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Abstract

Understanding and effectively addressing the dynamics of infectious diseases,
including global diseases like COVID-19, is crucial for managing the current situ-
ation and developing effective intervention strategies. Epidemiologists commonly
use epidemiological equations (EE) to model disease progression. Nevertheless,
the traditional approach to parameter estimation in EE frequently faces chal-
lenges in accurately fitting real-world data, primarily due to factors like the
different implementation of social distancing policies and intervention strategies.
However, developing high-quality but complex EE models can be time-intensive
for epidemiologists. Hence, we introduce a novel method known as the deep
dynamic epidemiological (DDE) approach, which integrates the strengths of EE
with the capabilities of deep neural networks (DNN) to enhance accuracy. The
DDE method incorporates DNNs to model dynamic effects and adapt to evolving
situations. It employs the neural ordinary differential equation (ODE) method
to solve variant-specific equations, ensuring a precise fit to disease progression in
diverse geographic regions. In this study, we introduce four variants of EE cus-
tomized to address specific scenarios in different countries and regions. We assess
the performance of our DDE method using real-world data from five diverse geo-
graphic entities (countries: the USA, Colombia, and South Africa; regions: Wuhan
in China and Piedmont in Italy). We show that the DDE method outperforms
alternative approaches, achieving the highest predictive accuracy in modeling
disease progression across all five geographic entities. This paves the way for
constructing a simplified EE model for various geographic levels.

Keywords: COVID-19, SEIR/SIR model, neural ODE, epidemiological equations

1 Introduction

Coronavirus Respiratory Disease 2019 (COVID-19) from the virus ”SARS-CoV-2” has
a catastrophic spread and influenced at least 214 countries and territories over seven
continents, resulting in more than 5 million people infected and over 3456 thousand
deaths. The disease has brought unprecedented impact on people’s health and safety
around the world and has influenced economic and social development. Due to different
conditions such as quarantine measurement, social distance, population density, and
medical conditions, the development of COVID-19 in different places is also diverse
[1, 2]. Because of the various situations in different regions, constructing a uniform
framework to analyze the disease’s condition and estimate future development is cru-
cial for analyzing the spread condition and helping control the outbreak of coronavirus
disease in different level regions.
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Fig. 1 The architectures of Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-
Removed (SEIR) models. The left figure and right figure show the SIR model and the SEIR model,
respectively. β in the figures represents infectious rate, γ is the exposed rate, and δ shows the recovery
rate.

Many studies propose models to simulate the development of diseases:
The Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed
(SEIR) [3] models are widely used by epidemiologists due to easy modeling, which
only use the infectious rate, exposed rate, recovered rate to describe the develop-
ment trend of infectious diseases. However, because the infection situation in the real
world is complicated, existing parameter estimation methods cannot achieve high fit-
ting performance using SIR and SEIR [3]. Some studies based on SIR or SEIR models
further propose modeling improvements to fit the different population trends [4–6].
These works often use a complex improved SEIR model with multiple parameters to
analyze a specific area to achieve high-precision fitting performance. However, due to
each region’s particularities (different population conditions, social distance, isolation
measures, etc.), it is difficult to directly migrate these models to other areas. Develop-
ing a different model for a specific region is very time-consuming, but precise modeling
can help estimate the spread of COVID-19 diseases. Besides, because the infection
situations between different areas are also very inconsistent (some countries have just
begun to spread while the infection cases in others have disappeared), different areas
may use different models to analyze. Therefore, simple models with high fitting accu-
racy that are more generally adapted to various countries or regions and more easily
migrated to another area are of great significance in the modeling of COVID-19.

Machine learning has achieved remarkable results in solving many complex data-
driven problems such as medical data prediction. Thus, it is also used to model the
COVID-19 data [7–11], offering great data fitting capabilities in early data modeling.
However, the forecasts under different development situations in the middle and late
periods have not been explored. Furthermore, these machine learning models’ black-
box mechanism allows their users to obtain the predicted results directly. However, it
is unclear what the reason is the prediction. Thus, these models have low explanability,
and their prediction process cannot be analyzed and quantified.

Due to the limitations of existing approaches, we propose a deep-learning model
called deep dynamic epidemiological (DDE), which combines neural ordinary differ-
ential equations (Neural ODE) [12] and epidemiological equations in COVID-19 data
fitting. Because of different countries and regions’ characteristics, we propose four
variant models based on SIR and SEIR models, namely SIRD, SEIRD, SMCRD, and
SEMCRD. These four models consider the population group division’s situation and
can deal with different data sources (for example, some countries’ published informa-
tion does not give a specific number of mild and severe cases). Secondly, we developed
the DDE implemented on these four variants to solve the equations. In our DDE
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model, we based on the Neural ODE, a novel algorithm, which can use numerical solu-
tions of ordinary differential equations to build networks and complete data fitting
and modeling. Also, we design an additional neural network under Neural ODE solv-
ing to fit the effect function to reflect better the impact of the diversity of regional and
national intervention policies on the infection rate. Therefore, based on understand-
ing the parameters, including infection rate, recovery rate, mortality rate, and so on,
involved in the SEIR model, it can obtain outstanding solution accuracy. The DDE
is used to solve the problem, which can better consider the impact of different isola-
tion policies and realize the possibility of designing a universal model. Specifically, the
contributions of this paper are summarised as follows.

1. We propose the DDE method that can easily integrate neural networks (NN) and
Neural ODE to solve SEIR-like equations. It generates infection, mortality, and
recovery rates through network training and can visualize the change in those rates.
Moreover, DDE has achieved a Pearson correlation coefficient above 0.98 in all data.

2. We design four SIR/SEIR variants: SIRD, SEIRD, SMCRD, and SEMCRD, which
can adapt to regions and countries’ diversity. Further, the DDE method imple-
mented on the four variants is more precise than traditional parameter estimation
methods.

