Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Dimensionality Reduced Training by Pruning and
Freezing Parts of a Deep Neural Network, a Survey

Paul Wimmer (& Paul.Wimmer@de.bosch.com)
Robert Bosch (Germany)

Jens Mehnert
Robert Bosch (Germany)

Alexandru Paul Condurache
Robert Bosch (Germany)

Research Article

Keywords: Pruning, Freezing, Lottery Ticket Hypothesis, Dynamic Sparse Training, Pruning at Initialization
Posted Date: January 11th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2458016/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: Competing interest reported. During preparation of this manuscript, all authors
were employed by the Robert Bosch GmbH. Also, Alexandru Paul Condurache and Paul Wimmer were part
of the Institute for Signal Processing of the University of Luebeck.

Version of Record: A version of this preprint was published at Artificial Intelligence Review on May 1st,
2023. See the published version at https://doi.org/10.1007/s10462-023-10489-1.

https://doi.org/10.21203/rs.3.rs-2458016/v1
mailto:Paul.Wimmer@de.bosch.com
https://doi.org/10.21203/rs.3.rs-2458016/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10462-023-10489-1

Springer Nature 2022 B TEX template

Dimensionality Reduced Training by Pruning
and Freezing Parts of a Deep Neural
Network, a Survey

Paul Wimmer"?", Jens Mehnert' and Alexandru Paul
Condurache!?

* Automated Driving Research, Robert Bosch GmbH,
Burgenlandstrale 44, Stuttgart, 70469, Germany.
2Institute for Signal Processing, University of Liibeck,
Ratzeburger Allee 160, Liibeck, 23562, Germany.

*Corresponding author(s). E-mail(s):
Paul. Wimmer@de.bosch.com;
Contributing authors: JensEricMarkus.Mehnert@de.bosch.com;
AlexandruPaul.Condurache@de.bosch.com;

Abstract

State-of-the-art deep learning models have a parameter count that
reaches into the billions. Training, storing and transferring such mod-
els is energy and time consuming, thus costly. A big part of these
costs is caused by training the network. Model compression lowers stor-
age and transfer costs, and can further make training more efficient by
decreasing the number of computations in the forward and/or backward
pass. Thus, compressing networks also at training time while main-
taining a high performance is an important research topic. This work
is a survey on methods which reduce the number of trained weights
in deep learning models throughout the training. Most of the intro-
duced methods set network parameters to zero which is called pruning.
The presented pruning approaches are categorized into pruning at ini-
tialization, lottery tickets and dynamic sparse training. Moreover, we
discuss methods that freeze parts of a network at its random ini-
tialization. By freezing weights, the number of trainable parameters
is shrunken which reduces gradient computations and the dimension-
ality of the model’s optimization space. In this survey we first pro-
pose dimensionality reduced training as an underlying mathematical

Springer Nature 2022 I TEX template

2 Dimensionality Reduced Training, a Survey

model that covers pruning and freezing during training. Afterwards, we
present and discuss different dimensionality reduced training methods
— with a strong focus on unstructured pruning and freezing methods.

Keywords: Pruning, Freezing, Lottery Ticket Hypothesis, Dynamic Sparse
Training, Pruning at Initialization

1 Introduction

In recent years, deep neural networks (DNNs) have shown state-of-the-art
(SOTA) performance in many artificial intelligence applications, like image
classification (Pham et al, 2021), speech recognition (Park et al, 2020) or
object detection (Wang et al, 2021a). These applications require optimizing
large models with up to billions of parameters. Training and testing such
large models has been made possible due to technological advances. As a con-
sequence, SOTA models are trained on specialized hardware for fast tensor
computations, like GPUs or TPUs. Usually, not only one GPU/TPU is uti-
lized to train these models but many of them. For example, XLNet (Yang et al,
2019) needs 5.5 days of training on 512 TPU v3 chips. Not only training, but
transferring, storing and evaluating big models is costly, too (Schwartz et al,
2020). In order to train SOTA models, huge amount of data is required (Peters
et al, 2018; Mahajan et al, 2018; Kolesnikov et al, 2020; Dosovitskiy et al,
2021) which needs resources for collecting, labeling, storing and transferring
it. Of course, the large number of parameters and data, along with high com-
putational demands leads to excessive energy consumption for training and
evaluating deep learning (DL) models. For example, training a big transformer
in conjunction with a previously performed neural architecture search results
in emissions of 284t COy (Strubell et al, 2019). This is about 315x the COq
emissions of a passenger traveling by air from New York City to San Francisco.

Between 2012 and 2018, computations required for DL research have been
increased by estimated 300,000 times which corresponds to doubling the
amount of computations every few months (Schwartz et al, 2020), see Figure 1.
This rate outruns by far the predicted one by Moore’s Law (Gustafson, 2011).
The performance improvements of DL models are to a great extent induced
by raising the number of parameters in the networks and/or increasing the
number of computations needed to train and infer the network (Strubell et al,
2019, 2020). Orthogonal to the development of new, big SOTA models which
need massive amount of data, hardware resources and training time it is impor-
tant to simultaneously improve parameter, computational, energy and data
efficiency of DL models.

Model compression lowers storage and transfer costs, speeds up inference
by reducing the number of computations or accelerates the training which
uses less energy. It can be achieved by methods such as quantization, weight

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 3

Two Distinct Eras of Compute Usage in Training AI Systems
Petaflop/s-days

AlphaGoZero

o ©TI7 Dota 1v1

Ve, o
ResNets

AlexNet |

3.4-month doubling

Deep Belief Nets and
layer-wise pretraining 3
" DoN

TD-Gammon v2.1 .
BIiLSTM for Speech

1le-8 LeNet-5

NETtalk, ®RNN for Speech

ALVINN
1e-10

e-12 2-year doubling (Moore's Law)

1e-14 Perceptron «First Era Modern Era >

1960 1970 1980 1990 2000 2010 2020

Fig. 1 (From the OpenAl blog post (Amodei et al, 2018 [Online])) Evolution of the number
of computations required for training SOTA models in the first era and in the modern era
of Al systems.

sharing, tensor decomposition, low rank tensor approximation, pruning or freez-
ing. Quantization reduces the number of bits used to represent the network’s
weights and /or activation maps, thereby decreasing memory consumption and
speeding up inference (Han et al, 2015; Courbariaux et al, 2015; Wu et al, 2016;
Zhou et al, 2017; Zhang et al, 2018; Jacob et al, 2018; Li et al, 2019). Mem-
ory reduction and speed up can also be achieved by weight sharing (Nowlan
and Hinton, 1992; Chen et al, 2015; Ullrich et al, 2017), tensor decomposition
(Xue et al, 2013; Lebedev et al, 2015; Novikov et al, 2015) or low rank ten-
sor approximation (Sainath et al, 2013; Denton et al, 2014; Liu et al, 2015) to
name only a few. Network pruning (Janowsky, 1989; Mozer and Smolensky,
1989; Karnin, 1990; LeCun et al, 1990; Han et al, 2015; Guo et al, 2016; Qian
and Klabjan, 2021) sets parts of a DNN’s weights to zero. This can help to
reduce the model’s complexity and memory requirements, speed up inference
(Blalock et al, 2020) and even improve the network’s generalization ability
(LeCun et al, 1990; Arora et al, 2018; Bartoldson et al, 2020; Barsbey et al,
2021).

Pruning DNNs can be divided into structured and unstructured pruning.
Structured pruning removes channels, neurons or even coarser structures of the
network (Anwar et al, 2017; Chen et al, 2020a; Huang and Wang, 2018; Zhuang
et al, 2018, 2020; Joo et al, 2021; Wang et al, 2020b). This generates leaner
architectures, resulting in reduced computational time. A more fine-grained
approach is given by unstructured pruning where single weights are set to
zero (Mozer and Smolensky, 1989; Janowsky, 1989; Karnin, 1990; LeCun et al,
1990; Frankle and Carbin, 2018; Lee et al, 2019b; Wang et al, 2020a; Tanaka
et al, 2020). Unstructured pruning usually leads to a better performance than

https://openai.com/blog/ai-and-compute/

Springer Nature 2022 I TEX template

4 Dimensionality Reduced Training, a Survey

Dense Initialization ©() Low dimensional

Initial (®)
(b) Pre-trained ¢*)

initialization ¥
Project to | Train 9 via SGD
Use Construct low dimensional space . !
copy corresponding ,'
g .
to L If Update

- Initial embedding ¥ t%F, =0 p®
il (a) ¢© by scoring) el

() TN <]

3
= I+E:E
Pre-train «"""‘7<7/ «7‘ . N
' »(0) . + Train for T
L B iterations.

Draw iid

y Construct
N corresponding Optimized sparse
e o7 Affine part Y of representation

b ‘ O (0 for pruning) oM = gM(ym)

Probability
distribution
(c) Randomly generated ()

Scores

Fig. 2 Graphical overview of the proposed dimensionality reduced training methods with a
low dimensional initialization 9(9) € RZ. To use the superior trainability of big networks, the
low dimensional space is embedded in a bigger space via ©(0) = () (19<0)) = ¢(0).9(0) 1 (0)
where (9 € RP | 4(0) is the sparse embedding and d < D. Here, x(?) is the optional affine
part modeling the frozen parameters. The embedding is obtained by either (a) scoring the
big random initialization ©(®), (b) using a pre-training step to generate /(9 or (c) mapping
99 onto a randomly chosen subset of ©(°). During training, only the low dimensional ¥(®) is
learned. Furthermore, the embedding T can be adjusted to improve results, see Section 6.

structured pruning (Li et al, 2017; Mao et al, 2017) but specialized soft- and
hardware which supports sparse tensor computations is needed to actually
reduce the runtime (Han et al, 2016; Parashar et al, 2017). For an overview of
the current SOTA pruning methods we refer to Blalock et al (2020).

Freezing a DNN means that only parts of the network are trained, whereas
the remaining ones are frozen at their initial /pre-trained values (Huang et al,
2004; Hoffer et al, 2018; Rosenfeld and Tsotsos, 2019; Wimmer et al, 2020;
Sung et al, 2021). This leads to faster convergence of the networks (Huang et al,
2004) and reduced communication costs for distributed training (Sung et al,
2021). Furthermore, freezing reduces memory requirements if the networks are
initialized with pseudorandom numbers (Wimmer et al, 2020).

In recent years, training only a sparse part of the network, i.e. a network
with many weights fixed at zero or their randomly initialized value, became of
interest to the DL community (Bellec et al, 2018; Frankle and Carbin, 2018;
Lee et al, 2019b; Tanaka et al, 2020; Wang et al, 2020a; Wimmer et al, 2020,
2021, 2022), providing the benefit of reduced memory requirements and the
potential of reduced runtime not only for inference but also for training. Diff-
enderfer et al (2021) even show that sparsely trained models are more robust
against distributional shifts than (i) their densely trained counterpart and
(ii) networks pruned with classical techniques. With classical techniques we
denote pruning during or after training where the sparse network is fine-tuned
afterwards. A high level overview of recent approaches to prune a network
at initialization is given in Wang et al (2021b). In our work, the underlying
mathematical framework is generalized to include a broader class of training

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 5

methods reducing dimensionality. Moreover, our work discusses the analyzed
methods in more detail.

Scope of this work

In this work, we focus on methods that reduce the number of trainable param-
eters in a DL model. For this, we reversely define dimensionality reduction by
embedding a low dimensional space into a high dimensional one, see Section
2.2. The high dimensional space corresponds to the original DNN, whereas the
low dimensional one is the space where the DNN is actually trained. Therefore,
training proceeds with reduced dimensionality.

Pruning and freezing parts of the network during training are two methods
that yield dimensionality reduced training (DRT). This survey compares differ-
ent DRT strategies. Figure 2 shows a graphical overview of the proposed DRT
methods. A structural comparison between freezing DNNs at initialization and
pruning them is given in Figure 3. For pruning, we differentiate between prun-
ing at initialization (Pal) which trains a fized set of parameters in the network
and dynamic sparse training (DST) which adapts the set of trainable param-
eters during training. Closely related to Pal is the so called Lottery Ticket
Hypothesis (LTH) which uses well trainable sparse subnetworks, so called Lot-
tery Tickets (LTs). LTs are obtained by applying train-prune-reset cycles to
the network’s parameters, starting with the dense network and finally chiseling
out the subnetwork at initialization with desired sparsity. Since most prun-
ing/freezing methods applied before training are unstructured, this survey will
focus on unstructured DRT methods.

Structure of this work

First we propose the problem formulation and mathematical setup of this sur-
vey in Section 2. Then, we discuss different possibilities to reduce the network’s
dimensionality in Section 3. The LTH and Pal are introduced in Sections 4
and 5, respectively. This is followed by a comparison of different DST meth-
ods in Section 6. As last DRT method, we present freezing initial parameters
in Section 7. Subsequently, the different DRT methods from Sections 4 - 7
are compared at a high level in Section 8. The survey is closed by drawing
conclusions in Section 9.

For better readability, the Figures should best be viewed in the colored
online version.

2 Problem formulation

We will start Section 2 with a general introduction into DL. This is followed by
defining a mathematical framework describing DRT. This framework comprises
Pal, LTH, DST and freezing parts of a randomly initialized DNN.

Springer Nature 2022 I TEX template

6 Dimensionality Reduced Training, a Survey

['I‘raining with Dimensionality Reduction]

/ i AN

Dynamic Sparse Training J [Pruning at initialization J [Freezing at initialization J

o

Lottery Ticket Hypothesis

| Set weights to zero | I Freeze weights |

’ N)
| Adaptive sparsity | ' Fixed set of trainable weights |
\ o ________ DN N
| Sparse tensor computations | | Dense computations

|
|
\
|
|
\

Fig. 3 Structural comparison between the three main categories of DRT. Here, the Lottery
Ticket Hypothesis is seen as a sub-category of pruning at initialization.

2.1 General deep learning and setup

Let fo : R™ — R” define a DNN with vectorized weights ® € RP = RPt x
...xRPr . Here, D; denotes the number of parameters in layer [of a DNN with
L layers and D = Zle D; parameters in total. We further assume the global
network structure (activation functions, ordering of layers, ordering of weights
inside one layer, ...) to be fixed and encoded in fg, i.e. only the weight values
© can be changed.

