
HAL Id: hal-01130233
https://hal.science/hal-01130233v1

Submitted on 11 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of Reconfigurable Distributed Embedded
Systems with a Model-Driven Approach

Fatma Krichen, Brahim Hamid, Bechir Zalila, Mohamed Jmaiel, Bernard
Coulette

To cite this version:
Fatma Krichen, Brahim Hamid, Bechir Zalila, Mohamed Jmaiel, Bernard Coulette. Development
of Reconfigurable Distributed Embedded Systems with a Model-Driven Approach. Concurrency and
Computation: Practice and Experience, 2013, pp.0. �10.1002/cpe.3095�. �hal-01130233�

https://hal.science/hal-01130233v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12347

To link to this article : DOI :10.1002/cpe.3095
URL : http://dx.doi.org/10.1002/cpe.3095

To cite this version : Krichen, Fatma and Hamid, Brahim and Zalila,
Bechir and Jmaiel, Mohamed and Coulette, Bernard Development of
Reconfigurable Distributed Embedded Systems with a Model-Driven
Approach. (2013) Concurrency and Computation: Practice and
Experience. ISSN 1532-0626

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/12347/
http://oatao.univ-toulouse.fr/12347/
http://oatao.univ-toulouse.fr/12347/
http://dx.doi.org/10.1002/cpe.3095
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Development of reconfigurable distributed embedded systems with
a model-driven approach

Fatma Krichen 1,*,†, Brahim Hamid 1, Bechir Zalila 2, Mohamed Jmaiel 2 and
Bernard Coulette 1

1IRIT, University of Toulouse, France
2ReDCAD, National Engineering School of Sfax, University of Sfax, Tunisia

SUMMARY

In this paper, we propose a model-driven approach allowing to build reconfigurable distributed real-time
embedded (DRE) systems. The constant growth of the complexity and the required autonomy of embedded
software systems management give the dynamic reconfiguration a big importance. New challenges to apply
the dynamic reconfiguration at model level as well as runtime support level are required. In this direction,
the development of reconfigurable DRE systems according to traditional processes is not applicable. New
methods are required to build and to supply reconfigurable embedded software architectures. In this con-
text, we propose an model-driven engineering based approach that enables to design reconfigurable DRE
systems with execution framework support. This approach leads the designer to specify step by step his/her
system from a model to another one more refined until the targeted model is reached. This targeted model
is related to a specific platform leading to the generation of the most part of the system implementation. We
also develop a new middleware that supports reconfigurable DRE systems.

KEY WORDS: software engineering; MDE-based approach; meta-model; UML profile; real-time embed-
ded systems; non-functional properties; middleware

1. INTRODUCTION

An embedded system is composed of two main parts: software and hardware. The integration of
these two parts achieves some functionalities. The dynamic reconfiguration consists in evolving
the system from its current configuration to another configuration at runtime. Such system can
evolve by either architectural or behavioral reconfigurations. The architectural reconfigurations con-
sist in modifying the system topology such as adding or removing components or connections. The
behavioral reconfigurations consist in modifying the system behavior by updating, for example,
non-functional properties (NFPs) or implementations of components.
Most distributed real-time embedded (DRE) systems are not fully autonomous and require the

human intervention to respond to events and to be reconfigured. But, human interventions can cause
errors and require more time and much efforts. Moreover, it is sometimes impossible to interrupt a
real-time critical system for reconfiguration. Therefore, the dynamic reconfiguration is required to
construct autonomous DRE systems. Constructing reconfigurable DRE systems requires consider-
able efforts and is error prone. It is tedious and complex to develop these systems without providing
models at high-level. New modeling concepts are required to specify dynamic reconfigurations of
these systems. Moreover, the hardware resources of an embedded system are generally limited and

*Correspondence to: Fatma Krichen, IRIT, University of Toulouse, France 118 Route de Narbonne 31062 Toulouse
Cedex 9, France.
†E-mail: fatma.krichen@irit.fr

their use has to be optimized. To develop a rich embedded system with several functionalities and
low cost hardware resources, the hardware resources should be allocated only when required. For
component-based architectures, components should be replaced/updated at runtime to be reused and
to provide different functionalities.
Most of research activities present reconfigurable systems with a predefined number of configu-

rations. Most achieved work in this direction have been proposed in the context of the two standards
AADL (Architecture Analysis & Design Language) [1] and MARTE (Modeling and Analysis of
Real-Time Embedded systems) [2]. Both standards define the dynamic reconfigurations in terms
of modes and mode transitions. A mode represents a particular configuration while a transition
represents an event, which applies the reconfiguration of system from a mode to another. The
reconfigurations are described using state machines composed of a predefined number of modes
and transitions between them. The major drawback of these two standards is the necessity of the
definition of a predefined number of configurations.
Facing the exponential evolution of reconfigurable DRE system requirements, developers have

very little time to market their systems. This constraint is an important factor to have a competi-
tive advantage. For this reason, developers should build a system as fast as possible, guaranteeing
required functionalities. To cope with the growing complexity of system design, several refinement
approaches have been proposed. The most popular one is model-driven engineering (MDE) [3].
Using modeling languages in MDE, models represent the main artifacts to be constructed and main-
tained. In the MDE context, software development consists in transforming a model into another
one more refined until the targeted model is reached. This targeted model is related to a specific
platform and it is ready to be executed.
In this paper, we aim to provide an approach allowing to design reconfigurable DRE systems. For

this, we propose an MDE-based approach that defines a set of steps to be followed by the developer.
A set of transformation rules allow model to model transformations. Contrary to AADL [1] and
MARTE profile [2], our approach allows specifying a reconfigurable system with a non-predefined
number of configurations. For this, we introduce new concepts capturing the dynamic reconfigura-
tions of DRE systems. Moreover, we have developed a new middleware that ensures the dynamic
reconfiguration as well as the monitoring and the coherence of DRE systems.
The rest of the paper is organized as follows. In Section 2, we describe our whole develop-

ment process to conceive reconfigurable DRE systems. Section 3 presents the proposed reconfig-
urable component architecture for real-time embedded system (RCA4RTES) model-based approach
to specify reconfigurable DRE systems. Section 4 describes the proposed middleware dedicated
to reconfigurable real-time embedded systems. The strategy of code generation is described in
Section 5. Section 6 illustrates the effectiveness of the proposed approach by considering a
case study having dynamic reconfiguration requirements: a global positioning system (GPS). In
Section 7, we briefly review some related work that address the development process of embedded
systems. Finally, Section 8 concludes this paper and presents some future work.

