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MAXIMUM DIAMETER OF 3- AND 4-COLORABLE GRAPHS

ÉVA CZABARKA, STEPHEN J. SMITH, AND LÁSZLÓ SZÉKELY

Abstract. P. Erdős, J. Pach, R. Pollack, and Z. Tuza [ J. Combin. Theory B 47 (1989),
279–285] made conjectures for the maximum diameter of connected graphs without a
complete subgraph Kk+1, which have order n and minimum degree δ. Settling a weaker
version of a problem, by strengthening the Kk+1-free condition to k-colorable, we solve
the problem for k = 3 and k = 4 using a unified linear programming duality approach.
The case k = 4 is a substantial simplification of the result of É. Czabarka, P. Dankelmann,
and L. A. Székely [Europ. J. Comb. 30 (2009), 1082–1089].

1. Introduction

We study the maximum diameter of connected graphs in terms of other graph parameters
such as order, minimum degree, etc. Several papers [1, 6, 7, 8] have shown that:

Theorem 1. For a fixed minimum degree δ ≥ 2, every connected graph G of order n
satisfies diam(G) ≤ 3n

δ+1
+O(1), as n → ∞.

This upper bound is sharp (even for δ-regular graphs [2]), but the constructions have
complete subgraphs, whose order increases with n. Erdős, Pach, Pollack, and Tuza [6]
conjectured that the upper bound in Theorem 1 can be improved, if large cliques are
excluded:

Conjecture 1 ([6]). Let r, δ ≥ 2 be fixed integers and let G be a connected graph of order
n and minimum degree δ.

(i) If G is K2r-free and δ is a multiple of (r − 1)(3r + 2) then, as n → ∞,

diam(G) ≤
2(r − 1)(3r + 2)

(2r2 − 1)
·
n

δ
+O(1)

=

(

3−
2

2r − 1
−

1

(2r − 1)(2r2 − 1)

)

n

δ
+O(1).

(ii) If G is K2r+1-free and δ is a multiple of 3r − 1, then, as n → ∞,

diam(G) ≤
3r − 1

r
·
n

δ
+O(1) =

(

3−
2

2r

)

n

δ
+O(1).
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Furthermore, they created examples showing that the above conjecture, if true, is sharp,
and showed part (ii) of the conjecture for r = 1.

Czabarka, Dankelmann and Székely [3] arrived at the conclusion of Conjecture 1 (ii) for
r = 2 under a stronger hypothesis:

Theorem 2. For every connected 4-colorable graph G of order n and minimum degree

δ ≥ 1, diam(G) ≤ 5n
2δ

− 1.

Czabarka, Singgih and Székely [4] gave an infinite family of (2r − 1)-colorable (hence

K2r-free) graphs with diameter (6r−5)(n−2)
(2r−1)δ+2r−3

−1, providing a counterexample for Conjecture

1 (i) for every r ≥ 2 and δ > 2(r − 1)(3r + 2)(2r − 3). The question whether Conjecture
1 (i) holds in the range (r − 1)(3r + 2) ≤ δ ≤ 2(r − 1)(3r + 2)(2r − 3) remains open. The
counterexample led Czabarka et al. [4] to the modified conjecture below, which no longer
requires cases for the parity of the order of the excluded complete subgraphs:

Conjecture 2 ([4]). For every k ≥ 3 and δ ≥ ⌈3k
2
⌉ − 1, if G is a Kk+1-free (under a

stronger hypothesis, k-colorable) connected graph of order n and minimum degree at least
δ, diam(G) ≤

(

3− 2
k

)

n
δ
+O(1).

Czabarka, Singgih and Székely [5] showed that the extremal graphs for the diameter
maximization problem of Conjecture 2 include graphs blown up from some very specific
structures, called canonical clump graphs. Furthermore, [5] showed using the weak duality
theorem of linear programming that providing a sufficiently good solution for a dual prob-
lem on canonical clump graphs gives an upper bound for the diameter of graphs blown up
from canonical clump graphs (see Theorem 7), and hence an upper bound for the diameter
maximization problem of Conjecture 2. Using this method, they proved:

Theorem 3 ([5]). Assume k ≥ 3. If G is a connected k-colorable graph of minimum degree

at least δ, then

diam(G) ≤
3k − 4

k − 1
·
n

δ
− 1 =

(

3−
1

k − 1

)

n

δ
− 1

.

