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Graph decomposition and parity

Bobby DeMarco ∗ and Amanda Redlich †

Abstract

Motivated by a recent extension of the zero-one law by Kolaitis and Kopparty, we
study the distribution of the number of copies of a fixed disconnected graph in the
random graph G(n, p). We use an idea of graph decompositions to give a sufficient
condition for this distribution to tend to uniform modulo q. We determine the asymp-
totic distribution of all fixed two-component graphs in G(n, p) for all q, and we give
infinite families of many-component graphs with a uniform asymptotic distribution for
all q. We also prove a negative result, that no recursive proof of the simplest form
exists for a uniform asymptotic distribution for arbitrary graphs.

1 Introduction

A recent paper by Kolaitis and Kopparty [3] gives an extension of the zero-one law which
holds for first-order logic with a parity operator. The keystone of their proof is that the
number of copies (not necessarily induced) of any fixed connected graph is asymptotically
uniformly distributed modulo q for any q in the random graph G(n, p). Other papers
have studied this statistic in special cases. For example, a 2004 paper of Loebl, Matoušek,
and Pangràc,[4] considered the modulo q distribution of triangles, while the 2014 work of
Kopparty and Gilmer [1] gives the distribution of triangles overall.

Here we study the distribution of the number of copies (not necessarily induced) of a
fixed disconnected graph in G(n, p) modulo q. For convenience, we may say “the distribu-
tion of a graph modulo q” to mean the distribution of the number of copies of the graph in
G(n, p) with p implicit. In this paper we will only be speaking of asymptotic distributions,
so when discussing distributions we will remove the word asymptotic for brevity. We say
a graph is uniformly distributed if it is uniformly distributed modulo q for all q. We give
sufficient conditions for a graph to be uniformly distributed, and we use these conditions
to completely characterize the distribution of all 2-component graphs for all q. We then
give infinitely large families of uniformly distributed graphs of any component size.
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† Supported by the National Science Foundation under Award No. 1004382.
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In analyzing these distributions, we developed the concepts of unique composition and
decomposition. These concepts are related to determining when several connected graphs
may be combined to create one large connected graph with certain uniqueness properties.
There are obvious links to the reconstruction conjecture (see [2] for a summary), which
asks when the subgraphs of a larger graph have slightly different uniqueness properties.
In this paper we give an algorithm for uniquely composing any two feasible graphs, and
certain families of three or more graphs. We also show no generic recursive composition
algorithm exists.

The paper is structured as follows. In the second section we derive a formula for the
number of copies of a disconnected graph in a fixed graph G as a function of the number
of copies of certain connected graphs in G. In the third section we use this formula to give
specific conditions for a disconnected graph to be uniformly distributed.

We show these conditions are satisfied for almost all two-component graphs in the
fourth section. We give an explicit construction for all satisfying graphs. We also calculate
the distribution for all two-component graphs that do not satisfy these conditions. We
then give some examples of infinite families of three or more component graphs that are
satisfying. We conclude this section with a negative result, showing no simple algorithm
exists to show a generic graph is satisfying. In the last section, we discuss areas of further
research.

2 Counting copies

In this section we give an exact formula for the number of unlabeled copies of a disconnected
graph A = ⊔k

i=1Gi, with non-isomorphic Gi, in a host graph F . That is, the number of
subgraphs GA ⊆ F such that A ≃ GA. For example, if F is K4 and A is two disjoint edges,
the number of unlabeled copies of A in F is 3. Note that this is different from the labeled
case, which would give 24 copies.

Our formula for the number of unlabeled copies of a disconnected graph is given in
terms of the number of copies of various connected graphs H, and their relationship to
the original graph A. Although the formula appears complex, the reasoning behind it is
simple. The main idea is that each copy of A is the product of copies of G1, G2, . . . Gk.
Interactions between copies of Gi and Gj lead to an overcount; the formula uses the prin-
ciple of inclusion and exclusion to correct for this. Notice that this is correct only if the
Gi are non-isomorphic, hence our assumption that each component is unique.

The simplest case is when A = G1 ⊔ G2. For example, let G1 = C3 and G2 = C4.
Given fixed host graph F , let N(A) be the number of unlabeled copies of A in F (we
may also mean the number of unlabeled copies of A in an instance of the random graph
G(n, p); this will be clear from context). Consider Hi as illustrated below. For ease of
discussion, here and throughout the paper, we label the illustrated vertices. However, the
graphs themselves are unlabeled.
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We have

N(A) = N(C3)N(C4)−N(H1)−N(H2)− 2N(H3)− 3N(H4).