2. AN MODEL-DRIVEN ENGINEERING BASED APPROACH TO RECONFIGURABLE DRE
SYSTEMS DEVELOPMENT

To solve the previously mentioned problems, we propose an MDE-based approach to design recon-
figurable DRE systems with a non-predefined number of configurations. For that, we introduce the
new concept MetaMode that captures and characterizes a set of configurations (modes) instead of
defining each one of them. The MetaMode is described by structured components, connectors as
well as non-functional and structural constraints. The modes belonging to a MetaMode are speci-
fied by the set of instances of structured components and connectors defined by thisMetaMode and
satisfying its constraints.
Our approach defines policy-based reconfigurations. We specify dynamic reconfigurations using

state machines, which define a set ofMetaModes and transitions between them. A transition between
two MetaMode represents a set of reconfigurations between modes belonging to these MetaModes

(as shown in Figure 1). When an event (represented as a MetaMode transition) is triggered, recon-
figurations (i.e., represented as mode transition) are applied on the current mode to reach one of

MetaMode1 MetaMode2

t1: MetaMode transition

M
et

aM
o

d
e

le
v

el
Mode11 Mode12 Mode21 Mode22 Mode23M

o
d

e
le

v
el

b
el

o
n

g
s

to

t2: Mode transition

respecting reconfiguration policies

Figure 1. MetaMode modeling.

Specification of
Reconfigurable

Application model

Specification of
Software Model

Specification of
Hardware Model

Specification of
Software/Hardware

Mapping Model

Generation of
Implementation

Model

Transformation Rules

RCES4RTES
Middleware Model

use

Generated
Code

Code Templates

RCES4RTES
Middleware

import

conform to

R
C

A
4
R

T
E

S
 M

o
d
e
l-
B

a
s
e
d

A
p
p
ro

a
c
h

C
o
d
e
 G

e
n
e
ra

ti
o
n
 S

tr
a
te

g
y

Figure 2. Development process for reconfigurable distributed real-time embedded systems.

the modes belonging to the targetMetaMode. Reconfiguration policies allow to automatically select
the target mode. The considered reconfiguration policies in this framework are memory, CPU and
bandwidth optimization.
Figure 1 depicts the previous concepts with a toy example. The designer specifies the dynamic

reconfigurations of his/her DRE system using a state machine, which contains two MetaModes:
MetaMode1 and MetaMode2. A transition t1 represents a reconfiguration between these two
MetaModes. The mode transition t2 is one of the possible transitions deduced from t1 thanks to
reconfiguration policies. The current modeMode12 is automatically replaced by the modeMode23.
Then, each MetaMode must be allocated on the hardware architecture. As the hardware archi-

tecture is unchanged, the allocation is defined from software architecture models (MetaModes) to
execution supports. Some allocation constraints should be defined in order to specify the allocation
policies. These policies define the mapping from software models to hardware instance.
All previously described concepts allow to model reconfigurable DRE systems. To perform the

code generation, these models will be transformed to implementation models. The implementa-
tion models allow to generate code using the routines of our proposed reconfigurable component
execution support for real-time embedded systems (RCES4RTES) middleware [4].
We define an MDE-based approach that defines a development process from models to code as

shown in Figure 2. This process consists of five phases to be followed by user:

� Specification of reconfigurable application model:modeling of the dynamic reconfigurations
using state machines composed of a set of MetaModes and transitions between them. Recon-
figuration policies should be also specified to select the target mode. This model is conform to
RCA4RTES meta-model [5].

� Specification of software model: modeling of the system MetaModes where each MetaMode

is composed of a set of structured components, connectors as well as non-functional and
structural constraints. Software model is also conform to RCA4RTES meta-model.

� Specification of hardware model: modeling of the fixed hardware architecture in terms of
hardware components (such as processor and bus) using MARTE profile [2].

� Specification of software/hardware mapping model: allocation of systemMetaModes to the
specified fixed hardware architecture using RCA4RTES meta-model.

� Automatic generation of implementation model: generation of models that represent the
system implementation. This model is conform to implementation meta-model [6]. From
implementation model, a code is generated using the proposed RCES4RTES middleware [4].

3. RECONFIGURABLE COMPONENT ARCHITECTURE FOR REAL-TIME EMBEDDED
SYSTEM MODEL-BASED APPROACH

In this section, we describe the new introduced concepts to specify reconfigurable DRE sys-
tems. These concepts allow to specify reconfigurable application model, software model and soft-
ware/hardware mapping model as described in the previous section. For this, a new meta-model,
called RCA4RTES, has been proposed to describe these new concepts and the relations between
them. As implementation of this proposed meta-model, a Unified Modeling Language (UML)
profile has been also proposed.

3.1. The reconfigurable component architecture for real-time embedded system meta-model

In the following, we detail the proposed RCA4RTES meta-model [5] shown in Figure 3 to specify
reconfigurable DRE systems.

Figure 3. Reconfigurable component architecture for real-time embedded system meta-model.

