follows. In

Case1, the different SNR values of the two channels cannot only be compensated by

the source nodes but also the BF at the RS. In this case, the larger part of the RS

transmit power is used for the retransmission over the channel with the lower SNR and

the smaller part is used for the retransmission over the channel with the higher SNR.
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Figure 4.4. Average maximum sum rate vs. SNR(2) for N-BF, A-BF, and MRR-MRT
in Case1, SNR(1) = 20dB, M = 1 and L = 4.

In Case2, the different SNR values can only be compensated by the source nodes since

the RS does not perform BF. Hence, the power reduction in Case2 is higher than in

Case1.

In the following, the average maximum sum rate for the particular case of single-

antenna source and destination nodes, i.e., M = 1, is considered in order to investigate

the performance of the proposed sub-optimum A-BF algorithm of Section 4.2.2. In

Figure 4.4, the average maximum sum rate vs. SNR(2) is depicted for SNR(1) = 20dB

in Case1. Nodes S1 and S2 are equipped with M = 1 antenna, and the RS is equipped

with L = 4 antennas. Note that the sum rate maximization problems in Case1 and

Case4 are the same optimization problems for M = 1 since only weighting by a single

scalar factor is possible at the source and destination nodes.

As expected, the highest sum rate is obtained by the N-BF solution. However,

the proposed A-BF algorithm of Section 4.2.2 which is based on a MF approach with

adaptive power allocation to the different data streams at the RS performs almost as

well as the N-BF solution. Furthermore, it is shown in Figure 4.4 that the MRR-MRT

two-way relaying approach proposed in [LZ08] has a worse performance especially in

case of significantly different SNRs for the two channels h(1) and h(2). For MRR-MRT

two-way relaying, the average sum rate achieves the highest value for SNR(2) ≈ 26dB

and even decreases for SNR(2) > 26dB. This comes from the fact that maximizing the
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SNR for the transmission over the better channel h(2)T by the transmit MF h(2)∗ also

decreases the SNR for the transmission over the worse channel h(1)T due to the ampli-

fication of the noise of the RS. The noise at the RS is weighted by the MFs matched to

both directions of the transmission where MF h(2)∗ dominates the amplification of the

RS noise since it has a higher absolute value than the MF h(1)∗ . For the retransmission

over the channel h(2)T , the noise and the useful signal are both weighted by the domi-

nant MF h(2)∗ so that the amplification of the noise of the RS for the transmission to

S2 is compensated by a high value of the received useful power at S2. However, for

the retransmission over channel h(1)T , the noise is also mainly amplified by the MF

h(2)∗ which means that the noise is weighted by the MF of the strong channel while the

useful signal is only weighted by the weak channel h(1)T . In the particular case, this

means that C(2) is increased while C(1) is decreased. For SNR(2) > 26dB, the increase

in C(2) is smaller than the decrease in C(1) which means that the sum rate gets smaller

for MRR-MRT two-way relaying. With respect to the results presented in Figure 4.4

for M = 1, it is proposed to perform adaptive power allocation to the data streams at

the RS according to the A-BF algorithm of Section 4.2.2.

In the following, the individual rate performances of the transmission from S1 to S2

and the transmission from S2 to S1 are compared to each other for all cases of system

capabilities. In Figure 4.5, the average maximum individual rate vs. SNR(2) is depicted

for the transmission from S1 to S2 (solid lines) and for the transmission from S2 to S1

(dashed lines).

The relation between the individual rates of both directions of the transmission is

the same in all cases of system capabilities so that all cases are analyzed jointly in

the following. For SNR(1) = SNR(2) = 20dB, the individual rate is the same for both

directions of the transmission. However, for SNR(1) > SNR(2) the individual rate for the

transmission from S1 to S2 is higher than the individual rate for the transmission from

S2 to S1 and vice versa. This comes from the fact that the two first hop transmissions

are processed simultaneously in two-way relaying. Hence, the data streams which are

transmitted over the channel with the higher SNR are dominant in the sum of the

received data streams at the RS. In order to maximize the sum rate, more transmit

power of the RS is allocated to the data streams which are dominant at the RS. Thus,

the data streams with the worse SNR value for their first hop transmission achieve a

lower individual rate. In general, different SNR values for the two channels to the RS

cause an imbalance of the performances of the two directions of the transmission.

In the following, the sum rate performances of the MMSE-BF, ZF-BF, and MF-

BF algorithms in Case3 derived in Section 4.3 are considered. In Figure 4.6, the

average sum rate vs. SNR(2) is depicted for the different BF algorithms of Section 4.3.
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Figure 4.5. Average maximum individual rate vs. SNR(2) for Case1, Case2, Case3,
and Case4, SNR(1) = 20dB, M = 2 and L = 4, dashed lines: transmission from S2 to
S1, solid lines: transmission from S1 to S2.

The average SNR between S1 and the RS is fixed to SNR(1) = 20dB. S1 and S2 are

equipped with either M = 1 (dashed lines) or M = 2 (solid lines) antennas, and the

RS is equipped with L = 4 antennas.

For M = 1, the performance of the MMSE-BF algorithm is slightly worse than

the performance of the N-BF solution. The ZF-BF algorithm performs worse than the

MMSE-BF algorithm for low values of SNR(2) but converges to the performance of the

MMSE-BF algorithm for high values of SNR(2). In contrast to one-way relaying where

the ZF-BF algorithm and the MMSE-BF algorithm provide the same solutions for

M = 1, the ZF-BF algorithm and the MMSE-BF algorithm provide different solutions

for M = 1 in two-way relaying because there exists duplex interference between the

data streams of S1 and S2 which has to be considered by the adaptive BF at the RS

in Case3. Indeed, from the interference perspective the BF algorithms for M = 1

in two-way relaying have to perform the same separation of data streams as the BF

algorithms for M = 2 in one-way relaying considering that the intersymbol interference

in one-way relaying corresponds to the duplex interference in two-way relaying. This

relation between one-way relaying and two-way relaying in Case3 becomes also clear

for the MF-BF algorithm. While the MF-BF algorithm performs as well as the ZF-

BF and MMSE-BF algorithms in one-way relaying for M = 1, the MF-BF algorithm

performs much worse than the ZF-BF and MMSE-BF algorithms in two-way relaying
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Figure 4.6. Average sum rate vs. SNR(2) for different BF algorithms in Case3,
SNR(1) = 20dB, L = 4, dashed lines: M = 1, solid lines: M = 2.

due to the fact that the duplex interference is not considered in the MF-BF algorithm

and cannot be cancelled by CDI at the destination nodes.

If the number M of antennas at S1 and S2 is increased from M = 1 to M =

2, the performances of the ZF-BF algorithm and the MMSE-BF algorithm become

worse for low values of SNR(2) and become better for high values of SNR(2). In order

to obtain performance gains by adaptive BF, good channel conditions in terms of

SNR are required in order to steer the antenna beams into the correct directions.

Since separating M = 2 data streams per source node by BF at the RS instead of

separating M = 1 data stream per source node is more sensitive to low SNR values,

the performance of the ZF-BF and MMSE-BF algorithms improves not until a certain

SNR is exceeded, namely SNR(2) = 20dB for the ZF-BF algorithm and SNR(2) = 14dB

for the MMSE-BF algorithm.

For M = 2, the relative difference in sum rate for the MMSE-BF algorithm com-

pared to the N-BF algorithm is between 15% for small values of SNR(2) and 5% for

large values of SNR(2). As mentioned before, the difference for small and large values

of SNR(2) comes from the fact that good channel conditions in terms of SNR are re-

quired in order to steer the antenna beams into the correct directions. For M = 2,

four data streams have to be separated by L = 4 antennas at the RS. In this case, the

performance of the MMSE-BF algorithm is worse than the performance of the N-BF
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Figure 4.7. Average sum rate vs. SNR(2) for different BF algorithms in Case4,
SNR(1) = 20dB, L = 4, dashed lines: M = 1, solid lines: M = 2.

solution. This result is also known from one-way relaying where no sharp antenna

beams can be formed if the number of separated data streams equals the number L of

antennas at the RS. Furthermore, the sum rate of the ZF-BF algorithm converges to

the sum rate of the MMSE-BF algorithm. However, the speed of convergence is slower

compared to one-way relaying for the same antenna configuration. This comes from

the fact that the BF at the RS separates four data streams in case of two-way relaying

instead of only two data streams in case of one-way relaying.

In Figure 4.7, the average sum rate vs. SNR(2) is depicted for Case4. All other

parameters are the same as introduced for Figure 4.6.

For the same reasons as in Case3, the performances of the ZF-BF algorithm and

the MMSE-BF become worse for low values of SNR(2) and become better for high

values of SNR(2), if the number M of antennas at S1 and S2 is increased from M = 1

to M = 2.

In contrast to Case3, the MMSE-BF algorithm and the ZF-BF algorithm provide

almost the same performance for M = 1. This can be explained by the fact that no

interference has to be considered for the BF at the RS since the duplex interference is

cancelled by CDI at the destination nodes in Case4. Both analytical BF algorithms

come quite close to the N-BF solution and the slightly degraded performance of the
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ZF-BF algorithm compared to the MMSE-BF algorithm comes from the proposed sub-

optimum solution. The MF-BF algorithm performs worse than the ZF-BF algorithm

and the MMSE-BF algorithm, and the sum rate of MF-BF algorithm does not increase

monotonically with increasing SNR(2), but it even decreases with increasing SNR(2).

The reasons are the same as introduced for the MRR-MRT two-way relaying approach

presented in Figure 4.4. While the destination node with the better second hop channel

is provided with a large SNR value by the MF of the RS, the destination node with the

worse second hop channel suffers from the strong noise amplification due to the MF of

the RS leading to a small receive SNR.

As in Case3 for M = 2, the relative difference in sum rate for the MMSE-BF

algorithm compared to the N-BF algorithm is between 15% for small values of SNR(2)

and 5% for large values of SNR(2). Furthermore, the sum rate of the ZF-BF algorithm

converges very slowly to the sum rate of the MMSE-BF algorithm. This slow speed of

convergence comes from the fact that the optimization problem could only be solved

analytically by relaxing the objective function with the assumption of zero noise at the

RS which makes the proposed ZF-BF algorithm of Section 4.4.3 sub-optimum. The

effect of this assumption only vanishes for very high values of the SNR. However, the

performance of the ZF-BF algorithm is still significantly better than that of the MF-

BF algorithm which suffers from the intersymbol interference appearing for more than

M = 1 data stream per source node in Case4.

4.5.3 Bit error rate analysis

In this section, the average uncoded BER of the linear BF algorithms of Sections 4.3

and 4.4 for Case3 and Case4, respectively, are analyzed. As in one-way relaying, all

BER results are presented for QPSK modulated data bit streams.

In the following, the average joint uncoded BER of the MMSE-BF algorithm is

considered at first in order to evaluate the performance of the algorithm in the different

cases system capabilities, namely Case3 and Case4. Figure 4.8 presents the average

joint uncoded BER vs. SNR(2) for the MMSE-BF algorithm for different numbers of

antennas at S1, S2, and the RS. In the figure, the BER performances for Case3 (dashed

lines) and Case4 (solid lines) are depicted. Since the relative behavior of the BER

performance in the different antenna configurations is the same for all values of SNR(1),

it is fixed to one value, namely SNR(1) = 20dB.

Especially for small numbers L of antennas at the RS, the performance of Case3

is significantly degraded compared to the performance of Case4 due to the duplex
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Figure 4.8. Average joint uncoded BER vs. SNR(2) for MMSE-BF for different antenna
configurations, SNR(1) = 20dB, dashed lines: Case3, solid lines: Case4.

interference which cannot be cancelled by CDI at the destination nodes in Case3.

With increasing number L of antennas at the RS, the BER of Case3 is getting closer

to the BER of Case4, e.g., for the case M = 2 and L = 8, the SNR loss in Case3

is only about 1.5dB compared to Case4. However, the results of Figure 4.8 show

that CDI should be performed at the destination nodes since CDI promises significant

performance gains in Case4 compared to Case3 where no CDI is performed.