That is because the total number of disconnected C3, C4 pairs is the total number of
C3, C4 pairs minus the number of connected pairs. While H1 and H2 each correspond
to exactly one connected pair, H3 is counted twice; once when C3 = {1, 2, 3} and once
when C3 = {1, 3, 4}. Similarly, H4 is counted three times: C4 = {1, 2, 3, 4} or {1, 2, 3, 5}
or {1, 5, 3, 4}, and each copy of C4 determines a complementary copy of C3. (Note that
we are counting both induced and non-induced subgraphs; for example, H3 contains no
induced C4.)
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We now formalize this “gluing” idea.

Definition 1. A tuple (G1, G2, . . . Gk,H,H1,H2, . . . Hk) is a gluing of G1 . . . Gk if

• H is a connected graph

• H1, . . . Hk are subgraphs of H

• Hi ∼ Gi for all i ∈ [k]

• ∪k
i=1E(Hi) = E(H).

We occasionally refer to H itself as a gluing. The tuple (H1, . . . Hk) is a decomposition
of H. If there exists only one tuple H1, . . . Hk such that (G1, . . . Gk,H,H1, . . . Hk) is a
gluing, we say that (G1, . . . Gk,H) is uniquely decomposable. In this case, we say that H[S]
is the unique subgraph of H induced by {Hi}i∈S . We occasionally say that H itself is
uniquely decomposable, if G1, . . . Gk are clear from context. If there exists an H such that
(G1, . . . Gk,H) is uniquely decomposable, we say that {G1, . . . Gk} is uniquely composable.

We often want to count gluings and decompositions.

Definition 2. Given G1, . . . Gk, s(H) is the number of tuples (H1, . . . Hk) such that
(G1, . . . Gk,H,H1, . . . Hk) is a gluing. The set of gluings H is the family of graphs H
such that s(H) 6= 0.
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Using this notation, we re-state a theorem often used in the theory of graph limits, and
implied in [3]:

Theorem 3. For a disconnect graph A = G1 ⊔G2 and G1 6= G2,

N(A) = N(G1)N(G2)−
∑

H∈H

s(H)N(H)

Proof. The number of copies of A is the number of G1, G2 pairs overall, less the number of
G1, G2 pairs that intersect. Each intersecting G1, G2 pair corresponds to a decomposition
of a copy of some H, so the total number of intersecting pairs is

∑

H∈H s(H)N(H).

It is tempting to generalize this to the three-or-more component case as

N(A)“ = ”

k
∏

i=1

N(Gi)−
∑

H∈H

s(H)N(H),

but the truth is more complicated. Along with H that may be decomposed into G1, . . . Gk,
we must consider H that are decomposable into any subset of Gi. For example, if A has
componentsG1, G2, G3 then we must be concerned with gluings of the forms (G1, G2,H,H1,H2),
(G1, G3,H,H1,H3), (G2, G3,H,H2,H3), and (G1, G2, G3,H,H1,H2,H3). In order to deal
with this complication, we define some new terms. First, some notation about partitions.

Definition 4. Consider the partitions of [k] under partial ordering by refinement, where
we use π and ρ for partitions of [k] and say π < ρ if π is a refinement of ρ. If π < ρ, and
T is a block of ρ, then let π(T ) be the family of blocks in π such that ∪S∈π(T )S = T . For
example, if k = 4, π = {{12}{3}{4}}, and ρ = {{123}{4}}, then π({123}) = {{12}{3}}.

Now we use partitions to classify gluings. Each connected component corresponds to
a set in a partition, and the family of gluings is broken into sub-families according to the
partitions they generate.

Definition 5. Let Hπ be the family of graphs H = ⊔S∈πHS where each HS may be
decomposed (not necessarily uniquely) into {Hi}i∈S . For example, H0 = A and any
H ∈ H1 is a connected graph; 0 is the minimum and 1 is the maximum element in the
partial order.

We also count possible decompositions of gluings. Since we are now considering a
broader range of gluings, we must add a subscript to clarify which graphs are being glued.