We assume a standard DNN training, starting with random initial weights
0 ¢ RP (He et al, 2015; Glorot and Bengio, 2010; Saxe et al, 2014; Martens,
2010; Sutskever et al, 2013; Hanin and Rolnick, 2018). These initial weights
are iteratively updated with gradient based optimization (Robbins and Monro,
1951; Duchi et al, 2011; Kingma and Ba, 2015) to minimize the loss function

L:RP xR"xR™ =R, (6,X,Y) — L(fo,X,Y) (1)

over a training dataset D = (X,)) C R™ x R™. After initialization, a
model is trained for T iterations forming a sequence of model parameters
{0 e .. 0} Updating the parameters ©® in iteration ¢ is done by
calculating the current gradient Vg £ over a batch of training data The gra-
dient is used, possibly together with former gradients Vg L,...,Vgu-nL
and parameter values O ... ©(¢~1 to minimize the loss function further.
The final model is then given by fom.

2.2 Model for dimensionality reduced training

A reduction of dimensionality for ©®) at training step ¢t will be modeled
through a transformation, also called embedding, ¥*) : R* — RP O =

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 7

T (9B) and d < D.' In this work, we restrict () to form an affine lin-
ear transformation which includes all standard pruning/freezing approaches.
However, ¥(Y) has parameters which need to be stored. Therefore, we not only
assume d < D but also size(U®)) + d < D, where size(-) computes the mini-
mal number of parameters needed to express the affine linear transformation
U®, To model DST, U(*) is allowed to change during training.

In our setup, the parameter count in the network is reduced not only after
training but also during it. Thus, the trainable parameters of the network are
given by 9 € R%. All methods discussed in this work are restricted to fulfill
9 e RY for all training iterations ¢ € {1,...,T}, i.e. reduce dimensionality
throughout training. The corresponding model with reduced dimensionality is

IETOICION

2.2.1 Pruning and dynamic sparse training

For pruning, U(Y) encodes the positions of the non-zero entries whereas 9(*)
stores the values of those parameters. A corresponding (Y can be easily
constructed by setting

OO = p® . y® (2)
with the pruning embedding ") € RP*¢ defined via
(t) 1, if oW is the j* un-pruned element.
% i ! ’ (3)
7 0, else
where we assume the d un-pruned elements G)&% ey @(.3 to have the natural
2 Yq

ordering igt) <...< il(f). Consequently, the pruned version of ©) is encoded

by the low dimensional

t t
90 = (@), = (01); . (4)

J
Further, we define p := 1 — d/p as the model’s pruning rate. For pruning
at initialization, i.e. fixed position igo), e ,i((io) for the non-zero parameters,

P = (O for all training iterations t. Whereas, 1) might adapt for DST.

Since d < D, the embedding ¥® (9() is automatically sparse in the bigger
space RP. A possibility to overcome sparse ©*) while still training only a small
part 9 of a DNN is proposed in Wimmer et al (2022). Here, convolutional
K x K filters are represented via few non-zero coefficients of an adaptive
dictionary. The dictionary is shared over one or more layers of the network.
This procedure can be described by the adaptive embedding

PO = ¢ . y®) (5)

1We use the same transformation as introduced in Mostafa and Wang (2019) to embed R? into
R,

Springer Nature 2022 I TEX template

8 Dimensionality Reduced Training, a Survey

Dense Model ' Frozen Coefficients Forward Pass Backward Pass

1Bz =N AN -~ <A =o'§
D27 BN AN 2 7

Fig. 4 Comparison between a standard DNN and a frozen one. Left: Standard dense model.
Middle left: Topology of the frozen weights. Middle right: The forward pass is exactly the
same for the dense and the frozen model. Right: The frozen weights are used for the backward
pass. However, they are not updated and therefore drawn with dotted arrows.

with the pruning embedding ® € RP*? as defined in (3) and the train-
able dictionary ®*) e RP*P 2 In this case, the coordinates w.r.t. ®*) are
sparse, but the resulting representation in the spatial domain R” will be dense
(Wimmer et al, 2022).

Orthogonal to that approach, Price and Tanner (2021) combine a sparse
pruning embedding (2) with a dense discrete cosine transformation (DCT) by
summing them up. A DCT is free to store and can be computed with D -log D
FLOPs. By doing so, the network keeps a high information flow while only
a sparse part of the network has to be trained. Moreover, the computational
cost is almost equal to a fully sparse model.

2.2.2 Freezing parameters

Another approach, which is similar to (Price and Tanner, 2021), proposed by
Rosenfeld and Tsotsos (2019); Wimmer et al (2020); Sung et al (2021), uses
frozen weights on top of the trainable ones. The resulting transformation is
given by

OO = @ 9O 4 O . g©) (6)
with the pruning embedding »® € RP*? from (3), x® =
diag(xgt), ceey X(Dt)) € RP*P defined as

0, ifie{il”, ... i
(.t):{, ifie {iy”, ,zd}’ 7)

Xi 1, else

and the random initialization ©(®) € RP. A graphical overview of freezing parts
of a network is given in Figure 4. Similarly to pruning, we define p := 1—4/D as
the model’s freezing rate, i.e. the rate of parameters which are frozen at their
random initial value. Note, Rosenfeld and Tsotsos (2019) and Wimmer et al
(2020) both use a fixed set of un-frozen weights, i.e. () = W), Therefore,
the network parameters () = ¥ (9(") consist of two parts, the dynamic
un-frozen weights defined by 1(?) . 9(") and the fixed, frozen weights x(*) - @),

2Here, ®(*) corresponds to a block diagonal matrix with shared blocks. By sharing blocks,
the total parameter count of ®®) is at most D/10,000 (Wimmer et al, 2022). Furthermore, the
formulation in Wimmer et al (2022) is not restricted to quadratic D X D matrices, but also allows

undercomplete or overcomplete systems o)

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 9

Dense Model Structured Pruning Unstructured Pruning

LB V2N Pes
Nt [\ N4

Fig. 5 Structured and unstructured pruning compared. Structured pruning removes whole
nodes (corresponding to channels for CNNs) whereas unstructured pruning sets individual
weights to zero.

Sung et al (2021) allow the embedding U®) to adapt during training, however
their procedure still leaves a large part of the network completely untouched.

Another construction of ©® is given by interchanging the pruning embed-
ding ¥ in (6) with a fixed, random orthogonal transformation 1, € RP>4
(Li et al, 2018).

3 High-level overview of dimensionality
reducing transformations ¥

In this Section we give a high-level overview of different approaches to deter-
mine the dimensionality reducing transformation ¥®). First, we discuss the
structure of the parameters which are pruned or frozen in Section 3.1. Then, we
compare global and layer wise dimensionality reduction in Section 3.2. Section
3.3 covers the update frequency for ¥®) . Afterwards, the most prominent cri-
teria for determining the pruning embedding () are proposed in Section 3.4.
Finally, we discuss pre-training the transformation ¥® in Section 3.5.
Throughout this Section, we restrict the transformation ¥ to use (")
from (3), i.e. a sparse linear embedding ¢(*) € {0,1}P*¢ with ||| = d,
as linear part. Further we assume the affine part of ¥®) to be either zero
(pruning) or correspond to the almost free to store pseudorandom initialization
(freezing). We use the notion of trainable weights (in iteration t) for all weights

@Z(-t) with ¢ € {igt), . ,ig)}, i.e. elements of {i: 3j s.t. wftj) # 0}.

3.1 Structure of trainable weights

Pruning is generally distinguished in structured and unstructured pruning, see
Figure 5. Of course it can be generalized to our setup, including freezing of
parameters. Structured freezing/pruning means freezing/pruning whole neu-
rons or channels or even coarser structures of the network. For pruning, this
immediately results in reduced computational costs, whereas gradient com-
putations can be skipped for the frozen structure. For structured freezing,
usually whole layers are frozen (Huang et al, 2011; Qing et al, 2020; Saxe et al,
2011; Hoffer et al, 2018) with the extreme case of freezing the entire network
(Giryes et al, 2016). For pruning it is more common to prune on the level of
channels/neurons (Liu et al, 2019; Wang et al, 2020c; Verdenius et al, 2020) .

Unstructured pruning of single weights usually improves results compared
to structured pruning (Li et al, 2017; Mao et al, 2017). Unstructured pruning

Springer Nature 2022 I TEX template

10 Dimensionality Reduced Training, a Survey

has the disadvantage to require software which supports sparse computations
to actually speed up the forward and backward propagation in DNNs. Fur-
thermore, such software only accelerates sparse DNNs on CPUs (Park et al,
2017; Liu et al, 2021a) or specialized hardware (Han et al, 2016; Parashar et al,
2017; Elsen et al, 2020; Gale et al, 2020; Wang, 2020). Weights can also be
frozen in an unstructured manner (Li et al, 2018; Wimmer et al, 2020; Sung
et al, 2021), leading to reduced gradient computations, memory requirements
and communication costs for distributed training.

In recent years, a semi-structured pruning strategy developed, the so called
N : M sparsity (Hubara et al, 2021; Zhou et al, 2021a; Sun et al, 2021; Pool
and Yu, 2021; Holmes et al, 2021; NVIDIA, 2020). A tensor is defined as N : M
sparse if each block of size M contains (at least) N zeros. Here, the tensor is
covered by non-overlapping, homogeneous blocks of size M.

As shown in Frankle and Carbin (2018), using sophisticated methods to
determine a sparse, fixed subset of trainable parameters at random initializa-
tion greatly outperforms choosing them randomly. Contrarily, choosing and
fixing the trainable channels randomly or via well performing classical tech-
niques leads to similar results for structured pruning at initialization (Liu et al,
2019). Therefore, this survey focuses in the following on unstructured pruning
and freezing methods.

3.2 Global or layerwise dimensionality reduction

An important distinction for DRT methods is whether the rate of the trained
parameters is chosen separately for each layer or globally. As presented in
Section 3.4, the importance of a weight @Z(-O) for training is measured via a
score s; € R. A weight is frozen or pruned if the corresponding score is below a
threshold 7;3. This threshold can be determined globally (Wimmer et al, 2020;
Lee et al, 2019b; Frankle and Carbin, 2018; Wang et al, 2020a; Sanh et al, 2020;
Bellec et al, 2018; Mostafa and Wang, 2019) or layerwise. For thresholding the
score layerwise we differentiate between setting a constant rate of trainable
parameters in each layer (Jayakumar et al, 2020), using heuristics or optimized
hyperparameters to find the best rate of trainable parameters for each layer
individually (Mocanu et al, 2018; Evci et al, 2020) or letting the number of
trained parameters in each layer adapt dynamically during training (Dettmers
and Zettlemoyer, 2019; Mostafa and Wang, 2019).

3.3 Update frequency

The frequency of updating the dimensionality reducing transformation W)
is called update frequency Fj, see Figure 6. Given an update frequency Fj, €
NT U {0}, it holds

Pto) — plto+l) — _— glot+Fp—1) (8)

3We index the threshold with the same index as the weight to show that the threshold might
depend on the position of 950) but not the weight itself.

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 11

Dense Initialization Sparse Initialization Sparse Model at Step ¢ Updated Sparse Topology

/M\ Prune %\‘ Train for %\‘ Update ¥(*) %
NN RN VA R N 4 N\ X
|

Repeat until training is finished

Fig. 6 Dynamic sparse training where the initial pruning embedding w0 jg usually deter-
mined randomly.

where tg € {0, F},, 2F),, ...} is an iteration where the transformation is updated.
If) = w0 js constant, the update frequency equals F, = 0o. We assume
the number of trained parameters to be fixed. Consequently, the proposed
methods usually have F,, > 1. This guarantees (i) stability of the training
and (ii) a chance for newly trainable weights to grow big enough to be not
pruned/frozen immediately in the next update step.

3.4 Criteria to choose trainable parameters

In the following, we present the most common criteria to determine the
trainable weights.

Random criterion

Randomly selecting trainable parameters means that a given percentage of
them are chosen to be trained by a purely random process, see Figure 2
(c). This can be done by sampling a score for each weight from a standard
Gaussian distribution and training those weights with the d biggest samples.
Random pruning is often used as first comparison for a newly developed prun-
ing method. For dynamic sparse training, initially trained parameters are often
chosen by random (Mocanu et al, 2018; Evci et al, 2020) as the dynamics of
the sparse topology will find a well performing architecture anyway. Also for
DRT methods where information flow is not a limiting factor, like Pal com-
bined with DCTs (Price and Tanner, 2021) or freezing (Rosenfeld and Tsotsos,
2019; Li et al, 2018), trainable weights are often chosen randomly.

Magnitude criterion

A straight forward way to determine trainable weights is to use those with
the highest magnitude. This is done by the LTH (Frankle and Carbin, 2018;
Zhou et al, 2019) and also by many DST methods for updating the sparse
architecture during training (Mocanu et al, 2018; Mostafa and Wang, 2019;
Dettmers and Zettlemoyer, 2019; Evci et al, 2020). Magnitude pruning for ©
is equivalent to the solution of

i ©e-06|,, 9
@eRgﬂ\lguogd” llq 9)

Springer Nature 2022 I TEX template

12 Dimensionality Reduced Training, a Survey

i.e. the best d-sparse approximation of © w.r.t. || -||,. Here, ¢ € (0,00) is
arbitrary. This shows the ability of magnitude pruning to approximate dense
networks sparsely if the pruned parameters are not too big. In practice, this is
guaranteed by pruning only small fractions of the parameters in one step (Fran-
kle and Carbin, 2018; Frankle et al, 2020a; Han et al, 2015; Liu et al, 2019).
The magnitude criterion in the viewpoint of dynamical systems is analyzed in
Redman et al (2022). They show that magnitude pruning is equivalent to prun-
ing small modes of the Koopman operator (Mezi¢, 2005) which determines the
networks convergence behavior. Consequently, pruning small magnitudes only
slightly disturbs the long term behavior of DNNs.

If dimensionality reduction is applied at initialization without any pre-
training, the magnitude criterion chooses trainable parameters purely by their
initial, randomly drawn weight. Still as shown in Frankle et al (2021a), mag-
nitude pruning at initialization is a non-trivial baseline for other Pal methods
and outperforms random Pal.