By comparing the antenna configuration of M = 1 and L = 2 with the antenna

configuration of M = 1 and L = 4, it is seen that increasing the number L of antennas

at the RS provides additional array and diversity gain. As for one-way relaying, the

antenna beams can be steered more precisely in the direction of the source and destina-

tion nodes in case of more antennas at the RS. Regarding the antenna configuration of

M = 1 and L = 2, and the antenna configuration of M = 2 and L = 4 where the ratio

between M and L stays constant, a significant difference can be observed compared to

one-way relaying. In one-way relaying, both antenna configurations provide the same

array gain and the antenna configuration with the higher number L of antennas at the

RS provides the higher diversity gain which can be seen from Figure 3.6. The diversity

can be exploited in one-way relaying, since only M antennas of the L = 2M antennas

at the RS are required in order to multiplex M data streams transmitted by a source

node. Thus, the remaining M antennas at the RS can be used in order to employ

diversity schemes. For two-way relaying in Case3 as well as in Case4, there exists no
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Figure 4.9. Average joint uncoded BER vs. SNR(2) for different BF algorithms in
Case4, SNR(1) = 20dB, M = 2, dashed lines: L = 4, solid lines: L = 8.

array gain and no diversity gain. For both cases of system capabilities, the L = 2M

antennas at the RS are required in order to multiplex the 2M data streams of the

two source nodes. Thus, no additional antennas are available for exploiting array and

diversity gain. Since the ZF-BF and the MF-BF algorithms provide similar insights

into the BER performance of two-way relaying in Case3 and Case4, their BER results

regarding different antenna configurations are omitted here.

In the following, a comparison between the three BF algorithms is given for Case4,

since Case4 performs significantly better than Case3 which makes it more promising

for real applications. In Figure 4.9, the average joint uncoded BER vs. SNR(2) is

depicted for the three different BF algorithms in case of SNR(1) = 20dB. Two antenna

configurations are considered in the figure, namely M = 2 and L = 8 which is indicated

by the solid lines, and M = 2 and L = 4 which is indicated by the dashed lines.

As already seen from the previous Figure 4.8, increasing the number L of antennas

at the RS increases the diversity gain and the array gain if M is fixed. This observation

holds for all BF algorithms. However, the MMSE-BF algorithm significantly outper-

forms the ZF-BF and the MF-BF algorithms. Typically, the difference in performance

between MMSE-BF algorithms and ZF-BF algorithms is relatively small as seen in

one-way relaying for example. The large difference in BER performance between the

ZF-BF algorithm and the MMSE-BF algorithm in Figure 4.9 can be explained by the



108 Chapter 4: Two-way relaying

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

 

 

SNR(2) in dB

av
er

ag
e

in
d
iv

id
u
al

u
n
co

d
ed

B
E

R

M = 2, L = 4
M = 2, L = 8

Figure 4.10. Average individual uncoded BER vs. SNR(2) for MF-BF in Case4,
SNR(1) = 10dB, dashed lines: BER at S2, solid lines: BER at S1.

sub-optimum approach for solving the minimization of the MSE under the ZF con-

straint. For M = 2 and L = 8, the performance degradation of the ZF-BF algorithm

due to the assumption of zero noise at the RS becomes smaller since the large number

L of antennas at the RS can compensate the wrong assumption of zero noise at the

RS by performing sharper antenna beams. Furthermore, the ZF-BF algorithm out-

performs the MF-BF algorithm for all antenna configurations due to the fact that the

MF-BF algorithm does not consider intersymbol interference. Regarding the BER of

the MF-BF algorithm, a special characteristic of the MF-BF algorithm can be observed

which is already known from the sum rate analysis and comes from the strong noise

amplification for the worse second hop channel. Even with increasing SNR(2), the joint

BER increases above a certain value of SNR(2), which is SNR(2) = 20dB in Figure 4.9.

In order to explain this special characteristic of the MF-BF algorithm in more

detail, the average individual uncoded BER vs. SNR(2) at destination node S1 and the

average individual uncoded BER vs. SNR(2) at destination node S2 are considered in

Figure 4.10. The solid lines in the figure correspond to the average individual uncoded

BER vs. SNR(2) at destination node S1 and the dashed lines correspond to the average

individual uncoded BER vs. SNR(2) at destination node S2 for the MF-BF algorithm.

Nodes S1 and S2 are equipped with M = 2 antennas and the RS is equipped with

L = 4 and L = 8 antennas, respectively. SNR(1) is fixed to SNR(1) = 10dB.



4.5 Performance analysis 109

The BER performances at S1 and S2 show the same relative behavior for the case

of L = 4 and the case of L = 8 which is explained and analyzed in the following. For

equal values of SNR(1) and SNR(2), i.e. SNR(1) = SNR(2) = 10dB, the average BER

values at S1 and S2 are the same. But for SNR(2) > SNR(1), the BER at S2 is lower

than the BER at S1 and vice versa. While SNR(2) is the SNR of the first hop of the

transmission from S2 to S1, SNR(1) is the SNR of the second hop of the transmission

from S2 to S1. In the BF matrix GMF of Eq. (4.83), the transmit and receive MF

parts which are matched to the channel with the higher SNR are dominating. Since

the RS noise is also filtered by the BF matrix GMF, the RS noise is transmitted with

the same power to S1 and S2. For that reason, the destination node with the lower

SNR receives more and more noise power without increasing the own receive power, if

the SNR of the other channel increases more and more. Thus, the SNR at the receiver

output decreases and the BER of destination node S1 even increases with increasing

SNR(2) which explains the BER performance in Figure 4.10. Note that although the

BER at S1 increases and the corresponding SNR at the receiver output of destination

node S1 decreases with increasing SNR(2), the overall SNR defined in the objective

function (4.78a) of the SNR maximization problem increases, i.e., the optimization

goal is achieved nevertheless.

Compared to the MF-BF algorithm, the relative behavior of the average individual

uncoded BERs at S1 and S2 is different for the MMSE-BF and ZF-BF algorithms. In

order to show the differences, Figure 4.11 gives the average individual uncoded BERs

of the MMSE-BF algorithm at S1 and S2. All parameters leading to the results in

Figure 4.11 are exactly the same as introduced in Figure 4.10. Note that for the ZF-

BF algorithm, the relative behavior of the BER performances at S1 and S2 is the same

as for the MMSE-BF algorithm. Therefore, the results for the ZF-BF algorithm are

omitted here.

In principle, the observations of the results in Figure 4.11 for the MMSE-BF

algorithm are similar to the observations of the results for one-way relaying de-

picted in Figure 3.7. The ratio between the BER at S1 and at S2 depends on

the ratio between SNR(1) and SNR(2). For equal values of SNR(1) and SNR(2), i.e.

SNR(1) = SNR(2) = 10dB, the average BER values are the same. For SNR(2) > SNR(1),

the BER at S1 is lower than the BER at S2 and vice versa. However, compared to

the BER performance in one-way relaying, the relative difference between the BER

at S1 and at S2 is significantly higher which can be explained as follows. In two-way

relaying, the two first hop transmissions are processed simultaneously. Hence, the data

stream which is transmitted over the channel with the higher SNR is dominant in the

sum of the two received data streams at the RS. Since the overall MSE is minimized

in the optimization problem (4.59), the overall performance can be improved if more
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Figure 4.11. Average individual uncoded BER vs. SNR(2) for MMSE-BF in Case4,
dashed lines: BER at S2, solid lines: BER at S1, SNR(1) = 10dB.

transmit power of the RS is allocated to the data stream which is dominant at the RS.

Thus, the data stream with the worse SNR value for its first hop transmission achieves

a relatively bad BER at its destination node. In general for all considered optimization

problems in two-way relaying, different SNR values for the two channels to the RS

cause an imbalance of the performances of the two directions of the transmission. Note

that fairness of the two directions of the transmission is a topic which is beyond the

scope of this thesis.

4.6 Conclusions

In this chapter, linear BF in non-regenerative two-way relaying with multiple-antenna

nodes has been regarded. The sum rate maximization problem has been considered for

four different cases of system capabilities which have been newly defined in the frame-

work of Figure 1.4. For all cases, the maximum sum rates could only be determined

numerically. Novel methods have been proposed in order to simplify the numerical

optimizations by reducing the number of optimization variables for L ≥ 2M . For the

particular case of one antenna at the source and destination nodes a new sub-optimum

analytical BF algorithm has been proposed. For the system with limited capabilities

at S1 and S2, it has been shown that the BF algorithms which minimize the MSE,
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minimize the MSE under the ZF constraint, and maximize the SNR by adaptive BF

at the RS can be derived by introducing an equivalent system model and using the re-

spective BF algorithms known from one-way relaying. For the system with local CSI at

S1 and S2, BF algorithms which minimize the MSE, minimize the MSE under the ZF

constraint, and maximize the SNR by BF at the RS have been proposed. All presented

BF algorithms have been analyzed resulting in the following main conclusions:

• A significant amount of the loss in achievable sum rate due to the half-duplex

constraint in two-hop transmissions can be compensated by two-way relaying.

Compared to one-way relaying, the sum rate cannot be fully doubled since some

transmit power of the RS is wasted in order to retransmit already known infor-

mation to the destination nodes.

• The full spatial multiplexing gain in two-way relaying for independently Rayleigh

fading channel coefficients corresponds to the minimum of the number L of an-

tennas at the RS and twice the number M of antennas at S1 and S2.

• For the systems with full capabilities and with limited capabilities at the RS

which have CSI at the source nodes, the sum rate is maximized by reducing the

transmit power of the source node whose channel to the RS has a higher SNR.

• If the source nodes and destination nodes are equipped with M = 1 antenna,

efficient analytical BF algorithms at the multiple-antenna RS are proposed in

order to maximize the sum rate. For higher numbers M of antennas at the

source and destination nodes, only numerical methods are known in order to

maximize the sum rate.

• The comparison between the system with limited capabilities at S1 and S2 and

the system with local CSI at S1 and S2 shows that significant gains in terms

of sum rate and BER can be expected due to the cancellation of the duplex

interference by CDI at the destination nodes. This motivates to provide at least

local CSI to the destination nodes.

• The sum rate performance of the system with local CSI at S1 and S2 comes quite

close to the sum rate performance of the system with full capabilities. Since the

system with local CSI at S1 and S2 requires less effort, it is very promising for

practical applications.

• In the system with local CSI at S1 and S2, the MMSE-BF algorithm provides a

sum rate which comes quite close to the maximum sum rate in this case of system

capabilities. Since the MMSE-BF algorithm is an analytical BF algorithm with
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significantly less effort compared to numerical methods, it is very promising for

practical applications.

• In the system with limited capabilities at S1 and S2 and in the system with

local CSI at S1 and S2, the MMSE-BF algorithm always outperforms the ZF-BF

algorithm and the MF-BF algorithm.

• For all considered optimization problems in two-way relaying, different channel

conditions on the two channels to the RS cause an imbalance of the performances

of the two directions of transmission.
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Chapter 5

Topics of relevance for the practical
implementation of two-way relaying

5.1 Introduction

In this chapter, several topics concerning the practical implementation of two-way re-

laying are discussed. For the investigations of Chapters 3 and 4, several simplifying

assumptions have been made and only the limited scenario of Figure 1.2 has been con-

sidered. In the following, some of the simplifying assumptions introduced in Section 2.2

are revealed and advanced scenarios are considered. Most of the considered topics are

also relevant to one-way relaying. However, since an adaptation of the following topics

is straightforward in one-way relaying, it is omitted in the following.

In order to obtain CSI at the respective nodes, channel estimation has to be per-

formed. Typically, channel estimation is based on pilot symbols and the resulting

technique is termed PACE [TSD04]. The transmission of pilot symbols requires re-

sources in time and frequency. Since these resources are not available for the data

transmission, the sum rates presented in Chapters 3 and 4 are too optimistic for real

systems. Furthermore, in the four cases of system capabilities in two-way relaying

different kinds of CSI availability are assumed, so that different numbers of resources

in time and frequency are required in order to perform PACE. Thus, it is expected

that the sum rates of the four cases are degraded differently. In Section 5.2, pilot

transmission schemes that define which node transmits a pilot on which resource in

time and frequency are proposed for the different cases of system capabilities and the

respective channel estimation algorithms are developed. Furthermore, the impact of

the pilot transmission schemes on the sum rate performances is addressed.