3. We compare the performance of the DDE method with other learning-based models.
The DDE method gains average Pearson coefficients higher than 0.85. Further, we
analyze the output trend of NN and show the real-world correlation of the trend.

2 Related Work

2.1 SIR/SEIR and their variants

SIR and SEIR models are commonly used in epidemiological analysis. In the SEIR
model, the country’s population is divided into four parts: susceptible people S,
exposed people E, infected patients I, and recovered group R, and their relative
growths are based on a set of coupled ordinary differential equations. The SIR model
is not considered the exposed group E. In the SARS and MARS, which once caused
the global epidemic, many existing studies are based on the SEIR model to model and
analyze infectious diseases [3, 13, 14]. Moreover, in COVID-19 studies, many works
focus on improved SEIR modeling based on regions or cities. L. Peng et al. [4] proposed
a generalized SEIR model to analyze the COVID-19 epidemic in China. Addition-
ally, [6] Choi’s work introduced an improved SEIR model called the SEIAQIm model
based on Korea’s data. These improved SEIR models are aimed at a specific country
or region and have quite complex parameter designs.

2.2 Statistical methods

Statistical models are widely used in specific aspects modeling of real-world data. For
example, in Kraemer’s work [15], the author used Generalized linear models (GLM)
to analyze the effect of human mobility and control measures in early Wuhan, China.
Furthermore, in [16], a global epidemic and mobility model (GLEAM) is proposed to
analyze the effect of travel restrictions on the spread of COVID-19 in the world. This
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work used experienced parameters obtained in SARS or MARS coronavirus epidemi-
ology instead of independently from COVID-19 data. Moreover, work [17] focuses on
the impact of cases exported from Wuhan on other regions using a stochastic trans-
mission dynamic model. The widely used statistical models have brought valuable
solutions to the analysis of some specific aspects, but the models are diverse, and the
designs are complex.

2.3 Machine-learning methods

Some studies on the COVID-19 data trend prediction issue have also introduced
machine learning attempts due to the SEIR models and statistical methods’ deficien-
cies. Z. Yang’s work [8] integrated the population migration data before and after
January 23 and the latest COVID-19 epidemiological data into the SEIR model to
derive the epidemic curve. Also, it used artificial intelligence (AI) methods trained on
2003 SARS data to predict the epidemic. Besides, F. Rustam et al.[7] proposed to use
of some machine learning models including linear regression (LR), the least absolute
shrinkage and selection operator (LASSO), support vector machine (SVM), and expo-
nential smoothing (ES) to predict the population of infection, recovery, and death.
These attempts either used previous infectious disease data for training, or the models
used were insufficient in terms of interpretability. Moreover, in work [18], researchers
tried to use the Neural ODE method to stimulate data change in the infection and
recovery group. However, this method only explores the SIR model’s improved per-
formance and the fit of real data. This method has only been experimentally studied
during the early development of COVID-19 (before April) and has not compared model
performance with other methods. Furthermore, the way does not analyze the data fit-
ting situation of different size regions (countries, regions, and cities). Therefore, these
factors also hinder the application of the advanced Neural ODE method in practice.

3 Method

In this section, we propose a data-driven model for real-world infection data fitting.
First, we introduce four variants based on SEIR and SIR models for better fitting of
COVID-19 data. Next, the DDE method is illustrated for dynamic parameter estima-
tion. In our DDE, multi-layer neural networks are designed to stimulate intervention
influence function to assess the effect of quarantine policies in different countries. Fur-
thermore, Fig 2 illustrates the computing process in our DDE method for dynamic
parameter estimation.

The SIR model divides the population into three groups: the susceptible (S), the
infectious (I), and the recovered (R). The S represents healthy people, and the I is
those who have been infected. Also, the R is for those who have recovered from the
infection. In the SEIR model modeling, the exposed group (E) who may be infected
is further considered. The formula of SEIR is shown below:
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Fig. 2 The schematic diagram shows the system structure of the DDE model. A. The method
architecture is shown in Part A. The real data are represented by solid frames, and the predictions
are shown by dotted frames. The system consists of four parts: First, we input the value of the
equations at the current moment into the parameter generation network to obtain the corresponding
parameters. After that, the generated parameters and current values are used to obtain the function
value at the next moment through the Neural ODE solver. Then, repeat the process several times
until the solution obtains the predicted value. Finally, we calculate the loss function between the
predicted value and the true value to obtain the best prediction through gradient descent. B.The
schematic plot illustrates the process of solving the epidemiological equations. C. The process figure
shows the details of generating parameters.

dS

dt
= −β ·

S · I

N
dE

dt
= β ·

S · I

N
− γ · E

dI

dt
= γ · E − δ · I

dR

dt
= δ · I

(1)

Where β is the infectious rate, γ is the exposed rate, δ is the recovery rate, and
N = S + I + E +R is the number of the total population.
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3.1 Four variants: SIRD, SEIRD, SMCRD, and SEMCRD

The classic SEIR model has been employed in countless prior studies [3, 13, 14]. In
research about COVID-19, the SEIR model is also prevalent [19–21]. According to
the characteristics of COVID-19, we consider the following aspects of improving the
initial SEIR and SIR models:

Fig. 3 The architectures display the four variants based on SEIR and SIR models: SIRD, SMCRD,
SEIRD, SEMCRD. In the SIRD model, the infection rate β, recovery rate δ, and mortality rate ε are
considered. Furthermore, the SEIRD model takes the expose group E into account and assumes the
exposed rate as γ. The SMCRD and SEMCRD models divide the infection group into mild patient
M and critical patient C. Thus, the probability of transferring mild patients to severe patients is α,
the recovery rate of the mild patient is δ1, and the recovery rate of the critical patient is δ2.