Gradient based criterion

As discussed above, the magnitude criterion is for the most part random at
initialization. Consequently, different criteria to chose the trainable weights
are used for SOTA Pal methods. The most common gradient based criterion
relies on the first order Taylor expansion of the loss function at the beginning
of training (Lee et al, 2019b, 2020; Verdenius et al, 2020; de Jorge et al, 2021;
Hayou et al, 2021; Wimmer et al, 2020; Sanh et al, 2020) and is mainly used
for Pal in our setup. It measures how disturbing the weights at initialization
will affect the loss function. It holds

E(@(O) —6) = E(@(O)) — VoL 6+ 0(|8]) . (10)

In our setup, the disturbance introduced by the dimensionality reduction is
given by § = (0 — ¥ () (9(©), Neglecting the higher order terms and the sign,
the following optimization problem has to be solved

%%XW@(O)q w @), (11)

in order to determine ¥(® and 9. If ¥ is restricted to be a pruning trans-
formation defined by (2) and (3), the optimization problem (11) is solved by
training the indices with top-d [(Vgw) L); - @EO)|.

Using the aforementioned gradient based criterion for Pal might lead to a
loss of information flow for high pruning rates since some layers are pruned
too aggressively (Wang et al, 2020a; Tanaka et al, 2020; Wimmer et al, 2020).
Without information flow in the network, the gradient is vanishing and no
training is possible. Thus, there are several approaches to overcome a weak
gradient flow in networks pruned according to (11). Using a random initial-
ization, fulfilling the layerwise dynamic isometry property (Saxe et al, 2014;
Poole et al, 2016; Schoenholz et al, 2017; Xiao et al, 2018) will lead to an

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 13

improved information flow in the pruned network (Lee et al, 2020). Another
approach (Hayou et al, 2021) uses a rescaling of the pruned network to bring
it to the edge of chaos (Poole et al, 2016; Schoenholz et al, 2017; Xiao et al,
2018) which is beneficial for DNN training. A straight forward way, proposed
by Wimmer et al (2020), is given by freezing the un-trained weights instead of
pruning them.

Conserving information flow

Sufficient information flow can also be guaranteed directly by the criterion
for selecting trainable parameters. Wang et al (2020a) train the sparse net-
work with the highest total gradient 5 norm after pruning. Consequently, the
information flow is not the bottleneck for training.

Synaptic saliency of weights is introduced in Tanaka et al (2020). A
synaptic saliency is defined as

5(0)=VeR® O, (12)

where R : RP — R is a function, dependent on the weights ©. In Tanaka
et al (2020), a conservation law for a layer’s total synaptic saliency is shown.
By iteratively pruning a small fraction of parameters based on a synaptic
saliency score (12), the conservation law guarantees a faithful information flow
in the sparse network. Examples for a synaptic flow based pruning criterion
are setting R(O) as the ¢; path norm (Neyshabur et al, 2015a,b) of the DNN
fo (Tanaka et al, 2020) or the ¢5 path norm (Gebhart et al, 2021; Patil and
Dovrolis, 2021).

Trainable ()

All aforementioned criteria are based on heuristics, usually limited to work
well in some scenarios but fail for other ones, see Frankle et al (2021a) for
an empirical comparison for the SOTA Pal methods Lee et al (2019b); Wang
et al (2020a); Tanaka et al (2020). A natural way to overcome these limitations
is given by training the embedding 1(?). This approach is especially in the
interest for pruning randomly generated networks without training the weights
afterwards, where the determination of (%) is the only way to optimize the
network (Zhou et al, 2019; Ramanujan et al, 2020; Diffenderfer and Kailkhura,
2021; Aladago and Torresani, 2021).

Finding ¢©) € {0,1}”*? can not be done by simple backpropagation since
¥ is optimized in a discrete set {1 € {0,1}P*¢ : ||[¢)]|p = d}. Ramanujan
et al (2020); Mallya et al (2018); Diffenderfer and Kailkhura (2021); Aladago
and Torresani (2021); Zhang et al (2021b) find the pruned weights with a
trainable score s € RP together with a (shifted) sign function. The score s is
optimized via backpropagating the error of the sparse network on the training
set by using the straight through estimator (Bengio et al, 2013) to bypass the
zero gradient of the sign function. Overcoming the vanishing gradient of zeroed
scores can also be achieved by training a pruning probability for each weight

Springer Nature 2022 I TEX template

14 Dimensionality Reduced Training, a Survey

Table 1 Comparison of different methods to find lottery tickets. Data size @ means using
the full dataset for finding L'T's whereas @ shrinks the full dataset during the process of
finding LTs. Note, all methods can be used in an iterative manner, but also as one-shot
methods.

Prune Late Early Low Data Additional

Method . L N . N Transfer

criterion rewinding stopping precision size Trafo @
Frankle and Carbin (2018) 10l X X X ° x x
Frankle et al (2020a) el v x X ° x x
Morcos et al (2019) el v x x @ Datasets/Optimizers x
Zhang et al (2021a) 10! v v X) x x
You et al (2020) el X v v ° x x
Rosenfeld and Tsotsos (2019) 18! v x x ® Predict Performance x
Wimmer et al (2022) 18! . v x x . x Trainable
Lee et al (2021) el <Z\®j‘”\z\e$‘”\ \@50)\) v x x . x x
Zhang et al (2021b) EIl v X X ° X Inertial Manifold

and sampling a corresponding ¢ € {0, 1}D *d in each optimization step (Zhou
et al, 2019).

3.5 Pre-training the transformation

Similar to a trainable (9 discussed in Section 3.4, also a pre-training step
for finding ¢/(?) can be applied. The difference is that for pre-training 1)(?) the
corresponding dense weights ©(?) can be trained as well. Using pre-training for
finding the initial transformation ¥(©) is of course costly in terms of time and
also in terms of an increased parameter count during the pre-training phase.
Note, after pre-training 1(*), the pre-trained weights are not allowed to be
used, but reset to ©©),

The most prominent example for this is given by the LTH which trains
0 to convergence, prunes po - 100% of the non-zero weights and resets the
remaining non-zero weights to their initial values. This procedure is continued
until the desired pruning rate is reached. Then, the pruning transformation
1) is applied to the initial weights ©(?) and fixed for the training of the sparse
architecture. Here, the full network is used for finding a well performing sparse
architecture while for the actual training only the sparse part of the network,
starting from the random initialization, is used.

Another approach for pre-training 1(?) is given in Liu and Zenke (2020)
which pre-trains a sparse network to mimic the training dynamics of a ran-
domly initialized dense network, measured by the neural tangent kernel (Jacot
et al, 2018; Arora et al, 2019; Lee et al, 2019a).%

4 Lottery ticket hypothesis

In this Section we discuss the LTH, proposed by Frankle and Carbin (2018), in
detail. Frankle and Carbin (2018) show that extremely sparse subnetworks of
a randomly initialized network can be found which, after being trained, match
or even outperform their densely trained baseline. Furthermore, the sparsely

4To be precise, in order to mimic the training dynamics, Liu and Zenke (2020) also pre-train
the weights 9 by using ©(9), Therefore, it is not within the narrow bounds of this work.

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 15

trained network converges at least as fast as standard training but usually
faster. Table 1 summarizes different methods to find LTs.

The procedure to determine the sparse networks is as follows: First, the
dense network is trained to convergence and the pruning embedding v is con-
structed according to the magnitude criterion, see Section 3.4. The un-pruned
weights are reset to their values @EO). Now, this procedure can be done one-
shot or iterative. In the one-shot case, all weights are pruned after training the
dense network at once. Then, the sparse network, the so called Lottery Ticket
(LT), is trained to convergence. For the iterative procedure, not all coefficients
but only pg - 100% (usually 20%) of the un-pruned ones are pruned in one
iteration. The remaining non-zero weights are reset to their initial value and
trained again until convergence. This procedure is applied iteratively until the
desired pruning rate p is achieved. Finally, the LT is optimized in a last, sparse
training.

Iterative LTH has shown to find better performing LTs than the one-shot
approach (Frankle and Carbin, 2018; Frankle et al, 2020a). But, in order to
reach a final pruning rate p, the iterative procedure takes

e @

many pre-trainings plus the final, sparse training. For the final pruning rate p =
0.9, the iterative LTH approach needs in total 12 trainings of the network. On
the other hand, the one-shot approach always requires 2 trainings for arbitrary
pruning rates p.

Frankle and Carbin (2018); Gale et al (2019); Frankle et al (2020a) show
that resetting un-pruned weights to their initial value only generates well train-
able sparse architectures if the networks are not too big. For modern network
architectures like ResNets (He et al, 2016), resetting the weights to their ini-
tial value does not lead to similar results as the densely trained baseline. This
problem can be overcome by late rewinding, i.e. resetting the weights to val-
ues reached early in the first, dense training (Frankle et al, 2020a,b; Morcos
et al, 2019). Moreover, pruning coefficients w.r.t. a dynamic, adaptive basis
for K x K convolutional filters improves late rewinding even further (Wimmer
et al, 2022).

Lee et al (2021) use scaled magnitudes to improve results for LTs at high
sparsity levels. Their scale approximates the best choice of layerwise sparsity
ratios. LTs as equilibria of dynamical systems are analyzed in Zhang et al
(2021b). Theoretical guarantees for recovering sparse linear networks via LTs
are described in Elesedy et al (2021).

Costs for finding LTs via iterative magnitude pruning can be reduced by
using early stopping and low precision training for each pre-training iteration
(You et al, 2020), sharing LTs for different datasets and optimizers (Morcos
et al, 2019) or iteratively reducing the dataset together with the number of
non-zero parameters (Zhang et al, 2021a). Also, the error of a LT from a given
family of network configurations (i.e. ResNet with varying sparsity, width,

Springer Nature 2022 I TEX template

16 Dimensionality Reduced Training, a Survey

Table 2 Comparison of different methods for Pal. Here, ©(0) € RP denotes the dense,
random initialization of the model, g(°) the gradient and H(9 the Hessian of the loss at
beginning of training. The function R : RP — R, used for Tanaka et al (2020), can be
chosen as any almost everywhere differentiable function.

Method Criterion One-shot ~ Pre-train (®) Train 9(©) Initialization of ¥(*)
Lee et al (2019b) [0 @ ¢ v x v standard

Lee et al (2020) |00 @ g v X v dynamic isometry
Hayou et al (2021) E[0© @ g2 v x v edge of chaos
de Jorge et al (2021) [0 @ ¢ X X v standard
Wang et al (2020a) —00) @ H(0)4(0) v x v standard
Tanaka et al (2020) 00 o Vg mR X X v standard
Wimmer et al (2021) 20O @ g+ 1 =10 o H®y0) v x v standard

Su et al (2020) random (+ prior knowledge) v X v standard
Patil and Dovrolis (2021) path norm X X v standard
Lubana and Dick (2021) 100 & ¢ & e v x v standard
Lubana and Dick (2021) 100 @ H() g v x v standard
Zhang and Stadie (2020) temporal Jacobian v X v standard
Alizadeh et al (2022) meta-gradient v v v standard
Zhou et al (2019) trainable prune probability X v X standard
Ramanujan et al (2020) trainable score s x v x standard
Diffenderfer and Kailkhura (2021) trainable score s X v X binarization
Koster et al (2022) trainable score s (incl. sign swap) x v x binarization
Chen et al (2022) 0 ® Vg0 R (+ trained sign swap) X v X standard
Aladago and Torresani (2021) trainable quality score X v 9 out of fixed {wl”,...,w{™}

depth and number of used training examples) can be well estimated by know-
ing the performance of only a few trained networks from this network family
(Rosenfeld et al, 2021). Despite their first applications on image classifica-
tion, LTs have also shown to be successful in self-supervised learning (Chen
et al, 2021a), natural language processing (Yu et al, 2020; Chen et al, 2020b),
reinforcement learning tasks (Yu et al, 2020; Vischer et al, 2022), transfer
learning (Soelen and Sheppard, 2019) and object recognition tasks like seman-
tic segmentation or object detection (Girish et al, 2021). Moreover, Chen et al
(2021b) propose methods to verify the ownership of LTs and hereby protect
the rightful owner against intellectual property infringement.

LTs outperform randomly reinitializing sparse networks in the unstructured
pruning case (Frankle and Carbin, 2018). Contrarily, for structured pruning
there seems to be no difference between randomly reinitializing the sparse
network and resetting the weights to their random initialization (Liu et al,
2019).

Closely related to the LTH with late rewinding, Renda et al (2020); Le
and Hua (2021) show that fine-tuning a pruned network with a learning rate
schedule rewound to earlier stages in training outperforms classical fine-tuning
of sparse networks with small learning rates. Bai et al (2022) show that arbi-
trary randomly chosen pruning masks can lead to successful sparse models if
the full network is used during training. For this, they extrude information
of weights, which will be pruned eventually, into the sparse network during a
pre-training step. Thus, Bai et al (2022) is not a DRT method.

5 Pruning at initialization

Overcoming the high cost for the train-prune-reset cycle(s) needed to find LTs
is one of the main motivation to use pruning at initialization (Pal) (Lee et al,
2019b). With pruning at initialization we mean methods that start with a

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 17

randomly initialized network and do not perform any pre-training of the net-
work’s weights to find the pruning transformation ¥(®). Furthermore for Pal,
® = 1)(©) holds for all training iterations ¢. Different variants of Pal methods
include one-shot pruning (Lee et al, 2019b, 2020; Wang et al, 2020a; Zhang
and Stadie, 2020; Hayou et al, 2021; Wimmer et al, 2021, 2022; Alizadeh et al,
2022), iterative pruning (Tanaka et al, 2020; de Jorge et al, 2021; Verdenius
et al, 2020; Patil and Dovrolis, 2021) and training the pruning transformation
(Zhou et al, 2019; Ramanujan et al, 2020; Diffenderfer and Kailkhura, 2021;
Aladago and Torresani, 2021). On top of that, there are methods that train the
network after pruning and methods that do not train the non-zero parameters
at all. Table 2 summarizes the Pal methods proposed in this Section.

5.1 Pal followed by training non-zero weights

First, we start with comparing different methods that train weights after the
pruning step. We can group most of them into gradient based approaches and
information flow based approaches. For a detailed comparison of the three
popular Pal methods Lee et al (2019b); Tanaka et al (2020); Wang et al
(2020a) we refer to Frankle et al (2021a). Moreover, Fischer and Burkholz
(2022) compares them on generated tasks, where known and extremely sparse
target networks are planted in a randomly initialized model. They show that
current Pal methods fail to find those sparse models at extreme sparsity. How-
ever, the performance of other pruning methods than Pal is not evaluated and
it remains an open question if they are able to find these planted subnetworks.