The quality of the available CSI has also significant impact on the system per-

formance. For the performance analysis in Chapters 3 and 4, perfect CSI is assumed

which means that the estimated CSI equals the exact CSI. In real systems, this assump-

tion cannot be met due to noisy estimates for example [KBB+05]. For that reason,

Section 5.3 addresses the impact of imperfect CSI.

In the previous chapters, only a single source-destination pair has been considered.

In Section 5.4, two-way relaying for multiple source-destination pairs is addressed. Two

scenarios with multiple source-destination pairs are introduced exemplarily in order to

give a first insight into the problems arising from multiple access in two-way relaying.
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5.2 Pilot assisted channel estimation

5.2.1 Introduction

This Section 5.2 considers PACE [TSD04] for two-way relaying. For PACE, pilot

symbols which are also known to the receive node are transmitted by the transmit

node. With the knowledge about the transmitted pilot symbols, the receive node

can obtain the CSI from the received pilot symbols which have been modified by the

channel coefficients. As a general rule, a receive node which performs PACE needs to

receive one pilot symbol per unknown channel coefficient. For a transmission using

M̃ transmit antennas and L̃ receive antennas, this means that the receive node has to

receive M̃L̃ orthogonal pilot symbols in order to perform PACE. In the following, only

one frequency resource is considered and the number of required time slots for the pilot

transmission scheme shall be minimized. Since L̃ receive antennas provide L̃ received

pilot symbols per time slot, M̃ orthogonal time slots are required in order to receive

M̃L̃ orthogonal pilot symbols at the receive node. This requirement has to be satisfied

by the following pilot transmission schemes.

In the following for the sake of simplicity but without loss of generality, the chan-

nel estimates shall fulfill the ZF constraint under the assumption of zero noise at all

receive antennas. Note that also more advanced channel estimation algorithms may

be applied [HH03,CGN07]. However, these algorithms are omitted since the proposed

pilot transmission schemes can be used for each channel estimation algorithm, as long

as the pilot transmission scheme provides a sufficient number of received pilot symbols.

Furthermore, channel reciprocity and a sufficiently long channel coherence time are

assumed which means that the CSI which is obtained for the receive channel of a node

corresponds to the CSI which is valid for the transmission over the respective channel.

Since different CSI availabilities are defined for the different cases of system capa-

bilities in Figure 1.4, a novel pilot transmission scheme is proposed for each case of

system capabilities. In the different cases of system capabilities, a node requires either

no CSI, local CSI or global CSI. If a node requires no CSI, no pilot symbols need to be

transmitted to the node. If S1 and S2 require local CSI, a well-known pilot transmis-

sion scheme and the respective ZF channel estimation algorithm from point-to-point

transmissions can be used which are reviewed in Section 5.2.2. Since global CSI at the

RS directly corresponds to local CSI at the RS, the same pilot transmission scheme

and the same ZF channel estimation algorithm can also be applied if the RS requires

global CSI. If S1 and S2 require global CSI, another pilot transmission scheme and
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the respective ZF channel estimation algorithm are required which are newly proposed

in Section 5.2.3. The pilot transmission schemes for obtaining local CSI and global

CSI have to be combined to the novel pilot transmission schemes which satisfy the CSI

requirements of the four different cases of system capabilities. These pilot transmission

schemes are presented in Section 5.2.4.

Section 5.2.5 gives a description of the degradation of the sum rate by the proposed

pilot transmission schemes which allows a fair comparison of the sum rate performances

of the different cases of system capabilities in Section 5.2.6.

5.2.2 Local CSI at S1, S2, and global CSI at the RS

In the following, a pilot transmission scheme as well as the respective ZF channel esti-

mation algorithm in order to obtain local CSI at S1, S2, and global CSI at the RS are

presented. The pilot transmission scheme and the ZF channel estimation algorithm

are well-known from point-to-point transmissions. However, since they provide a ba-

sis for the newly developed pilot transmission scheme and the respective ZF channel

estimation algorithm for obtaining global CSI at S1 and S2, they are reviewed here.

In the following, the pilot transmission scheme performed at node Si and the channel

estimation of channel H(i) at the receiving RS are considered as an example. Note that

adapting the pilot transmission scheme and the ZF channel estimation algorithm in

order to obtain local CSI about channel H(k)T at Sk is straightforward.

In order to receive the required ML pilot symbols at the L receive antennas of the

RS, M time slots are required in the pilot transmission scheme of node Si. The most

obvious approach is to transmit one pilot symbol from each transmit antenna each in

another time slot, i.e., pilot symbol y
(i)
m , m = 1, . . . ,M , is transmitted in time slot m by

the m-th transmit antenna of node Si. In Figure 5.1, the proposed time slot allocation

for the pilot symbols at the transmit node Si is depicted for M = 3. In the figure,

the time axis is plotted vs. the transmit antenna index where index m = 1, . . . ,M

corresponds to the m-th transmit antenna of the transmit node Si. The notation in

each square indicates which node is transmitting from the respective transmit antenna

in the respective time slot. The two squares of different shades of gray with the notation

Si in Figure 5.1 correspond to pilot symbols y
(i)
1 and y

(i)
2 , respectively, and the white

square with the notation Si corresponds to pilot symbol y
(i)
3 . For the white squares

with a dot in the center, no pilot symbol is transmitted from the respective antenna in
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Figure 5.1. Pilot transmission scheme for obtaining local CSI at the receiving node
assuming M = 3 transmit antennas at the transmitting node Si.

the respective time slot. The overall transmission of M pilot symbols may be described

by pilot matrix

Y(i) = diag
[

y
(i)
1 , y

(i)
2 , . . . , y

(i)
M

]

. (5.1)

Neglecting the noise at the RS, matrix

Ỹ(i) = H(i)Y(i), (5.2)

contains the required ML orthogonally received pilot symbols in order to determine

the estimated channel matrix Ĥ(i). From Eq. (5.2), Ĥ(i) can be obtained by simply

multiplying matrix Ỹ(i) with the inverse of the known pilot matrix Y(i). The inverse

Y(i)−1
is determined by a simple element-wise inversion of the diagonal elements of

Y(i). Thus, the estimated channel matrix Ĥ(i) results in

Ĥ(i) = Ỹ(i)Y(i)−1

. (5.3)

5.2.3 Global CSI at S1 and S2

In the following, a pilot transmission scheme as well as the respective ZF channel

estimation algorithm in order to obtain global CSI about channels H(k)T and H(i) at

Sk are proposed. The CSI about channel H(k)T at node Sk can be obtained by the

pilot transmission scheme and the ZF channel estimation algorithm of Section 5.2.2,

where the RS transmits L pilot symbols to Sk in L orthogonal time slots. In order

to obtain CSI about channel H(i) at node Sk, pilot symbols are transmitted over the

overall channel H(k)TH(i) and channel H(i) is determined by using the already known

channel H(k)T and the received pilot symbols over the overall channel H(k)TH(i). This

novel pilot transmission scheme and the respective ZF channel estimation algorithm

in order to obtain an estimate Ĥ(i) of channel H(i) at node Sk depend on the relation

between M and L.
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Figure 5.2. Pilot transmission scheme for obtaining global CSI for the cases M > L
and M < L.

If M ≥ L, the pilot symbol y
(i)
m , m = 1, . . . ,M , is transmitted in time slot m by the

m-th antenna of node Si. The overall transmission of M pilot symbols is described by

pilot matrix Y(i) of Eq. (5.1). The transmission of the pilot symbols from Si to the RS

is indicated by the first phase in Figure 5.2(a). At the RS, the received pilot symbol of

each antenna is amplified by weighting factor g satisfying the transmit power constraint

at the RS and retransmitted from each antenna. The retransmission is described by

matrix

Y
(0,i)
M≥L = gH(i)Y(i), (5.4)

containing the pilot symbols of pilot matrix Y(i) which are modified by the channel

coefficients of channel matrix H(i) and the amplification factor g. Matrix Y
(0,i)
M≥L is

indicated by the gray squares with the notation RS in the second phase of Figure 5.2(a).

The received pilot symbols at node Sk may be described by matrix

Ỹ
(i)
M≥L = H(k)TY

(0,i)
M≥L = gH(k)TH(i)Y(i), (5.5)

which contains the required ML orthogonally received pilot symbols at node Sk. Since

the estimated channel matrix Ĥ(k)T is already known at Sk, the estimated channel

matrix Ĥ(i) can be calculated by

Ĥ(i) =
1

g

(

Ĥ(k)∗Ĥ(k)T
)−1

Ĥ(k)∗Ỹ
(i)
M≥LY

(i)−1

, (5.6)
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where the term
(

Ĥ(k)∗Ĥ(k)T
)−1

Ĥ(k)∗ is the pseudo-inverse of the estimated channel

matrix Ĥ(k)T for M > L which can be replaced by the inverse Ĥ(k)T,−1
for M = L.

In order to give a pilot transmission scheme and a ZF channel estimation algorithm

for M < L, the colon notation defined in [GL96] is introduced. Let [X]n1:n2,: denote

a matrix containing the n1-th to n2-th row of matrix X, let [X]:,n1:n2
denote a matrix

containing the n1-th to n2-th column of X, and let [X]n1:n2
denote a matrix containing

the n1-th to n2-th row and the n1-th to n2-th column of X. Furthermore, the antenna

ratio γ is defined as

γ =

⌊

L

M

⌋

, (5.7)

where ⌊·⌋ rounds the argument to the nearest integer towards minus infinity. As for the

case M ≥ L, pilot symbol y
(i)
m , m = 1, . . . ,M , is transmitted by the m-th antenna of

node Si in time slot m which is indicated by the first phase in Figure 5.2(b). The overall

transmission of M pilot symbols is described by pilot matrix Y(i) of Eq. (5.1). At the

RS, a coordination of the retransmission is required which ensures that LM orthogonal

pilot symbols are received at node Sk. For that reason, the retransmission from the RS

is processed in groups of M antennas leading to the following block diagonal matrix

Y
(0,i)
M<L which describes the retransmission from the RS:

Y
(0,i)
M<L = g diagb

[

[

H(i)
]

1:M,:
Y(i),

[

H(i)
]

2M+1:2M,:
Y(i), . . . ,

[

H(i)
]

γM+1:L,:

[

Y(i)
]

1:L−γM

]

.

(5.8)

Each block of matrix Y
(0,i)
M<L contains the pilot symbols of pilot matrix Y(i) which are

modified by the amplification factor g and a sub-matrix of channel matrix H(i). The

retransmission of matrix Y
(0,i)
M<L is indicated by the gray squares with the notation RS

in the second phase of Figure 5.2(b). The received pilot symbols at node Sk may be

described by matrix

Ỹ
(i)
M<L = H(k)TY

(0,i)
M<L, (5.9)

which contains ML orthogonally received pilot symbols. Note that for a simple re-

transmission of gH(i)Y(i) as in the case of M ≥ L, node Sk would have received only

MM orthogonal pilot symbols and not the required ML pilot symbols. With the pro-

posed pilot transmission scheme for M < L, the first γM rows of the estimated channel

matrix Ĥ(i) can be calculated block-wise by applying

[

Ĥ(i)
]

(n−1)M+1:nM,:
=

1

g

(

[

Ĥ(k)
]T

(n−1)M+1:nM,:

)−1
[

Ỹ
(i)
M<L

]

:,(n−1)M+1:nM
Y(i)−1

, (5.10)

for n = 1, . . . , γ. In case of L − γM 6= 0, the last L − γM rows of H(i) are calculated
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by

[

Ĥ(i)
]

γM+1:L,:
=

1

g

(

[

Ĥ(k)
]∗

γM+1:L,:

[

Ĥ(k)
]T

γM+1:L,:

)−1
[

Ĥ(k)
]∗

γM+1:L,:

[

Ỹ
(i)
M<L

]

:,γM+1:(γ+1)M

[

Y(i)
]−1

1:L−γM
.