Czabarka, Singgih and Székely [5] also made a slight improvement on Theorem 3 for 3-
colorable graphs, but with a different argument.

In this paper we give a common short proof of the Conjecture 2 (under the stronger
hypothesis) for k = 3 and 4 (the latter being Theorem 2 from Dankelmann et al. [3]) using
the approach above:

Theorem 4. Assume k = 3 or 4. If G is a connected k-colorable graph of order n, and of

minimum degree at least δ ≥ 1, then diam(G) ≤
(

3− 2
k

)

n
δ
− 1.

The main tool of the proof is still the use of canonical clump graphs, however, we focus
on an even smaller class, strongly canonical clump graphs, of which blown up copies are still
present among the extremal graphs for the diameter maximization problem of Conjecture 2,
as shown in Section 2. We partition the strongly canonical graph into segments of three
types. Weighting the vertices such that the total weight of the neighbors of any vertex
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is at most 1 and the average weight of a layer in each segment is k
3k−2

finishes the proof.
When k ∈ {3, 4}, Type 1 and Type 2 segments (defined in Section 4) have a very limited
structure, as shown in Lemma 9. For k ≥ 5 we have examples of segments that cannot be
weighted according to this scheme, so new ideas are needed.

2. Clump Graphs

Given a k-colorable connected graph G of order n and minimum degree at least δ,
choose a vertex x whose eccentricity is diam(G). Take a fixed good k-coloring of G. Let
layer Li denote the set of vertices at distance i from x, and a clump in Li be the set
of vertices in Li that have the same color. The number of layers is diam(G) + 1. We
call a graph layered, if such a vertex x and the distance layers L0 = {x}, L1, . . . , LD are
given. Let c(i) ∈ {1, 2, . . . , k} denote the number of colors used in layer Li by our fixed
coloration. We can assume without loss of generality that any two vertices in layer Li in
G, which are differently colored, are joined by an edge in G, and also that two vertices in
consecutive layers, which are differently colored, are also joined by an edge in G. We call
this assumption saturation with respect to the fixed good k-coloring. Assuming saturation
does not make loss of generality, as adding these edges does not decrease degrees, keeps the
fixed good k-coloration, and does not reduce the diameter, while making the graph more
structured for our convenience.

From the layered and saturated graph G above, we create an unweighted clump graph

H = H(G). Vertices of H correspond to the clumps of G. Two vertices of H are connected
by an edge if there were edges between the corresponding clumps in G. H is naturally
k-colored and layered, based on the coloration and layering of G. With a slight abuse of
notation, we denote the layers of H by Li as well. To create a weighted clump graph, we
assign positive integer weights to each vertex of the unweighted clump graph. Blowing up
vertices of H into as many copies as their weight is, we obtain a bigger k-colorable graph
of the same diameter (we do not put edges between successors of the same vertex). In case
the weights are the cardinalities of the clumps in G, after the blow-up of H = H(G) we get
back G. The degree of a vertex v in a blow-up of H , where v is a successor of a vertex w
of H by blow-up, is the sum of the weights of neighbors of the vertex w in H . The number
of vertices in a blow-up of H is the sum of the weights of all vertices in H .

The following theorem was proven in [5]:

Theorem 5 ([5]). Assume k ≥ 3. Let G′ be a k-colorable connected graph of order n,
diameter D and minimum degree at least δ. Then there is a saturated k-colored and layered

connected graph G of the same parameters n and δ, with layers L0, . . . , LD, for which the

following hold for every i (0 ≤ i ≤ D − 1):

(i) If c(i) = 1, then c(i+ 1) ≤ k − 1.
(ii) The number of colors used to color the set Li ∪ Li+1 is min(k, c(i) + c(i + 1)). In

particular, when c(i) + c(i+ 1) ≤ k, then Li and Li+1 do not share any color.

(iii) If c(i) = k, then i ≥ 2 and c(i+ 1) ≥ 2.
(iv) If |Li| > c(i), i.e., Li contains two vertices of the same color, then i > 0 and

c(i) + max
(

c(i− 1), c(i+ 1)
)

≥ k.
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Canonical clump graphs were defined in [5] asH = H(G) clump graphs, where G satisfies
the conclusions of Theorem 5. Now we define strongly canonical clump graphs for D ≥ 2
as H = H(G) canonical clump graphs (i.e., G satisfies the conclusions of Theorem 5), and
in addition, c(0) = c(D) = 1.