As we describe the dynamic reconfigurations of these systems using state machines represent-
ing a set of MetaModes and transitions between them, we introduce the SoftwareSystem meta-
class, which has a set of MetaModes and MetaMode transitions. A transition represented by the
MetaModeTransition meta-class allows switching the system from a MetaMode to another when
an event is triggered. In our approach, we handle two kind of events: an application event and an
infrastructure event (MetaModeChangeEventKind enumeration). An application event represents a
configuration change in accordance with user requirements while an infrastructure event represents
a variation of situation in the infrastructure. To each transition, an activity of reconfiguration is asso-
ciated. It represents an algorithm for switching from the current configuration (Mode) to the target
one. AMetaMode transition represents a characterization of a set of mode transitions.
To specify the required reconfiguration policies, we introduce three properties (cpuUsage,

memoryUsage and bandwidthUsage) for the SoftwareSystemmeta-class. Each property should have
a value to indicate the rate of consumption to not exceed by the corresponding resources.
To define the MetaMode that is composed of a set of structured components, connectors

and structural and non-functional constraints, we introduce the MetaMode meta-class and the
StructuredComponentmeta-class that is composed of a set of interaction ports. Each structured com-
ponent can be a periodic, a sporadic or an aperiodic thread (DispatchProtocolKind enumeration),
or a composition of structured components. To describe the communication between components,
we introduce the Connector meta-class that links two or more interaction ports. A connector can
be a delegation connector (between two output ports or two input ports) or an assembly connector
(between an input and output ports). In fact, we treat two kind of ports: flow port and client server
port. A flow port presented by the FlowPort meta-class has been introduced to describe the data
flow-oriented communication between components while a client server port that is presented by
the ClientServerPort meta-class has been added to define a request/reply communication paradigm
between components such as operation calls or signals.
Each MetaMode has several instances described using the Mode meta-class. For each mode, a

configuration relates the mode to the deployment plan. A deployment plan describes a configura-
tion by a set of structured components, the connections between them, their configuration and their
allocation to physical nodes. We introduce the Allocation meta-class to specify the allocation of
MetaModes to execution supports (e.g., allocation of software models to a fixed hardware architec-
ture). This allocation has non-functional and allocation constraints that must be respected. In fact,
our meta-model defines three kinds of constraints:

� Structural constraints are related to the topology of component-based architectures. For exam-
ple, we can force the number of instances of Receiver component to be more than zero and
less than four.

Receiver ! size>0 and Receiver ! size<4

� Non-functional constraints specify conditions on the NFPs associated with models (i.e.,
components and connectors).
For example, the processor frequency can be adjusted depending on the workload. If the pro-

cessor utilization exceeds 90%, then the clock frequency is 60 MHz, else the clock frequency
is 20 MHz.

{procUtiliz > (90, percent) ? clockFreq==(60, MHz): clockFreq==(20, MHz)}

� Allocation constraints specify the policies used for the allocation of software models (Meta-

Modes) to a fixed hardware architecture (i.e., execution supports). The allocation constraints
are described using Value Specification Language (VSL) of MARTE [2]. Figure 4 shows an
example of allocation constraint using VSL language. Each new instance of SoftwareCompo-

nent Component should be allocated on cpu1 if component size is an even number or on cpu2
otherwise.

3.2. The reconfigurable component architecture for real-time embedded system Unified Modeling

Language profile

To handle reconfiguration requirements of DRE systems, a UML profile has been derived from the
RCA4RTES meta-model. Figure 5 shows the dependencies of our profile. It imports both NFPs and

Figure 4. Example of allocation constraint.

Figure 5. Reconfigurable component architecture for real-time embedded system (RCA4RTES) profile.

Figure 6. Reconfigurable component architecture for real-time embedded system profile description.

VSL profiles of MARTE [2] to specify non-functional and allocation constraints and the Basic NFP
types of the MARTE library [2] to use the types defined in this library. The full profile description
is given in Figure 6.
As mentioned previously, aMetaMode characterizes the system state by a set of structured compo-

nents, connectors and structural and non-functional constraints. Therefore, theMetaMode stereotype
extends the State UML meta-class. As we are interested in real-time embedded systems, each struc-
tured component is considered as a thread or a set of threads. For defining and characterizing these
threads, we define the following properties as tagged values of StructuredComponent stereotype,
which extends both Classifier and Property UML meta-classes:

� Nature defines the dispatch protocol of a component (periodic, sporadic or aperiodic thread).
� Period defines the period of a periodic thread. It is also used to describe the minimal time
between two successive activations of a sporadic thread. Its type is NFP_Duration of MARTE.

� Deadline defines the deadline for periodic and sporadic threads. Its type is NFP_Duration of
MARTE.

� StartTime defines the start time of an aperiodic thread. Its type is NFP_DateTime of MARTE.
� EndTime defines the end time of an aperiodic thread. Its type is NFP_DateTime of MARTE.
� WCET represents theWorst Case Execution Time computed as the sum ofWCET1 andWCET2

of a thread:
ı WCET1 defines the worst case execution time on a processor with 1 GHz of frequency. The

WCET1 on a processor with 1 MHz of frequency is computed by the ratio of the instruc-
tion number on the processor frequency. WCET1 value varies according to the processor
frequency. We can then compute this value depending on the processor frequency.

ı WCET2 represents the time that does not depend on processor frequency but on other devices
such as buses or memories.

The Connector stereotype that extends the Connector UML meta-class has the property band-

width that is defined as tagged value to define the data rate of each connection between components.
The type of this property is NFP_DataTxRate of MARTE library.
The StructuralConstraint stereotype extends the Constraint UML meta-class in order to specify

architectural constraints using Object Constraint Language (OCL). Both NonFunctionalConstraint

and AllocationConstraint stereotypes inherit from the NfpConstraint stereotype of NFP package of
MARTE profile. These inheritances allow to use VSL [2], which is an extension of OCL, and allows
to specify NFPs and constraints as well as the complex expressions of time.
TheMetaModeChangeEvent stereotype, which extends both SignalEvent and ChangeEvent UML

meta-classes is used to define the events that handle the system state machine. To ensure the
allocation of MetaModes to execution supports, we define the Allocate stereotype, which extends
the Abstraction UML meta-class. This stereotype is associated with non-functional and allocation
constraints.
We also define a set of stereotypes to model the dynamic reconfigurations of DRE systems

using state machines representing transitions between MetaModes. For this reason, we intro-
duce the SoftwareSystem stereotype, which extends the StateMachine UML meta-class, and the
MetaModeTransition stereotype, which extends the Transition UML meta-class.
To specify reconfiguration policies, we define three tagged values (cpu usage, memory usage,

and bandwidth usage) into the SoftwareSystem stereotype which represent the maximum rate of
consumption of resources. The type of these tagged values is NFP_Real of MARTE library.