(5.11)

5.2.4 Pilot transmission schemes for different cases of system
capabilities

In this section, pilot transmission schemes are proposed for the four cases of system

capabilities of Figure 1.4 based on the introduced pilot transmission schemes for ob-

taining local and global CSI in Sections 5.2.2 and 5.2.3. Furthermore, the number of

required time slots for the pilot transmission scheme depending on the number M of

antennas at S1 and S2 and on the number L of antennas at the RS is defined by δ, and

δ is determined for all cases of system capabilities. The proposed pilot transmission

schemes are depicted in Figure 5.3 for L = 4 antennas at the RS, and M = 2 anten-

nas at S1 and S2, respectively. The figure gives the time slot allocation of the pilot

symbols depending on the transmit antenna index, where indices 1 and 2 denote the

first and second transmit antenna of the RS, and the first and second transmit antenna

of S1, respectively. Indices 3 and 4 denote the third and fourth transmit antenna of

the RS, and the first and second transmit antenna of S2, respectively. The respective

transmitters can be distinguished by the notation in the squares.

In the following, a pilot transmission scheme for the system with full capabilities

(Case1) is proposed, which is depicted in Figure 5.3(a). The pilot transmission scheme

can be divided into three phases:

• first phase: obtaining local CSI at S1 and S2,

• second phase: obtaining global CSI at the RS,

• third phase: obtaining global CSI at S1 and S2.

In the first phase, the RS transmits one pilot symbol per transmit antenna according

to the pilot transmission scheme introduced in Section 5.2.2. This phase requires L

orthogonal time slots.
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(a) Case1: system with full capabilities.
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(b) Case2: system with limited capabilities at the RS.
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(d) Case4: system with local CSI at S1 and S2.

Figure 5.3. Pilot transmission schemes for the different cases of system capabilities,
M = 2, L = 4.

In the second phase, firstly S1 transmits one pilot symbol per transmit antenna

which requires M orthogonal time slots. Secondly, S2 transmits one pilot symbol per
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transmit antenna which also requires M orthogonal time slots leading to overall 2M

time slots in the second phase.

In the third phase, the pilot symbols of the second phase which have been received

by the RS are retransmitted by the RS in order to obtain global CSI at S1 and S2

as introduced in Section 5.2.3. Since S1 and S2 already have local CSI from the first

phase and since they also know their own transmitted pilot symbols, duplex interference

from the own transmitted pilot symbols can be cancelled by CDI at the destination

nodes. For that reason, the sum of the pilot symbols received from S1 and S2 in the

second phase is retransmitted by the RS, i.e., matrix Y(0) of Eq. (5.4) and Eq. (5.8),

respectively, describing the retransmission from the RS is modified to

Y(0,i) =























g

2
∑

i=1

Y
(0,i)
M≥L for M ≥ L,

g
2
∑

i=1

Y
(0,i)
M<L for M < L.

(5.12)

The sum of two pilot symbols, one from S1 and another from S2, is indicated by the

two different shades of gray per square for the pilot symbols of the third phase in

Figure 5.3(a). Depending on the ratio between L and M , the number of required time

slots during the third phase is either M for M ≥ L or (2L − γM) for M < L. The

overall number of required time slots for the proposed pilot transmission scheme in

Case1 is given by

δCase1 =

{

3M + L for M ≥ L,
(2 − γ)M + 3L for M < L.

(5.13)

In the following, a pilot transmission scheme for the system with limited capabilities

at the RS (Case2) is proposed. The scheme is depicted in Figure 5.3(b) and can be

divided into two phases:

• first phase: obtaining local CSI at S1 and S2,

• second phase: obtaining global CSI at S1 and S2.

As for the previous Case1, L orthogonal time slots are required in the first phase for

the pilot transmission scheme of Section 5.2.2.

In the second phase, S1 transmits one pilot symbol per transmit antenna in M

orthogonal time slots. Since the RS does not require global CSI and since CDI can
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be performed at the destination nodes, S2 transmits one pilot symbol per transmit

antenna simultaneously so that a linear combination of two pilot symbols is received at

each antenna of the RS. The simultaneous transmission from S1 and S2 corresponds to

the first two time slots in the second phase of Figure 5.3(b). The following four time

slots correspond to the retransmission of the pilot symbols from the RS in order to

obtain global CSI at S1 and S2. As for Case1, the duplex interference from the own

pilot symbols can be cancelled by CDI at the destination nodes. For that reason, the

received linear combinations of the pilot symbols from S1 and S2 are just retransmitted

by the RS indicated by the two different shades of gray for the last four time slots of

the second phase in Figure 5.3(b). Depending on the ratio between L and M , the

overall number of required time slots during the two phases of the pilot transmission

scheme for Case2 is given by

δCase2 =

{

2M + L for M ≥ L,
(1 − γ)M + 3L for M < L.

(5.14)

In the following, a pilot transmission scheme for the system with limited capabilities

at S1 and S2 (Case3) is given, which is depicted in Figure 5.3(c) and only consists of

one phase:

• first phase: obtaining global CSI at the RS.

Firstly, S1 transmits one pilot symbol per transmit antenna which requires M orthog-

onal time slots according to the pilot transmission scheme of Section 5.2.2. Secondly,

using the same pilot transmission scheme, S2 transmits one pilot symbol per transmit

antenna which also requires M orthogonal time slots. Thus, the overall number of

required time slots for Case3 results in

δCase3 = 2M. (5.15)

In the following, a pilot transmission scheme for the system with local CSI at S1

and S2 (Case4) is introduced. The scheme is depicted in Figure 5.3(d) and can be

divided into two phases:

• first phase: obtaining local CSI at S1 and S2,

• second phase: obtaining global CSI at the RS.
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In the first phase, the RS transmits one pilot symbol per transmit antenna according

to the pilot transmission scheme introduced in Section 5.2.2. This phase requires L

orthogonal time slots.

In the second phase using the same pilot transmission scheme, firstly S1 trans-

mits one pilot symbol per transmit antenna which requires M orthogonal time slots.

Secondly, S2 transmits one pilot symbol per transmit antenna which also requires M

orthogonal time slots leading to overall 2M time slots in the second phase. Thus, the

overall number of required time slots for Case4 results in

δCase4 = 2M + L. (5.16)

5.2.5 Sum rate degradation

In this section, the degradation of the sum rate due to PACE is considered. The

transmission of pilot symbols requires resources in time and frequency. Since these

resources are not available for the data transmission, the sum rates for two-way relaying

presented in Chapter 4 are too optimistic. Based on the pilot transmission schemes

introduced in Section 5.2.4, it shall be determined how many pilot symbols have to

be transmitted within the channel coherence bandwidth BC and during the channel

coherence time TC for a typical OFDM system. The channel coherence bandwidth is

given by

BC =
1

τmax

, (5.17)

where τmax is the maximum channel delay [Pro01]. The channel coherence time is given

by

TC =
c0

2f0v̄
, (5.18)

where f0 is the carrier frequency, c0 is the speed of light, and v̄ is the relative ve-

locity between transmitter and receiver [Pro01]. In the following, two-dimensional

PACE [HKR97] is assumed which means that the pilot symbols are used in order to es-

timate the channel in time and frequency direction. In this two-dimensional approach,

the estimated channel matrices of the previous sections are only valid for one specific

time slot and one specific sub-carrier of the OFDM system, i.e., for one specific time-

frequency unit. The oversampling factor uB ≥ 1 in frequency domain specifies how

often the channel is estimated within the channel coherence bandwidth [SFK06]. Like-

wise, the oversampling factor uT ≥ 1 in time domain specifies how often the channel

is estimated during the channel coherence time [SFK06]. Finally, the number δ intro-

duced in Section 5.2.4 specifies how many time slots are required due to the application

of multiple antennas in two-way relaying depending on the system capabilities.



124 Chapter 5: Topics of relevance for the practical implementation of two-way relaying

In the following, the sum rate degradation due to PACE is considered by modifying

the sum rate normalization factor of Eq. (2.12). The ratio between the number bpilot

of time-frequency units allocated to pilot symbols and the number of overall available

time-frequency units b within the coherence bandwidth and the coherence time is given

by
bpilot

b
=

uTuBδ

TCBC

. (5.19)

For a bi-directional transmission in two-way relaying, the number bdata of time-

frequency units used for data transmission results in

bdata =
b + bpilot

2
, (5.20)

where the factor of 2 is coming from the fact that each data stream is transmitted once

by its source node and once by the RS. With Eq. (5.19) and Eq. (5.20), the sum rate

normalization factor rdata which gives the ratio between the time-frequency units used

for data transmission and the number of overall available time-frequency units results

in

rdata =
bdata

b
=

1

2

(

1 − uTuBδ

TCBC

)

. (5.21)

With the sum rate normalization factor rdata of Eq. (5.21), the sum rates defined in

Section 2.4 can be re-calculated by considering the different values of δ for each case

of system capabilities enabling an improved fairness for the comparison of the different

cases.

5.2.6 Performance analysis

In this section, the impact of the pilot transmission schemes on the average sum rate for

the different cases of system capabilities is investigated. For that purpose, all simulation

parameters are chosen exactly as defined in Section 4.5.1 for the performance analysis

of two-way relaying. Additionally, the following parameters of a real relaying system

are assumed. The parameters are also summarized in Table 5.1. For the maximum

channel delay a value of τmax = 2µs is assumed which corresponds to a coherence

bandwidth of BC = 500kHz in Eq. (5.17). This value is typical for wide area scenarios.

The carrier frequency is set to f0 = 5GHz, and walking speed of v̄ = 5km/h is assumed

for the average relative velocity of the nodes since relaying is typically applied in

scenarios with low mobility [STIST07a]. This yields a coherence time of TC = 5.4ms in

Eq. (5.18). If an OFDM system is assumed with an overall bandwidth of B = 5MHz

and with 512 sub-carriers, the sub-carrier spacing results in about 10kHz and the

OFDM symbol duration is given by about 0.1ms. Assuming a typical oversampling in
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System parameter value

Maximum channel delay τmax 2µs
Carrier frequency f0 5GHz
Average velocity v̄ 5km/h
Oversampling factor in time domain uT 5
Oversampling factor in frequency domain uB 5

Table 5.1. Parameter settings valid for the results presented in Figure 5.4
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Figure 5.4. Average sum rate vs. number L of antennas at the RS for Case1, Case2,
Case3, and Case4, considering the rate degradation due to the proposed pilot trans-
mission schemes, SNR(1) = SNR(2) = 10dB, M = 2.

time and frequency domain of uT = 5 and uB = 5 [SFK06], approximately every tenth

sub-carrier and every tenth OFDM symbol are used for pilot transmission.

With these system parameters, the results presented in Figure 4.2 are reviewed for

the modified sum rate normalization factor of Eq. (5.21). Figure 5.4 gives the average

sum rate vs. the number L of antennas at the RS for all cases of system capabilities

assuming SNR(1) = SNR(2) = 10dB and M = 2. For M ≥ L, the pilot transmission

schemes of all considered cases require almost the same number of resources. For that

reason, the relation between the sum rate performances of the different cases does not

change compared to Figure 4.2. However, for increasing L the impact of the pilot

transmission scheme in order to obtain global CSI at S1 and S2 increases significantly.

The sum rates of Case1 and Case2 are significantly degraded since these cases require
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global CSI at S1 and S2. In contrast to Case1 and Case2, the sum rate of Case3

does not depend on L and the sum rate of Case4 increases slower depending on L.

Thus, Case4 already achieves the performance of Case1 for L = 8 and outperforms

Case1 for L > 8. For L > 16, Case3 with the most limited system capabilities even

outperforms all other cases.

Note that these results are only valid for the specific parameter setting of Table

5.1. Nevertheless, the results show that the impact of PACE may not be neglected and

the favorable BF algorithm depends on the application and the underlying parameter

settings.

5.3 Imperfect CSI

5.3.1 Introduction

In this section, the impact of imperfect CSI on the sum rate performances of the

proposed BF algorithms of Chapter 4 is addressed. Previous investigations have been

based on perfect CSI in the systems, which means that the exact CSI is known at the

nodes. However, in real systems perfect CSI cannot be obtained [KBB+05]. There are

two main reasons why the CSI obtained by PACE is different compared to the exact

CSI:

• There exists some latency between transmitting the pilot symbols for performing

PACE and using the obtained CSI for adaptive BF. During this time, the wireless

channel may change due to various effects, e.g., due to the movement of a mobile

node, reflections, or diffractions. In this case, the CSI obtained by PACE is

outdated at the time it is used. Typically, outdated CSI is a bigger problem in

systems using only transmit BF since the time duration between receiving the

pilot symbols and transmitting the respective data symbols is longer than the

time duration between receiving the pilot symbols and receiving the respective

data symbols in systems using only receive BF. However, as long as the update

time is shorter than the channel coherence time, the impact of the estimation

error can be kept small for both cases of adaptive BF.