Definition 6. Given G1, . . . Gk and S ⊆ [k], let sS(G
′) be the number of ways the graph

G′ may be decomposed into copies of {Gi}i∈S

It may be useful to discuss decompositions into graphs other than our original compo-
nents Gi.
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Definition 7. Given a graph HS for each S ∈ π, sπ(T )(G
′) is the number of ways G′ may

be split into {HS}S∈π(T ). If there exists some {HS}S∈π such that sπ([k])(G
′) 6= 0, say that

G′ is compatible with π.

Finally, we need to count “component” decompositions.

Definition 8. For any graph H, let p(H) be the number of isomorphic permutations of
the components of H. That is, if the components of H are i1 copies of some connected
graph B1, i2 copies of B2, up to ik copies of Bk, then p(H) = i1!i2! · . . . · ik!. For example,
if H is a five-component graph consisting of three C4 and two K5, then p(H) = 3!2!: there
are 3! ways to decide which C4 is which and 2! ways to decide which K5 is which.

This notation allows us to give a more general recursion for the number of copies of
a graph with an arbitrary number of connected components. Although the notation is
daunting, it is a simple generalization of the ideas in the two-component case.

Theorem 9. For a graph A=⊔k
i=1Gi with Gi 6= Gj for all i 6= j,

N(A) =
k
∏

i=1

N(Gi)−
∑

0<π≤[k]

∑

H∈Hπ

N(⊔S∈πHS)p(H)
∏

S∈π

sS(HS)

=
k
∏

i=1

N(Gi)−
∑

0<π≤[k]

∑

H∈Hπ

p(H)
∏

S∈π

sS(HS)





∏

S∈π

N(HS)−
∑

ρ>π

∑

J∈Hρ

p(J)
∏

T∈ρ

sπ(T )(JT )p(JT )N(⊔T∈ρJT )





Proof. Now that we have the proper definitions, the proof is short. As usual, we count the
number of copies of A by finding the product of copies of its components, then subtract
the overcount. The “overcounted” graphs are those in which at least two Gi intersect with
each other, i.e. those corresponding to a non-0 partition.

We also need to be careful about the possibility of intersecting components being iso-
morphic to a third component. For instance, returning to our initial C3 ⊔ C4 example, if
we let A be the three-component graph C3 ⊔ C4 ⊔ H1, one of the gluings in H{1,2}{3} is
H1 ⊔ H1. This gluing should be counted twice because there are two choices for which
component is generated by C3 ⊔ C4. Therefore we have the first line of the equation.

To see why the second line is true, simply apply the first equation to each N(⊔S∈πHS)
term individually. Now the relevant partitions are those of which π is a refinement, and
the decompositions are not into Gi but instead HS .

This theorem gives a recursive algorithm for calculating N(A) for an arbitrary host
graph. With sufficient computing power, then, we could use it to calculate N(A) for the
random graph directly. This theorem can be used as a starting point that will allow us to
give explicit counts of a family of graphs, as well as a sufficient condition for graphs to have
certain distributions. The first step is to expand the recursion to get a simpler formula.

5



Lemma 10. For any graph A = ⊔k
i=1Gi with Gi 6= Gj for all i 6= j, there exist integers

fA(H) for every H ∈ ∪π≤[k]Hπ such that

N(A) =

k
∏

i=1

N(Gi)−
∑

π≤[k]

∑

H∈Hπ

∏

S∈π

N(HS)fA(H)

Note that fA is uniquely determined; there is no way to write the number of copies
of any connected graph in terms of the number of copies of other connected graphs. This
is clear by inspection, or from [3]’s proof that the copies of distinct connected graphs are
independently distributed.

3 Distribution of copies

As mentioned in the introduction, [3] proves that, for any constants p and q, any i < q, and
any connected graph G0, the probability of G(n, p) having i copies of G0 modulo q tends
to 1/q as n tends to infinity. That is, the distribution of a connected graph in the random
graph tends to uniform modulo q. We give exact distributions for the number of copies of
any disconnected G0 in G(n, p) modulo q in this section by combining the formulas of the
previous section with these results on connected graphs.