Gradient based approaches

Gradient based approaches (Lee et al, 2019b, 2020; Verdenius et al, 2020;
de Jorge et al, 2021; Hayou et al, 2021) try to construct the sparse network
which has the best influence in changing the loss function at the beginning of
training, as presented in equations (10) and (11). However, it was shown that
one-shot gradient based approaches have the problem of a vanishing gradient
flow, if too many parameters are pruned (Lee et al, 2020; Wang et al, 2020a;
Wimmer et al, 2020). Methods to overcome this are given by using an iterative
approach (de Jorge et al, 2021; Verdenius et al, 2020) or use an initialization of
the network, adjusted to the sparse network (Lee et al, 2020; Hayou et al, 2021).
These adjusted initialization include so called dynamic isometric networks (Lee
et al, 2020) and networks at the edge of chaos (Hayou et al, 2021).

Methods preserving information flow

Other Pal methods primarily focus on generating sparse networks with a suf-
ficient information flow (Wang et al, 2020a; Tanaka et al, 2020; Zhang and
Stadie, 2020; Patil and Dovrolis, 2021). For randomly initialized DNNs, the
loss is no better than chance. Therefore, Wang et al (2020a) argue that “at the
beginning of training, it is more important to preserve the training dynamics
than the loss itself.” Consequently, Wang et al (2020a) try to find the sparse
network with the highest gradient norm after pruning. They do so, by training

Springer Nature 2022 I TEX template

18 Dimensionality Reduced Training, a Survey

the weights with highest —@EO)(H(O)V@W)E)Z—, where H() defines the Hessian
of the loss function at initialization. Another approach is given by Tanaka et al
(2020) and Patil and Dovrolis (2021), which try to maximize the path norm
in the sparse network, see Section 3.4 Conserving information flow for more
details. For RNNs or LSTMs, standard Pal methods do not work well (Zhang
and Stadie, 2020). By pruning based on singular values of the temporal Jaco-
bian, Zhang and Stadie (2020) are able to preserve weights that propagate a
high amount of information through the network’s temporal depth.

Hybrid and other approaches

As shown in Wimmer et al (2021), only optimizing the sparse network to have
the highest information flow possible does not lead to the best sparse archi-
tectures — even for high pruning rates. They conclude that information flow is
a necessary condition for sparse training but not a sufficient one. Therefore,
they combine gradient based and information flow based methods to get the
best out of both worlds. With their approach, they improve gradient based
Pal and Pal based on preserving information flow at one blow.

Another method guaranteeing a faithful information flow in the network
and at the same time improving performance is given by pruning in the inter-
space (Wimmer et al, 2022). Wimmer et al (2022) represent K x K filters
of a convolutional network in the interspace — a linear space spanned by an
underlying filter basis. After pruning the filter’s coefficients, the filter basis
is trained jointly with the non-zero coefficients. By adapting the interspace
during training, networks tend to recover from low information flow. Further-
more, using interspace representations has shown to improve not only Pal for
gradient based and information flow preserving methods, but also LTH, DST,
freezing and training dense networks.

An orthogonal approach for guaranteeing high information flow while train-
ing only a sparse part of the network is proposed by Price and Tanner (2021).
Random pruning is combined with a bypassing DCT in each layer. Since DCTs
correspond to basis transformations with an orthonormal basis, the informa-
tion of a layer’s input is maintained even if only a tiny fraction of parameters
is trained. Therefore, results are improved tremendously for extreme pruning
rates. Note, adding DCT improves performance for high p despite using a sim-
ple random selection of trained weights. As shown by Price and Tanner (2021),
adding DCTs to each layer also improves DST methods for high p.

Alizadeh et al (2022) improve Lee et al (2019b) by modeling the effect of
pruning on the loss function at training iteration M > 0. In contrast, Lee
et al (2019b) only analyze the effect of pruning on the loss at initialization.
To do so, Alizadeh et al (2022) compute a meta-gradient which is achieved by
pre-training the dense network for M epochs. The meta-gradient is computed
w.r.t. pruning mask. After pruning, the non-zero weights are reset to their
initialization.

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 19
Equivalent, Random Model with
Target Model Pruned Model Desired Connections Additional Layer [+1/2
Node in layer [Node in layer [
w;/ \u‘: wh = U.UV \‘: — 0 (M/ \9\\0_099
Prune the rest Keep desired Add enough nodes
wr =01 7 ReLURCLU ReLUReLUReLUReLU connections ~ ReLU Rel,UReLU ReLU m
Node in layer [+ 1 Node in layer [+ 1

Fig. 7 Graphical explanation how Malach et al (2020) approximate a single target weight
through random connections by adding a wide enough layer [+ 1/2 between layers [and [+ 1
and afterwards pruning unneeded connections.

Lubana and Dick (2021) theoretically compare magnitude, gradient based
and information flow preserving Pal methods. Their analysis shows that mag-
nitude based approaches lead to a rapid decrease in the training loss, thus
converge fast. Furthermore, gradient based pruning conserves the loss func-
tion, removes the slowest changing parameters and preserves the first order
dynamics of a model’s evolution. They combine magnitude and gradient
based pruning to get the best of both worlds which yields the pruning score
[Vow Lil- |G)z(-0) |2. Finally, information flow preserving pruning by using Wang
et al (2020a)’s criterion to get the sparse model with maximal gradient norm
removes the weights which maximally increase the loss function. However, this
does not preserve the second order dynamics of the model. Preserving the
gradient norm by training the weights with highest |@Z(-O) (HOVgwL);| on
the other hand also preserves the second order dynamics and shows improved
results compared to (Wang et al, 2020a).

Su et al (2020); Frankle et al (2021a) show that the most popular Pal
methods Lee et al (2019b); Wang et al (2020a); Tanaka et al (2020) do not
significantly lose performance if positions of non-zero weights are shuffled ran-
domly in each layer if the sparsity is not too extreme. Consequently, these
methods do not appear to find the best sparse architecture, but rather well per-
forming layerwise pruning rates for the given network architecture and global
pruning rate. Using the knowledge of well performing Pal methods, Su et al
(2020) show impressive results by randomly pruning weights. Hereby, they use
layerwise pruning rates derived by observing the layerwise pruning rates of
other well performing Pal methods. Liu et al (2022) also show that random
Pal can reach competitive results to other Pal methods. They experimentally
demonstrate that the gap between random Pal and dense training gets smaller
if the underlying baseline network becomes bigger. Therefore, random Pal can
provide a strong sparse training baseline, especially for large models.

5.2 Pal without training non-zero weights

Mallya et al (2018) show that a pre-trained network can be pruned for a
specific task to have good performance even without fine-tuning. Inspired by
that, several Pal methods showed that the same holds true for a randomly
initialized network. Before we go into detail how pruning masks for random
weights can be found, we will discuss theoretical works that cover the universal

Springer Nature 2022 I TEX template

20 Dimensionality Reduced Training, a Survey

approximator ability of pruning a randomly initialized network, also called
strong lottery ticket hypothesis (Malach et al, 2020; Pensia et al, 2020).

Theoretical background

An intuition that big, randomly initialized networks contain well performing
sparse subnetworks is given in Ramanujan et al (2020). Let f&. : R™ — R" be
a target network with ©* € R%". Further, let fo : R™ — R” be a network with
randomly initialized © € R? and © be a randomly chosen sparse projection of
© with [|©]|o = d < D non-zero parameters. Consequently, f& is an arbitrary
d-sparse subnetwork of fg. Assuming D > d* ~ d, Ramanujan et al (2020)
argue that the chance of fg being a well approximator of fg. is small, but
equal to § > 0. The big, random network has (g) subnetworks with d non-zero
parameters. Consequently, the chance of all sparse subnetworks fg not being

a good approximator for fg, is

1-0) ——o0. (14)
D—oo

Thus, if the randomly initialized network fg is chosen big enough, it will
contain, with high chance, a well approximator for f§. with d non-zero weights.
This intuition is proven in Malach et al (2020) for MLPs by using a slightly
different idea. Here, instead of making each layer in the randomly initialized
network arbitrary wide, an intermediate layer [+ 1/2 is added between each
two layers [and [4+ 1 of the randomly initialized network, see Figure 7 right.
These intermediate layers are made wide enough so that each weight w* in the

target network can be approximated well enough. It holds

w* -z = (+1) -ReLU(Jw*| -z) + (—1) -ReLU(—|w*| -x) . (15)
\././ ~—~ ~—— ~——
~usign Rw’ ~~sign_ ~w*

Therefore, for each weight w* in the target network two paths are constructed.
The first one approximates the positive part |w*| together with sign +1 and
the other the negative part —|w*| together with sign —1, see middle right of
Figure 7. All remaining weights in the random network are pruned as shown
in the middle left of Figure 7. As a consequence, Malach et al (2020) show
that, with some assumptions on the target network, pruning big randomly
initialized networks is an universal approximator. But, for each target weight, a
polynomial number of intermediate weights have to be added. Follow up works
Orseau et al (2020) and Pensia et al (2020) improve the parameter efficiency
by shrinking the big, randomized network. They do so by using more than
two paths to approximate a weight in the original network. By allowing the
random values to be resampled, the width of the intermediate layer [4+ 1/2
can be reduced to 2 times the size of the original layer [(Chijiwa et al, 2021).
Burkholz et al (2022) allow the randomly initialized network to be deeper than
2 times the target network. By approximating layers with combinations of
univariate and multivariate linear functions, they are also able to approximate

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 21

Table 3 Comparison of different methods for dynamic sparse training.

Sparse Sparsity Pruning Regrow

Method L - - Fp,

initialization j criterion criterion

Global Adaptive

Bellec et al (2018) random X X sign change random triggered by pruning
Mocanu et al (2018) random X X magnitude random hyperparameter
Mostafa and Wang (2019) random 4 v magnitude random hyperparameter
Dettmers and Zettlemoyer (2019) magnitude X v magnitude gradient momentum 1 epoch
Evci et al (2020) random X X magnitude gradient hyperparameter

convolutional layers. Independent to the approach of Burkholz et al (2022),
da Cunha et al (2022) extend the result of Pensia et al (2020) to CNNs by
restricting the network’s input to be non-negative.

Methods to train ()

As already mentioned before, training ¥(©) € {0,1}”*? requires optimizing
in a discrete space. Consequently, different approaches are used to find (©)
for a randomly initialized network. In Zhou et al (2019), weights are pruned
with probabilities modeled by Bernoulli samplers with corresponding trainable
parameters. While helping during training, the stochasticity of this proce-
dure may limit the performance at testing time (Ramanujan et al, 2020). The
stochasticity is overcome in Ramanujan et al (2020) by the edge-popup algo-

rithm. For each weight @go) in the network a corresponding pruning score s;
is trained. The weights with top-d scores are kept at their initial value, the
remaining ones are pruned. The score s; is then optimized with the help of
the so called straight through estimator (Bengio et al, 2013) and the prun-
ing transformation is updated in each iteration. Ramanujan et al (2020) show
that a random Wide-ResNet50 (Zagoruyko and Komodakis, 2016) contains
a sub-network with smaller size than a ResNet34 (He et al, 2016) but the
same test accuracy on ImageNet (Deng et al, 2009). Koster et al (2022) and
Chen et al (2022) independently show that allowing the randomly initialized
weights to switch signs, improves the performance of edge-popup. Chijiwa et al
(2021) improve edge-popup by allowing re-sampling of the un-trained weights.
Binarizing the un-pruned, random weights can also be combined with the

edge-popup algorithm (Diffenderfer and Kailkhura, 2021). Finally, Aladago

and Torresani (2021) sample for each weight 1950)

W ,m

PRI

in a target network a set of n

possible weights w in a hallucinated, n times bigger network. This

hallucinated network is fixed. During training, each possible weight wz(j) has
a corresponding quality score which is increased if the weight is a good choice
(9)

for ﬁgo) and decreased otherwise. In the end, the w,”’ with the highest quality

score is set as 19§0) whereas the remaining hallucinated weights are discarded,
i.e. pruned.

6 Dynamic sparse training

For high pruning rates, Pal is not able to perform equally well as classical
pruning methods. One possible explanation for the performance gap is that a

Springer Nature 2022 I TEX template

22 Dimensionality Reduced Training, a Survey

randomly initialized network does not contain enough information to find a
suitable sparse subnetwork that trains well. Adapting the pruning transforma-
tion during training or using network pre-training to find ¥(°) overcomes this
lack of information. As shown in Section 4, finding LTs is expensive. Further-
more, it is not answered if resetting weights to their initial value can match
late rewinding for big scale datasets. Dynamic sparse training performs well
for high pruning rates while only needing one, fully sparse training. This is
achieved by redistributing sparsity over the network in the course of training.
By always fixing a given rate of parameters at zero, the number of trained
weights is kept constant during training. Different DST methods are collected
in Table 3.

6.1 Dynamic sparse training methods

Inspired by the rewiring of synaptic connectivity during the learning process
in the human brain (Chambers and Rumpel, 2017), DEEP-R (Bellec et al,
2018) trains sparse DNNs while allowing the non-zero connections to rewire
during training. To do so, pruning and rewiring is modeled as stochastic sam-
pling of network configurations from a posterior. However, this procedure is
computationally costly and challenging to apply to big networks and datasets
(Dettmers and Zettlemoyer, 2019).

In Mocanu et al (2018), a sparse subnetwork with d non-zero parameters
is chosen randomly at the beginning of training. Here, an initial pruning rate
has to be defined separately for every layer. After each epoch, trained weights
with the smallest magnitude are pruned layerwise with rate ¢ and the same
number of weights is regrown at random positions in this layer. Note, the
pruning rate g used for updating ¢t is different from the initial pruning rate
p. This procedure is done until training converges. Thus, in each epoch the
same number of parameters is pruned and regrown which makes training hard
to converge. Furthermore, the number of non-zero parameters needs to be
defined for each layer before training and can not be adapted during training.

Dynamic sparse reparameterization (Mostafa and Wang, 2019) overcomes
this problem by using magnitude pruning with an adaptive, global thresh-
old. Furthermore, the number of regrown weights in each layer is adapted
proportionally to the number of non-zero weights in that layer.

Regrowing weights not randomly, but based on their gradient’s momentum
was proposed by Dettmers and Zettlemoyer (2019). Here, not only the regrown
weights are determined by their momentum, but also their number in each
layer is.