• There exists some estimation error which is inherent to the applied channel esti-

mation algorithm [HH03] and comes from the receiver noise.
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In reality, systems and BF algorithms are required which are not such sensitive to

imperfect CSI. In this section, it shown that the impact of imperfect CSI depends on

the case of system capabilities and the considered BF algorithm.

Section 5.3.2 explains how imperfect CSI can be modeled. In Section 5.3.3, the

sum rates obtained with imperfect CSI are compared to the sum rates obtained with

perfect CSI in two-way relaying.

5.3.2 Modeling imperfect CSI

In this section, the influence of imperfect CSI on the performance of the proposed BF

algorithms in two-way relaying is considered. The following modeling of imperfect CSI

is taken from [HH03] where it is assumed that the respective nodes perform a linear

minimum MSE algorithm for PACE.

The exact channel matrix H(i) of Eq. (2.4) is separated into two parts resulting in

H(i) = Ĥ(i) + H̃(i), (5.22)

where Ĥ(i) is the estimated channel matrix consisting of zero-mean, independent, cir-

cularly symmetric, complex Gaussian random variables of variance
(

σ(i)2 − σ̃(i)2
)

, and

H̃(i) is the estimation error matrix with coefficients of variance

σ̃(i)2 =
1

1 + SNR(i)
. (5.23)

It is assumed that the estimation errors are zero-mean, independent, circularly sym-

metric, complex Gaussian random variables. Furthermore, the variance σ̃(i)2 depends

on SNR(i) of Eq. (3.61) where it is assumed that each node receives as many pilot sym-

bols as unknown channel coefficients during the channel coherence time [HH03]. This

assumption provides a worst case scenario since increasing the number of transmitted

pilot symbols during the channel coherence time would improve the channel estimates

and decrease the variance of the estimation error. With the previous assumptions, a

fair comparison in terms of received signal power between the cases of perfect CSI and

the cases of imperfect CSI is ensured since the overall variance of the exact channel

coefficients is fixed to σ(i)2 in any case. For σ̃(i)2 = 0, i.e., for infinite SNR(i), the

estimated channel matrix corresponds to the exact channel matrix, and for σ̃(i)2 to

infinity, i.e., for SNR(i) = 0, the estimated channel is completely uncorrelated to the

exact channel.
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Figure 5.5. Average maximum sum rate vs. SNR(2) for Case1, Case2, Case3, Case4,
solid lines: imperfect CSI, dashed lines: perfect CSI SNR(1) = 10dB, M = 2 and L = 4.

In order to determine the transmission rate in case of imperfect CSI, the transmis-

sion rate expressions introduced in Section 2.4 are used in a modified way. Instead of

using the exact channel matrices H(i), i = 1, 2, for the calculation of the BF matrices

of the system model in Figure 2.1, the estimated channel matrices Ĥ(i), i = 1, 2 are

used [KK08]. This means that the transmission rates of Eq. (2.14) and Eq. (2.21) are

evaluated by using the exact channel matrices H(i), i = 1, 2, and the mismatched BF

matrices which leads to a degradation of the transmission rate.

5.3.3 Performance analysis

In the following, the average maximum sum rates of Case1, Case2, Case3, and Case4

are analyzed for imperfect CSI. For that purpose, the same simulation parameters as

presented in Section 4.5.1 are assumed. Figure 5.5 gives the average maximum sum rate

vs. SNR(2) for all cases of system capabilities obtained by numerical optimizations. For

all following figures, SNR(1) is fixed to 10dB and S1 and S2 are equipped with M = 2

antennas and the RS is equipped with L = 4 antennas. The solid lines correspond to

the sum rates in case of imperfect CSI and the dashed lines correspond to the previously

considered results where the CSI is perfectly known.
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Figure 5.6. Relative average maximum sum rate ratio vs. SNR(2) for Case1, Case2,
Case3, and Case4, M = 2, L = 4, SNR(1) = 10dB.

Obviously, in every case the sum rate is degraded due to the imperfect CSI. However,

the degradation is significantly higher for low values of SNR(2) and the sum rate with

imperfect CSI converges to the sum rate with perfect CSI for increasing SNR(2) in

all cases. This observation can be explained by the definition of the variance of the

estimation error in Eq. (5.23) which decreases for increasing SNR(2). Thus, for high

SNR(2) the CSI obtained by PACE differs only slightly from the exact CSI.

In Figure 5.5, it can be seen that the performance of Case1 is also the best perfor-

mance in case of imperfect CSI and Case3 still provides the worst performance while

Case4 still performs better than Case2. However, for small values of SNR(2) the

performance of Case4 is degraded more than the performance of Case2 for example

which leads to the assumption that the different cases have different sensitivities to

imperfect CSI.

In order to verify the relative effect of imperfect CSI in each of the cases, the average

maximum sum rate for imperfect CSI is divided by the average maximum sum rate

for perfect CSI and the resulting relative average maximum sum rate ratio vs. SNR(2)

is depicted in Figure 5.6. For Case3 and Case4 in which BF is only applied at the

RS, the loss in sum rate due to imperfect CSI is up to 10% higher than for Case1 and

Case2 for values of SNR(2) between 0dB and 6dB. For high values of SNR(2), the sum

rate ratio of all cases is close to one. The worse sum rate ratio of Case3 and Case4
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Figure 5.7. Relative average sum rate ratio vs. SNR(2) for Case4 with different BF
algorithms, M = 2, L = 4, SNR(1) = 10dB.

for low values of SNR(2) comes from the fact that no adaptive BF can be applied at the

source and destination nodes, respectively. Hence, a good spatial separation among

different data streams has to be provided by the RS. But imperfect CSI significantly

affects the performance of the BF algorithms at the RS since the antenna beams are

steered in wrong directions. Of course, the BF algorithms at the RS provide incorrect

antenna beams in Case1 and Case2, too. However, due to the joint encoding and

decoding these incorrect antenna beams have a lower impact. Nevertheless, especially

Case4 is still promising since the achieved absolute value of the sum rate always

outperforms the sum rate in Case2 which has been seen in Figure 5.5.

In Figure 5.7, the sum rate ratio vs. SNR(2) is given for the MMSE-BF, the ZF-BF,

and the MF-BF algorithms in Case4. For low values of SNR(2), the ZF-BF algorithm

provides a slightly smaller relative loss in sum rate than the MMSE-BF and the MF-BF

algorithms. For high values of SNR(2), the loss in sum rate due to imperfect CSI is a

constant of about 1% which is the same for all BF algorithms.
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5.4 Multiple source-destination pairs

5.4.1 Introduction

In Sections 5.4.2 and 5.4.3, two-way relaying for multiple source-destination pairs is

considered. For that purpose, the assumptions of the previous chapters which are sum-

marized in Section 2.2 are partially relaxed and the scenario of Figure 1.2 is extended.

In general, the transmissions of multiple source-destination pairs can be separated in

time by time division multiple access (TDMA) or in frequency by frequency division

multiple access (FDMA) [ZK01]. In this case, each single source-destination pair corre-

sponds to the setup of Figure 1.2 and all BF algorithms introduced in Chapters 3 and 4

are still valid. However, two scenarios are considered exemplarily in the following where

additional measures besides TDMA and FDMA promise an improved performance in

terms of resource efficiency. Firstly, the spatial domain is additionally used in order

to multiplex multiple source-destination pairs which is also referred to as space divi-

sion multiple access (SDMA). Section 5.4.2 considers a scenario where SDMA can be

applied. Secondly, asymmetric rate requirements in bi-directional transmissions are

considered, which means that one source node of a bi-directional source-destination

pair transmits with a higher rate than the other source node. Section 5.4.3 gives a

scenario where two source-destination pairs with asymmetric rate requirements are

considered.

5.4.2 Multiple single-antenna source-destination pairs

In this section, spatial multiplexing of multiple single-antenna source-destination pairs

is regarded. The considered scenario is depicted in Figure 5.8. The scenario corresponds

to an ad-hoc scenario for example [PWS+04]. There are M single-antenna source-

destination pairs where each pair corresponds to one of the gray arrows in the figure,

i.e., node Si, i = 1, 2 . . . ,M , and node Si+M form a source-destination pair. Compared

to the original scenario of Figure 1.2, the M antennas per node in Figure 1.2 are no

longer co-located in the scenario of Figure 5.8, but there are 2M independent nodes.

This means that the M antennas on the left-hand side as well as the M antennas

on the right-hand side cannot cooperate. Furthermore, it is assumed that each node

can only obtain local CSI about its own channel to the RS. In this case, different

source-destination pairs cannot cooperate. Thus, spatial multiplexing of the M source-

destination pairs transmitting 2M data streams simultaneously can only be performed

by exclusive BF at the RS in the described scenario. For that purpose, the RS has to
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S1
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S2M
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..
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Figure 5.8. Bi-directional two-hop relaying scenario with M single-antenna source-
destination pairs and one multiple-antenna RS.

be equipped with at least 2M antennas and requires global CSI about all links between

the RS and the nodes Si, i = 1, 2, . . . , 2M .

Each source node in Figure 5.8 transmits one data stream which is weighted by

a single scalar weighting factor satisfying the transmit power constraint of the node

and which is dedicated to one specific destination node. Each destination node desires

only one data stream while there exist 2M − 2 interfering data streams from the other

source nodes. Furthermore, in two-way relaying the own transmitted data stream

causes duplex interference at each destination node. Thus, there are 2M −1 interfering

data streams in total at each destination node. Assuming that the nodes Si, i =

1, 2, . . . , 2M do not cancel the duplex interference of their own data stream by CDI,

the BF algorithms developed in Section 4.3 for a system with limited capabilities at S1

and S2 can be directly applied to the described scenario. This means that the 2M data

streams are separated by adaptive BF at the RS assuming 2M−1 interferers. Actually,

if the duplex interference from the own transmitted data stream can be cancelled by

CDI at nodes Si, i = 1, 2 . . . , 2M , BF algorithms are required at the RS which only

suppress 2M − 2 interferers. Nevertheless, the linear BF algorithms of Section 4.3

provide reasonable performance, especially for high values of M where the difference in

interference power of either 2M − 1 or 2M − 2 interferers can be neglected. Note that

the BF algorithms of Section 4.3 only perform well if there are at least 2M antennas

at the RS. If there are less than 2M antennas at the RS, additional resources in time

or frequency are required in order to separate the transmissions of the different source-

destination pairs by TDMA or FDMA in the scenario of Figure 5.8.
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Figure 5.9. Bi-directional two-hop relaying scenario with 2 multiple-antenna source-
destination pairs and one multiple-antenna RS for asymmetric rate requirements.

5.4.3 Asymmetric rate requirements of multiple source-
destination pairs

In this section, asymmetric rate requirements in bi-directional transmissions with mul-

tiple source-destination pairs are considered. So far, only performance bounds like the

maximum sum rate have been addressed, which means that the individual transmission

rates have been chosen such that the sum rate is maximized. Thus, no requirements

of individual transmission rates have been formulated. In this case, the individual

transmission rates of both directions of transmission are in the same order of magni-

tude which can be seen in Figure 4.5. There are only small differences between the

individual transmission rates which depend on the ratio between the SNR values of the

channel between S1 and the RS and the channel between S2 and the RS. In real sys-

tems, there exist rate requirements for each direction of transmission depending on the

considered service, e.g., for a file download, a high transmission rate is required for the

transmission from the source to the destination of the file, but only a low transmission

rate for feedback is required for the transmission from the destination to the source.

Figure 5.9 gives a simple example how a scenario with asymmetric rate requirements

could look like. There exist two source-destination pairs, namely S1 and S3, as well as

S2 and S4. The two source-destination pairs are denoted by the two gray arrows in the

figure. The lengths of the bars next to the source nodes indicate the rate requirements

of the transmitting nodes. For example, the rate required for the transmission from

source node S3 to destination node S1 is twice as much as the rate required for the



134 Chapter 5: Topics of relevance for the practical implementation of two-way relaying

transmission from S1 to S3. Similarly, the rate requirement for the transmission from

S2 to S4 is the same as from S3 to S1, but twice as much as the rate requirement

for the transmission from S4 to S2. Corresponding to a system with full capabilities

as introduced for a single source-destination pair in the second row and first column

of Figure 1.4, it is assumed that all nodes of Figure 5.9 have full SP capabilities and

global CSI as defined in Section 1.1.3. In the following, three different schemes are

proposed in order to meet the rate requirements of this scenario.