The previous section gives exact expressions for the number of copies of a disconnected
graph in a particular graph. The formulas are often difficult to implement. However, since
our goal is the distribution of the count, rather than its exact value, the preceding formulas
are enough. To study the distributions of disconnected graphs, we first recall Theorem 3.2
in [3], which we restate here:

Theorem 11. For any q > 1 and p ∈ (0, 1), and any family of distinct finite connected
graphs F1, . . . Fl, the distribution of (N(F1), . . . N(Fl)) modulo q is 2−Ω(n) close to uniform
over [q]l.

In other words, there are no relations between the number of copies of distinct connected
subgraphs. Therefore we may use 9 without being concerned about possible dependencies
in the distribution. Combining Theorem 11 and Lemma 10 produces the following corollary
(note that for any connected graph, e.g. H ∈ H1, p(H) = 1).

Corollary 12. Given A = ⊔k
i=1Gi with distinct Gi, if there exists some H ∈ H1 such that

fA(H) is relatively prime to q and H is not a gluing of {Gi}i∈S for any S ⊂ [k], then the
distribution of N(A) in G(n, p) is 2−Ω(n)-close to uniform modulo q.

The rest of this section is concerned with finding, for a given A, an H such that
fA(H) = ±1. This is enough to show that, for any q, N(A) is distributed uniformly
modulo q.
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Definition 13. Given A = ⊔k
i=1Gi and a uniquely decomposable gluing

H with decomposition (H1, . . . Hk), the structure graph of H, denoted by T (H), is the
graph whose vertices are [k] and edges are pairs i, j such that Hi ∩Hj is non-empty.

Definition 14. Given A = ⊔k
i=1Gi, a gluing H is tree-like if it is uniquely decomposable

and its structure graph, T (H), is a tree.

We now show

Theorem 15. For any graph A = ⊔k
i=1Gi with distinct components and tree-like gluing H,

fA(H) = (−1)k−1.

Proof. The proof is by strong induction. When k = 2 the statement follows from Theorem
3: when k = 2 any uniquely decomposable gluing is tree-like.

Now consider k ≥ 3. By the first line of Theorem 9,

N(A) =
k
∏

i=1

N(Gi)−
∑

0<π≤[k]

∑

J∈Hπ

N(⊔S∈πJS)
∏

S∈π

sS(JS).

The induction hypothesis applied to ⊔S∈πJS implies that

fA(H) = −
∑

0<π≤[k]

∑

J∈Hπ

fJ(H)
∏

S∈π

sS(JS) (1)

Note that for any J with fJ(H) 6= 0, the unique decomposability of H gives that there is
exactly one 0 < π ≤ [k] such that J ∈ Hπ. Let us call this partition π(J,H). Furthermore,
it also gives that p(J) = 1 for any such J . We will show

Claim 16. For any r−component J , if fJ(H) 6= 0, then JS = H[S] for all S ∈ π(J,H)
and fJ(H) = −1r−1.

Claim 17. If fJ(H) 6= 0 then
∏

S∈π(J,H) sS(JS) = 1.

Claim 18. For 0 < π ≤ [k] the number of J ∈ Hπ such that JS = H[S] ∀S ∈ π is one if
H is compatible with π and zero otherwise. If H is compatible with π, call π H−good.

Claim 19. There are
(

k−1
r−1

)

H− good partitions π consisting of r sets.

Combining Claims 16-19 with (1) we immediately have (think of r as the number of
components of J , or equivalently number of sets in the partition π related to J)

fA(H) = −
k−1
∑

r=1

(

k − 1

r − 1

)

(−1)r−1

= −1k−1.
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Proof of Claim 16 The first part of the claim holds because H is uniquely decomposable.
Note that H is a tree-like gluing of the components of J . Thus the second part of the claim
is an application of our inductive hypothesis.

Proof of Claim 17 This follows from the unique decomposability of H.

Proof of Claim 18 JS must be a connected graph. So if H[S] is connected for all S ∈ π
then J = ∪S∈πH[S] is clearly the only J ∈ Hπ such that JS = H[S] ∀S ∈ π. If H[S] is
disconnected, then H was not compatible with π. Thus there are zero such graphs.

Proof of Claim 19 Consider the natural mapping from a partition 0 < π ≤ [k] to the set
E(T (H) \ F ) where F = ∪S∈πH[S]. This mapping defines a bijection from the H−good
partitions π consisting of r distinct sets and the set of subgraphs of T (H) with r−1 edges.