4. PROPOSED RECONFIGURABLE COMPONENT EXECUTION SUPPORT FOR
REAL-TIME EMBEDDED SYSTEM MIDDLEWARE

The RCES4RTES middleware [4] supports reconfigurable DRE systems. The central function of
the proposed middleware is the dynamic reconfiguration of software component-based DRE sys-
tems. RCES4RTES also provides other functions required for developing reconfigurable real-time
embedded applications. To develop the proposed middleware, we have extended the PolyORB_HI
middleware [7]. Our middleware consists in

� Supporting the monitoring of the system by supervising at runtime the topology and the behav-
ior of the architecture, tracing the system execution (e.g., obtaining the number of components
and connections). The monitoring function can also be used to ensure the reflexivity of the
system.

� Preserving the coherence of the system during and after reconfigurations since reconfiguration
may lead the system to incoherent states.

� Respecting real-time constraints. In fact, on each node of the system, a dynamic reconfigura-

tion thread is automatically created. It represents a sporadic thread applying reconfiguration
actions. It will be considered as a system thread and then is scheduled with the other system
threads. Using this sporadic thread, our middleware can easily manage the reconfigurations
without affecting the system threads execution and exceeding thread deadlines.

� Ensuring the communication among heterogeneous platforms using the schizophrenic architec-
ture and its canonical services. Taking advantage of these services and contrary to the existing
middleware, the RCES4RTES middleware has a small memory footprint.

� Respecting the restrictions of Ravenscar profile [8] to ensure schedulability and both deadlock
and livelock freedom of system threads.

Figure 7 shows a part of the RCES4RTES middleware model ensuring the dynamic reconfigu-
ration and the communication between different threads. This middleware supports three kinds of
threads: PeriodicTask, SporadicTask and AperiodicTask classes. These threads communicate using
input and output ports defined by Inport and OutPort classes. This communication is ensured using
PortRouter and GeneratedType classes. The Event class allows to specify system events that trigger
reconfiguration actions. The trigging of an event changes the current system MetaMode. The Mode

class is used by ReconfigurationTrigger class to specify the source mode and the target mode in
order to identify the reconfigurations to apply. ReconfigurationTrigger class uses functions offered
by the ReconfDyn class (addTask, removeTask, addConnexion, removeConnexion, etc.) to apply
reconfigurations. Then, this class updates attributes of the Context class that represent the topology
of the application at every time.
Further details about the RCES4RTES functions and their advantages are described in the

following sub-sections.

Figure 7. Part of the reconfigurable component architecture for real-time embedded system middleware
model.

4.1. Dynamic reconfiguration

The RCES4RTES middleware performs the dynamic reconfiguration of DRE systems through two
kinds of reconfigurations: architectural reconfigurations and behavioral reconfigurations. It handles
the following architectural reconfigurations: Connect nodes, Disconnect nodes, Add connection,
Remove connection, Add component, Remove component and Migrate component. It also handles
the following behavioral reconfigurations: Update component properties and Replace component.
The RCES4RTES middleware introduces a set of data structures in the Context class to ensure

the previous reconfigurations and to update the current state of the application in terms of nodes,
components, connections and ports:

1. myNodesC data structure is defined in each node to describe the connections between the cur-
rent node and the other nodes and to manage the dynamic interconnection of nodes. Each
pair of nodes having at least one connection between their associated components should be
connected. Connecting and disconnecting nodes require the update of the corresponding data
structures.

2. destinationTable data structure is introduced to update at runtime the state of the interconnec-
tion between components. In each node, this data structure represents the destination ports
of each deployed component port. Adding or removing connector between two ports (i.e.,
components) requires updating the corresponding data structures.

3. Both entitiesTable and portsTable data structures are defined in each node for adding, remov-
ing and migrating components at runtime. EntitiesTable data structure contains all application
nodes with their corresponding deployed component instances while portsTable data structure
contains all application component instances with their related ports. When a component has
been added, removed or migrated, these two data structures are updated in each node to ensure
the system coherence.

4.2. Coherence

The coherence is an essential property of a reconfigurable system. The system should be in a correct
state during and after reconfigurations to prevent failures. To maintain the correct state of a sys-
tem, we should avoid message loss between components during reconfigurations. Each component
affected by the reconfiguration process should be locked during the reconfiguration. For this, we
define two routines for locking and unlocking components. The locking of component consists in
preventing the source components (i.e., the components that send requests to the locked component)
to send requests and achieving the treatment of all current requests. The unlocking of component
consists in releasing the lock by allowing the source components to send requests.
To avoid wasting time and to minimize as possible the locking duration, locking and unlock-

ing components should be made respectively after creating new components and before deleting
components in the reconfiguration routines.

4.3. Hard real-time

The time of reconfiguration Trd (represented by the Equation (1)) is the sum of the locking duration
of components Tb , the execution time of reconfiguration actions Tact and the transfer time of com-
ponent state Tstate . Tstate is defined only in the case of the migration of component from a node
to another while Tact is the execution time of the dynamic reconfiguration thread. For each node, a
sporadic thread (i.e., dynamic reconfiguration thread) is created to perform the reconfigurations on
this node and to inform the other nodes of these reconfigurations. This thread allows respecting time
constraints (i.e., all system threads should meet their deadlines during and after reconfigurations). It
will be considered and scheduled with system threads.

Trd D Tb C Tstate C Tact (1)

Tb , Tstate and Tact are proportional to the size of data to be treated. Tact also depends on the
processor frequency and the transport layer. To obtain a deterministic reconfiguration time, we can
so use a deterministic transport layer such as SpaceWire [9].