1. We make a new way to classify the rehabilitation population (including death and
disease rehabilitation). The original recovery group is divided into the death popula-
tion and the recovery (disease rehabilitation) population. We propose two parameters
(mortality and recovery rate) to better respond to different countries’ death and
recovery situations due to different medical conditions.

2. We accurately define the infected population as the mild population (including
asymptomatic infected persons, self-recovering mild patients) and critical patients
(including severe patients who need to be admitted to the hospital). Further, we
consider three parameters: the mild infectious rate, the transition rate from mild
to critical, the mild recovery rate, and the critical recovery rate, helping us better
simulate real infections.

Therefore, we implement four variants: SIRD, SEIRD, SMCRD, and SEMCRD.
Fig. 3 shows the model structures of the four models. As shown in Fig. 3, compared
with the SIR and SEIR models, the SIRD and SEIRD models add the consideration of
the death population, which can help understand the death growth caused by diseases.
On the other hand, SMCRD and SECRD are based on the SIRD and SEIRD models
and further divide the infection group I into mild and critical cases. The SMCRD and
SEMCRD models are in line with the characteristics of the COVID-19 disease and
can be better modeled in real-world data.
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The equation of these models can be seen as follows:

dZ(t)

dt
= F (Z(t), t, θ), with Z(t0) = Z0 (2)

where t ∈ {t0, ..., ti, ..., tT } (t0 stands for the initial day, and ti represents the ith day
from t0), Z(t) ∈ R

D, Z0 = [S0, E0, I0, R0, D0] for SEIRD model, Z0 = [S0, I0, R0, D0]
for SIRD model, Z0 = [S0, E0,M0, C0, R0, D0] for SEMCRD model, and Z0 =
[S0,M0, C0, R0, D0] for SMCRD model, Z0 is the function value at time t0. The F (·)
is a known and continuous function with parameter θ, and Z(t) is the unknown func-
tion that must be approximated. For the SIRD model, the parameter set θ includes
β, δ, ε. The SEIRD model’s parameter set θ includes β, γ, δ, ε. Further, for SMCRD
model, θ includes β, δ1, δ2, α, ε. In SEMCRD model, θ includes β, γ, δ1, δ2, α, ε. As Fig.
3 shows, the epidemiological equations for the SEMCRD model can be seen in the
bottom right part, and the equation set in the SMCRD model is in the bottom left
part. The difference between these two models is that the SMCRD model does not
consider the exposed group E.

From a computational point of view, knowing that Z(t0) = Z0, you can calcu-
late the value of Z(ti) = Zi in any step ti by performing piecewise integration from
previously known points:

Zi = Zi−1 +

∫ ti

ti−1

F (Zi−1, ti−1, θ) with i ∈ {1, ..., T} (3)

When ∆τ = ti − ti−1 is small enough, we can get the approximation result:

Zi = Zi−1 +∆τ · F (Zi−1, ti−1, θ) (4)

Thus, in each time step ti, the value of function Zi can be obtained by deduction of
the function value Zi−1 at the previous moment ti−1.

3.2 DDE Method applying in SMCRD and SEMCRD models

In real-world data, the infection condition is always influenced by social distancing,
quarantine measurement, and people’s compliance. In recent SEIR model studies, the
effect function based on the factors mentioned above is considered. In our DDE model,
we also propose a way to stimulate the effect function: we design multi-layer neural
networks to fit the effect function’s value and use it as a dynamic parameter involved
in the solution process of Neural ODE. Fig 4 illustrates how to use multi-layer neural
networks in parameter designing. The estimation of the designed parameters is based
on the Neural ODE method.

The neural ODE [12] method is a novel technique that uses reverse-mode differ-
entiation (also known as backpropagation) to solve the ODE function. In our work,
the ODE equation sets in SEMCRD and SMCRD models are shown above. Using
the Neural ODE method in our task can make full use of neural networks’ fitting
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Fig. 4 The DDE method is implemented in SMCRD and SEMCRD models. In the DDE-SMCRD
and DDE-SEMRD models, neural network (NN) models are used to calculate dynamic β (initial
β × EEft) based on the neural ODE method.

performance within the framework of epidemiological equations. Our model uses infec-
tion rate, recovery rate, mortality rate, and so on, which have real-world meanings as
parameters. Also, we use neural networks to perform fitting to achieve high precision
and high interpretability.

Neural networks are known for their strong fitting ability. Also, because of Neural
ODE’s characteristics, we could develop multi-layer neural networks as an influence
function value stimulator that reflects the influence on infection rate. In the previous
part, we propose four variants based on the SEIR or SIR model and give the design
of parameters involved in SIRD, SEIRD, SMCRD, and SEMCRD. Further, in real
data fitting, different countries and regions often adopt different intervention isolation
measures and policies, and people respond to policies differently. The impact of these
problems on the infection rate is also different. For example, in some countries, very
strict movement bans have been implemented, which can highly impact the infection
situation. The sharp drop in the number of contacts will also slow down the increase
in the number of people infected with COVID-19. In countries that have not adopted
control measures, the infection situation’s impact may be small, and the number of
infections will continue to increase. Thus, we develop an effect stimulation function to
model the various changes in infection situations. The parameter set θ is changed:

θ = [β∗,W, δ, ε] , for SIRD

θ = [β∗,W, γ, δ, ε] , for SEIRD

θ = [β∗,W, δ1, δ2, α, ε] , for SMCRD

θ = [β∗,W, γ, δ1, δ2, α, ε] , for SEMCRD

(5)

where the β∗ is the infection rate which could be influenced by effect function Efft.
The effect function Efft uses the multi-layer neural networks to fit. The W is the
weight in the multi-layer neural networks. The structure of the neural networks is
shown in Fig. 5.
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Fig. 5 The structure figure shows the multi-layer neural networks that are used to fit the effect
function Efft on the dynamic infection rate β.