4 Specific examples

Here we give some applications of the theorems of the previous section. We begin with a
complete characterization of the distribution of all two-component graphs, together with
explicit constructions. We then give several families of graphs that have tree-like gluings,
and therefore by Theorem 15 are uniformly distributed. Finally, we show that no recursive
proof of the simplest form exists for a uniform asymptotic distribution for arbitrary graphs.

4.1 Two component graphs

Any uniquely decomposable gluing of two graphs must be tree-like. So one way to show
that N(A) is uniformly distributed for some two component graph A would be to give
a construction of a uniquely-decomposable H. In fact, such a construction exists for all
two-component graphs except a few trivial cases.

Theorem 20. If G1 6= G2, neither G1 nor G2 is a single vertex, {G1, G2} 6= {P1, P2} and
{G1, G2} 6= {P1, P3}, there exists a graph H such that
(G1, G2,H,H1,H2) is a uniquely decomposable gluing and H 6= G1, G2. Furthermore, H
may be constructed explicitly.

In order to describe the construction of H, we define a few new terms. H will be created
by taking two graphs and “gluing” them together.

Definition 21. Given G1 and G2 and vertices v1 ∈ V (G1) and v2 ∈ V (G2), to glue v1 and
v2 to create a new graph Hv is the natural identification:

V (Hv) = (V (G1) \ {v1}) ∪ (V (G2) \ {v2}) ∪ {v}

and

E(Hv) = {{x, y}|{x, y} ∈ E(G1)∪E(G2)}∪{{x, v}|{x, v1} ∈ E(G1)}∪{{v, y}|{v2 , y} ∈ E(G2)}.
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Given G1 and G2 and edges {u1, v1} = e1 ∈ G1 and {u2, v2} = e2 ∈ G2, to glue e1 and e2
to create a new graph He is the natural identification:

V (He) = (V (G1) \ {u1, v1}) ∪ (V (G2) \ {u2, v2}) ∪ {u, v}

and

E(Hv) = {{x, y}|{x, y} ∈ E(G1) ∪ E(G2)} ∪ {{x, u}|{x, u1} ∈ E(G1) ∪ {{x, u}|{x, u2} ∈ E(G2)

∪{{x, v}|{x, v1} ∈ E(G1)} ∪ {{x, v2, }|{x, v2} ∈ E(G2)} ∪ {{u, v}}.

Notice that there are two possible gluings along an edge, as there are two possible pairings
of the endpoints of the edges. Constructions in this paper work for an arbitrary pairing of
endpoints.

Another difficulty is deciding where to glue two graphs. To describe gluing locations,
we consider the underlying connectivity structure of each graph. We say the block degree
bG(v) of a vertex v ∈ G is the number of components generated by the removal of v,
i.e. b(v) = (number of components of G − v) - (number of components of G). Note that
bG(v) > 0 if and only if v is a cut vertex. So every connected graph has at least two vertices
of block degree 0, which we will call block-leaves. Let B(G) = maxv∈V (G) bG(v).

Throughout the following discussion we let H refer to the graph created by gluing
together G1 and G2 at either v1 and v2, or e1 and e2, as discussed in Definition 21. H1,H2

will be an arbitrary decomposition of H. That is, Hi may be the original graph Gi, or it
may be a different image of Gi in H. Note that, if H is formed by gluing at a vertex, then
H1 ∩ H2 is a single vertex. Similarly, if H is formed by gluing at an edge, H1 ∩ H2 is a
single edge. We begin with a few observations about the block degree.

Observation 22. If H is made by gluing together G1 and G2 at a vertex, then in any
decomposition H1,H2, with z = H1 ∩H2, for all x 6= z ∈ H1,

bH1
(x) = bH(x)

and for all x 6= z ∈ H2,
bH2

(x) = bH(x).

Furthermore, bH1
(z), bH2

(z) ≤ bH(z).

Observation 23. If H is formed by gluing together G1 and G2 at an edge, then in any
decomposition H1,H2, for all x ∈ H1 ∩ H̄2,

bH1
(x) = bH(x)

and for all x ∈ H2 ∩ H̄1,
bH2

(x) = bH(x).

For x ∈ H1 ∩H2, bH1
(x), bH2

(x) ≤ bH(v).

9



With these definitions and observations in hand, we begin the proof of Theorem 20.