RigL (Evci et al, 2020) bypasses the need of Dettmers and Zettlemoyer
(2019) to compute the dense gradient in each training iteration, and only
regrows weights based on their actual gradient in the updating iteration of ¢,
i.e. t € {F},2F,,...}. Also, the number of pruned and regrown parameters is
reduced by a cosine schedule to accelerate and improve convergence.

Overparameterized, densely trained DNNs in combination with SGD have
shown good generalization abilities (Du et al, 2019; Li and Liang, 2018;

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 23

Brutzkus et al, 2018). Liu et al (2021b) showed that the good generalization
ability of DST models can be explained by the so called in-time-over-
parameterization. Training of sparse DNNs can be viewed in the space-time

manifold. To overparameterize DST models in this manifold, three properties
must be fulfilled:

1. The dense baseline network has to be big enough.

2. Exploration of trained weights has to be guaranteed during training.

3. The training time has to be long enough so that the network can test enough
sparse architectures in training.

If in-time-overparameterization is guaranteed for DST methods by these three
criteria, Liu et al (2021b) show that sparse networks are able to outperform
the dense, standard overparameterized ones. In-time-overparametrization can
be achieved by either increasing the number of training epochs, or by reducing
the batch size while keeping F}, constant. The latter leads to more updates of
¥® while not increasing the number of training epochs.

6.2 Closely related methods

We want to highlight that there exists more methods which are called dynamic
sparse training in literature which do not fulfill our definition of it. We do not
present these methods here in detail since they allow to update all weights
of the network and only mask them out in the forward pass. Examples for
such methods are Guo et al (2016); Ding et al (2019); Kusupati et al (2020);
Sanh et al (2020); Liu et al (2020). Other dynamic training methods (Jayaku-
mar et al, 2020; Schwarz et al, 2021; Zhou et al, 2021c,b) sample different
subnetworks for each training iteration, update this subnetwork while keeping
all un-trained parameters fixed at their previous position. In the next train-
ing iteration, a new subnetwork is sampled. Therefore, they can not store the
network’s parameters () in its reduced form 9 for all t € {0,1,...,T}.
Schwarz et al (2021) additionally exchange the standard weights 0® through
a reparameterization using the power @) = ¢®|p®)|(@=1) with o > 1. By
doing so, weights close to 0 are unlikely to grow. As a consequence, the parame-
ters will form a heavy tailed distribution at convergence. This improves results
since the parameters are pruned based on their magnitude and heavy tailed
distributions are highly compressible via magnitude pruning (Barsbey et al,
2021). Using this reparameterization might also improve other DRT meth-
ods proposed in this work. Peste et al (2021) analyze projections of the dense
parameters on a sparse subspace via the iterative hard thresholding algorithm.
Under some assumptions on the smoothness of the loss function and its opti-
mum, Peste et al (2021) theoretically show convergence guarantees in this
setting. Moreover, they propose a training scheme by iterating between sparse
and dense training to approximate the iterative hard thresholding algorithm
— the so called alternating compressed/decompressed (AC/DC) training.

Springer Nature 2022 I TEX template

24 Dimensionality Reduced Training, a Survey

Table 4 Comparison of different methods for freezing parts of a neural network. Here,
©() denotes the dense, random initialization of the network and g(°) the gradient of the
loss function at beginning of training.

Method frozen part structured criterion additional projection
ELMs (Huang et al, 2004) all except classifier v X
Hoffer et al (2018) only classifier v X
Rosenfeld and Tsotsos (2019) all except batch normalization v — X
Li et al (2018) unstructured X random orthogonal projection
Zhou et al (2019) unstructured X iterative magnitude (LTH) X
Wimmer et al (2020) unstructured X [0 @ ¢(0)] X
Sung et al (2021) unstructured X Vo 10g fo o |2 X
Rosenfeld and Tsotsos (2019) structured v random X

7 Freezing parts of a network

Contrarily to pruning, freezing parts of a randomly initialized network has
attracted less interest in research in recent years. The main reason for this is
that frozen, non-zero weights must be accounted for in the forward propaga-
tion. Thus, no (theoretical) speed up for inference can be obtained. In addition,
frozen weights must be stored even after training, while zeros only require a
small memory footprint. But, by using pseudorandom number generators for
initializing the neural network, frozen weights can be recovered with a single
32bit integer on top of the memory cost for a pruned network (Wimmer et al,
2020). The proposed methods to freeze a network are summarized in Table 4.

7.1 Theoretical background for freezing

Saxe et al (2011) show that convolutional-pooling architectures can be inher-
ently frequency selective while using random weights. In Giryes et al (2016),
euclidean distances and angles between input data points are analyzed while
propagating through a ReLU network with random i.i.d. Gaussian weights.
With ReLU activation functions, each layer of the network shrinks euclidean
distances between points inversely proportional to their euclidean angle. This
means that points with a small initial angle migrate closer towards each other
the deeper the network is. Assuming the data behaves well, meaning data
points in the same class have a small angle and points from different classes
have a bigger angle between another, random Gaussian networks can be seen
as an universal system that separates any data. On the other hand, if the data
is not perfect, training might be needed to overcome big intra-class angles or
small inter-class angles to achieve good generalization.

Freezing parameters at their initial value was used in Li et al (2018) in order
to measure the intrinsic dimension of the objective landscape. First, the dense
network is optimized to generate the best possible solution. Then, the number
of frozen parameters is gradually decreased, starting by freezing all parameters.
The network’s parameters are computed according to (6), with P = O
equaling a random, orthogonal projection. If a similar performance as the
dense solution is reached, the number of non-frozen parameters determines the
intrinsic dimension of the objective landscape. While using frozen weights only

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 25

as a tool to measure the dimension of a problem, Li et al (2018) showed that
freezing parameters can lead to competitive results.

7.2 Freezing methods

We want to start with the so called extreme learning machines (ELMs) (Huang
et al, 2004, 2011; Qing et al, 2020). ELMs are MLPs, usually with one hidden
layer. The parameters of the hidden node are frozen and usually initialized
randomly. However, the classification layer is trained by a closed form solution
of the least-square regression (Huang et al, 2004). ELMs are universal approxi-
mators if the number of hidden nodes is chosen big enough (Huang et al, 2011).
In SOTA networks, ELMs can be used to substitute the classification layer
(Qing et al, 2020). Closely related to ELMs are random vector functional link
neural networks (Pao and Takefuji, 1992; Pao et al, 1994) which, in addition,
allow links between the input and output layer.

A completely orthogonal approach to ELMs is proposed in Hoffer et al
(2018), where the classification layer is substituted by a random orthogonal
matrix. For the classification layer, only a temperature parameter T is learnt.
Experiments show that the random orthogonal layer with optimized T yields
comparable results to a trainable classifier for modern architectures on CIFAR-
10/100 (Krizhevsky, 2012) and ImageNet (Deng et al, 2009).

In Zhou et al (2019), pruning weights and freezing them at their initial
values is compared in the LTH framework. They show that freezing usually
performs better for a low number of trained parameters whereas pruning has
better results if more parameters are trained. Finally, they show that a combi-
nation of pruning and freezing — depending whether a weight moved towards
zero or away from zero during dense training — reaches the best results.

Freezing at initialization is used in Wimmer et al (2020) to overcome the
problem of vanishing gradients for Pal. Similar to Zhou et al (2019) they
show that freezing outperforms pruning if only few parameters are trained. For
high freezing rates, freezing still guarantees a sufficient information flow in the
sparsely trained network. On the other hand, if a higher number of parameters
is trained, pruning also performs better than freezing in this setting. But, by
using weight decay on the frozen parameters, Wimmer et al (2020) are able
to get the best from both worlds, frozen weights at the beginning of training
to ensure faithful information flow and sparse networks in the end of it, while
improving both of them at the same time.

Inspired by transfer learning, Sung et al (2021) freeze large parts of the
model to reduce the size of the newly learned part of the network. Frozen
weights are chosen according to their importance for changing the network’s
output, measured by the Fisher information matrix. They show that freezing
parameters helps to reduce communication costs in distributed training as well
as memory requirements for checkpointing networks during training. Unsur-
prisingly, they reach the best results if the freezing mask is allowed to change
during training compared to keeping the freezing mask fixed.

Springer Nature 2022 I TEX template

26 Dimensionality Reduced Training, a Survey

Table 5 Performance of different methods for a ResNet50 trained on ImageNet. Results,
except for the LTH experiment and Wimmer et al (2022) are derived from Evci et al
(2020), Figure 2. Wimmer et al (2022) uses the pruning method from (Evci et al, 2020)
combined with a trainable basis. The result for Frankle et al (2020a) is reported from Evci
et al (2022) which is LTH with late rewinding.

’) Training Testing Training Testing
Method Category Top-1-Acc FLOPs FLOPs Top-1-Acc FLOPs FLOPs
Dense — 76.8 £0.1 1x 1x 76.8 £0.1 1x 1x

pruning rate p = 0.8 pruning rate p = 0.9

Random Pal 70.6 £0.1 0.23x 0.23% 65.8+0.0 0.10x 0.10x
Lee et al (2019b) Pal 72.0+£0.1 0.23x 0.23x 67.2+0.1 0.10x 0.10x
Frankle et al (2020a) LTH 75.8£0.1

Evci et al (2020) DST 746 +£0.1 0.23x 0.23x 72.0+£0.1 0.10x 0.10x
+ Wimmer et al (2022) DST 76.0£0.1 74.3+0.1

Evci et al (2020) x5 DST 76.6 £0.1 1.14x 0.23% 75.7+0.1 0.52x 0.10x
Mocanu et al (2018) DST 72.94+0.4 0.23x 0.23x 69.6 + 0.2 0.10% 0.10x

Dettmers and Zettlemoyer (2019) DST 75.2£0.1 0.61x 0.42x 729+0.1 0.50x 0.24x

Rosenfeld and Tsotsos (2019) freeze parameters in a structured way. They
mainly focus on training only a fraction of filters (i.e. output channels) and
determine the frozen parts randomly. In this setting, freezing outperforms
pruning for almost all numbers of trained weights.

Furthermore, it is shown in Rosenfeld and Tsotsos (2019); Frankle et al
(2021b) that freezing all weights except the trainable batch normalization
(Ioffe and Szegedy, 2015) parameters leads to non-trivial performance.

8 Comparing and discussing different
dimensionality reduced training methods

In this Section we discuss the different DRT approaches introduced in Sections
4, 5, 6 and 7. Figure 3 shows a high-level comparison between LTH/Pal,
DST and freezing. Leaning on this structural comparison, we will now discuss
different aspects of the methods.

8.1 Performance.

We start with the most important criterion, the performance of the meth-
ods. With performance we mean, test accuracy (or different metrics for tasks
other than image classification) after training. This survey covers methods that
reduce training cost. Therefore, performance needs to be brought in the con-
text with the cost for the method. As baseline for comparing different methods,
we will use our main cost measure — the number of trained (or equivalently
stored) parameters.

For the performance evaluation, we use LTH with late rewinding. Note,
this is not a real DRT method since training starts with a subset of ©®) for a
small £ > 0 here. However, literature only reports results for modern networks
and big scale tasks like ImageNet for LTH with late rewinding. As already

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 27

mentioned in Section 4, resetting weights to their initialization shows worse
results than late rewinding which should be kept in mind.

It was shown and discussed in

many works that LTs have better

Test accuracy mean/std LeNet-5-Caffe results than Pal for high pruning
Real Freezing rate qg

1o 0.989 0.99 0.9910.992 0.993 0.994 0.995 0.996 0.997 0.998 I‘ates (Wa,Ilg et al, 2020&; Fl"allkle

. * v v v v v ¥ ¥ 2 - .
. " et al, 2021a). Also, DST improves
gos Tone] ¥¥¥og, % results compared to Pal (Dettmers
20.6 5 0o \ and Zettlemoyer, 2019; Evci et al,
%04 R e ey 2020). As an example, Table 5 com-
i (i reenores \ pares Pal, LTH and DST for a
Ly freeene ResNet50 (He et al, 2015) on Ima-
099099\69‘%9939‘5%)99299%99"6992999 geNet (Deng et al, 2009). Table 5
Freezing rate g (w/o biases) shows that LTs approximately reach

Fig. 8 (Figure 1 in Wimmer et al (2020)) the same performance than DST.
Comparing the Pal method SNIP (Lee et al, Both of them outperform Pal. But,
2019b) and the model with the same trained if the training time spent on DST

parameters but .the un-trained paramet.ers methods is doubled, DST exceeds
frozen at their initial value, FreezeNet (Wim-

mer et al, 2020) for a LeNet-5-Caffe (LeCun LT (Liu et al, 2021b), see also dis-
et al, 1998) on MNIST (LeCun et al, 1998). cussion in Section 6. The doubled

training time for DST is a fair com-

parison, since LTs need at least
twice the training time than a standard DST method. On the other hand, the
reported LTH result from Evci et al (2022) does not use the standard way to
find LTs (Frankle et al, 2020a), but gradual magnitude pruning (Gale et al,
2019) to find the sparse subnetwork. Thus, by using the approach to iteratively
train-prune-rewind the weights (Frankle et al, 2020a), LTs performance could
be improved further. Moreover, Table 5 shows that pruning coefficients w.r.t.
adaptive bases (Wimmer et al, 2022) for K x K filters improves performance
of SOTA methods further.

Pal’s inferior performance is not a surprise since Pal methods are clearly
the less sophisticated ones. As we will see in the following discussions, this sim-
plicity will reduce costs at other levels, like training time or hyperparameter
tuning. Our first observation therefore is, that pre-training the network to find
a well trainable sparse architecture (LT) or adapt the sparse architecture dur-
ing training (DST) improves results compared to finding a sparse architecture
ad-hoc at the beginning of training.

Freezing the parameters is compared with pruning them in the Pal setting
(Wimmer et al, 2020) and the LTH setup (Zhou et al, 2019). Usually, freezing
leads to slightly worse results than pruning for a higher number of trained
parameters and better results for fewer trained parameters. Figure 8 shows a
comparison between pruning and freezing weights for a low number of trained
weights in the Pal setting. Price and Tanner (2021) show that the same holds
true if the random dense layer is replaced by a dense DCT. Using DCTs has
the advantage that they are cheap to compute.

