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Abstract

Many AI applications involve the interaction of multiple autonomous agents,

requiring those agents to reason about their own beliefs, as well as those of other

agents. However, planning involving nested beliefs is known to be computation-

ally challenging. In this work, we address the task of synthesizing plans that

necessitate reasoning about the beliefs of other agents. We plan from the per-

spective of a single agent with the potential for goals and actions that involve

nested beliefs, non-homogeneous agents, co-present observations, and the abil-

ity for one agent to reason as if it were another. We formally characterize

our notion of planning with nested belief, and subsequently demonstrate how

to automatically convert such problems into problems that appeal to classical

planning technology for solving efficiently. Our approach represents an impor-

tant step towards applying the well-established field of automated planning to

the challenging task of planning involving nested beliefs of multiple agents.

∗Corresponding author
Email addresses: christian.muise@queensu.ca (Christian Muise), vaishak@ed.ac.uk

(Vaishak Belle), pfelli@unibz.it (Paolo Felli), sheila@cs.toronto.edu (Sheila McIlraith),
tmiller@unimelb.edu.au (Tim Miller), adrianrp@unimelb.edu.au (Adrian R. Pearce),
l.sonenberg@unimelb.edu.au (Liz Sonenberg)

Preprint submitted to Elsevier October 7, 2021

ar
X

iv
:2

11
0.

02
48

0v
1 

 [
cs

.A
I]

  6
 O

ct
 2

02
1



Keywords: automated planning, epistemic planning, knowledge and belief

1. Introduction

AI applications increasingly involve the interaction of multiple agents – be

they intelligent user interfaces that interact with human users, gaming systems,

or multiple autonomous robots interacting together in a factory setting. In the

absence of prescribed coordination, it is often necessary for individual agents to

synthesize their own plans, taking into account not only their own capabilities

and beliefs about the world but also their beliefs about other agents, including

what each of the agents will come to believe as the consequence of the actions

of others. To illustrate, consider the scenario where Larry and Moe meet on a

regular basis at the local diner to swap the latest gossip. Larry has come to

know that Nancy (Larry’s daughter) has just received a major promotion in her

job, but unbeknownst to him, Moe has already learned this bit of information

through the grapevine. Before they speak, both believe Nancy is getting a

promotion, Larry believes Moe is unaware of this (and consequently wishes to

share the news), and Moe assumes Larry must already be aware of the promotion

but is unaware of Moe’s own knowledge of the situation. Very quickly we can

see how the nesting of (potentially incorrect) belief can be a complicated and

interesting setting to model.

In this paper, we examine the problem of synthesizing plans in such settings.

In particular, given a finite set of agents, each with: (1) (possibly incomplete

and incorrect) beliefs about the world and about the beliefs of other agents;

and (2) differing capabilities including the ability to perform actions whose

outcomes are unknown to other agents; we are interested in synthesizing a plan

to achieve a goal condition. Planning is at the belief level and as such, while we

consider the execution of actions that can change the state of the world (ontic

actions) as well as an agent’s state of knowledge or belief (epistemic or more

accurately doxastic actions, including communication actions), all outcomes are

with respect to belief. Further, those beliefs respect the KDn and KD45n axioms
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of epistemic logic [25]. Finally, we take a perspectival view, planning from the

viewpoint of a single agent. While the planning agent presumes control of all

the other agents actions (i.e., we do not model the possibility of other agents

acting in an uncertain and unobserved manner), there is not presumption of

complete knowledge over the nested belief of other agents. We contrast this

with traditional multi-agent planning which generates a coordinated plan to be

executed by multiple agents under an assumption of complete knowledge of the

reasoner (e.g., [13]).

Solutions to the epistemic planning problem can be roughly divided into two

classes: (1) the approach taken in Dynamic Epistemic Logic (DEL) of using

Kripke structures to maintain knowledge and then using models, such as event

models, to update Kripke structures as events occur, for example, Bolander and

Andersen [10]; or (2) to maintain a set of formulae in a database and using belief

update and revision to progress the database, for example, Huang et al. [33]. In

this paper, we adopt the latter approach.

We define epistemic planning for a particular class of problems in which the

knowledge base is a proper epistemic knowledge base (PEKB) [40]. A PEKB is

defined as finite set of epistemic literals, meaning that: (1) they do not allow for

disjunctive belief; and (2) the depth of nested belief is bounded. We show that

this provides certain theoretical guarantees on the computational complexity

of progression of actions that have PEKBs as preconditions and effects, and

directly offers an efficient means of planning using known methodologies.

We propose a means of encoding our definition of epistemic planning as a

classical planning problem, enabling us to exploit state-of-the-art classical plan-

ning techniques to synthesize plans for these challenging planning problems. A

key aspect of our encoding is the use of ancillary conditional effects – addi-

tional conditional effects of actions which enforce desirable properties such as

epistemic modal logic axioms (cf. Section 4), and allow domain modellers to

encode conditions under which agents are mutually aware of actions (cf. Sec-

tion 5.1). By encoding modal logic axioms as effects of actions, we are using the

planner to perform epistemic reasoning in addition to the standard reasoning
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about action and change. We implement this encoding as a compilation from

epistemic planning problems to classical planning problems, and show that it

handles a rich variety of problems.