Proof. Without loss of generality, we may assume B(G2) ≥ B(G1) and, if B(G2) = B(G1),
then |V (G1)| ≤ |V (G2)|. Let Si be the set of vertices in Gi of block-degree B(Gi). We
split graph pairs into six cases, according to their block degrees and other traits, and give
a construction for each case.

Case A: B(G2) > B(G1) and B(G2) > 1. In this case, glue a block-leaf at maximum
distance from S2 to any block-leaf in G1 to create H.

Suppose H2 ∩ G1 6= {v}. H2 ∩ G1 is a connected graph: if not, then because H2 is
connected there is a path between any two disconnected components of H2∩G1 within G2.
But any such path must begin and end at v, and therefore H2 ∩G1 itself was connected.

Thus there are at least two block-leaf vertices in H2 ∩G1, hence at least one block-leaf
in H2 ∩ G1 not equal to v. Choose one such vertex and label it w. Let R be the set of
vertices in H2 such that φ(R) = S2. Since bH(v) = 2 < B(G2), by Observation 1, we must
have R = S2. Then d(w,R) = d(w,S2) > d(v, S2) a contradiction. Thus H2 ∩ G1 = {v},
and the decomposition is unique.

Case B: B(G2) = B(G1). In this case, glue a block-leaf in G2 to any vertex in S1. Since
bH(v) > B(G2), Observation 1 implies that H1 ∩H2 = {v}. Therefore each component of
H \ {v} must be entirely contained within H1 or H2. Now we use that |V (G2)| ≥ |V (G1)|
to conclude H is uniquely decomposable.

Case C: B(G2) = 1, B(G1) = 0, G1 6= K2, and there exists a block within G2 that
is not isomorphic to G1. Because B(G2) = 1, each cut-vertex in G2 connects two blocks.
Therefore we can look at G2’s structure as a tree TG2

, with vertices v ∈ TG2
corresponding

to each block in G2, and edges e ∈ TG2
corresponding to each cut-vertex u ∈ G2.

Color a vertex in this tree black if its block in G2 is isomorphic to G1 and white
otherwise. Let a special path in TG2

be any path v1, v2, . . . vk in TG2
such that v1 is white

and v2, . . . vk are black. Notice that by definition there must be a white vertex, therefore
there must be at least one special path (possibly consisting of just one vertex).

Let u1, u2, . . . uM be a special path of maximal length. Create H by gluing a vertex
of G1 to a vertex of uM not in uM−1. H now has a longer special path than G2. This
is uniquely decomposable because any decomposition of H must break this new longest
special path by splitting a single vertex. The only vertex that will split H into a copy of
G1 and a copy of G2 is the glued vertex; any other will generate two graphs, each of which
contains at least two blocks.

Case D: B(G2) = 1, B(G1) = 0, G1 6= K2, and G2 consists of blocks isomorphic to
G1.
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Glue any edge of e1 of G1 to any edge in e2 of G2 whose end-vertices both have block
degree 0. Call this new glued block Gg ⊂ H, and the glued edge e. We show that H is
uniquely decomposable by focusing on Gg and how it must interact with any decomposition
H1,H2.

First notice that Gg cannot be entirely contained within H1: Gg has too many vertices.
Furthermore, Gg cannot be entirely contained within H2: Gg is not isomorphic to G1, so
it cannot be a block in H2. Therefore Gg contains the intersection of H1 and H2. We also
know that H1 is entirely within Gg: If H1 has vertices both in and out of Gg, it would
contain a cut vertex. Also notice a simple counting shows that the intersection of H1 and
H2 must consist of a single edge.

Therefore, we have established that H1 ⊂ Gg, Gg ∩H2 6= ∅, and H1 ∩H2 = e′ for some
edge e′ ∈ Gg. We now show that e′ = e.

Suppose not. Notice that, by construction, there are no edges other than e in H that
have one end vertex in G1 and the other end vertex in G2. Therefore, if e

′ 6= e, e′ must be
entirely within G1 or entirely within G2. Thus splitting along e′ means splitting G1 or G2.
If G1 is split, one of H1,H2 is a proper subgraph of G1, which is a contradiction. If G2 is
split, then G1 is a proper subgraph of both H1 and H2, which is a contradiction.