Springer Nature 2022 I TEX template

28 Dimensionality Reduced Training, a Survey

8.2 Storage cost

Techniques like the compressed sparse row format (Tinney and Walker,
1967) are used to store sparse/frozen networks after training. By using an
initialization derived from a pseudorandom number generator,

memory(freeze) = memory(prune) + 32bit ~ memory(prune) (16)

holds. Consequently, pruning and freezing have the same memory cost in this
case. But, if no pseudorandom number generator can be used, pruning has
much lower memory requirements than freezing.

Also, Sections 4 - 7 propose methods that do not use a simple pruning/freez-
ing transformation but also an additional linear transformation to embed the
small, trainable parameters 9 € R? into the bigger space R”. Examples for
this is pruning coupled with an additional basis transformation with shared
diagonal blocks (Wimmer et al, 2022) or a random, orthogonal projection (Li
et al, 2018). The cost for storing these embeddings is neglectable for Wimmer
et al (2022). The same holds for Li et al (2018) if the random transformation
is created with a pseudorandom number generator.

8.3 Training cost

In the following, we will compare the training costs for different methods
which mainly are measured by the training time for one sparse model and the
number of tunable hyperparameters for training which implicitly determines
the number of training runs needed overall. On top of that, some methods
induce additional gradient computations before or during training which will
be discussed in the end.

8.3.1 Training time

We assume that all methods, DST, LTs, Pal and freezing train the final sparse
model for T iterations. Here, T is the number of training iterations used for
the dense network to (i) converge and (ii) have good generalization ability.
Consequently, DST, Pal and freezing have approximately the same training
time for one model. LTs on the other hand need, as discussed in Section 4,
at least twice the number of training iterations than a standard training. By
using iterative train-prune-reset cycles, the number of training iterations can
easily reach 10 — 20x the standard number. Thus, LTs need a massive amount
of pre-training for the pruning transformation (%),

As shown in Liu et al (2021b) and discussed in Section 6, DST massively
profit from increasing the training time.

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 29

8.3.2 Hyperparameters

All proposed methods induce at least one hyperparameter more than training
the corresponding dense model. This hyperparameter is given by the number
of trainable parameters.’®

Determining the number of trained parameters

Pal, freezing and LT determine one global pruning/freezing rate. DST meth-
ods on the other hand often need to specify the rate of trained parameters for
each layer separately. If the layerwise pruning rates can be adapted dynami-
cally during training (Dettmers and Zettlemoyer, 2019), their initial choice has
shown to be not too important and can be set constant for all layers. Other
works like Mocanu et al (2018); Evci et al (2020); Liu et al (2021b) heuristi-
cally determine layerwise pruning rates by an Erdds-Rényi model (Erdds and
Rényi, 1959).

Additional hyperparameters for Pal

Besides the pruning rate, Pal methods introduce hyperparameters for com-
puting the pruning transformation (%), For Lee et al (2019b); Wang et al
(2020a); Verdenius et al (2020); de Jorge et al (2021) this is the number of
data batches, needed to compute the pruning score of each parameter. The
iterative approaches Tanaka et al (2020); Verdenius et al (2020); de Jorge et al
(2021) need to determine the number of conducted pruning iterations. How-
ever, by using a high number of data batches and many pruning iterations,
these parameters are not required to be fine-tuned further (Wang et al, 2020a;
Tanaka et al, 2020). A special case in this setting is Wimmer et al (2021),
interpolating between the two pruning methods Lee et al (2019b) and Wang
et al (2020a). Consequently, they need to tune one hyperparameter to balance
between these two methods.

Additional hyperparameters for LTs

As shown in Frankle et al (2020a), resetting weights not to their initial value
but a value early on in training leads to better results. Consequently, a well
performing rewinding iteration has to be found. A proper experimental analysis
for various datasets and models is given in Frankle et al (2020a). Furthermore,
if iterative pruning is used, the number of pruned weights in each iteration has
to be determined. Usually, 20% of the non-zero weights are removed in each
iteration (Frankle and Carbin, 2018).

Additional hyperparameters for freezing

Freezing is closely related to either Pal (Wimmer et al, 2020), LTs (Zhou
et al, 2019) or random pruning (Rosenfeld and Tsotsos, 2019). Since freezing

5In pruning literature, many methods determine the number of trainable parameters not directly
but indirect by choosing an associated hyperparameter as for example weighting the ¢; regu-
larization. But, all proposed methods in this work choose the number of trained parameters
directly.

Springer Nature 2022 I TEX template

30 Dimensionality Reduced Training, a Survey

does not introduce additional hyperparameters, the same number of additional
hyperparameters as for the corresponding pruning methods are needed. Note,
to achieve good results with randomly frozen weights, layerwise freezing rates
have to be determined which need to be fine-tuned accordingly.

Additional hyperparameters for DST and costs for updating ®

Compared to Pal, DST has the advantage that the pruning transformation is
not fixed at (9. This leads to better performance after training while using
the same number of trained parameters and training iterations. But this also
results in costs for determining (9. Besides computing ©®), the update fre-

quency F, and the update pruning rate ql(t) have to found. The update pruning

rate ql(t) is defined as the ratio of formerly non-zero parameters which are newly
pruned in layer [if () is updated in iteration ¢. Note, the update pruning rate
might vary between different update iterations of the transformation and also
between layers. Also, the regrowing rate needs to be determined since it can
be different from the update pruning rate (Dettmers and Zettlemoyer, 2019).

Finally, there are the actual costs for updating ¥ itself. In all consid-
ered methods in Section 6, weights are dried according to having the smallest
magnitude — magnitude based pruning. For this, the d un-pruned coefficients
have to be sorted. After setting some weights to zero, the same number of
weights has to be flagged as trainable again. The costs for regrowing weights
can almost be for free by using random regrowing of weights (Mocanu et al,
2018; Mostafa and Wang, 2019). On the other hand, Evci et al (2020) require
the gradient of the whole network at the update iterations ¢t € {F},2F,,...} to
determine ¥®). Dettmers and Zettlemoyer (2019) even need these gradients in
each training iteration in order to update a momentum parameter which also
requires an additional weighting hyperparameter. A temperature parameter is
needed in Bellec et al (2018) to model a random walk in the parameter space
to explore new weights.

8.3.3 Gradient computations and backward pass.

All proposed methods update only sparse parts of the weights via backpropa-
gation. But, some of them additionally require the computation of the dense
gradient for pre-training, determining ¥(9) or to update (®).

First of all, LTs need to train the dense network in order to find ¥(9). This
can limit the size of the biggest underlying dense network that can be used.
For iterative LTH, networks with sparsity pr, = 1 — 0.8% have to be trained
additionally for all k& with pg > p.

Pal methods need the computation of a dense gradient before training (Lee
et al, 2019b; Tanaka et al, 2020; Verdenius et al, 2020; de Jorge et al, 2021).
Even a Hessian-vector product has to be calculated for the method Wang et al
(2020a). But after having found ()| Pal methods are trained with a fixed,
sparse architecture without the need to compute a dense gradient anymore.

DST methods might not need a dense gradient at all, if regrown weights are
found by a random selection (Mocanu et al, 2018; Bellec et al, 2018; Mostafa

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 31

and Wang, 2019). As mentioned above, Evci et al (2020) compute the dense
gradient at each update step of the pruning transformation t € {F,,2F,,...}.
The most extreme case is given for Dettmers and Zettlemoyer (2019) which
need to compute the dense gradient in each iteration.

Finally there is a difference between gradient computations for pruned and
frozen models. Pruned networks compute gradients of activation maps with
sparse weight tensors. Frozen networks on the other hand compute gradients
of activation maps with the help of the frozen weights, i.e. require dense com-
putations, see Figure 4 right side. However, frozen weights do not need to be
updated. Therefore, it is enough to compute only a sparse part of the weights’
gradients. In summary, freezing also reduces computations in the backward
pass, but not as much as pruning does.

8.4 Forward Pass.

In Section 8.3.3, gradient computations and the backward pass for the different
methods are discussed. Gradients only have to be computed during training
whereas the forward pass is needed for both, training and inference. Therefore,
we discuss the forward pass in a standalone Section. Still, this discussion should
also be seen as a part of the training costs, Section 8.3.

During and after the sparse training, LTH, DST and Pal all have the same
cost for inference. This statement is not completely true, since different meth-
ods might create varying sparsity distributions for the same global pruning
rate. This can result in different FLOP costs for inferring the sparse networks,
see for example Table 5. However, analyzing sparsity distributions obtained
by different pruning methods is beyond the scope of this work.

If parts of a network are frozen during training, all parameters participate
in the forward pass. Of course, this also holds true for inference time. Conse-
quently, the computational cost for inference can not be reduced and is equal
to the densely trained network.

8.5 Summary

In summary, we see that freezing parameters instead of pruning them leads to
the same memory requirements and better results for training a low number of
parameters. However, if more parameters are trained, pruning leads to equal
or better performance. For pruning, the sparsity of the parameters can reduce
the number of required computations for evaluating the network if the used
soft- and hardware supports sparse computations. Thus, freezing seems to be
a good option if the model size is a bottleneck, i.e. only a small part of the
network is trained, whereas pruning is preferably used otherwise. Furthermore,
the computational overhead induced by freezing layers can be reduced by using
dense DCTs instead of dense frozen layers.

For pruning, there is a trade-off between simplicity of the method and per-
formance after training. As shown, DST and LT's have approximately the same
generalization ability and are superior to Pal for the same number of non-zero

Springer Nature 2022 I TEX template

32 Dimensionality Reduced Training, a Survey

parameters. However, Pal guarantees a fixed sparse architecture throughout
training, determined by only a few dense gradient computations. Furthermore,
Pal does not require extensive and costly hyperparameter tuning. Finding LT's
requires expensive pre-training of the dense network. Also, LTs at initializa-
tion often show unsatisfactory results for modern network architectures and
big scale datasets. Resetting weights to an early phase in training is required
to achieve good performance. As shown, DST methods need more hyperpa-
rameters than Pal and LTH. Further, DST methods might need to regularly
compute the full gradient of the network and increase the training time in
order to reach their best performance.

As mentioned, presented results for LTs use a small pre-training step for
the sparse initialization. Therefore, we conclude that DST methods achieve
the best overall performance for completely sparse training. Moreover, using
adaptive bases for the K x K filters of convolutional layers further improves
the proposed pruning and freezing approaches.

9 Conclusions

In this work we have introduced a general framework to describe the training
of DNNs with reduced dimensionality (DRT'). The proposed methods are dom-
inated by pruning neural networks, but we also discussed freezing parts of the
network at its random initialization. The methods are categorized in pruning
at initialization (Pal), lottery tickets (LTs), dynamic sparse training (DST)
and freezing. SOTA methods for each criterion are presented. Furthermore,
the different approaches are compared afterwards.

We first discussed that pruning leads to better results than freezing if more
parameters are optimized whereas for a low number of trained weights, freezing
performs better than pruning. Furthermore, LTs and DST perform better than
Pal, while Pal contains the easiest and least expensive methods. For LTs, many
trainings, including training the dense model, are needed to find the sparse
architecture. Also, LTs achieve their best results if weights are reset to an
early phase in training which does not yield a complete sparse training. DST
methods usually need more hyperparameters to be tuned than LTs and Pal. All
proposed DRT methods can be further enhanced by representing convolutional
filters with an adaptive representation instead of the standard, spatial one.

Altogether, finding the best DRT method for a specific setup is a trade-
off between available training time and performance of the final network. The
training time is mostly influenced by the number of trainings required to find
the sparse architecture, ranging from 0 (Pal, DST and freezing) to more than
20x (LTs), and the number of individual trainings required to tune hyper-
parameters. Also, the need to compute dense gradients (for some DST and
Pal methods) or to pre-train the dense network (LTs) has to be considered
if a DRT method is chosen. As discussed, frozen models have similar com-
putational costs for inference as densely trained networks. Consequently, if
the sparsity together with the used soft- and hardware can actually reduce

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 33

computations, pruning should be preferred to freezing, or frozen parameters
should be replaced by information preserving transformations which are cheap
to compute, as for example the DCT.

We want to end the survey by stating relevant future research topics con-
cerning DRT. For Pal it is important to find methods that reduce, or at
best close, the gap between current Pal methods and the better performing
DST/LTs methods. On the other hand, DST methods which adapt impor-
tant hyperparameters automatically during one (or only a few) training runs,
instead of using many of them for manual hyperparameter tuning, would help
to reduce the costs for DST. Finding LTs is expensive due to the need of at
least one, but for good results much more, train-prune-reset cycle(s). As dis-
cussed, there is already research done to make LTs less expensive by using
low precision training (You et al, 2020; Diffenderfer and Kailkhura, 2021) or
transferring the LTs between datasets (Morcos et al, 2019). But, performance
of such derived LTs often is worse than using a LT generated for this task.
Improving the transferability of LTs would significantly reduce the cost for
sparse training. Finally, freezing networks performs worse than pruning if many
parameters are trained. Analyzing the performance gap between freezing and
pruning could help to better understand the role of random initializations.

Statements and Declarations

Conflicts of Interest

During preparation of this manuscript, all authors were employed by the
Robert Bosch GmbH. Also, Alexandru Paul Condurache and Paul Wimmer
were part of the Institute for Signal Processing of the University of Liibeck.