It is not difficult to see the following: if the graph G′ in the assumption of Theorem 5
is layered with |L′

0| = 1 and c′(D) = 1, then the proof of Theorem 5 in [5] provides a
layered G with |L0| = 1 (and hence c(0) = 1), and c(D) = 1. Based on this observation,
the following lemma implies that to resolve Conjecture 2 (or proving Theorem 4), we may
assume that G has a strongly canonical clump graph.

Lemma 6. Assume k ≥ 3 and D ≥ 2. Let G′ be a k-colored layered connected graph of

order n, diameter D, and minimum degree at least δ, with layers L′
0, . . . , L

′
D. Then there is

a k-colored layered connected graph G of the same parameters, with layers L0, . . . , LD, for

which c(0) = c(D) = 1, and for each i (0 ≤ i ≤ D − 2), we have c′(i) = c(i) and L′
i = Li.

Proof. As |L′
0| = 1 is necessary in a layered graph, we must have c′(0) = 1, and if c′(D) = 1,

the choice L′
i = Li suffices. If c′(D) > 1, pick a color A in L′

D. If possible, pick such a color
that also appears in L′

D−2. This ensures that for all colors B in L′
D such that B 6= A there

is a color C in L′
D−2 such that B 6= C (where C = A, if A appeared in LD−2, otherwise any

color in LD−2 works). Create a layered graph graph G from G′ by moving all vertices in
L′
D that are not colored A to the next-to-last layer, which will be LD−1, and connect them

to all vertices in LD−2 = L′
D−2 that have different color. Note that for all vertices of LD−1,

there is at least one such vertex. As we only changed the number of vertices in layers D−1
and D, and did not change the coloration of the vertices, the claim follows. �

3. Duality

Let Hk,D,δ denote the family of unweighted canonical clump graphs of diameter D that
arises from connected k-colorable graphs G with diameter D and minimum degree at least
δ, when the order of G is unspecified. We will rely on the following result from [5]:

Theorem 7. ([5]) Fix k ≥ 3. Assume that there exists constants ũ > 0 and C ≥ 0 such

that for all D and δ, and for all H ∈ Hk,D,δ, the optimum of the linear program

Maximize δ ·
∑

y∈V (H)

u(y),

subject to the condition

(1) ∀x ∈ V (H)
∑

y∈V (H) :xy∈E(H)

u(y) ≤ 1.

is at least

ũδD + C.

Then for any k-colorable graphs G with minimum degree δ on n vertices, we have

diam(G) ≤
1

ũ

n

δ
−

C

ũ
.
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In Theorem 7 and in its proof we may change the family of canonical clump graphs H
to the family of strongly canonical clump graphs H′ keeping all arguments valid.

4. Some definitions and observations

Recall that we use the sloppy notation Li for the layers of the clump graph H(G) as
well, not just for the layers of G. Hence c(i) = |Li|, if Li denotes a layer of the clump
graph. Based on the arguments of Section 2, we have:

Claim 1. An unweighted k-colorable strongly canonical clump graph with layers L0, . . . , LD

satisfies the following properties:

(i) |L0| = |LD| = 1,
(ii) If |Li| = k, then 2 ≤ i ≤ D − 1 and min(|Li−1|, |Li+1|) ≥ 2, and
(iii) For i ∈ [D], the edges that do not appear between Li−1 and Li form a matching of

size max(k, |Li−1|+ |Li|)− k.

For the following definition, and also for the rest of this section, assume that we are given
a k-colorable canonical clump graph H with layers L0, . . . , LD. We define for convenience
two additional layers, as L−1 = LD+1 = ∅. For a vertex x ∈ V (H), let N(x) denote the set
of neighbors of x.

Definition 1. For each i : 0 ≤ i ≤ D, define the set Si = {x ∈ Li : Li−1 ∪ Li ⊆ N(x)}. We
call a layer Li big if |Si| >

k
2
. A layer is small if it is not big.

Note that if Li is big, then i /∈ {0, D}. We set S−1 = SD+1 = ∅, in accordance with
L−1 = LD+1 = ∅.

Lemma 8. Assume D ≥ 2. Let H be an unweighted k-colorable strongly caonical clump

graph with layers L0, . . . , LD. The following is true for each i : 0 ≤ i ≤ D:

(i) |Li| ≤ k −max(|Si−1|, |Si+1|),
(ii) |Si| ≤ k − 1,
(iii) if Li is big, then 1 ≤ i ≤ D − 1 and Li−1, Li+1 are small,

(iv) if |Li| = 1, then Li = Si,

(v) max(|Li \ Si|, |Li+1 \ Si+1|) ≤ k − |Si| − |Si+1|,
(vi) if |Si| = k − 1, then Li = Si and for j = i± 1, |Lj| = |Sj| = 1,
(vii) if k ∈ {3, 4} and Li is big, then |Si| = k − 1.