Case E: B(G2) = 1, D(G2) > 2 and G1 = K2. In this case, if G2 contains a vertex
of degree one, glue a vertex of G1 to a leaf at maximum distance from S′

2, the set of ver-
tices of G2 of maximum degree. Let w be the vertex in G1 not glued to G2. Note that
d(w,S′

2) = d(v, S′
2)+ 1 which is strictly greater than the distance from x to S′

2 for any leaf
x ∈ G2. Thus w 6∈ H2 and we conclude the decomposition of H is unique.

If G2 does not contain any vertices of degree one, then glue any vertex of G1 to any
vertex of G2. Then w, the vertex in G1 not glued to G2, must be in H1 and we conclude
the decomposition of H is unique.

Case F: G2 = Pk, k > 3, and G1 = K2. In this case, glue a vertex of K2 to the third vertex
along the path Pk. It is clear that this graph is uniquely decomposable.

In fact, this construction covers almost all uniformly-distributed two-component graphs.
We fully characterize the distributions of two-component graphs by combining Theorem
20 with some examination of a few special cases.

Theorem 24. For every graph A with connected components G1 6= G2

• If neither G1 nor G2 is a single vertex, and {G1, G2} 6= {P1, P2}, {P1, P3} (where
Pi is the path with i edges), N(A) is 2−Ω(n)-close to uniformly distributed in G(n, p)
modulo any q.

• If A = P1 ⊔ P2, N(A) is 2−Ω(n)-close to uniformly distributed modulo q
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• If A = P1 ⊔P3, N(A) is 2−Ω(n)-close to uniformly distributed modulo q if and only if
q is odd. If q is even, N(A) is 2−Ω(n)-close to being

P (N(A) ≡ 2i) = 3/2q

and
P (N(A) ≡ 2i+ 1) = 1/2q

for all i ∈ {0, . . . q/2}.

• If, without loss of generality, G1 = K1, N(A) is 2−Ω(n)-close to being

P (N(A) ≡ il) = l/q,

where l = gcd(q, n− |V (G2)|)

Proof. The first item follows directly from Theorem 20, Theorem 15, and Corollary 12.
The next cases, P1 ⊔ P2, P1 ⊔ P3, and K1 ⊔G2, are solved by direct computation.

1 2 3 4
H1

1 2 3
H2

2 1

3

4
H3

1 2

3

H4

❄❄❄

First consider the case A1 = P1 ⊔ P2. All gluings H ∈ H of P1 and P2 are illustrated
above. Note that H2 = P2, s(H1) = 2, s(H2) = 2, s(H3) = 3, and s(H4) = 3. Therefore
we have

N(A1) = (N(P1)− 2)N(P2)− 2N(H1)− 3N(H3)− 3N(H4).

By Theorem 11, we know that the tuple (N(P1), N(P2), N(H1), N(H3), N(H4)) is 2
−Ω(n)-

close to being uniformly distributed over Z5
q. Therefore N(A1) itself is 2

−Ω(n)-close to being
uniformly distributed.

Now consider the case A2 = P1 ⊔ P3. All gluings H ∈ H of P1 and P3 are illustrated
below. Note that H2 = P3, s(H1) = 2, s(H2) = 3, s(H3) = 2, s(H4) = 4, and s(H5) = 2.
Therefore we have

N(A2) = (N(P1)− 3)(N(P3))− 2N(H1)− 2N(H3)− 4N(H4)− 2N(H5).

Again, Theorem 11 and some basic modular arithmetic are enough to generate the distri-
butions modulo q in each case.

1 2 3 4 5
H1

1 2 3 4
H2

1 2 3 4

5

H3

⑧⑧⑧
1 2

4 3

H4

1 2 3

4

H2

❄❄
❄

Now, consider the case A3 = K1 ⊔ G2. It is clear that N(A) = (n − |V (G2)|)N(G2).
Once more, Theorem 11 and some basic modular arithmetic are enough to generate the
distribution modulo q.
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4.2 Tree-like gluings

Graphs with more than two components are harder to work with using the methods of
the previous section. As the number of components increases, the possible gluings and
decompositions also increase. Nevertheless, there are some families of multi-component
graphs that admit a recursive construction.

Theorem 25. If A = ⊔k
i=1Gi and there do not exist i 6= j such that Gi is a subgraph

of Gj , then there exists HA a tree-like gluing of {Gi} such that HA 6= Gi, and N(A) is
2−Ω(n)-close to being uniformly distributed modulo q for all q.