4.4. Conformance to the Ravenscar profile

The Ravenscar profile [8, 10] introduces restrictions allowing the schedulability and the deadlock
and livelock freedom for real-time embedded systems. For efficiently performing the scheduling,
the Ravenscar profile avoids the use of threads, which are randomly launched. It recommends the
use of periodic and sporadic threads. Therefore, the set of threads to be analyzed is fixed and has
static properties. Ravenscar profile also requires asynchronous communications. The communica-
tions between threads should be ensured only by a static set of protected shared objects, and the
access to these protected shared objects should be carried out using Priority Ceiling Protocol [11].
In our approach, we are interested in three kinds of threads: periodic, sporadic and aperiodic

threads. As each aperiodic thread has an arrival time, this thread respects the first Ravenscar profile
restriction.
We also use asynchronous communications between system threads using Priority Ceiling Proto-

col. As we are focused on distributed systems, the time of both construction and sending of messages
is non-deterministic because of the non-reliability of transport layers. This can be a source of mes-
sage loss. To resolve this limitation, we propose to use a reliable and real-time transport layer such
as SpaceWire [9]. We can therefore consider our distributed system as a local system.
The RCES4RTES middleware will be used to generate code of reconfigurable DRE systems.

5. IMPLEMENTATION AND CODE GENERATION STRATEGY

In order to generate the most part of a system implementation, a new meta-model and an implemen-
tation of this new meta-model have been also defined to describe the implementation model of each
system. In the following sub-sections, we describe both implementation meta-model and profile,
and we detail the code synthesis.

5.1. Implementation meta-model

The implementation meta-model described in Figure 8 allows the representation of system imple-
mentation models. As system implementations use routines defined in the RCES4RTESmiddleware,
the implementation model imports the RCES4RTES middleware model.
Each distributed system implementation conform to our implementation meta-model has a set

of processes. For this, we define both System and Process meta-classes. The system processes
communicate to exchange data. The meta-class Connector describes the communication between

Figure 8. Implementation meta-model.

two processes (sender and receiver) through buses described by the Bus meta-class. Each bus
is characterized by a communication and transport protocols (CommunicationProtocolKind and
TransportProtocolKind enumerations).
A process is composed of a set of threads defined by the Thread meta-class. These threads can be

periodic, sporadic or aperiodic threads defined respectively by PeriodicThread, SporadicThread or
AperiodicThread meta-classes that inherit respectively from PeriodicTask, SporadicTask and Aperi-

odicTask classes of RCES4RTES middleware model. Each thread is characterized by a set of NFPs
such as priority and has a set of input and output ports whose types are respectively PortIn and
PortOut classes of RCES4RTES middleware model. These ports allow to send and receive data
whose type is GeneratedType class of RCES4RTES middleware model and through a port router
(PortRouter class of RCES4RTES middleware model). The FP of each thread will be added by the
developer in threadJob operation after the generation of code.
Each thread is allocated to a processor chosen according to the allocation constraints specified in

the previous design level.
The Processor meta-class is characterized by a Frequency property. All processors are linked by

buses defined by the Bus meta-class.
The following meta-classes are also defined: (i) Deployment meta-class representing the deploy-

ment of the initial mode using the Context class of RCES4RTES middleware model; (ii) Trans-

portHighLevelImpl meta-class handling both sending and receiving data for each thread; and (iii)
Activity meta-class allowing the starting of system threads and also the starting of the thread,
which performs the dynamic reconfiguration of system (instance of ReconfigurationTrigger class
of RCES4RTES middleware model).

5.2. Implementation profile

We propose a UML profile called Implementation profile (Figure 9) derived from our proposed
implementation meta-model. We define both System and Process stereotypes, which extend the

Figure 9. Implementation profile description.

RCA4RTES Model

Implementation Model

RCES4RTES
middlewareCode

import

Code
Synthesis

Transformation
Rules

Mode
Generation

Figure 10. Code and mode generation.

Package UML meta-class to define the system as a set of packages. As defined in our imple-
mentation meta-model, each process is composed of a set of threads. For this, we define Peri-

odicThread, SporadicThread and AperiodicThread stereotypes. These stereotypes inherit from
the Thread stereotype, which extends the Class UML meta-class. We also define Deployment,
TransportHighLevelImpl and Activity stereotypes, which extend the Class UML meta-class.

5.3. Code synthesis

In our approach and as described in Figure 10, we provide a code generator allowing to generate
code from RCA4RTES models. We also provide a mode generator allowing to enumerate the set of
modes of eachMetaMode compliant with the reconfiguration policies specified by the designer.
In order to generate code, the transformation from RCA4RTES model to implementation model is

ensured by rules defined using Atlas Transformation Language [12]. For example, Listing 1 presents
the transformation rule of UML state Machine where SoftwareSystem stereotype of RCA4RTES
profile has been applied to UML package with System stereotype of implementation profile. Based
on the developed RCES4RTES middleware, the code will be generated from the implementation
model.
In order to generate modes, we have developed an algorithm allowing to select modes that are con-

form to reconfiguration policies specified in RCA4RTES models. This algorithm allows to directly
add the selected modes to RCES4RTESmiddleware without passing through implementation model.

5.4. Modeling framework tooling

A modeling framework has been proposed to conceive reconfigurable DRE systems. Figure 11
shows the used tools to make this framework. Our framework has been developed using the

Eclipse

Eclipse Modeling Frameworks (EMF, GMF, ...)

UML

RCES4RTES

RCA4RTES

Graphical editor

UML Profiles
- RCA4RTES profile
- MARTE profile

Model transformation (ATL), Acceleo

Papyrus UML Editor

Modeler

Java

Java

MARTE Profile

Generator

UML Profile
- Implementation profile

PolyORB_HI Extension

Figure 11. Modeling framework of reconfigurable distributed real-time embedded systems.