According to Fig. 5, we can obtain the output of the first hidden layer of the neural
network as follows:

H1
k1
(ti) = a(

inputu∑
j=1

W 1
j·k1

· Inputj(ti) + b1k1
) (6)

where H1
k1
(ti) is the k1

th of unit of the first hidden layer output in time step ti, the
input tensor Input(ti) =[Input0(ti), Input1(ti), Input2(ti), Input3(ti), Input4(ti)] for
SEMCRD (Input0 is Eti , Input1(ti) is Mti , Input2(ti) is Cti , Input3(ti) is Rti , and
Input4(ti) is Dti) and Input(t) =[Input0(ti), Input1(ti), Input2(ti), Input3(ti)] for
SMCRD (Input0(ti) is Mti , Input1(ti) is Cti , Input2(ti) is Rti , and Input3(ti) is Dti),
the inputu is the number of Input(ti), it is 5 for SEMCRD model or is 4 for SMCRD
model. The W 1

j·k1
represent the weight of the input layer and the first hidden layer in

the connection weight of the jth input unit and the k1
th of the first hidden unit. The

b1k1
is the bias of the k1

th unit of the first hidden layer, and the a(·) = ELU(·) is the
activation function of the hidden layer.

The output of the 2rd hidden layer to the N th hidden layer also can be deduced in
the following:

H2
k2
(ti) = a(

h1 u∑
k1=1

W 2
k1·k2

·H1
k1
(ti) + b2k2

)

......

HN
kN

(ti) = a(

hN−1 u∑
kN−1=1

WN
kN−1·kN

·HN−1
kN−1

(ti) + bNkN
)

(7)

where a(·) is the activation function, and all hidden layers use the same activation
function, hN−1 u is the number of hidden units in the N − 1th hidden layer, bNkN

is
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the bias of the kN
th unit of the N th hidden layer, WN

kN−1·kN
represents the parameters

between the N − 1th hidden layer and N th hidden layer. And, the HN−1
kN−1

(ti) is the

kN−1
th units of the N − 1th hidden layer in time step ti, and HN

kN
(ti) is the kN

th units

of the N th hidden layer in time step ti. Similarly, replace N with 2 to get the mean of
H2

k2
(ti), h1 u, W 2

k1·k2
, b2, and H1

k1
(ti).

Thus, we can calculate the output of this network:

Outputβ(ti) = (1 + e
−

∑hN u

kN=1
WO

kN
·HN

kN
(ti)+bO

)−1 (8)

where Outputβ(ti) in the ith time step ti as the output ofN -layer NN, hN u is the num-
ber of hidden units in the N th hidden layer, WO represents the parameters between
the N th hidden layer and the output layer and the WO

kN
stands for the kN

th of the

weight matrix WO, HN (ti) is the output of the N th hidden layer in time step ti and
the HN

kN
(ti) is the output of the kN

th of the hidden layer output, and the bO stands for
the bias of the output layer. Moreover, we can present a simper form of Outputβ(ti)
with weight of N hidden layer is W = {W 1,W 2, ...,WN}, and WO is the weight of
output layer as:

Outputβ(ti) = aO(W
O(a(WN ...

a(W 1 · Input(ti) + b1)...) + bN ) + bO)
(9)

where the activation function of output layer is aO(·), and the activation function of
hidden layers is a(·). The bias {b1, ..., bN} is of the 1th to N th of hidden layers.

The output of the NN represents the effect function Efft. To solve the ODE
equations Z(t), we need to use an ODE solver. Efficient and accurate ODE solvers
have been used for 120 years and can guarantee the growth of approximation error,
monitor the level of error, and adapt their evaluation strategy on the fly to achieve the
requested level of accuracy [12]. In specific time ti, the function Zi can be obtained
into the form:

Zi = ODESlover(Zi−1,F (Zi−1, ti−1, θ), ti−1, θ),

with Z(t0) = Z0

(10)

According to the equation (10), each Zi can be calculated. Different models have
various parameter sets θ. The specific content of θ has been given in Equ. 5.

Further, we design the loss function. The loss function L with multi-layer neural
networks attempt to minimize the value of loss function by adjust parameters includ-
ing β∗,W, γ, δ1, δ2, α, ε, and weight of the multi-layer NN for SEMCRD model, and
β∗,W, δ1, δ2, α, ε, and weight of the multi-layer NN for SMCRD model. The simper

11



loss function is:

L(X, X̂) =
1

3

T∑
t=0

min
θ

{(log(Xt)− log(X̂t))
2}

=
1

3

T∑
t=0

min
θ,W

{||log(It)− log(M̂t + Ĉt)||
2

+||log(Rt)− log(R̂t))||
2 + ||log(Dt)− log(D̂t)||

2}

(11)

Where X = {X0, X1, ..., XT } represent real data considered in cost function in each
time step and X̂ = {X̂0, X̂1, ..., X̂T } stands for predicted data per day. In the ith of
time ti, the real data used in calculate loss is Xi = [Ii, Ri, Di], and the predicted
data is X̂i = [M̂i + Ĉi, R̂i, D̂i] (Ii, Ri, and Di represent the number of real infection,
recovery, death group, relatively, and M̂i, Ĉi, R̂i, and D̂i stand for the number of
predicted mild patients, critical patients, recovery, death group.).