Proof. (i) follows from the facts that Si−1∪Li, and also Si+1∪Li, forms a complete subgraph
in k-colorable graph H .

(ii) follows from (i) and the fact that Li−1 ∪ Li+1 contains at least one vertex.
(iii) follows from (i).
(iv) : As |Li| = 1, then from Claim 1 (ii) we get that max(|Li−1|, |Li+1|) ≤ k − 1. By

Claim 1 (iii), the vertex in Li is adjacent to every vertex in Li−1 ∪ Li+1.
For (v), Si ∪ Si+1 ∪ (Li \ Si) forms a complete graph in the k-colorable graph H , and

hence |Li \ Si| ≤ k − |Si| − |Si+1|, and similarly, Si ∪ Si+1 ∪ (Li+1 \ Si+1) forms a complete
graph, and hence |Li+1 \ Si+1| ≤ k − |Si| − |Si+1|.
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For (vi), if |Si| = k − 1, then 1 ≤ i ≤ D − 1. By (i), |Li−1| = |Li+1| = 1, and by
Claim 1 (ii), |Li| ≤ k − 1, and by k − 1 = |Si| ≤ |Li| ≤ k − 1, Si = Li.

For (vii), if Li is big, then by definition k
2
< |Si|. By (ii) |Si| ≤ k − 1. For k ∈ {3, 4},

these give |Si| = k − 1. �

Definition 2. Let H be an unweighted k-colorable strongly canonical clump graph with
layers L0, . . . , LD. If for some s ≥ 1 the contiguous segment of layers Li, Li+1, . . . , Li+2s

satisfies all the following conditions:

(i) for each j : 1 ≤ j ≤ s the layer Li+2j−1 is big (thus, Li+2j−2, Li+2j are small),
(ii) i = 0 or Li−1 is small,
(iii) i+ 2s = D or Li+2s+1 is small,

then we say that the contiguous segment is Type 1, if s = 1, and Type 2, if s > 1.

Definition 3. Let H be an unweighted k-colorable strongly canonical clump graph with
layers L0, . . . , LD. Assume that t ≥ 0. We say that the contiguous segment of layers
Li, Li+1, . . . , Li+t is Type 3, if the following hold:

(i) for each j : i ≤ j ≤ i+ t the layer Lj is small,
(ii) if i 6= 0 then i > 2 and Li−2 is big (thus, Li−1, Li−3 are small),
(iii) if i+ t 6= D then i+ t < D − 2 and Li+t+2 is big (thus, Li+t+1, Li+t+3 are small).

Observe that in a Type 3 segment every layer is small.
The following Lemma easily follows from the definition of strongly canonical clump

graphs and Lemma 8.

Lemma 9. Let H be an unweighted k-colorable strongly canonical clump graph. Then

the layers L0, . . . , LD can be partitioned into segments of Type 1, Type 2 and Type 3.

Moreover, if k ∈ {3, 4} and Lj is a layer in a Type 1 or Type 2 segment, then Lj = Sj and

|Lj | ∈ {1, k − 1}.

5. Proof of Theorem 4

Assume k ∈ {3, 4}, and let H be an unweighted k-colorable strongly canonical clump
graph. By Theorem 7, it is enough to find a dual weighting u of the vertices of H , which
satisfies the conditions of that theorem and has total weight (D + 1) k

3k−2
. Fix a partition

of the layers of H into segments of Type 1, Type 2 and Type 3 according to Lemma 9. For
shortness, we will say that layer Li is of Type j, if Li falls into a segment of Type j.

Consider a vertex v in a layer Li. Set u(v) as follows:

• If Li is of Type 1: u(v) =

{

2
3k−2

, if|Li| = k − 1,
k+2

2(3k−2)
otherwise.

• If Li is of Type 2:

u(v) =











1
2(k−1)

, if |Li| = k − 1,
k+2

2(3k−2)
, if |Li| = 1 and Li is not the first or last layer of the segment,

3k+2
4(3k−2)

, otherwise.