Computational machinery for epistemic reasoning has historically appealed

to theorem proving or model checking (e.g., [21]), while epistemic planning, orig-

inally popularized within the DEL community, has shifted from a sole focus on

theoretical concerns (e.g., [45]) to a growing array of practical approaches and

implementations. Previously, the problem of planning with epistemic goals has

received limited attention in the automated planning community (e.g., [58, 5]

and most recently with multi-agent beliefs [37, 33]). The work presented here is

an important step towards leveraging state-of-the-art planning technology as a

black-box sub-procedure to address rich epistemic planning problems of the sort

examined by the DEL community. Indeed, we can readily solve existing exam-

ples in the DEL literature (cf. Section 7). We further discuss the relationship

of our work to other modern epistemic planning work in Section 8.

Parts of this paper have been published in earlier work, notably the theory

of proper epistemic knowledge bases [47, 48, 52] and parts of the encoding to

classical planning [53]. However, the work in this paper extends that body

of work in three key areas: (1) we provide a formal definition of epistemic

planning over PEKBs, with earlier work [53] informally defining the problem;

(2) we extend the encoding to deal with a restricted class of common knowledge,

called always known, which are propositions for which every agent will always

know the value, such as static knowledge; and (3) we significantly expand the

evaluation, defining new benchmark problems and presenting applications on

which we have used our planner.

After presenting the background notation required in Section 2, we detail

the syntax and semantics of the Restricted Perspectival Multi-agent Epistemic

Planning model in Section 3. We follow with the detailed encoding to classical

planning in Section 4. Extensions to greatly reduce the burden of modelling and

improve planner efficiency are presented in Section 5 with grounded examples in

Section 6. We investigate the empirical nature of our approach in Section 7 and
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provide a discussion of related work and concluding remarks in Sections 8-9. For

reader convenience, Appendix A provides a list of the common acronyms used

throughout the paper. To illustrate the PDKB Description Language, a variant

of PDDL [29], Appendix B details the Grapevine and Envelope domains. In Ap-

pendix C we demonstrate the encoding of ancillary conditional effects. Finally,

for completeness, Appendix D outlines the theory of PEKBs in the context of

related work, emphasising the nice logical and computational properties that

make them a suitable representation for extending classical planning over belief

bases, in a KDn/KD45n context.

Example 1 (Grapevine). We will use a common example to explain the con-

cepts introduced throughout the paper. Consider a scenario where a group of

agents each have their own secret to (possibly) share with one another. Each

agent can move freely between a pair of rooms, and broadcast any secret they

currently believe to everyone in the room. Initially they only believe their own

unique secret. Goals we might pose include the universal spread of information

(everyone believes every secret), misconception (an agent holds a false belief

about someone else’s belief), etc. We will use 1, 2, · · · to represent the agents,

and s1, s2, · · · to represent their secrets, respectively. Given our perspectival

view of the setting, these may be cast either in terms of one of the acting agents

in the environment, or as a third-party observer that has partial information

about the world.

2. Preliminaries

2.1. Epistemic Logic

In this section, we introduce the concepts of epistemic logic, and in par-

ticular, the model of epistemic logic dealing with belief. We remain true to

the terminology used in epistemic logic, so it is worth noting for those unfa-

miliar with the subject area that terms similar to those found in the planning

literature are used. In particular, state represents a configuration of what is
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true/false in the world, but reachability is not defined in terms of actions ap-

plicability. Rather, it is a way to capture the space of possible states an agent

believes to be possible.

Let P and Ag respectively be finite sets of propositions and agents. The set

of well-formed formulae,  L, is obtained from the following grammar:

φ ::= p | φ ∧ φ′ | �iφ | ¬φ | > | ⊥

in which p ∈ P and i ∈ Ag. �iφ should be interpreted as “agent i believes

φ”, and we will suppress the agent index when the formula holds for all agents.

We will also use ^φ as a syntactic shorthand for ¬�¬φ and ^iφ should be

interpreted as “agent i considers it possible that φ”.

The semantics is given using Kripke structures [25]. Each Kripke structure

is a tuple M = (W, π,R1, . . . Rn), in whichW is the set of all worlds considered

in a model, π ∈ W → 2P is a function that maps each world to the set of

propositions that hold in that world, and each Ri ⊆ W ×W (for each i ∈ Ag)

is a belief accessibility relation. Each relation Ri captures the uncertainty of

agent i such that, given the actual world w, the set Ri(w) = {w′ | Ri(w,w′)} is

the set of worlds that agent i considers possible, i.e., indistinguishable from w.