To minimize L, understanding how the gradient of the loss depends on equation
set Z(t). According to the chain rules, we can know that:

da(t)

dt
= −a(t)T

∂f(Z(t), t, θ)

∂Z

where,a(t) =
∂L

∂Z(t)

(12)

The ∂L
∂Z(t0)

can be computed by the ODESolver mention above. The ODESolver

must start from the initial value of ∂L
∂Z(tT ) and run backward. A complicated situation

is that solving this ODE requires knowing the value of Z(t) along its entire trajectory.
However, we can simply recalculate Z(t) from its final value Z(tT ) = ZT and work
backward with time.

The gradients of loss function L depends on both Z(t) and a(t):

dL

dθ
= −

∫ t0

tT

a(t)T
∂f(Z(t), t, θ)

∂θ
dt (13)

The a(t)T ∂F

∂Z
, a(t)T ∂F

∂θ
and F can be obtained through automatic differentia-

tion of computing vector-Jacobian products. Finally, all gradients including ∂L
∂Z(t0)

and ∂L
∂θ

can be calculated at once by calling the ODE solver. From the steps, we first
define the initial state, and then design the dynamics system. After that, we com-
pute vector-Jacobian products to obtain a(t)T ∂F

∂Z
, a(t)T ∂F

∂θ
and F . In the end, the

ODESolver is used to solve the reverse-time SMCRD and SEMCRD equations and
gain the gradients.
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4 Experiments and Discussions

4.1 Implemental Details

In the experiment, we collected two kinds of data: countries and regions. In countries,
three are used in model training and testing: the United States of America (USA),
Columbia (CO), and South Africa (ZA). Moreover, two regions are considered in our
model implementation: Wuhan City in China (WH) and Piedmont in Italy (PD). For
data collection, we use data including the number of total accumulated infection cases,
the number of disease recoveries, and the death number in [22]. The data include Jan-
uary 24th to April 15th for CN-WH and February 24th to June 8th for PD. In countries
data collection, we have January 23rd to August 12th data for the USA, March 6th

to August 11th for CO, and March 7th to August 12th for ZA. All statistical data are
collected from official notifications of various countries, WHO, National Health Com-
mission, etc. For model testing, we used the last 20 days’ data to calculate the model
performance, and the last data were used in model training.

We used the experienced initial value of parameters based on [23] because both
traditional parameter estimation methods and our DDE algorithm need initialization.
According to the experiment result, the median time from onset to clinical recovery for
mild cases is approximately two weeks, so we chose 0.07 as parameter δ1. Due to 3-6
weeks of recovery time for patients with severe or critical disease, the initial δ2 is 0.03.
The period from onset to the development of the severe diseases is one week according
to the previous study [23]. 0.15 is chosen for the initial α. The time from symptom onset
to outcome ranges from 2-8 weeks among patients who have died. Thus, we consider
the middle time of death time like six weeks and the initial ε set to 0.03. For the model
with NN, we choose 0.15 of initial γ, 0.15 of initial α, 0.07 of initial δ1, 0.03 of initial δ2
and 0.03 of ε. For using NN to fit β, 0.5 is used as the initial bias of NN, 0.0 is the mean
value of the initial weight of NN, and 0.01 is the standard deviation (std) of the initial
weight of NN. All the experiments have been implemented on Intel XeonE5-2630 v4
@ 2.20GHzz CPU and NVIDIA RTX 2080Ti GPU on ArchLinux. We implement all
models in Pytorch. The DDE algorithms implemented in all epidemiological equations
are trained for 5000 iterations. The learning rate (LR) is selected as 1e-3, and it will
decay to 0.95×lr after 400 iterations.

To compare the fitting effects of different models and prove our DDE algorithm’s
advantages, we conducted several experiments. First, we implement the DDE algo-
rithm based on two classical epidemiological equations (SIR and SEIR) and four
variants designed by ourselves (SIRD, SEIRD, SMCRD, and SEMCRD). The four
models of DDE algorithms are called DDE-SIRD, DDE-SEIRD, DDE-SMCRD, and
DDE-SEMCRD. We study the difference between our DDE algorithm and traditional
parameter estimation methods (Part A). In part B of the experiment, we introduced
the comparison results of parameter estimation (minimizing algorithms: Nelder-Mead,
Powell, Truncated Newton Conjugate-Gradient (TNC)), neural ODE, and our DDE.
Furthermore, We compared the four models with state-of-the-art machine learn-
ing (Decision Tree, Extremely randomized trees, Random Forest) and deep learning
methods (RNN, LSTM, GRU), and comparison results are shown in part C.
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4.2 Part A: Comparisons of traditional parameter estimation
methods and DDE

Table 1 Mean square error (MSE) of SIR, SEIR, SIRD, SEIRD, SMCRD, SEMCRD models in
different optimization methods, including Neural ODE(Adam) [12], minimizing
algorithms(Nelder-Mead [24], Powell [25], BFGS [26], Truncated Newton Conjugate-Gradient
(TNC) [27]). The unit of MSE is ten thousand people.

Models Parameter Estimation Method
Courtries Regions

CO USA ZA CN-WH Italy-PD

SIR [13]

Neural ODE 19.317 16550.121 183.378 2.407 4.697
Nelder-Mead 40.253 2979.545 166.426 5.875 11.609

Powell 30.002 2093.261 821.494 0.851 3.714
BFGS 28.419 2094.101 196.961 1.125 8.182
TNC 27.632 2703.972 54.257 1.099 5.102
DDE 0.210 52.799 1.143 0.140 0.068

SEIR [3]

Neural ODE 23.231 10523.219 38.832 0.967 6.812
Nelder-Mead 22.111 2172.293 195.785 5.677 8.903

Powell 51.602 2686.344 190.284 1.950 4.922
BFGS 33.297 2767.012 78.357 8.627 24.941
TNC 30.671 2882.301 36.361 6.777 3.573
DDE 0.192 56.901 0.967 0.250 0.034