Note that as k ≥ 3, k+2
2(3k−2)

< 3k+2
4(3k−2)

< k
3k−2

.
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• If Li is of Type 3:

u(v) =











k
(3k−2)|Li|

, if |Li| ≤
k
2

2
3k−2

, if |Li| >
k
2
and v ∈ Si

k−2|Si|
(3k−2)(|Li|−|Si|)

, otherwise.

Note that as |Si| ≤
k
2
, we get u(v) ≥ 0. Also, u(v) ≥ 2

3k−2
if |Li| ≤

k
2
or v ∈ Si.

We define the weight u(X) of a vertex set X as
∑

v∈X u(v). It is easy to check that for

any Type 3 layer Li, u(Li) =
k

3k−2
. Also, first and last layers in a segment of any type have

weight at most k
3k−2

.

If Li, Li+1, Li+2 is a Type 1 segment, then u(Li) + u(Li+1) + u(Li+2) = (k − 1) · 2
3k−2

+

2 · k+2
2(3k−2)

= 3 · k
3k−2

.

Assume that Li, Li+1, . . . , Li+2s is a Type 2 segment. The total weight of the layers of
this segment is s · 1

2
+ (s− 1) · k+2

2(3k−2)
+ 2 · 3k+2

4(3k−2)
= (2s+ 1) · k

3k−2
.

This gives that the total weight of H is (D + 1) k
3k−2

, as required. We need to check

condition (1) at every vertex v ∈ V (H).
Assume first that v ∈ Li, where Li is of Type 1.
If Li is big, then u(N(v)) = (k − 2) · 2

3k−2
+ 2 · k+2

2(3k−2)
= 1. If Li is small, then it is the

first or last layer in its segment. As first and last layers in a segment of any type have
weight at most k

3k−2
, we have u(N(v)) ≤ k

3k−2
+ (k − 1) · 2

3k−2
= 1.

Assume next that v ∈ Li, where Li is of Type 2. If Li is small, and is not the first or
last layer in the segment, then u(N(v)) = 2 · (k − 1) · 1

2k−1
= 1. If Li is the first or last

layer in the segment, then u(N(v)) ≤ (k− 1) · 1
2(k−1)

+ k
3k−2

< 1. If Li is big, then u(N(v))

is the greatest if Li is the second or next-to-last layer in its segment. Therefore

u(N(v)) ≤

(

1

2
−

1

2(k − 1)

)

+
k + 2

2(3k − 2)
+

3k + 2

4(3k − 2)
=

(11k + 2)(k − 1)− 6k + 4

4(k − 1)(3k − 2)

=
(11k − 4)(k − 1)− 2

4(3k − 2)(k − 1)
≤ 1.

Assume that v ∈ Li, where Li is of Type 3. Then max(u(Li), u(Li−1), u(Li+1)) ≤
k

3k−2
.

If u(v) ≥ 2
3k−2

, then u(N(v)) ≤ u(Li−1) + u(Li) + u(Li+1) − u(v) ≤ 3k
3k−2

− 2
3k−2

= 1.

Otherwise, we have that |Li| >
k
2
and v /∈ Si. Since v /∈ Si, there is a j ∈ {i − 1, i + 1}

and a w ∈ Lj that is not a neighbor of v. As w ∈ Lj \ Sj , by Lemma 8 (iv) we have that
|Lj | > 1, therefore Lj is also of Type 3.

It u(v)+u(w) ≥ 2
3k−2

, then we get, as before, that u(N(v)) ≤ 1, as needed. In particular,

if u(w) ≥ 2
3k−2

then we are done. So we may further assume that |Lj | >
k
2
and w /∈ Sj ,
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Moreover, from Lemma 8(v) we have max(|Li|−|Si|, |Lj|−|Sj |) ≤ k−|Si|−|Sj |. Therefore

u(v) + u(w) =
k − 2|Si|

(3k − 2)(|Li| − |Si|)
+

k − 2|Sj|

(3k − 2)(|Lj| − |Sj|)

≥
k − 2|Si|

(3k − 2)(k − |Si| − |Sj|)
+

k − 2|Sj|

(3k − 2)(k − |Si| − |Sj|)
=

2

3k − 2
.

This finishes the proof.
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Éva Czabarka, Department of Mathematics, University of South Carolina, Columbia

SC 29212, USA

Email address : czabarka@math.sc.edu

Stephen J. Smith, Department of Mathematics, University of South Carolina, Columbia

SC 29212, USA

Email address : sjs8@email.sc.edu
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