ECLIPSE‡ platform. We use Papyrus§ plug-in as a UML graphical editor. This editor is a UML
editor where we can integrate UML profiles. In our proposed approach and in order to specify
reconfigurable DRE systems, we integrate both RCA4RTES and MARTE profiles.
We use the Atlas Transformation Language¶ language to define a set of transformation rules from

RCA4ERTES model to implementation model, and the Acceleo|| project to define a set of patterns
allowing to generate code from implementation model.
Our middleware has been implemented using Real-time Specification for Java. It represents an

extension to the existing PolyORB_HI middleware. We have extended and updated this middleware
to add routines allowing to support the dynamic reconfigurations as well as the coherence and the
monitoring of DRE systems.

6. APPLICATION OF RECONFIGURABLE COMPONENT ARCHITECTURE FOR
REAL-TIME EMBEDDED SYSTEM TO A GPS CASE STUDY

We illustrate our MDE-based approach using GPS [5] case study. A GPS is a radio navigation sys-
tem that provides accurate navigation signals to any place on Earth. It helps the user to determine
the road to be followed from his/her current place to some specified destinations using information
provided by a satellite. The satellite sends to Earth an encrypted signal that contains various infor-
mation useful for localization and synchronization. The control base sends and receives information
to satellites in order to synchronize the clocks of satellites. We only define the following use cases:
(i) GPS with insecure functioning: consists of a traditional (or public) use of a GPS; and (ii) GPS
with secure functioning: represents a restricted use of a GPS with some safety requirements.
Following our development process described in Section 2, we begin by defining a state machine

specifying the dynamic reconfigurations by a set ofMetaModes andMetaMode transitions. We have
defined a UML state machine diagram as shown in Figure 12. We specify two MetaModes of GPS:
(i) Insecure GPS MetaMode; and (ii) Secure GPS MetaMode. The transition from one MetaMode

to another is ensured by event triggering. For example, the switch from Insecure GPS MetaMode to
Secure GPS MetaMode occurs when the monitor commands to move to the secure state.
The reconfiguration policies are also defined as tagged values of SoftwareSystem stereotype

(Figure 12). For example, the memory consumption should not exceed 40% of hardware mem-
ory size. The modes conform to the specified reconfiguration policies are then generated and added
to our middleware.
In the second step, eachMetaMode should be described including structured components, connec-

tors as well as non-functional and structural constraints. For the sake of simplicity, many function-
alities of this case study have been omitted. Both satellite and control base are represented by basic

‡http://www.eclipse.org
§http://www.eclipse.org/modeling/mdt/papyrus/
¶http://www.eclipse.org/atl/
||http://www.eclipse.org/acceleo

Figure 12. The state machine of GPS.

Table I. The non-functional properties of structured components of the GPS system.

Structured Nature Period WCET1 (ms) WCET2 (ms) Memory
component deadline (ms) size (MB)

Receiver Sporadic 100 20 2 0.9
Position Sporadic 100 20 2 0.5

TreatmentUnit Sporadic 100 20 4 0.75
Decoder Sporadic 100 20 2 0.1
Encoder Sporadic 100 20 0 0.5

GpsSatellite Periodic 400 30 0 0.9
GpsControlBase Periodic 400 30 0 0.9

components (resp. GpsSatellite and GpsControlBase components). In this paper, we only describe
the GPS_Terminal architecture that consists of five components for Insecure MetaMode:

� Position component for receiving the satellite signal.
� Receiver component for converting the analog signal into a digital signal.
� Decoder component for decoding digital information and separating between the information
to calculate distance and time information.

� TreatmentUnit component for computing the distance from the satellite in order to obtain the
position.

� Encoder component for encoding time and position information.

The switch from Insecure GPS MetaMode to Secure GPS MetaMode consists in removing all
instances of Position component and adding instances of both SecurePosition and AccessController

components to assure the secure reception and the satellite signal control. Table I presents the
properties of components, which have been obtained using a simple simulation.
Then and in the third step, we specify the fixed hardware architecture followed by the allocation

of each MetaMode to the specified fixed hardware architecture. Figure 13 presents the allocation
of Insecure GPS MetaMode to GPS terminal hardware and GPS satellite hardware. The top part of
Figure 13 describes the Insecure GPS MetaMode while the lower part shows the hardware architec-
ture of both GPS terminal and GPS satellite. We use the MARTE profile to specify the hardware
architecture. The allocation constraints describe the policies of allocation of models to hardware
instances. For example, the allocation of instances of Encoder structured component is devised
between the two processors cpu1 and cpu2 of GPS terminal.

Figure 13. Allocation of insecure MetaMode to GPS terminal hardware and GPS satellite hardware.

Then and in order to generate code, the implementation model will be obtained by apply-
ing transformation rules. Figure 14 presents the GPS implementation model. The GPS_terminal
implementation has seven classes representing sporadic threads (Receiver, Decode, Encode, etc.).
The Activity class creates and launches instances of theses threads. The Deployment class repre-
sents the initial topology of system. The TransportHighLevelImpl class is generated to ensure the
communication between threads.
After generating code and to illustrate the use of our middleware, we define two configurations of

GPS: Insecure GPS Configuration (Figure 15) of Insecure GPS MetaMode as initial configuration
and Secure GPS Configuration (Figure 16) of Secure GPS MetaMode.
Our middleware allows the dynamic reconfiguration by switching the GPS from Insecure GPS

Configuration to Secure GPS Configuration when event is launched. This switching consists in
removing all instances of Position component and adding instances of both SecurePosition and
AccessController components to assure the secure reception and the satellite signal control. For

Figure 14. GPS implementation model.

Figure 15. Insecure GPS configuration.

this, the connections of position instance with gpsSatellite and primaryReceiver instances should
be removed and two instances of both SecurePosition and AccessController with their connections
should be added as shown in Figure 17. A second instance of Receiver component should also be
added.
After applying efficiently reconfigurations, we demonstrate also that the monitoring and the

coherence are ensured by our middleware using the considered GPS case study. After the transition
from Insecure GPS Configuration to Secure GPS Configuration, the system remains coherent and
preserves its temporal constraints. As shown in Figure 18, we observe that both primaryReceiver

Figure 16. Secure GPS configuration.