SIRD

Neural ODE 29.148 10190.655 137.386 2.910 4.063
Nelder-Mead 59.437 2722.980 177.995 5.303 8.003

Powell 23.496 2105.093 84.720 0.975 3.714
BFGS 57.518 2693.094 176.266 1.067 8.582
TNC 29.590 2218.704 59.395 1.128 3.179
DDE 0.173 53.628 1.047 0.096 0.034

SEIRD

Neural ODE 9.664 10858.052 39.060 0.366 1.271
Nelder-Mead 57.171 2727.172 184.118 5.298 8.083

Powell 32.180 2738.686 112.195 1.546 4.001
BFGS 63.887 2657.202 70.900 8.750 54.941
TNC 29.307 2611.273 32.233 6.500 3.598
DDE 0.182 52.377 0.370 0.138 0.028

SMCRD

Neural ODE 30.634 13553.997 137.763 2.899 4.043
Nelder-Mead 28.687 7476.677 85.259 2.884 0.705

Powell 14.957 4737.634 25.595 1.532 2.936
BFGS 28.687 7476.649 85.260 2.786 7.909
TNC 24.860 7901.017 84.018 3.678 0.722
DDE 0.526 44.209 2.074 0.027 0.028

SEMCRD

Neural ODE 5.475 5521.649 69.415 0.727 0.720
Nelder-Mead 16.453 5899.235 85.259 2.464 0.405

Powell 16.181 4182.335 25.209 3.436 2.989
BFGS 30.886 7476.546 99.747 17.681 1.311
TNC 27.640 2094.233 115.132 3.072 3.403
DDE 0.459 41.598 0.386 0.033 0.014

Using parameter estimation methods to assess essential parameters, including
infection, mortality, and the recovery rate is crucial for SEIR and the improved SEIR
model to determine these parameters. Therefore, we compared the effects of using tra-
ditional parameter estimation methods and using the DDE method we proposed. As
shown in Table 1, we obtained the comparison performance of different models in the
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national data as follows. In the USA, the MSE obtained by the best method among
the traditional parameter estimation methods is 2093.261, and the best MSE of the
DDE method is 41.598. The MSE obtained by the best method among the param-
eter estimation methods is 5.475, and the best MSE obtained by the DDE model is
0.173. On ZA, the MSE obtained by the best method among the parameter estimation
methods is 25.209, and the DDE method’s MSE is 0.370.

Table 2 Pearson coefficients (Pearson) of SIR, SEIR, SIRD, SEIRD, SMCRD, SEMCRD models
in different optimization methods, including Neural ODE(Adam) [12], minimizing
algorithms(Nelder-Mead [24], Powell [25], BFGS [26], Truncated Newton Conjugate-Gradient
(TNC) [27]). N represents the prediction with no correlation to real data.

Models Parameter Estimation Method
Courtries Regions

CO USA ZA CN-WH Italy-PD

SIR [13]

Neural ODE 91.95% 72.04% 82.92% 34.71% 49.77%
Nelder-Mead 84.53% 86.98% 86.98% 29.60% 46.82%

Powell 91.28% 88.19% 89.45% 48.41% 55.91%
BFGS 88.23% 80.29% 85.82% 56.80% 47.27%
TNC 80.80% 86.92% 91.69% 47.28% 39.98%
DDE 99.17% 97.14% 97.93% 98.33% 95.18%

SEIR [3]

Neural ODE 90.64% 78.31% 90.64% 90.77% 59.33%
Nelder-Mead 90.18% 82.98% 88.69% 22.02% 32.67%

Powell 84.88% 82.63% 87.94% 45.99% 65.87%
BFGS 63.17% 84.23% 26.39% 55.88% 47.55%
TNC 57.44% 80.28% 91.25% 69.52% 35.62%
DDE 99.77% 98.75% 99.01% 98.03% 94.47%

SIRD

Neural ODE 90.82% 70.90% 85.09% 31.79% 42.98%
Nelder-Mead 89.95% 82.56% 86.01% 29.72% 40.54%

Powell 93.31% 84.57% 89.22% 51.43% 45.74%
BFGS 90.02% 82.00% 85.89% 23.86% 40.10%
TNC 92.58% 85.08% 90.61% 44.17% 46.93%
DDE 99.47% 97.23% 98.88% 97.33% 94.22%

SEIRD

Neural ODE 95.97% 76.20% 91.66% 93.27% 54.99%
Nelder-Mead 90.14% 82.56% 85.80% 29.72% 40.45%

Powell 92.33% 82.70% 87.98% 40.01% 45.21%
BFGS 53.76% 82.03% 29.45% 59.88% 47.91%

TNC [27] 92.57% 82.26% 94.00% 68.70% 45.98%
DDE 99.47% 97.35% 99.61% 97.32% 95.47%

SMCRD

Neural ODE 90.77% 70.89% 85.06% 31.81% 42.94%
Nelder-Mead 1.73% 1.86% 1.49% 8.90% 2.34%

Powell 96.78% 76.35% 93.98% 39.98% 47.46%
BFGS -2.78% 6.16% -5.87% -6.09% 40.57%
TNC -1.62% 17.34% 14.24% 8.36% 5.98%
DDE 98.95% 97.15% 98.71% 97.42% 95.38%

SEMCRD

Neural ODE 92.13% N 86.98% 58.02% 52.35%
Nelder-Mead 26.34% N -2.32% 11.07% 61.82%

Powell 93.47% -79.99% 93.50% 32.17% 46.21%
BFGS 92.03% N 88.81% 23.07% 48.45%
TNC 92.80% N 87.80% 33.07% 46.15%
DDE 99.17% 87.17% 99.48% 96.94% 97.59%
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Furthermore, on the regional data, the best method among the parameter estima-
tion methods obtains an MSE of 0.405 on PD, and the best MSE of DDE models is
0.014. Also, the best method among the parameter estimation methods gets an MSE
of 0.366 on CN-WH, and the best MSE of the DDE method is 0.027 on CN-WH. From
this, we can find that the best result of the parameter estimation models in the USA
is about 50 times that of the DDE model and the best parameter estimation method
in the CO is about 32 times that of the DDE method, about 68 times that of DDE
on ZA, about 29 times than DDE on PD, and about 14 times than DDE on CH-WH.
Thus, our DDE method has outstanding fitting performance compared to traditional
parameter estimation methods.