In the first scheme, the two bi-directional transmissions are processed independently

in orthogonal time slots, i.e., TDMA is applied. The corresponding time slot alloca-

tion is depicted in Figure 5.10(a) where each direction of transmission is indicated by

another shade of gray according to the shades of gray presented in Figure 5.9. In order

S1 → RS

RS → S3S3 → RS

RS → S1 S2 → RS

RS → S4S4 → RS

RS → S2

time

. . .

(a) Orthogonal transmission of the two two-way transmissions.

S1 → RS

RS → S3S3 → RS

RS → S1

S2 → RS

RS → S4S4 → RS

RS → S2

time

. . .

(b) Adaptation to one-way or two-way relaying.

S1 → RS

RS → S3S3 → RS

RS → S1S2 → RS

RS → S4S4 → RS

RS → S2

time

. . .

(c) Pairing source nodes with same amount of data.

Figure 5.10. Time slot allocation for two source-destination pairs with asymmetric rate
requirements.

to obtain a transmission rate from S1 to S3 which is half as much as the transmission

rate from S3 to S1, source node S1 transmits zeros while S3 transmits its remaining

data [EW08]. After the bi-directional transmission between S1 and S3 is finished, the
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bi-directional transmission between S2 and S4 is processed where S4 transmits zeros

while S2 transmits its remaining data. Instead of tranmitting zeros, the node with the

lower rate requirement could also perform repetition coding for example.

In the second scheme, the two bi-directional transmissions are also processed in-

dependently in orthogonal time slots and the corresponding time slot allocation is

depicted in Figure 5.10(b). In contrast to the scheme proposed in Figure 5.10(a), not

only two-way relaying is used, but it is possible to change from two-way relaying to

one-way relaying and vice versa. In the following, only the bi-directional transmission

between S1 and S3 is regarded, since the bi-directional transmission between S2 and S4

is processed in the same way. There exist four phases for each direction of the trans-

mission. During the first phase, BF algorithms from two-way relaying are used which

means that S1 and S3 transmit simultaneously. After transmitting the data of S1, the

second phase starts. During the second phase, BF algorithms from one-way relaying

are used which is indicated by the small squares in the figure. In one-way relaying,

the multiple antennas of all nodes may be exclusively used for the transmission from

S3 to S1 allowing a higher transmission rate. The higher transmission rate is obtained

by multiplexing a higher number of data streams at S3 and/or using a higher order

modulation scheme and/or using a higher coding rate than in the two-way relaying

case. In the example of Figure 5.10(b), it is assumed that the transmission scheme of

the second phase provides a transmission rate from S3 to S1 which is twice as high as

the transmission rate of the first phase which allows finishing the transmission of the

remaining data during half of the time. During the third phase, two-way relaying is

used for the retransmission from the RS to S1 and S3, and during the fourth phase

one-way relaying is used for the retransmission from the RS to S1. Obviously, the

second transmission scheme requires less time slots than the first one.

In the third scheme, the transmissions of the two bi-directional source-destination

pairs are processed simultaneously as depicted for the time slot allocation of Fig-

ure 5.10(c). In contrast to the second scheme, only two-way relaying is used. For

the scheme, ideas from network coding are applied which are explained briefly in the

following. The basic idea is that nodes can receive the signals of adjacent other nodes

and can exploit this information in order to cancel interference later on. The scheme

consists of six phases. During the first phase, S1 and S3 transmit simultaneously until

the data of S1 is transmitted. During the second phase, S3 still transmits and S2

which is the source node requiring the higher transmission rate for the second source-

destination pair also starts to transmit. It is assumed that the link quality between

S1 and S2 is sufficient in order to receive the signals of S2 at S1 during the second

phase which is indicated by the black dashed arrow from S2 to S1 in Figure 5.10(c).

Furthermore, it is assumed that S1 knows the channel between S2 and S1 so that it
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is possible for S1 to cancel the interference from S2 later on. Similarly, it is possible

for S4 to cancel the interference from S3 later on. During the third phase, S2 and S4

transmit simultaneously to the RS. During the fourth phase, the RS retransmits the

received data streams from the first phase to S1 and S3, which can both cancel the

duplex interference by CDI. During the fifth phase, the RS retransmits the received

data streams from the second phase to S1 and S4. At S1 it is possible to extract the

data from S3 after canceling the interference from S2 since S1 received the data of S2

during the second phase. In the same way, it is possible to extract the data from S2 at

S4 after canceling the interference from S3. During the sixth phase, the RS retransmits

the received data streams from the third phase to S2 and S4, which can both cancel

the duplex interference of their own transmitted data streams by performing CDI.

In the third scheme, coordination among multiple source-destination pairs is re-

quired in order to find source-destination pairs which fit into the time slot allocation

proposed in Figure 5.10(c). Furthermore, CSI of channels between nodes which do

not transmit to each other is required in order to cancel the interference. This leads

to a trade-off between the efficient time slot allocation and the additional effort for

obtaining CSI in the third scheme.
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Chapter 6

Conclusions

This thesis deals with non-regenerative two-hop relaying for bi-directional transmission

between a single source-destination pair of nodes S1 and S2. Multiple antennas at the

source node, at the destination node, and at the RS are used in order to perform

spatial multiplexing. Two relaying schemes, namely one-way and two-way relaying,

are considered for the bi-directional transmission. The performance of the relaying

schemes significantly depends on the system capabilities which are defined by the CSI

availability at the nodes and the SP capabilities of the nodes. Chapter 1 provides

a framework classifying the systems of different capabilities in one-way and two-way

relaying. In the framework, four different cases of system capabilities are defined,

namely a system with full capabilities, a system with limited capabilities at the RS, a

system with limited capabilities at S1 and S2, and a system with local CSI at S1 and

S2. While the first three cases are reasonable for both relaying schemes, the fourth case

is only reasonable in two-way relaying. For all reasonable cases, several optimization

problems are considered in this thesis.

In order to formulate and describe the optimization problems, a general system

model for the bi-directional transmission between a single source-destination pair is

introduced in Chapter 2. The system model can be applied to one-way relaying as well

as to two-way relaying.

In Chapter 3, the sum rate maximization problem is considered for the first three

cases of system capabilities in one-way relaying. For a system with full capabilities, a

review of the BF algorithm which maximizes the sum rate is given. For the system with

limited capabilities at the RS, a sub-optimum analytical BF algorithm is proposed in

order to maximize the sum rate. For the maximization of the sum rate in the system

with limited capabilities at S1 and S2, only a numerical solution could be found. It

is shown that the full spatial multiplexing gain in one-way relaying is only obtained if

the number of antennas at the RS is at least as high as the number of antennas at S1

and S2.

For the system with limited capabilities at S1 and S2 in one-way relaying, three

additional linear optimization problems known to provide analytical BF algorithms

with reasonable performance in point-to-point transmission are considered, namely

the minimization of the MSE, the minimization of the MSE under the ZF constraint,
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and the maximization of the SNR. These optimization problems are newly formulated

for the one-way relaying scheme and the corresponding analytical BF algorithms are

derived. In case of a system with limited capabilities at S1 and S2, the BF algorithm

which minimizes the MSE provides the best performance in terms of sum rate and

BER.

In Chapter 4, the sum rate maximization problem is considered for all four cases

of system capabilities in two-way relaying. For all cases, the BF algorithm which

maximizes the sum rate could only be found numerically. Nevertheless, methods are

proposed in order to simplify the numerical optimizations and for the particular case

of one antenna at S1 and S2 a sub-optimum analytical BF algorithm is proposed. It

is shown that a significant amount of the loss in achievable sum rate due to the half-

duplex constraint in two-hop transmissions can be compensated by two-way relaying.

Furthermore, the full spatial multiplexing gain in two-way relaying is only obtained if

the number of antennas at the RS is at least twice as high as the number of antennas

at S1 and S2.

The three additional linear optimization problems introduced in one-way relaying

are also considered for the system with limited capabilities at S1 and S2 and the system

with local CSI at S1 and S2 in two-way relaying. For the system with limited capabili-

ties at S1 and S2, it is shown that the corresponding BF algorithms can be derived by

introducing an equivalent system model and using the respective BF algorithms devel-

oped for one-way relaying. For the system with local CSI at S1 and S2, BF algorithms

which minimize the MSE, minimize the MSE under the ZF constraint, and maximize

the SNR are newly derived. The BF algorithm which minimizes the MSE provides the

best performance in terms of sum rate and BER. The comparison between the system

with limited capabilities at S1 and S2 and the system with local CSI at S1 and S2

shows that at least local CSI should be provided to S1 and S2, since significant gains

in terms of sum rate and BER can be obtained due to the cancellation of the duplex

interference at the destination nodes.

In Chapter 5, pilot transmission schemes for obtaining CSI are proposed for the

different cases of system capabilities and the respective channel estimation algorithms

are developed. The systems which only require global CSI at the RS and no global

CSI at S1 and S2 require less transmissions of pilot symbols. Thus, it is shown that

there exists a trade-off between achievable sum rate and required effort in order to

obtain CSI. Furthermore, it is shown that systems with global CSI at S1 and S2 are

less sensitive to imperfect CSI than systems which do not have global CSI at S1 and S2.

Finally, multiple source-destination pairs are addressed in Chapter 5, and approaches

to satisfy asymmetric rate requirements in bi-directional transmissions are proposed.
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Appendix

A.1 Derivation of (3.38) and (3.39) for the MMSE-

BF algorithm in one-way relaying

In the following, the derivation of the BF matrix G
(k,i)
MMSE of Eq. (3.38) and the weighting

factor p
(k)
MMSE of Eq. (3.39) is sketched for the MMSE-BF algorithm in one-way relaying.

From the first KKT condition (3.36a), the conjugate weighting factor p(k)∗ can be

determined as

p(k)∗ =
q(i)tr

{

H(k)TG(k,i)H(i)Rx(i)

}

tr
{

H(k)TG(k,i)Υ(i)G(k,i)HH(k)∗
}

+ tr
{

R
n

(k)
R

} , (A.1.1)

with Υ(i) from (3.34). The conjugate weighting factor from (A.1.1) is inserted into the

second KKT condition (3.36b), yielding

η(k)G(k,i)Υ(i) =
q(i)tr

{

H(k)TG(k,i)H(i)Rx(i)

}

q(i)H(k)∗Rx(i)H(i)H

tr
{

H(k)TG(k,i)Υ(i)TG(k,i)HH(k)∗
}

+ tr
{

R
n

(k)
R

}

−
q(i)2

∣

∣

∣tr
{

H(k)TG(k,i)H(i)Rx(i)

}∣

∣

∣

2

H(k)∗H(k)TG(k,i)Υ(i)

tr2
{

H(k)TG(k,i)Υ(i)TG(k,i)HH(k)∗ + R
n

(k)
R

} . (A.1.2)

After multiplying both sides of Eq. (A.1.2) with G(k,i)H , applying the trace operator,

and some algebraic manipulations, one gets

η(k)tr
{

G(k,i)Υ(i)G(k,i)H
}

= p(k)2tr
{

R
n

(k)
R

}

. (A.1.3)

With Eq. (A.1.3) and the RS transmit power constraint (3.32b), the Lagrangian mul-

tiplier η(k) results in

η(k) =
p(k)2tr

{

R
n

(k)
R

}

E(0)
. (A.1.4)

By rearranging the second KKT condition (3.36b) and inserting the Lagrangian mul-

tiplier of Eq. (A.1.4), the BF matrix G(k,i) results in

G(k,i) =
q(i)

p(k)

(

p(k)2H(k)∗H(k)T + η(k)IL

)−1

H(k)∗Rx(i)H(i)HΥ(i)−1

. (A.1.5)

Inserting Eq. (A.1.5) into the RS transmit power constraint (3.32b) shows that only

the absolute value of the weighting factor p(k) is defined which means that there is no