Figure 17. Log of the dynamic reconfiguration from Insecure GPS Configuration to Secure GPS
Configuration.

and secondaryReceiver instances run normally and meet their deadlines (100 ms). For example,
secondaryReceiver exits in about 57 ms.
In addition to the small memory footprint of our middleware (' 131 KB), we have computed

the memory footprint of the GPS case study on each system node: 51.5 KB for the GPS_Terminal

node, 25.6 KB for the GPS_Satellite node and 25.9 KB for the GPS_ControlBase node. So, we can
conclude that the memory footprint for each node is small.

Figure 18. Meeting of thread deadlines.

7. RELATED WORK

In this section, we review some related works that address the development of real-time embedded
systems from models to execution platforms. A detailed state of the art has been presented in [13].
Several activities have been carried out to design embedded systems and particularly reconfig-

urable ones.
Architecture Analysis & Design Language [1] is an architecture description language, which

allows the specification of DRE systems as a component assembly. It allows to describe both soft-
ware and hardware parts of a system. AADL also allows to specify reconfigurable systems using
state machines composed of modes and mode transitions. A mode represents a particular state (con-
figuration) while a transition represents an event, which allows system reconfiguration. Compared
with our approach, the modes in AADL are statically predefined. This considerably reduces the
modeling possibilities. AADL specifies embedded systems at a low level (thread, processor, etc), so
that the modeling of reconfigurations is related to a specific application and platform.
Modeling and Analysis of Real-Time Embedded systems [2] is a UML profile for MARTE sys-

tems inspired from the Scheduling, Performance and Time profile [14]. It allows the separation of
both hardware and software parts of platform resources and the modeling of NFPs. It presents a set
of packages that allow to specify a system at several levels of abstraction. Moreover, MARTE allows
to specify the behavioral reconfigurations of real-time embedded systems using state machines com-
posed of a set of modes and transitions between them. Contrary to our approach, MARTE does not
support distributed systems. It allows to specify only the behavioral reconfigurations of system. It
does not handle the architectural reconfigurations.
To cope with the growing complexity of embedded system design, several development processes

have been proposed.
Ocarina is a framework that allows developing, configuring and deploying DRE systems using a

model-driven approach [15, 16]. Using Ocarina, DRE systems can be specified using AADL. From
AADL model, Ocarina can perform scheduling and verification analysis to ensure the validity of
the model. Then, an important part of the application code as well as a middleware layer devoted to
specific needs of the application will be generated. Ocarina allows automatic code generation from
AADL models to multiple execution supports. Both deployment and configuration of DRE appli-
cation are performed automatically by Ocarina using information extracted from AADL models.
However, this framework does not address reconfiguration in DRE systems. It uses AADL language

that does not allows to specify DRE systems at a high level of abstraction. AADL specifies embed-
ded systems at a low level (thread, processor, etc) and this requires more competence to specify
these systems.
In the same direction, an MDA approach to address real-time software reusability, maintainability

and portability issues is proposed in [17]. In fact, authors propose a model-driven framework that
defines a new methodology that makes easier the design and implementation of real-time embedded
systems. First, the application model should be annotated with High Level Application Model-
ing sub-profile of MARTE [2]. The target platform model and the mapping model should also be
specified. Then, the generated platform specific model is obtained through defined generic transfor-
mation rules. Finally, the executable code is generated. As an outcome of this process, designers
can obtain a real-time embedded system architecture that can be used for several platform imple-
mentations. However, this approach does not take into consideration the reconfiguration of such
system.
ModES[18] is also an MDE-based approach devoted to embedded system design. It defines a

set of meta-model representing the following: (i) application to capture functionality by means
of processes communicating; (ii) platform to indicate available hardware/software resources; (iii)
mappings from application to platform; (iv) and implementations, oriented to code generation and
hardware synthesis. The particularity in this approach is that the mapping meta-model does not
specify only the allocation of application processes to fixed hardware components. This mapping
also delimits a design space that corresponds to all possible implementations that can be obtained
through the choice of sequences of transformations between models. Therefore, the set of trans-
formations between models implements the possible mappings from application to platform. The
ModES methodology includes a set of tools that support model-based design tasks starting from
specification until software/hardware generation and synthesis. However, this approach does not
support the reconfiguration of DRE systems.
The previously presented approaches [17–19] offer development processes that allow to con-

ceive real-time embedded systems. They present methodologies to be followed by developer from
high level models to code. However, these approaches do not support reconfigurable systems. In
this direction, TimeAdapt [20] is a development process for reconfigurable system design. It fol-
lows a three-tiered approach providing means to specify reconfiguration actions, estimate whether
their execution can be carried out within a given time bound and execute them in a timely man-
ner. In fact, each reconfiguration has time bound that is based on environmental conditions and
structural application. An admittance test calculates the probability whether the given reconfig-
uration can meet the specified time bounds. If this probability exceeds a given threshold, the
reconfiguration is scheduled as a high priority real-time task and its reconfiguration actions will
be executed. In case of a reconfiguration task rejection, the reconfiguration is rescheduled with
a new time bound at some later point in time. TimeAdapt supports the execution of reconfigura-
tions on component-based real-time applications. However, this framework provides a bounded
time for each reconfiguration. If a reconfiguration exceeds its estimated time, it will not be
executed.
In the same context, COMponent-based Design of Embedded Software for Distributed Systems