Also, we used the Pearson coefficient to evaluate the performance of all methods
(Table 2). The performance of the DDE method in the Pearson coefficient is also far
better than all traditional parameter estimation methods. The best correlation in the
USA’s DDE method is 98.75%, and that of the best method of traditional parameter
estimation methods is 88.19%. In CO, the best DDEmethod obtains 99.77% in Pearson
coefficient, and in the best parameter estimation method, the Pearson coefficient is
95.97%. The Pearson coefficient obtained in ZA is 99.61% of the best DDE model,
and in the traditional parameter estimation method, the Pearson value is 93.98%.
Moreover, in cities, the best Pearson coefficient of the best DDE in CH-WH is 98.33%,
and the Pearson value of the best parameter estimation method is 93.27%. In Italy-
PD, the best DDE gains 97.59% in Pearson value, and the best traditional parameter
estimation method obtains 61.82%. Therefore, we can conclude that the DDE model
outperforms all traditional parameter estimation methods in correlation and precision.

4.3 Comparisons of DDE with Learning-based Methods

To further assess our DDE method’s fitting ability, we also compare the learning-based
models with four of our DDE models (DDE-SIRD, DDE-SEIRD, DDE-SMCRD, DDE-
SEMCRD). Fig. 6 shows the overall forecast results on national data (CO, ZA, and
the United States). From the overall trend, as a representative of the deep learning
method, LSTM can often achieve better results when the 20-day test data changes
slowly, but the stability is not good. The DDE models can better capture the changing
laws of the data, and some of the more complex changes are closer to the development
of real data: on the infection curve in South Africa. Further, in Fig 7, the regional
data (Wuhan, China, Piedmont, Italy) results of the 20-day test data show that our
DDE models obtain the best prediction performance in most situations. Deep learning
methods, such as GRU or LSTM obtained close-fitting performance compared with
DDE. However, sometimes it even got the opposite trend of the real-world data, as on
Piedmont’s death curve.

Moreover, the 20-day test results on national data (CO, ZA, and the USA) are
shown in Fig. 6. The results of USA data show that our DDE-SEIR models can
better fit the data trends of I and R, while on D, the growth of D will be slightly
overestimated. The method corresponding to deep-learning has basically no increase
in I, R, and D, and the effect of estimating the trend is not obvious. Furthermore, on
CO, the two models of DDE-SIRD and DDE-SEIRD in our model can better fit the
basic trend of I, but some slight drops cannot be predicted. The fitting of R is more
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Fig. 6 The figure shows all models’ performance (machine-learning: RF, ET, DT, deep-learning:
LSTM, RNN, GRU, our models: DDE-SIRD, DDE-SEIRD, DDE-SMCRD, DDE-SEMCRD) in pre-
dicting the progression of infectious diseases at the country level. There are six pictures in each column
in the figure, and every two pictures are a group. In a group of images, the above image represents
overall trend fitting, and the bottom illustrates the prediction of the 20-day testing data. The group
of pictures on the top represents the prediction of infection I. The group of pictures in the center
represents the prediction of recovery R. The group of two pictures on the bottom represents death
D. Furthermore, in the picture shown in the 20-day test situation, we have given the best model’s
name corresponding to the predicted performance. From the overall predictions, our DDE model has
better prediction performance in the prediction of three countries.
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Fig. 7 The figure shows all models’ performance (machine-learning: RF, ET, DT, deep-learning:
LSTM, RNN, GRU, our models: DDE-SIRD, DDE-SEIRD, DDE-SMCRD, DDE-SEMCRD) in pre-
dicting the progression of infectious diseases at the region-level. There are six pictures in each column
in the figure, and every two pictures are a group. In a group of images, the above image represents
overall trend fitting, and the bottom illustrates the prediction of the 20-day testing data. The group
of pictures on the top represents the prediction of infection I. The group of pictures in the center
represents the prediction of recovery R. The group of two pictures on the bottom represents death
D. Furthermore, in the picture shown in the 20-day test situation, we have given the best model’s
name corresponding to the predicted performance. From the overall predictions, our DDE model has
better prediction performance in the prediction of two regions.

accurate, but there is a certain overestimation of D. However, in CO, the deep-learning
method still has the problem that the trend is not obvious. In the fitting of ZA, since
the trend of I has decreased, the difficulty of correct estimation has increased. The
DDE-SIRD model and the DDE-SMCRD model have incorrect estimates of trends.
The DDE-SEIRD and SECRD with NN models can accurately estimate the downward
trend of I. Furthermore, on R and D, all of our four models are good estimates of
the trend. The deep-learning method can also better predict the downward trend on
I, and the RNN estimate is the closest to the true value. However, in the fitting of R
and D, the deep-learning method not only fails to predict the direction of the data
but obtains the opposite result from the true value.

Furthermore, Fig. 7 also shows the 20-day test results on the regional data (PD and
CN-WH). No matter whether in PD or CN-WH, all methods can basically estimate
the trend of predicted data. Furthermore, some deep-learning methods have achieved
better results in CN-WH and PD. No matter whether in PD or CN-WH, all methods
can basically estimate the trend of predicted data. Furthermore, some deep-learning
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Table 3 Model Correlation Coefficient (Pearson) of RNN, LSTM, GRU, Decision Tree (DT),
Extremely randomized trees (ET), Random Forest(RF), and DDE models based on SIRD, SEIRD,
SMCRD, and SEMCRD)). N represents the prediction results and the real data are without
correlation.