References

Aladago MM, Torresani L (2021) Slot machines: Discovering winning combi-
nations of random weights in neural networks. In: Proceedings of the 38th
International Conference on Machine Learning

Alizadeh M, Tailor SA, Zintgraf LM, et al (2022) Prospect pruning: Finding
trainable weights at initialization using meta-gradients. In: 10th Interna-
tional Conference on Learning Representations

Amodei D, Hernandez D, Sastry G, et al (2018 [Online]) Ai and compute. Ope-
nAI Blog, URL https://openai.com/blog/ai-and-compute/, last accessed:
11/16,/2022

Anwar S, Hwang K, Sung W (2017) Structured pruning of deep convolutional
neural networks. ACM Journal on Emerging Technologies in Computing
Systems 13(3):1-18

https://openai.com/blog/ai-and-compute/

Springer Nature 2022 I TEX template

34 Dimensionality Reduced Training, a Survey

Arora S, Ge R, Neyshabur B, et al (2018) Stronger generalization bounds
for deep nets via a compression approach. In: Proceedings of the 35th
International Conference on Machine Learning

Arora S, Du SS, Hu W, et al (2019) On exact computation with an infinitely
wide neural net. In: Advances in Neural Information Processing Systems 32

Bai Y, Wang H, TAO Z, et al (2022) Dual lottery ticket hypothesis. In: 10th
International Conference on Learning Representations

Barsbey M, Sefidgaran M, Erdogdu MA, et al (2021) Heavy tails in SGD and
compressibility of overparametrized neural networks. In: Advances in Neural
Information Processing Systems 34

Bartoldson B, Morcos A, Barbu A, et al (2020) The generalization-stability
tradeoff in neural network pruning. In: Advances in Neural Information
Processing Systems 33

Bellec G, Kappel D, Maass W, et al (2018) Deep rewiring: Training very sparse
deep networks. In: 6th International Conference on Learning Representa-
tions

Bengio Y, Léonard N, Courville AC (2013) Estimating or propagat-
ing gradients through stochastic neurons for conditional computation.
CoRR abs/1308.3432. URL http://arxiv.org/abs/1308.3432, last accessed:
10/31,/2022

Blalock DW, Ortiz JJG, Frankle J, et al (2020) What is the state of neural
network pruning? In: Proceedings of Machine Learning and Systems 2

Brutzkus A, Globerson A, Malach E, et al (2018) SGD learns over-
parameterized networks that provably generalize on linearly separable data.
In: 6th International Conference on Learning Representations

Burkholz R, Laha N, Mukherjee R, et al (2022) On the existence of universal
lottery tickets. In: 10th International Conference on Learning Representa-
tions

Chambers AR, Rumpel S (2017) A stable brain from unstable components:
Emerging concepts and implications for neural computation. Neuroscience

357:172-184

Chen J, Chen S, Pan SJ (2020a) Storage efficient and dynamic flexible runtime
channel pruning via deep reinforcement learning. In: Advances in Neural
Information Processing Systems 33

http://arxiv.org/abs/1308.3432

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 35

Chen T, Frankle J, Chang S, et al (2020b) The lottery ticket hypothesis for
pre-trained bert networks. In: Advances in Neural Information Processing
Systems 33

Chen T, Frankle J, Chang S, et al (2021a) The lottery tickets hypothesis for
supervised and self-supervised pre-training in computer vision models. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition

Chen W, Wilson J, Tyree S, et al (2015) Compressing neural networks with
the hashing trick. In: Proceedings of the 32nd International Conference on
Machine Learning

Chen X, Chen T, Zhang Z, et al (2021b) You are caught stealing my winning
lottery ticket! making a lottery ticket claim its ownership. In: Advances in
Neural Information Processing Systems 34

Chen X, Zhang J, Wang Z (2022) Peek-a-boo: What (more) is disguised in a
randomly weighted neural network, and how to find it efficiently. In: 10th
International Conference on Learning Representations

Chijiwa D, Yamaguchi S, Ida Y, et al (2021) Pruning randomly initial-
ized neural networks with iterative randomization. In: Advances in Neural
Information Processing Systems 34

Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: Training deep
neural networks with binary weights during propagations. In: Advances in
Neural Information Processing Systems 28

da Cunha A, Natale E, Viennot L (2022) Proving the lottery ticket hypothe-
sis for convolutional neural networks. In: 10th International Conference on
Learning Representations

Deng J, Dong W, Socher R, et al (2009) Imagenet: A large-scale hierarchi-
cal image database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition

Denton E, Zaremba W, Bruna J, et al (2014) Exploiting linear structure
within convolutional networks for efficient evaluation. In: Advances in Neural
Information Processing Systems 27

Dettmers T, Zettlemoyer L (2019) Sparse networks from scratch: Faster
training without losing performance. CoRR, abs/1907.04840v2. URL http:
//arxiv.org/abs/1907.04840v2, last accessed: 10/02/2022

Diffenderfer J, Kailkhura B (2021) Multi-prize lottery ticket hypothesis: Find-
ing accurate binary neural networks by pruning a randomly weighted

http://arxiv.org/abs/1907.04840v2
http://arxiv.org/abs/1907.04840v2

Springer Nature 2022 I TEX template

36 Dimensionality Reduced Training, a Survey

network. In: 9th International Conference on Learning Representations

Diffenderfer J, Bartoldson BR, Chaganti S, et al (2021) A winning hand:
Compressing deep networks can improve out-of-distribution robustness. In:
Advances in Neural Information Processing Systems 34

Ding X, Ding G, Zhou X, et al (2019) Global sparse momentum sgd for pruning
very deep neural networks. In: Advances in Neural Information Processing
Systems 32

Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16
words: Transformers for image recognition at scale. In: 9th International
Conference on Learning Representations

Du SS, Zhai X, Poczos B, et al (2019) Gradient descent provably optimizes
over-parameterized neural networks. In: 7th International Conference on
Learning Representations

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research
12(61):2121-2159

Elesedy B, Kanade V, Teh YW (2021) Lottery tickets in linear models: An
analysis of iterative magnitude pruning. In: Sparsity in Neural Networks
Workshop

Elsen E, Dukhan M, Gale T, et al (2020) Fast sparse convnets. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Erd6s P, Rényi A (1959) On random graphs I. Publicationes Mathematicae
Debrecen 6:290-297

Evci U, Gale T, Menick J, et al (2020) Rigging the lottery: Making all tickets
winners. In: Proceedings of the 37th International Conference on Machine
Learning

Evci U, Dauphin Y, Ioannou Y, et al (2022) Gradient flow in sparse neural net-
works and how lottery tickets win. In: Proceedings of the AAAI Conference
on Artificial Intelligence

Fischer J, Burkholz R (2022) Plant 'n’ seek: Can you find the winning ticket?
In: 10th International Conference on Learning Representations

Frankle J, Carbin M (2018) The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In: 6th International Conference on Learning
Representations

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 37

Frankle J, Dziugaite GK, Roy D, et al (2020a) Linear mode connectivity
and the lottery ticket hypothesis. In: Proceedings of the 37th International
Conference on Machine Learning

Frankle J, Schwab DJ, Morcos AS (2020b) The early phase of neural network
training. In: 8th International Conference on Learning Representations

Frankle J, Dziugaite GK, Roy D, et al (2021a) Pruning neural networks at ini-
tialization: Why are we missing the mark? In: 9th International Conference
on Learning Representations

Frankle J, Schwab DJ, Morcos AS (2021b) Training batchnorm and only
batchnorm: On the expressive power of random features in CNNs. In: 9th
International Conference on Learning Representations

Gale T, Elsen E, Hooker S (2019) The state of sparsity in deep neural networks.
In: 36th International Conference on Machine Learning Joint Workshop on
On-Device Machine Learning & Compact Deep Neural Network Represen-
tations (ODML-CDNNR)

Gale T, Zaharia M, Young C, et al (2020) Sparse gpu kernels for deep learn-
ing. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis

Gebhart T, Saxena U, Schrater P (2021) A unified paths perspective for prun-
ing at initialization. CoRR abs/2101.10552. URL https://arxiv.org/abs/
2101.10552, last accessed: 11/19/2022

Girish S, Maiya SR, Gupta K, et al (2021) The lottery ticket hypothesis
for object recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition

Giryes R, Sapiro G, Bronstein AM (2016) Deep neural networks with random
gaussian weights: A universal classification strategy? IEEE Trans Signal
Process 64(13):3444-3457

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics

Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient dnns. In:
Advances in Neural Information Processing Systems 29

Gustafson JL (2011) Moore’s law. In: Encyclopedia of Parallel Computing, pp
1177-1184

https://arxiv.org/abs/2101.10552
https://arxiv.org/abs/2101.10552

Springer Nature 2022 I TEX template

38 Dimensionality Reduced Training, a Survey

Han S, Pool J, Tran J, et al (2015) Learning both weights and connections
for efficient neural network. In: Advances in Neural Information Processing
Systems 28

Han S, Liu X, Mao H, et al (2016) Eie: Efficient inference engine on com-
pressed deep neural network. ACM SIGARCH Computer Architecture News
44(3):243-254

Hanin B, Rolnick D (2018) How to start training: The effect of initialization
and architecture. In: Advances in Neural Information Processing Systems 31

Hayou S, Ton JF, Doucet A, et al (2021) Robust pruning at initialization. In:
9th International Conference on Learning Representations

He K, Zhang X, Ren S, et al (2015) Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: IEEE International
Conference on Computer Vision

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition

Hoffer E, Hubara I, Soudry D (2018) Fix your classifier: the marginal value of
training the last weight layer. In: 6th International Conference on Learning
Representations

Holmes C, Zhang M, He Y, et al (2021) NxMTransformer: Semi-structured
sparsification for natural language understanding via ADMM. In: Advances
in Neural Information Processing Systems 34

Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learn-
ing scheme of feedforward neural networks. In: IEEE International Joint
Conference on Neural Networks 2

Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey.
International journal of machine learning and cybernetics 2(2):107-122

Huang Z, Wang N (2018) Data-driven sparse structure selection for deep neural
networks. In: Proceedings of the European Conference on Computer Vision

Hubara I, Chmiel B, Island M, et al (2021) Accelerated sparse neural train-
ing: A provable and efficient method to find n:m transposable masks. In:
Advances in Neural Information Processing Systems 34

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: Proceedings of the 32nd
International Conference on Machine Learning

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 39

Jacob B, Kligys S, Chen B, et al (2018) Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition

Jacot A, Hongler C, Gabriel F (2018) Neural tangent kernel: Convergence
and generalization in neural networks. In: Advances in Neural Information
Processing Systems 31

Janowsky SA (1989) Pruning versus clipping in neural networks. Physical
Review A 39:6600-6603

Jayakumar S, Pascanu R, Rae J, et al (2020) Top-kast: Top-k always sparse
training. In: Advances in Neural Information Processing Systems 33

Joo D, Yi E, Baek S, et al (2021) Linearly replaceable filters for deep net-
work channel pruning. In: Proceedings of the AAATI Conference on Artificial
Intelligence

de Jorge P, Sanyal A, Behl H, et al (2021) Progressive skeletonization:
Trimming more fat from a network at initialization. In: 9th International
Conference on Learning Representations

Karnin ED (1990) A simple procedure for pruning back-propagation trained
neural networks. IEEE Transactions on Neural Networks 1(2):239-242

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 3rd
International Conference on Learning Representations

Kolesnikov A, Beyer L, Zhai X, et al (2020) Big transfer (bit): General visual
representation learning. In: Proceedings of the European Conference on
Computer Vision

Koster N, Grothe O, Rettinger A (2022) Signing the supermask: Keep, hide,
invert. In: 10th International Conference on Learning Representations

Krizhevsky A (2012) Learning multiple layers of features from tiny images.
University of Toronto URL: http://www.cs.toronto.edu/~kriz/cifar.html,
last accessed: 05/13/2022

Kusupati A, Ramanujan V, Somani R, et al (2020) Soft threshold weight
reparameterization for learnable sparsity. In: Proceedings of the 37th
International Conference on Machine Learning

Le DH, Hua BS (2021) Network pruning that matters: A case study on retrain-
ing variants. In: 9th International Conference on Learning Representations

Lebedev V, Ganin Y, Rakhuba M, et al (2015) Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. In: 3rd International

http://www.cs.toronto.edu/~kriz/cifar.html

Springer Nature 2022 I TEX template

40 Dimensionality Reduced Training, a Survey

Conference on Learning Representations

LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in
Neural Information Processing Systems 2

LeCun Y, Bottou L, Bengio Y, et al (1998) Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11):2278-2324

Lee J, Xiao L, Schoenholz S, et al (2019a) Wide neural networks of any depth
evolve as linear models under gradient descent. In: Advances in Neural
Information Processing Systems 32

Lee J, Park S, Mo S, et al (2021) Layer-adaptive sparsity for the magnitude-
based pruning. In: 9th International Conference on Learning Representa-
tions

Lee N, Ajanthan T, Torr PH (2019b) SNIP: Single-shot network pruning
based on connection sensitivity. In: 7th International Conference on Learning
Representations

Lee N, Ajanthan T, Gould S, et al (2020) A signal propagation perspective for
pruning neural networks at initialization. In: 8th International Conference
on Learning Representations

Li C, Farkhoor H, Liu R, et al (2018) Measuring the intrinsic dimen-
sion of objective landscapes. In: 6th International Conference on Learning
Representations

Li H, Kadav A, Durdanovic I, et al (2017) Pruning filters for efficient convnets.
In: 5th International Conference on Learning Representations

Li R, Wang Y, Liang F, et al (2019) Fully quantized network for object detec-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition

LiY, Liang Y (2018) Learning overparameterized neural networks via stochas-
tic gradient descent on structured data. In: Advances in Neural Information
Processing Systems 31

Liu B, Wang M, Foroosh H, et al (2015) Sparse convolutional neural networks.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition

Liu J, Xu Z, Shi R, et al (2020) Dynamic sparse training: Find efficient sparse
network from scratch with trainable masked layers. In: 8th International
Conference on Learning Representations

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 41

Liu S, Mocanu DC, Matavalam ARR, et al (2021a) Sparse evolutionary deep
learning with over one million artificial neurons on commodity hardware.
Neural Comput Appl 33(7):2589-2604

Liu S, Yin L, Mocanu DC, et al (2021b) Do we actually need dense over-
parameterization? In-time over-parameterization in sparse training. In:
Proceedings of the 38th International Conference on Machine Learning

Liu S, Chen T, Chen X, et al (2022) The unreasonable effectiveness of random
pruning: Return of the most naive baseline for sparse training. In: 10th
International Conference on Learning Representations

Liu T, Zenke F (2020) Finding trainable sparse networks through neural
tangent transfer. In: Proceedings of the 37th International Conference on
Machine Learning

Liu Z, Sun M, Zhou T, et al (2019) Rethinking the value of network pruning.
In: 7th International Conference on Learning Representations

Lubana ES, Dick R (2021) A gradient flow framework for analyzing network
pruning. In: 9th International Conference on Learning Representations

Mahajan D, Girshick R, Ramanathan V, et al (2018) Exploring the limits of
weakly supervised pretraining. In: Proceedings of the European Conference
on Computer Vision

Malach E, Yehudai G, Shalev-Schwartz S, et al (2020) Proving the lottery ticket
hypothesis: Pruning is all you need. In: Proceedings of the 37th International
Conference on Machine Learning

Mallya A, Davis D, Lazebnik S (2018) Piggyback: Adapting a single network to
multiple tasks by learning to mask weights. In: Proceedings of the European
Conference on Computer Vision

Mao H, Han S, Pool J, et al (2017) Exploring the granularity of sparsity in
convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops

Martens J (2010) Deep learning via hessian-free optimization. In: Proceedings
of the 27th International Conference on Machine Learning

Mezié I (2005) Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dynamics 41(1):309-325

Mocanu D, Mocanu E, Stone P, et al (2018) Scalable training of artificial neu-
ral networks with adaptive sparse connectivity inspired by network science.
Nature Communications 9(1):2383

Springer Nature 2022 I TEX template

42 Dimensionality Reduced Training, a Survey

Morcos A, Yu H, Paganini M, et al (2019) One ticket to win them all: generaliz-
ing lottery ticket initializations across datasets and optimizers. In: Advances
in Neural Information Processing Systems 32

Mostafa H, Wang X (2019) Parameter efficient training of deep convolutional
neural networks by dynamic sparse reparameterization. In: Proceedings of
the 36th International Conference on Machine Learning

Mozer MC, Smolensky P (1989) Skeletonization: A technique for trimming
the fat from a network via relevance assessment. In: Advances in Neural
Information Processing Systems 1

Neyshabur B, Salakhutdinov R, Srebro N (2015a) Path-sgd: Path-normalized
optimization in deep neural networks. In: Advances in Neural Information
Processing Systems 28

Neyshabur B, Tomioka R, Srebro N (2015b) Norm-based capacity control in
neural networks. In: Proceedings of The 28th Conference on Learning Theory

Novikov A, Podoprikhin D, Osokin A, et al (2015) Tensorizing neural networks.
In: Advances in Neural Information Processing Systems 28

Nowlan SJ, Hinton GE (1992) Simplifying neural networks by soft weight-
sharing. Neural Computation 4(4):473-493

NVIDIA (2020) Nvidia al00 tensor core gpu architecture. URL:
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf, last accessed: 10/31/2022

Orseau L, Hutter M, Rivasplata O (2020) Logarithmic pruning is all you need.
In: Advances in Neural Information Processing Systems 33

Pao YH, Takefuji Y (1992) Functional-link net computing: theory, system
architecture, and functionalities. Computer 25(5):76-79

Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization characteris-
tics of the random vector functional-link net. Neurocomputing 6(2):163-180

Parashar A, Rhu M, Mukkara A, et al (2017) Senn. In: Proceedings of the 44th
Annual International Symposium on Computer Architecture. ACM

Park DS, Zhang Y, Chiu C, et al (2020) Specaugment on large scale
datasets. In: IEEE International Conference on Acoustics, Speech and Signal
Processing

Park J, Li SR, Wen W, et al (2017) Faster cnns with direct sparse convo-
lutions and guided pruning. In: 5th International Conference on Learning
Representations

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 43

Patil SM, Dovrolis C (2021) PHEW: Counstructing sparse networks that learn
fast and generalize well without training data. In: Proceedings of the 38th
International Conference on Machine Learning

Pensia A, Rajput S, Nagle A, et al (2020) Optimal lottery tickets via subset
sum: Logarithmic over-parameterization is sufficient. In: Advances in Neural
Information Processing Systems 33

Peste A, Iofinova E, Vladu A et al (2021) AC/DC: Alternating compressed/de-
compressed training of deep neural networks. In: Advances in Neural
Information Processing Systems 34

Peters ME, Neumann M, Iyyer M, et al (2018) Deep contextualized word rep-
resentations. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies

Pham H, Dai Z, Xie Q, et al (2021) Meta pseudo labels. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition

Pool J, Yu C (2021) Channel permutations for n:m sparsity. In: Advances in
Neural Information Processing Systems 34

Poole B, Lahiri S, Raghu M, et al (2016) Exponential expressivity in deep
neural networks through transient chaos. In: Advances in Neural Information
Processing Systems 29

Price I, Tanner J (2021) Dense for the price of sparse: Improved performance
of sparsely initialized networks via a subspace offset. In: Proceedings of the
38th International Conference on Machine Learning

Qian X, Klabjan D (2021) A probabilistic approach to neural network pruning.
In: Proceedings of the 38th International Conference on Machine Learning

Qing Y, Zeng Y, Li Y, et al (2020) Deep and wide feature based extreme
learning machine for image classification. Neurocomputing 412:426-436

Ramanujan V, Wortsman M, Kembhavi A, et al (2020) What’s hidden in
a randomly weighted neural network? In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition

Redman WT, FONOBEROVA M, Mohr R, et al (2022) An operator theoretic
view on pruning deep neural networks. In: 10th International Conference on
Learning Representations

Renda A, Frankle J, Carbin M (2020) Comparing rewinding and fine-tuning
in neural network pruning. In: 8th International Conference on Learning

Springer Nature 2022 I TEX template

44 Dimensionality Reduced Training, a Survey

Representations

Robbins H, Monro S (1951) A stochastic approximation method. The Annals
of Mathematical Statistics 22(3):400-407

Rosenfeld A, Tsotsos JK (2019) Intriguing properties of randomly weighted
networks: Generalizing while learning next to nothing. In: Conference on
Computer and Robot Vision

Rosenfeld JS, Frankle J, Carbin M, et al (2021) On the predictability of prun-
ing across scales. In: Proceedings of the 38th International Conference on
Machine Learning

Sainath T, Kingsbury B, Sindhwani V, et al (2013) Low-rank matrix fac-
torization for deep neural network training with high-dimensional output
targets. In: IEEE International Conference on Acoustics, Speech and Signal
Processing

Sanh V, Wolf T, Rush AM (2020) Movement pruning: Adaptive sparsity by
fine-tuning. In: Advances in Neural Information Processing Systems 33

Saxe A, Koh PW, Chen Z, et al (2011) On random weights and unsupervised
feature learning. In: Proceedings of the 28th International Conference on
Machine Learning

Saxe AM, McClelland JL, Ganguli S (2014) Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In: 2nd International
Conference on Learning Representations

Schoenholz SS, Gilmer J, Ganguli S, et al (2017) Deep information propaga-
tion. In: 5th International Conference on Learning Representations

Schwartz R, Dodge J, Smith NA, et al (2020) Green AI. Communications of
the ACM 63(12):54-63

Schwarz J, Jayakumar S, Pascanu R, et al (2021) Powerpropagation: A spar-
sity inducing weight reparameterisation. In: Advances in Neural Information
Processing Systems 34

Soelen RV, Sheppard JW (2019) Using winning lottery tickets in transfer learn-
ing for convolutional neural networks. In: International Joint Conference on
Neural Networks

Strubell E, Ganesh A, McCallum A (2019) Energy and policy considerations
for deep learning in NLP. In: Proceedings of the 57th Conference of the
Association for Computational Linguistics

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 45

Strubell E, Ganesh A, McCallum A (2020) Energy and policy considerations
for modern deep learning research. In: Proceedings of the AAATI Conference
on Artificial Intelligence

Su J, Chen Y, Cai T, et al (2020) Sanity-checking pruning methods: Random
tickets can win the jackpot. In: Advances in Neural Information Processing
Systems 33

Sun W, Zhou A, Stuijk S, et al (2021) Dominosearch: Find layer-wise fine-
grained n:m sparse schemes from dense neural networks. In: Advances in
Neural Information Processing Systems 34

Sung YL, Nair V, Raffel C (2021) Training neural networks with fixed sparse
masks. In: Advances in Neural Information Processing Systems 34

Sutskever I, Martens J, Dahl G, et al (2013) On the importance of initialization
and momentum in deep learning. In: Proceedings of the 30th International
Conference on Machine Learning

Tanaka H, Kunin D, Yamins DL, et al (2020) Pruning neural networks without
any data by iteratively conserving synaptic flow. In: Advances in Neural
Information Processing Systems 33

Tinney W, Walker J (1967) Direct solutions of sparse network equations
by optimally ordered triangular factorization. Proceedings of the IEEE
55(11):1801-1809

Ullrich K, Meeds E, Welling M (2017) Soft weight-sharing for neural network
compression. In: 5th International Conference on Learning Representations

Verdenius S, Stol M, Forré P (2020) Pruning via iterative ranking of sensi-
tivity statistics. CoRR abs/2006.00896v2. URL https://arxiv.org/abs/2006.
00896v2, last accessed: 09/19/2022

Vischer M, Lange RT, Sprekeler H (2022) On lottery tickets and minimal
task representations in deep reinforcement learning. In: 10th International
Conference on Learning Representations

Wang C, Zhang G, Grosse R (2020a) Picking winning tickets before training
by preserving gradient flow. In: 8th International Conference on Learning
Representations

Wang CY, Bochkovskiy A, Liao HYM (2021a) Scaled-yolov4: Scaling cross
stage partial network. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition

https://arxiv.org/abs/2006.00896v2
https://arxiv.org/abs/2006.00896v2

Springer Nature 2022 I TEX template

46 Dimensionality Reduced Training, a Survey

Wang H, Qin C, Zhang Y, et al (2021b) Emerging paradigms of neural net-
work pruning. CoRR abs/2103.06460v2. URL https://arxiv.org/abs/2103.
06460v2, last accessed: 10/05/2022

Wang Y, Zhang X, Hu X, et al (2020b) Dynamic network pruning with inter-
pretable layerwise channel selection. In: Proceedings of the AAAT Conference
on Artificial Intelligence

Wang Y, Zhang X, Xie L, et al (2020c) Pruning from scratch. In: Proceedings
of the AAAT Conference on Artificial Intelligence

Wang Z (2020) Sparsert: Accelerating unstructured sparsity on gpus for deep
learning inference. In: Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques

Wimmer P, Mehnert J, Condurache AP (2020) FreezeNet: Full performance by
reduced storage costs. In: Proceedings of the Asian Conference on Computer
Vision

Wimmer P, Mehnert J, Condurache AP (2021) COPS: Controlled pruning
before training starts. In: International Joint Conference on Neural Networks

Wimmer P, Mehnert J, Condurache AP (2022) Interspace pruning: Using adap-
tive filter representations to improve training of sparse cnns. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Wu J, Leng C, Wang Y, et al (2016) Quantized convolutional neural networks
for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition

Xiao L, Bahri Y, Sohl-Dickstein J, et al (2018) Dynamical isometry and a
mean field theory of cnns: How to train 10, 000-layer vanilla convolutional
neural networks. In: Proceedings of the 35th International Conference on
Machine Learning

Xue J, Li J, Gong Y (2013) Restructuring of deep neural network acoustic
models with singular value decomposition. In: Interspeech

Yang Z, Dai Z, Yang Y, et al (2019) Xlnet: Generalized autoregressive pre-
training for language understanding. In: Advances in Neural Information
Processing Systems 32

You H, Li C, Xu P, et al (2020) Drawing early-bird tickets: Toward more effi-
cient training of deep networks. In: 8th International Conference on Learning
Representations

https://arxiv.org/abs/2103.06460v2
https://arxiv.org/abs/2103.06460v2

Springer Nature 2022 I TEX template

Dimensionality Reduced Training, a Survey 47

Yu H, Edunov S, Tian Y, et al (2020) Playing the lottery with rewards and mul-
tiple languages: lottery tickets in rl and nlp. In: 8th International Conference
on Learning Representations

Zagoruyko S, Komodakis N (2016) Wide residual networks. In: Proceedings of
the British Machine Vision Conference

Zhang D, Yang J, Ye D, et al (2018) Lg-nets: Learned quantization for highly
accurate and compact deep neural networks. In: Proceedings of the European
Conference on Computer Vision

Zhang S, Stadie BC (2020) One-shot pruning of recurrent neural networks by
jacobian spectrum evaluation. In: 8th International Conference on Learning
Representations

Zhang Z, Chen X, Chen T, et al (2021a) Efficient lottery ticket finding:
Less data is more. In: Proceedings of the 38th International Conference on
Machine Learning

Zhang Z, Jin J, Zhang Z, et al (2021b) Validating the lottery ticket hypothesis
with inertial manifold theory. In: Advances in Neural Information Processing
Systems 34

Zhou A, Yao A, Guo Y, et al (2017) Incremental network quantization:
Towards lossless cnns with low-precision weights. In: 5th International
Conference on Learning Representations

Zhou A, Ma Y, Zhu J, et al (2021a) Learning n:m fine-grained structured
sparse neural networks from scratch. In: 9th International Conference on
Learning Representations

Zhou H, Lan J, Liu R, et al (2019) Deconstructing lottery tickets: Zeros, signs,
and the supermask. In: Advances in Neural Information Processing Systems
32

Zhou X, Zhang W, Chen Z, et al (2021b) Efficient neural network training via
forward and backward propagation sparsification. In: Advances in Neural
Information Processing Systems 34

Zhou X, Zhang W, Xu H, et al (2021c) Effective sparsification of neural net-
works with global sparsity constraint. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition

Zhuang T, Zhang Z, Huang Y, et al (2020) Neuron-level structured prun-
ing using polarization regularizer. In: Advances in Neural Information
Processing Systems 33

Springer Nature 2022 I TEX template

48 Dimensionality Reduced Training, a Survey

Zhuang Z, Tan M, Zhuang B, et al (2018) Discrimination-aware channel prun-
ing for deep neural networks. In: Advances in Neural Information Processing
Systems 31

	Introduction
	Scope of this work
	Structure of this work

	Problem formulation
	General deep learning and setup
	Model for dimensionality reduced training
	Pruning and dynamic sparse training
	Freezing parameters

	High-level overview of dimensionality reducing transformations (t)
	Structure of trainable weights
	Global or layerwise dimensionality reduction
	Update frequency
	Criteria to choose trainable parameters
	Random criterion
	Magnitude criterion
	Gradient based criterion
	Conserving information flow
	Trainable (0)

	Pre-training the transformation

	Lottery ticket hypothesis
	Pruning at initialization
	PaI followed by training non-zero weights
	Gradient based approaches
	Methods preserving information flow
	Hybrid and other approaches

	PaI without training non-zero weights
	Theoretical background
	Methods to train (0)

	Dynamic sparse training
	Dynamic sparse training methods
	Closely related methods

	Freezing parts of a network
	Theoretical background for freezing
	Freezing methods

	Comparing and discussing different dimensionality reduced training methods
	Performance.
	Storage cost
	Training cost
	Training time
	Hyperparameters
	Determining the number of trained parameters
	Additional hyperparameters for PaI
	Additional hyperparameters for LTs
	Additional hyperparameters for freezing
	Additional hyperparameters for DST and costs for updating (t)

	Gradient computations and backward pass.

	Forward Pass.
	Summary

	Conclusions