(COMDES) [21] is a framework dedicated to the specification and the configuration of real-time
embedded systems. Using this framework, an embedded application is built from reusable com-
ponents implemented as executable function blocks. COMDES defines a development process for
embedded systems starting from design level until production of application code. A system is mod-
eled in a high level of abstraction, and then the output model will be transformed into a COMDES
model that will be generally enriched with information that guide code generation. Finally, the gen-
erated code is deployed and tested. This framework defines two types of processes: configuration
process and reconfiguration process. The configuration process allows to find components in the
component repository and then to assemble them to configure an application model. A reconfig-
uration process allows adding, removing and updating components at runtime in order to update
the application. However, using COMDES framework, the developer has a limited number of pre-
built components that are stored into a component directory, then the developer can not add a new
component that does not exist in the directory.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an MDE-based approach to design reconfigurable DRE systems.
We developed a modeling framework that introduces new concepts to design reconfigurable DRE
systems using meta-modeling technologies and following an MDE process. This process allows to
easily design and generate an important part of DRE system implementation.
We specify reconfigurable DRE systems without enumerating all configurations by introducing

the new concept MetaMode. The reconfigurations are specified using state machines having a set
of MetaModes and transitions between them. We also ensure the allocation of each MetaMode to
hardware architecture. We developed a new middleware as an extension and an updating of the
PolyORB_HI middleware providing a set of routines performing the dynamic reconfigurations and
ensuring the coherence and the monitoring. Then, we studied code generation targeting such a mid-
dleware. An implementation model is obtained thanks to transformation rules and then a code is
generated.
Providing a high-level description in the process of construction of DRE systems minimizes

errors and developer’s efforts. Our modeling framework allows to specify autonomous systems
where reconfigurations will be performed without human intervention. However, our approach does
not assure the syntactic and semantic validation of specified models. Moreover, our approach sup-
port real-time embedded systems, but it does not support critical systems. We should add temporal
constraints that must be respected to switch from a MetaMode to another and ensure the correct
execution of these systems.
As future work, we aim to propose patterns that allow to easily specify reconfigurable DRE sys-

tems. Then, these patterns will be translated to models conforming to our RCA4RTES meta-model.
In addition, we aim at enriching our modeling framework and to add new routines to our middleware
to support the fault tolerance. We also aim to specify reconfigurable DRE systems using formal for-
malisms. In fact, we plan to migrate our modeling concepts to a formal language such as Z to ensure
syntactic and semantic validation.

REFERENCES

1. SAE. Architecture Analysis & Design Language (AADL), January 2009.
2. OMG. A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded systems, 2009.
3. Schmidt DC. Guest editor’s introduction: model-driven engineering. Computer 2006; 39(2):25–31.
4. Krichen F, Zalila B, Jmaiel M, Hamid B. A middleware for reconfigurable distributed real-time embedded systems.
In Proceedings of the acis international conference on software engineering research, management and applications

sera (selected papers), Studies in Computational Intelligence. Springer: Shanghai, China, 2012; 81–96.
5. Krichen F, Hamid B, Zalila B, Jmaiel M. Towards a model-based approach for reconfigurable distributed real time
embedded systems. In Proceedings of the 5th European Conference on Software Architecture. Springer: Essen,
Germany, 2011 September; 295–302.

6. Krichen F, Ghorbel A, Zalila B, Hamid B. An mde-based approach for reconfigurable dre systems. In Proceedings of

the 21st IEEE International Conference on Collaboration Technologies and Infrastructures. IEEE Computer Society:
Toulouse, France, 2012juin; 78–83.

7. Zalila B, Pautet L, Hugues J. Towards Automatic Middleware Generation. In Proceedings of the International

Symposium on Object-oriented Real-time distributed Computing. IEEE, 2008; 221–228.
8. Burns A. The ravenscar profile. Ada Letters December 1999; XIX:49–52.
9. ECSS-E-ST-50-12C. Spacewire - links, nodes, routers and networks, European Space Agency July 2008. Technical
report.

10. Kwon J, Wellings A, King S. Ravenscar-Java: a high integrity profile for real-time Java. In Proceedings of the 2002

joint ACM-ISCOPE conference on java grande. ACM: New York, NY, USA, 2002; 131–140.
11. Lui Sha RR, Lehoczky JP. Priority inheritance protocols : an approach to real-time synchronization. IEEE

transactions on computers September 1990; 39(9):1175–1185.
12. Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P. Atl: a qvt-like transformation language. In Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications. ACM,
2006; 719–720.

13. Krichen F. Position paper: Advances in Reconfigurable Distributed Real Time Embedded Systems. In Interna-

tional workshop on Distributed Architecture modeling for Novel component based Embedded systems. IEEE: Tozeur,
Tunisia, 2010; 273–278.

14. OMG. UML Profile for Schedulability, Performance, and Time Specification, January 2005.

15. Hugues J, Zalila B, Pautet L, Kordon F. From the prototype to the final embedded system using the ocarina aadl tool
suite. ACM Trans. Embed. Comput. Syst. 2008; 7(4):42:1–42:25.

16. Lasnier G, Zalila B, Pautet L, Hugues J. Ocarina : an environment for aadl models analysis and automatic code gen-
eration for high integrity applications. In Proceedings of the 14th Ada-Europe International Conference on Reliable

Software Technologies. Springer: Brest, France, 2009; 237–250.
17. Chehade WEH, Radermacher A, Terrier F, Selic B, Gérard S. A model-driven framework for the development of

portable real-time embedded systems. In Proceedings of the 16th IEEE International Conference on Engineering of

Complex Computer Systems. IEEE Computer Society: Las Vegas, Nevada, USA, 2011; 45–54.
18. do Nascimento FAM, Oliveira MFS, Wagner FR. Modes: embedded systems design methodology and tools based

on mde. In Proceedings of the Fourth International Workshop on Model-Based Methodologies for Pervasive and

Embedded Software. IEEE Computer Society: Washington, DC, USA, 2007; 67–76.
19. Zalila B. Configuration et déploiement d’applications temps-réel réparties embarquées à l’aide d’un langage de

description d’architecture. Ph.D. Thesis, École Nationale Supérieure des Télécommunications, 2008.
20. Fritsch S, Clarke S. Timeadapt: timely execution of dynamic software reconfigurations. In Proceedings of the 5th

Middleware doctoral symposium. ACM: New York, NY, USA, 2008; 13–18.
21. Guo Y, Sierszecki K, Angelov C. A (re)configuration mechanism for resource-constrained embedded systems.

In Proceedings of the 32nd Annual IEEE International Computer Software and Applications Conference. IEEE
Computer Society: Washington, DC, USA, 2008; 1315–1320.