140 Appendix

unique solution to p(k). However, restricting p(k) to be positive real-valued ends up

with the unique solution

p
(k)
MMSE =

√

q(i)2tr
{

H(i)Rx(i)H(k)TΥ(k)−2H(k)∗Rx(i)H(i)HΥ(i)−1
}

E(0)
∈ R

+, (A.1.6)

with Υ(k) of Eq. (3.37). With Eqs. (A.1.6) and (3.37), the linear BF matrix of

Eq. (A.1.5) is rewritten as

G
(k,i)
MMSE =

q(i)

p
(k)
MMSE

Υ(k)−1

H(k)∗Rx(i)H(i)HΥ(i)−1

. (A.1.7)

A.2 Derivation of (3.48) and (3.49) for the ZF-BF

algorithm in one-way relaying

In the following, the derivation of the BF matrix G
(k,i)
ZF of Eq. (3.48) and the weighting

factor p
(k)
ZF of Eq. (3.49) is sketched for the ZF-BF algorithm in one-way relaying. The

second KKT condition (3.47a) can be rewritten as follows:

G(k,i) =
1

η(k)

(

−p(k)2H(k)∗H(k)TG(k,i)Rn(0) + p(k)∗q(i)H(k)∗Γ(k)HH(i)H
)

Υ(i)-1 . (A.2.1)

An analytical solution to the optimization problem (3.43) can only be provide if Rn(0) of

the first summand in Eq. (A.2.1) is assumed to be zero, i.e., Rn(0) = 0L×L. Otherwise,

it is not possible to extract BF matrix G(k,i) in Eq. (A.2.1) and to determine the

Lagrangian multiplier Γ(k). Regarding the Lagrangian function (3.46), setting the first

summand in (A.2.1) equal to zero corresponds to an optimization problem which only

minimizes the MSE neglecting the noise at the RS which is actually retransmitted

to node Sk. Thus, the following solution is expected to be sub-optimum. Note that

the noise at the RS is only neglected for the first summand in Eq. (A.2.1), but for

the transmit power constraint (3.43c) at the RS, the noise Rn(0) is still considered,

i.e., Rn(0) 6= 0L×L in the covariance matrix Υ(i) of the received signal at the RS of

Eq. (3.34) which also depends on Rn(0) .

With this assumption, Eq. (A.2.1) is inserted into the ZF constraint (3.44), yielding

the Hermitian of the Lagrangian multiplier

Γ(k)H =
η(k)

q(i)2p(k)2

(

H(k)TH(k)∗
)−1 (

H(i)HΥ(i)-1H(i)
)−1

. (A.2.2)
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By inserting the Hermitian of the Lagrangian multiplier Γ(k)H of Eq. (A.2.2) into

Eq. (A.2.1) for Rn(0) = 0L×L, the BF matrix G
(k,i)
ZF at the RS results in

G
(k,i)
ZF =

1

p(k)q(i)
H(k)∗

(

H(k)TH(k)∗
)−1 (

H(i)HΥ(i)-1H(i)
)−1

H(i)HΥ(i)-1 . (A.2.3)

Applying the Woodbury identity (A.4.4) for the matrix inversion introduced in Ap-

pendix A.4, Eq. (A.2.3) can be rewritten as

G
(k,i)
ZF =

1

p(k)q(i)
H(k)∗

(

H(k)TH(k)∗
)−1 (

H(i)HR−1
n(0)H

(i)
)−1

H(i)HR−1
n(0) . (A.2.4)

The RS transmit power constraint can be satisfied subsequently by inserting GZF of

Eq. (A.2.4) into Eq. (3.43c). Restricting p
(k)
ZF to be positive real-valued yields

p
(k)
ZF =

1

q(i)

√

√

√

√

tr
{

(

H(i)HΥ(i)-1H(i)
)−1 (

H(k)TH(k)∗
)−1
}

E(0)
∈ R

+. (A.2.5)

A.3 Derivation of (3.57) and (3.58) for the MF-BF

algorithm in one-way relaying

In the following, the derivation of the BF matrix G
(k,i)
MF of Eq. (3.57) and the weighting

factor p
(k)
MF of Eq. (3.58) is sketched for the MF-BF algorithm in one-way relaying. The

first KKT condition (3.56a) can be rewritten as follows:

G(k,i) =
q(i)2

η(k)

(

∣

∣α(k)
∣

∣

2
tr {Rx(i)}H(k)∗H(k)TG(k,i)Rn(0) + α(k)H(k)∗Rx(i)H(i)H

)

Υ(i)−1

.

(A.3.1)

As proposed for the ZF-BF algorithm in Appendix A.2, Rn(0) of the first summand

in Eq. (A.3.1) is assumed to be zero in order to provide an analytical solution to the

optimization problem (3.52), i.e., Rn(0) = 0L×L. Regarding the Lagrangian function

(3.54), setting the first summand in (A.3.1) equal to zero corresponds to an optimization

problem which only maximizes the SNR between the power of the useful received

signal and the noise at destination node Sk neglecting the noise at the RS which is

retransmitted. Thus, the following solution is expected to be sub-optimum. Note that

the noise at the RS is only neglected for the first summand in Eq. (A.3.1), but for

the transmit power constraint (3.52b) at the RS, the noise Rn(0) is still considered,

i.e., Rn(0) 6= 0L×L in the covariance matrix Υ(i) of the received signal at the RS of

Eq. (3.34) which also depends on Rn(0) .
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Since p(k) can be chosen arbitrarily which can be seen from the Lagrangian function

(3.54), the following choice is made:

1

p(k)
=

q(i)2α(k)

η(k)
. (A.3.2)

With this choice, Eq. (A.3.1) already gives the solution for the BF matrix G
(k,i)
MF under

the assumption Rn(0) = 0L×L. The BF matrix G
(k,i)
MF results in

G
(k,i)
MF =

1

p(k)
H(k)∗Rx(i)H(i)HΥ(i)−1

(A.3.3)

Assuming that p
(k)
ZF is positive real-valued, the BF matrix G(k,i) of Eq. (A.3.3) can be

inserted into the RS transmit power constraint yielding

p
(k)
MF =

√

tr
{

H(k)∗Rx(i)H(i)HΥ(i)−1H(i)Rx(i)H(k)T
}

E(0)
∈ R

+. (A.3.4)

A.4 The vectorization, the Kronecker product, and

the matrix inversion

For some of the proposed BF algorithms, the following mathematical definitions and

identities are required:

• The Kronecker product of matrices Z ∈ C
K×N and X ∈ C

U×V is defined as

Z ⊗ X =











z1,1X z1,2X . . . z1,NX
z2,1X z2,2X . . . z2,NX

...
...

. . .
...

zK,1X zK,2X . . . zK,NX











∈ C
KU×NV , (A.4.1)

where zk,n, k = 1, 2, . . . , K and n = 1, 2, . . . , N , is the element in the k-th row

and n-th column of matrix Z.

• The vectorization operator vec [Z] stacks the columns of matrix Z into a vector,

i.e.,

vec [Z] = [z1,1, z2,1, . . . , zK,1, z1,2, z2,2, . . . , zK,2, . . . , z1,N , z2,N , . . . , zK,N ]T .

(A.4.2)
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• The operator vec−1
K,N [·] is the revision of the operator vec [·], i.e., a vector of

length KN is sequentially divided into N smaller vectors of length K which are

combined to a matrix with K rows and N columns.

• The vectorization of a matrix product XYZ is given by

vec [XYZ] =
(

ZT ⊗ X
)

vec [Y] . (A.4.3)

• The Woodbury identity [PP08] for the matrix inversion with positive definite

matrices R and X is given by

(

X−1 + ZHR−1Z
)−1

ZHR−1 = XZH
(

ZXZH + R
)−1

. (A.4.4)

A.5 Derivation of (4.65) and (4.67) for the MMSE-

BF algorithm in two-way relaying

In the following, the derivation of the BF matrix GMMSE of Eq. (4.65) and the weighting

factor pMMSE of Eq. (4.67) is sketched for the MMSE-BF algorithm for a system with

local CSI at S1 and S2 in two-way relaying. From the first KKT condition (4.63a), the

conjugate weighting factor p∗ can be determined as

p∗ =

2
∑

i=1

q(i)tr
{

H(k)TGH(i)Rx(i)

}

2
∑

i=1

tr
{

H(k)TGΥ(i)GHH(k)∗ + R
n

(k)
R

}

, (A.5.1)

with Υ(i) of Eq. (3.34). The weighting factor of Eq. (A.5.1) is inserted into the second

KKT condition (4.63b), yielding

ηGΥ =

2
∑

i=1

q(i)tr
{

H(k)TGH(i)Rx(i)

}

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

2
∑

i=1

tr
{

H(k)TGΥ(i)TGHH(k)∗ + R
n

(k)
R

}

−

2
∑

i=1

∣

∣

∣tr
{

q(i)H(k)TGH(i)Rx(i)

}∣

∣

∣

2

H(k)∗H(k)TGΥ(i)

tr2

{

2
∑

i=1

H(k)TGΥ(i)TGHH(k)∗ + R
n

(k)
R

} . (A.5.2)
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After multiplying both sides of Eq. (A.5.2) with GH, applying the trace operator, and

some algebraic manipulations, one gets

η tr
{

GΥGH
}

= p2tr

{

2
∑

k=1

R
n

(k)
R

}

. (A.5.3)

With Eq. (A.5.3) and the RS transmit power constraint (4.59c), the Lagrangian mul-

tiplier results in

η =

p2tr

{

2
∑

k=1

R
n

(k)
R

}

E(0)
. (A.5.4)

Let K be given by

K =
2
∑

i=1

(

Υ(i)T ⊗
(

H(k)∗H(k)T
))

+

(

Υ ⊗ 1

E(0)
tr

{

2
∑

k=1

R
n

(k)
R

}

IL

)

. (A.5.5)

In order to separate the BF matrix G, the second KKT condition (4.63b) is vectorized

firstly, and secondly, identity (A.4.3) is applied. These operations result in the following

vector equation:

vec [G] =
1

p
K−1 vec

[

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

]

. (A.5.6)

From Eq. (A.5.6), the BF matrix G can be determined by reversing the vectorization.

Let auxiliary matrix G̃ be defined as

G̃ = pG = vec−1
L,L

[

K−1 vec

[

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

]]

. (A.5.7)

Inserting Eq. (A.5.7) into the RS transmit power constraint (4.59c) shows that only

the absolute value of the weighting factor p is defined which means that there is no

unique solution to p. However, restricting p to be positive real-valued yields the unique

solution

pMMSE =

√

√

√

√

tr
{

G̃ΥG̃H
}

E(0)
∈ R

+, (A.5.8)

and

GMMSE =
1

pMMSE

vec−1
L,L

[

K−1 vec

[

2
∑

i=1

q(i)H(k)∗Rx(i)H(i)H

]]

. (A.5.9)
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A.6 Derivation of (4.75) and (4.77) for the ZF-BF

algorithm in two-way relaying

In the following, the derivation of the BF matrix GZF of Eq. (4.75) and the weighting

factor pZF of Eq. (4.77) is sketched for the ZF-BF algorithm for a system with local

CSI at S1 and S2 in two-way relaying. Due to the two ZF constraints in (4.69), the

optimization is more complicated than in the one-way relaying case of Appendix A.2.