Areas Data
Models

GRU LSTM RNN DT ET RF
DDE- DDE- DDE- DDE-
SIRD SEIRD SMCRD SEMCRD

CO
I 92.68% 92.96% 94.52% N N N 95.77% 95.13% 94.97% 94.98%
R 88.72% 90.97% 90.86% N N N 99.86% 99.85% 99.78% 99.80%
D 93.85% 95.28% 98.51% N N N 98.83% 98.77% 98.52% 98.53%

USA
I N -64.96% N N N N 97.81% 97.55% 97.54% 97.49%
R N 62.31% N N -87.91% N 99.76% 99.73% 99.73% 99.71%
D N 64.81% N N N N 99.71% 99.69% 99.69% 99.67%

ZA
I 72.39% -77.85% 95.69% 92.24% 79.95% 93.10% -95.06% 94.83% -91.85% 96.39%

R -43.67% 88.58% -92.86 -92.80% -82.24% -90.96% 99.35% 99.70% 99.61% 99.69%
D 98.63% 82.90% -92.61% -92.92% -90.31% -95.18% 99.80% 99.66% 99.79% 99.73%

CN-WH
I 0.9985 99.79% 99.84% N 85.52% N 98.23% 99.78% 98.87% 99.46%
R 99.78% 99.84% 99.80% N -94.92% N 98.23% 94.67% 98.73% 98.08%
D 97.35% -98.93% -93.32% N -73.68% N 98.89% 96.17% 99.17% 98.75%

Italy-PD
I 99.82% 99.76% 99.82% N 98.45% 96.66% 99.23% 99.34% 98.15% 98.15%
R 99.73% 99.84% 99.78% N -94.92% -70.83% 99.33% 99.41% 98.74% 99.44%
D -85.10% -98.71% 99.20% N -92.77% -75.72% 99.83% 99.81 % 99.78% 99.77%

methods have achieved better results in CN-WH and PD. It can be found that on
regional data, all models have a better fitting effect; on national data, due to the
complexity, the deep-learning method is not as effective as our method.

The correlation metrics including Pearson correlation coefficient (Pearson) for our
DDE-SIRD, DDE-SEIRD, DDE-SMCRD, DDE-SEMCRD, and other learning-based
models (deep-learning method: RNN, LSTM, GRU, and traditional machine learning
method: Random Forest, Extra Tree, Decision Tree) of 20-day test data are shown in
Table 3. According to the Pearson metric for real-world data in Table 3, deep learning
methods such as LSTM and RNN models have achieved good results in regional data
fitting. In the data fitting of CN-WH, the best Pearson on I and R are obtained by
GRU and LSTM respectively. The situation of PD data is similar. The best Pearson
for I and R are obtained on RNN and LSTM respectively. However, there are still
unstable problems in the fitting of these deep learning algorithms, and the negative
correlation between the predicted data and the real data often occurs.

In addition, machine learning methods including random forest, extreme tree, and
decision tree are not very effective in fitting regional data. There is a situation where
the prediction has no correlation or the correlation is negative with real data. However,
our DDE models (DDE-SIRD, DDE-SEIRD, DDE-SMCRD, and DDE-SEMCRD)
have achieved relatively stable and excellent performance in the overall prediction of
regional I, R, and D data. Based on the Wuhan data, the four deformed DDE-SEIR
models have achieved I, R, and D average correlation coefficients of 98.45%, 97.87%,
98.92%, and 98.76% respectively. Furthermore, on the PD data, they also obtained
the average Pearson correlation coefficients of 99.46%, 99.52%, 98.56%, and 99.12%
respectively.

4.4 The estimated parameters obtained by DDE method

In the USA, the average initial infection rate β∗ is 0.469, and we obtain the average
initial infection rate β∗ of 0.222 in the CO. The average initial infection rate β∗ is
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Fig. 8 Schematic diagram of the infection rate beta generated by each model and different countries
and regions. Models include DDE-SIRD, DDE-SEIRD, DDE-SMCRD and DDE-SEMCRD. The dark
red line in the figure represents the initial infection rate, and the red dotted curve line represents
the change in the infection rate under the influence of the diversity of each country. The curves are
simulated by a neural network.

0.254 in the ZA. In regions, the average β∗ in Wuhan is 0.4578, and Piedmont gains the
average initial infection rate of 0.367. The infection rates our DDE method obtained
are suitable for real-world situations. In Fig. 8, the DDE also shows that it can simulate
various infection rate changes using neural networks to fit the effect function. The
DDE models reflect the basic trend of the gradual decline in the infection rate and
more accurately estimate the initial infection rate.

5 Conclusion

An essential tool for modeling and estimating epidemiological equations (EE) is needed
for fitting and analyzing epidemic disease data. We propose a DDE method that incor-
porates NN into EE modeling, achieving high performance in multi-level geographic
regions. Experimental results show that our DDE model can obtain high and sta-
ble ability in different regions, surpassing traditional parameter estimation methods.
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While learning-based models like LSTM and random forest have comparable data fit-
ting performance, they lack interpretability for epidemiologists. To address this, our
DDE method combines EE with neural networks and utilizes the Neural ODE method
to improve data fitting. This way, the output of the NN carries a specific meaning.
For instance, in the SEMCRD model using DDE, the network’s output represents the
effective function of the infection rate. Our model has demonstrated better accuracy
and correlation with real-world data. Additionally, our method offers novel ideas and
tools for future analysis of infectious diseases.
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