Proof. Without loss of generality, let the graphs be listed in non-decreasing order by di-
ameter. Let ui and vi be vertices of Gi at maximal distance from each other. Then let HA

be the graph constructed by gluing vi to ui+1. The structure graph is clearly a tree.
It is also uniquely decomposable, by induction: Suppose this construction is uniquely

decomposable for all k < n. Now consider HA for k = n. Suppose there exists some
decomposition so that Gn 6= Hn. Consider vn. If vn ∈ Hi for i 6= n, then because
D(Gn) ≥ D(Gi), all vertices inHi must be withinGn. That contradicts our initial condition
that no graphs is a subgraph of another, so it cannot happen.

Therefore x ∈ Hn. Again, by a diameter argument, Gn = Hn. Therefore any decom-
position of HA must fix Gn. The graph HA −Hn is the construction for G1, . . . , Gn−1, so
by induction it is also uniquely decomposable.

Because HA has a tree structure and is uniquely decomposable, by Theorem 15 N(A)
is 2−Ω(n)-close to uniformly distributed modulo q.

The reader can generate many corollaries of Theorem 25, using any subgraph-free family
of graphs.

The same“path-like” gluing shows another family of multi-component graphs is also
uniquely decomposable.

Theorem 26. If A = ⊔k
i=1Gi and the Gi are distinct and two-connected, then N(A) is

2−Ω(n)-close to being uniformly distributed modulo q for all q.

Proof. Similarly to the proof of Theorem 25, glue the graphs together at the vertices of
maximum distance from each other. HA contains k − 1 vertices of block-degree 1, which
are exactly the glued vertices. Notice that any decomposition must split all block-degree 1
vertices into two block-degree 1 vertices; therefore there is exactly one decomposition and
the graph is uniquely decomposable.

4.3 No generic gluing exists

The previous constructions used a recursive process to create a uniquely decomposable H
for G satisfying certain conditions. A natural goal would be to find a generic recursive
process to generate H for arbitrary G. However, no such construction exists.
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Theorem 27. There does not exist a generic recursive construction algorithm C that, for
all k and distinct G1, . . . , Gk, generates a uniquely decomposable Hk. That is, there does not
exist an algorithm C that, given G1, . . . Gk in that order, constructs uniquely decomposable
Hk by first calling C on G1, . . . , Gk−1 to generate Hk−1, and then calling C on Hk−1, Gk.

Proof. Suppose there did exist such a recursive C. Let C(G1, . . . Gk−1) = Hk−1. If
G1, . . . , Gk−1 can be glued together as a proper subgraph of Hk−1, then C cannot con-
struct a uniquely decomposable Hk on input G1, . . . , Gk−1,Hk−1. We note that, for ex-
ample, G1 ⊆ G2 is enough to give that G1, . . . , Gk−1 can be glued together as a proper
subgraph of Hk−1.

We also point out that ordering is important to this proof; as far as we know, it
is possible that an algorithm exists that, given G1, . . . Gk, first analyzes the individual
graphs, then calls them in a particular order Gj1 , . . . Gjk .

5 Open questions

There are two main open questions. What disconnected graphs are distributed uniformly?
What families of connected graphs are uniquely or tree-like composable?

Theorem 12 gives us one means of studying graph distributions. However, it is not the
case that graphs are uniformly distributed exactly when they have tree-like compositions.
(Recall that P1 ⊔P2 is uniform but is not uniquely composable.) It is possible that a more
sophisticated analysis of the formula in Theorem 9 could give a different sufficient condition
for graphs to be uniformly distributed.

We have fully characterized the two-component graphs that are uniquely composable,
and hence admit tree-like compositions. We believe an approach similar to the two-
component construction given here also works for the three-component case. However,
increasing the number of components significantly complicates the analysis, and the num-
ber of cases is over twenty. We are currently developing a simpler construction for three
components.

Of course, the ultimate goal is to completely characterize the uniquely composable and
tree-like composable graphs with any number of components. We suspect that many, if not
all, graphs admit such compositions. Theorem 27 indicates a recursive approach does not
work in general, but a different type of algorithm may succeed. Even a non-constructive
proof of the existence of uniquely decomposable or tree-like graphs would be interesting.
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