An analytical solution to problem (4.68) can only be provided under the assumption

that Rn(0) = 0L×L in the first summand of the second KKT condition (4.72b). Thus,

for the MSE of Eq. (4.70) the noise of the RS which is actually retransmitted to node

Sk is neglected providing a sub-optimum solution to the original optimization problem

(4.68). Note that the noise at the RS is only neglected for the first summand in

Eq. (4.72b), but for the transmit power constraint (4.68d) at the RS, the noise Rn(0)

is still considered, i.e., Rn(0) 6= 0L×L in the covariance matrix Υ of the received signal

at the RS of Eq. (4.61) which also depends on Rn(0) . With these assumptions, the BF

matrix G at the RS can be determined by the second KKT condition (4.72b) yielding

G =
p∗

η

2
∑

i=1

q(i)H(k)∗Γ(k)HH(i)HΥ−1. (A.6.1)

By inserting (A.6.1) into both ZF constraints of Eq. (4.69), it can be shown that the

Lagrangian multipliers Γ(k)H , k = 1, 2, are proportional to η/ |p|2 which means that

Γ(k)H can be described by

Γ(k)H =
η

|p|2
Γ̃(k)H , (A.6.2)

with the modified Lagrangian multipliers Γ̃(k), k = 1, 2. Thus, by inserting (A.6.2)

into Eq. (A.6.1) the BF matrix G becomes independent of the Lagrangian multiplier

η resulting in

G =
1

p

2
∑

i=1

q(i)H(k)∗Γ̃(k)HH(i)HΥ−1. (A.6.3)

In the following, the modified Lagrangian multipliers Γ̃(1)H and Γ̃(2)H are determined

by inserting G of Eq. (A.6.3) into both ZF constraints from (4.69). Let matrices X
(k)
0 ,

X
(k)
1 , X

(k)
2 , X

(k)
3 and X

(k)
4 be given by

X
(k)
0 = H(k)TH(i)∗

(

H(i)TH(i)∗
)−1(

H(k)HΥ−1H(k)
)−1

H(k)HΥ−1H(i),(A.6.4a)

X
(k)
1 = q(i)H(k)TH(k)∗ , (A.6.4b)

X
(k)
2 = H(i)HΥ−1H(i), (A.6.4c)

X
(k)
3 = q(k)H(k)TH(i)∗

(

H(i)TH(i)∗
)−1

H(i)TH(k)∗ , (A.6.4d)

X
(k)
4 = H(i)HΥ−1H(k)

(

H(k)HΥ−1H(k)
)−1

H(k)HΥ−1H(i). (A.6.4e)
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Solving the first ZF constraint in (4.69) for Γ̃(1)H , and inserting Γ̃(1)H into the second

ZF constraint, gives the following two equations depending on Γ̃(k)H , for k = 1, 2:

1

q(k)
IM − X

(k)
0 = X

(k)
1 Γ̃(k)HX

(k)
2 − X

(k)
3 Γ̃(k)HX

(k)
4 . (A.6.5)

By vectorizing Eq. (A.6.5) and applying identity (A.4.3), vec
[

Γ̃(k)H
]

results in

vec
[

Γ̃(k)H
]

=
((

X
(k)T

2 ⊗ Y
(k)
1

)

−
(

X
(k)T

4 ⊗ X
(k)
3

))−1

vec

[

1

q(k)
IM − X

(k)
0

]

. (A.6.6)

The reversion of the vectorization provides the modified Lagrangian multipliers

Γ̃(k)H = vec−1
M,M

[

((

X
(k)T

2 ⊗ X
(k)
1

)

−
(

X
(k)T

4 ⊗ X
(k)
3

))−1

vec

[

1

q(k)
IM − X

(k)
0

]]

.

(A.6.7)

Let auxiliary matrix G̃ be defined as

G̃ = pG =
2
∑

i=1

q(i)H(k)∗Γ̃(k)HH(i)HΥ−1, (A.6.8)

with the modified Lagrangian multiplier of Eq. (A.6.7). Inserting Eq. (A.6.3) into

the RS transmit power constraint (4.68d), shows that only the absolute value of the

weighting factor p is defined which means that there exists no unique solution to p.

However, restricting p to be positive real-valued, yields the unique solution

pZF =

√

√

√

√

tr
{

G̃ΥG̃H
}

E(0)
∈ R

+, (A.6.9)

and

GZF =
1

pZF

2
∑

i=1

q(i)H(k)∗Γ̃(k)HH(i)HΥ−1, (A.6.10)

with Γ̃(k)H from (A.6.7).

A.7 Derivation of (4.83) and (4.85) for the MF-BF

algorithm in two-way relaying

In the following, the derivation of the BF matrix GMF of Eq. (4.83) and the weighting

factor pMF of Eq. (4.85) is sketched for the MF-BF algorithm for a system with local

CSI at S1 and S2 in two-way relaying. An analytical solution to problem (4.78) can

only be provided under the assumption that Rn(0) = 0L×L in the second summand of
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the first KKT condition (4.82a). Thus, for the SNR definition of the objective function

(4.78a), the noise of the RS which is actually retransmitted to node Sk is neglected

providing a sub-optimum solution to the original optimization problem (4.78). Note

that the noise at the RS is only neglected for the second summand in Eq. (4.82a), but

for the transmit power constraint (4.78c) at the RS, the noise Rn(0) is still considered,

i.e., Rn(0) 6= 0L×L in the covariance matrix Υ of the received signal at the RS of

Eq. (4.61) which also depends on Rn(0) . With these assumptions, the BF matrix G at

the RS can be determined by the first KKT condition (4.82a) yielding

G =
1

η

2
∑

i=1

q(i)2α(i)H(k)∗Rx(i)H(i)HΥ−1. (A.7.1)

By inserting BF matrix G of Eq. (A.7.1) into (4.81), it can be shown that
∣

∣q(1)
∣

∣

2
α(1) =

∣

∣q(2)
∣

∣

2
α(2) for

η =
∣

∣q(2)
∣

∣

2
tr
{

H(1)TH(2)∗H(1)HH(2)Υ−1
}

+
∣

∣q(1)
∣

∣

2
tr
{

H(2)TH(1)∗H(2)HH(1)Υ−1
}

.

(A.7.2)

For
∣

∣q(1)
∣

∣

2
α(1) =

∣

∣q(2)
∣

∣

2
α(2), the following choice is made for the scalar weighting factor

p which can be chosen arbitrarily except for p = 0 due to the Lagrangian function

(4.80):

1

p
=

α(1)
∣

∣q(1)
∣

∣

2

η
. (A.7.3)

Let auxiliary matrix G̃ be defined as

G̃ = pG =
2
∑

i=1

H(k)∗Rx(i)H(i)HΥ−1. (A.7.4)

Inserting (A.7.1) into the RS transmit power constraint (4.78c), and restricting p to be

positive real-valued, yields

pMF =

√

√

√

√

tr
{

G̃ΥG̃H
}

E(0)
∈ R

+, (A.7.5)

and

GMF =
1

pMF

2
∑

i=1

H(k)∗Rx(i)H(i)HΥ−1. (A.7.6)
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List of Acronyms

3G Third Generation of wireless communications

4G Fourth Generation of wireless communications

AF Amplify-and-Forward

AWGN Additive White Gaussian Noise

BF Beamforming

BER Bit Error Rate

CDI Cancellation of Duplex Interference

CSI Channel State Information

DF Decode-and-Forward

EMC Electro-Magnetic Compatibility

FDMA Frequency Division Multiple Access

KKT Karush-Kuhn-Tucker

MF Matched Filter

MIMO Multiple Input Multiple Output

MMSE Minimum Mean Square Error

MRR Maximal-Ratio Reception

MRT Maximal-Ratio Transmission

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

PA Power Allocation

PACE Pilot Assisted Channel Estimation

PSK Phase Shift Keying

QPSK Quadrature Phase Shift Keying

RS Relay Station
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SDMA Spatial Division Multiple Access

SINR Signal-to-Interference plus Noise Ratio

SNR Signal-to-Noise Ratio

SQP Sequential Quadratic Programming

SP Signal Processing

SVD Singular Value Decomposition

TDMA Time Division Multiple Access

TS Time Slot

WLAN Wireless Local Area Network

XOR Exclusive OR

ZF Zero Forcing
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Notation

0L×M All zero matrix with L rows and M columns

arg max
{x}

y Returns the value of x which maximizes y

arg min
{x}

y Returns the value of x which minimizes y

A(k) Matrix linked with the useful receive signal at node Sk

A
(k)
m Useful signal power at the m-th receive antenna of node Sk

B(k) Matrix describing the overall filtering of the noise at node Sk

B
(k)
m Overall noise power at the m-th receive antenna of node Sk

β(i) lets pass a signal for β(i) = 1 and blocks a signal for β(i) = 0

C
(k)
EW Transmission rate for the transmission from Si to Sk

C(sum) Sum rate

C Set of complex numbers

det [·] Determinant

diag [·] Diagonal matrix consisting of the main diagonal matrix elements if
the argument is a matrix, and consisting of the vector elements if the
argument is a vector

diagb [·] Composes a block diagonal matrix of the matrix arguments

D(k) Matrix linked with the duplex interference at node Sk

D
(k)
m Duplex interference power at the m-th receive antenna of node Sk

E(0) Maximum transmit power of the RS

E(i) Maximum transmit power of node Si

E {·} Expectation operator

F(k) Matrix linked with the intersymbol interference at node Sk

F
(k)
m Intersymbol interference power at the m-th receive antenna of node

Sk

Ḡ General BF matrix at the RS valid in one-way and two-way relaying

G BF matrix at the RS in two-way relaying

GT Transmit BF matrix in the decomposition of G

GR Receive BF matrix in the decomposition of G

G(k,i) BF matrix at the RS for the transmission from Si to Sk in one-way
relaying

G
(k)
T Transmit BF matrix in the decomposition of G(k,i)

G
(i)
R Receive BF matrix in the decomposition of G(k,i)

g real-valued weighting factor at the RS in two-way relaying
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g(k,i) real-valued weighting factor at the RS for the transmission from Si to
Sk in one-way relaying

h
(i)
n,m Channel fading coefficient between transmit antenna n of node Si and

receive antenna m of the RS

h
(i)
m m-th channel vector between node Si and the RS

H(i) Channel matrix between node Si and the RS

H(k,i) Overall channel matrix for the transmission from Si to Sk

HR Joint first hop channel matrix

HT Joint second hop channel matrix

IM Identity matrix of size M

j
√
−1

L Number of antennas at the RS

Λ(k) Diagonal matrix containing the eigenvalues of H(k)

λ
(k)
m m-th eigenvalue of H(k)

Λ(k,i) Diagonal matrix containing the eigenvalues of H(k,i)

λ
(k,i)
m m-th eigenvalue of H(k,i)

log2 (·) Logarithm to the base 2

M Number of antennas at S1 and S2

n(0) Noise vector at the RS

n(k) Overall noise vector at node Sk

n
(k)
R Noise vector at node Sk

p(k) Scalar receive weighting factor at node Sk

P(k) Receive BF matrix at node Sk

P Joint receive BF matrix of nodes S1 and S2

q(i) Scalar transmit weighting factor at node Si

Q(i) Transmit BF matrix at node Si

Q Joint transmit BF matrix of nodes S1 and S2

r Sum rate normalization factor

R Number of non-zero eigenvalues

Rn(0) Noise covariance matrix at the RS

Rn(k) Overall noise covariance matrix at node Sk

R
n

(k)
R

Noise covariance matrix at node Sk

Rx(i) Covariance matrix of the data vector transmitted by node Si

R Set of real numbers

R
+ Set of positive real numbers

σ(i)2 Variance of the channel coefficients in H(i)
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σ2
n(0) Noise variance at the RS

σ2

n
(k)
R

Noise variance at node Sk

S number of orthogonal time slots required for one bi-directional trans-
mission

SINR(k)
m SINR at the m-th receive antenna of node Sk

SNR(i) Average SNR for the transmission from Si to the RS and vice versa

T
(k)
m Power depending on CDI matrix T(k) at the m-th receive antenna of

node Sk

T(k) CDI matrix at node Sk

T Joint CDI matrix at nodes S1 and S2

U(i) Left eigenvectors of H(i)

V(i) Right eigenvectors of H(i)

U(k,i) Left eigenvectors of H(k,i)

V(k,i) Right eigenvectors of H(k,i)

vec [·] vectorization operator, cf. Appendix A.4

wl l-th diagonal element of matrix G̃

w
(k,i)
l l-th diagonal element of the RS power allocation matrix W(k,i)

W(k,i) RS power allocation matrix in the decomposition of G(k,i)

tr {·} Sum of the main diagonal elements of a matrix

x
(i)
m m-th data symbol of node Si

x Joint data vector transmitted by S1 and S2

x(i) Data vector transmitted by node Si

x̂ Joint estimated data vector

x̂(i) Estimated data vector of x(i)

[·]H Hermitian of a vector or a matrix

[·]T Transpose of a vector or a matrix

[·]∗ Conjugate of a scalar or a vector or a matrix

(y)+ Returns y if y ≥ 0 and returns 0 if y < 0

⌊·⌋ Rounds the argument to the nearest integer towards minus infinity

|·| Absolute value

‖·‖2
2 Euclidean norm of a vector

⊗ Kronecker product operator, cf. Appendix A.4
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