Given these definitions, the satisfaction of a formula φ in a Kripke structure

M and a world w is denoted as M,w � φ, and it is defined inductively over the

structure of φ:

M,w � >

M,w 2 ⊥

M,w � p iff p ∈ π(w)

M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ

M,w � ¬ϕ iff M,w 2 ϕ

M,w � �iϕ iff for all v ∈ Ri(w), M, v � ϕ

We define entailment as: φ � ψ if and only if for every model M and world

w such that M,w � φ, we have M,w � ψ. The pointed model (M,w) defines

an actual world in the model.
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As discussed by Fagin et al. [25], constraints on Kripke structures lead to

particular properties of belief. If the Kripke structure is serial, transitive, and

Euclidean we obtain (arguably) the most common properties of belief:

K �φ ∧�(φ ⊃ ψ) ⊃ �ψ (Distribution)

D �φ ⊃ ^φ (Consistency)

4 �φ ⊃ ��φ (Positive introspection)

5 ^φ ⊃ �^φ (Negative introspection)

These axioms collectively form the system referred to as KD45n, where n spec-

ifies that there are multiple agents in the environment. From the axioms, addi-

tional theorems can be derived. For example, in this work, we use the follow-

ing theorems from Hughes and Cresswell [34] for reducing neighbouring belief

modalities involving the same agent into a single belief modality:

�i�iφ ≡ �iφ �i^iφ ≡ ^iφ

^i�iφ ≡ �iφ ^i^iφ ≡ ^iφ

2.2. Proper epistemic knowledge bases

Not surprisingly, reasoning (and planning) in these logical frameworks is

computationally challenging [25, 4]. To mitigate this, Lakemeyer and Lespérance

[40] define a proper epistemic knowledge base (PEKB) as a set of restricted for-

mulae, called restricted modal literals (RMLs), of the form:

φ ::= > | ⊥ | p | ¬p | �iφ | ^iφ

where p ∈ P and i ∈ Ag. Thus, a PEKB contains no disjunctive formulae.

The depth of an RML is defined as:

depth(φ) =


1 + depth(ψ) if φ = �i(ψ)

1 + depth(ψ) if φ = ^i(ψ)

0 otherwise

where p ∈ P. We will view a conjunction of RMLs equivalently as a set, and

denote the set of all RMLs with bounded depth d for a group of agents Ag as

LAg,dRML(P) (we drop the P qualifier when it is obvious from the context).
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Because RMLs are represented as a sequence of � and ^ operators, ending

in a propositional literal, they are in negation normal form (NNF); i.e., negation

appears only in front of propositional variables. Any standard modal literal with

negations interleaved can be re-written into NNF using the equivalences,

¬�iϕ ≡ ^i¬ϕ ¬^iϕ ≡ �i¬ϕ ¬¬p ≡ p

To simplify exposition throughout the paper, we will take the negation of an

RML to indicate its equivalent NNF (i.e., by using the repeated application of

the above equivalences so that negations appear only at the literal level).

We use Lit(φ) to refer to the literal at the end of the RML φ:

Lit(φ) =

Lit(ψ) if φ = �iψ or φ = ^iψ

φ otherwise

Lakemeyer and Lespérance [40] show how to compile a PEKB into prime

implicate normal form (PINF) in exponential time and space, and how to check

entailment of this PINF formula in polynomial time. This compares to double-

exponential time and space for non-restricted problems [9]. Thus, by sacrificing

expressiveness, some computational cost can be reduced. Their entailment al-

gorithm is sound for arbitrary formulae, and complete for PINF formulae. The

consistency of a PEKB is defined using the semantics of epistemic logic, where

the PEKB is seen as the conjunction of the elements in the PEKB [40].

Muise et al. [52] showed that for the logics KDn, compilation to PINF is

not required: the PEKB can be queried directly in polynomial time. Querying

is sound for any arbitrary KDn formula, and is complete for formulae in a

particular normal form. Miller and Muise [48] then further define belief update

for PEKBs that can be calculated in polynomial time.

Extending to the KD45n case — that is, adding positive and negative in-

trospection (axioms 4 and 5 respectively) — is straightforward using the equiv-

alences in Section 2.1. Lakemeyer and Lespérance [40] define an i-objective

formula as a formula that is about the world and agents other than i. For ex-

ample, �j(p∧�i¬p) is i-objective, but �jp∧�i¬p is not. A formula is i-reduced
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iff for all sub-formulae �iϕ and ^iϕ, ϕ is i-objective.

One can see that any RML �iϕ or ^iϕ can be i-reduced by repeatedly

applying the equivalences above to strip out consecutive occurrences of modal

operators of the same agent. Therefore, one can reduce both a KD45n PEKB

and query into a KDn PEKB and query respectively, allowing application of

the approaches in this section to KD45n. We restrict our discussion in the

remainder of this paper to the more simplified case of KDn, assuming that for

KD45n, consecutive modal operators of the same agent have been removed.

Expressivenes of PEKBs. Given that PEKBs restrict more general epistemic

logic by removing disjunction, it raises the question whether they are too re-

strictive. The answer depends on which perspective is taken. On the one hand,

omitting disjunction from the language means that some interesting properties

around disjunctive preconditions and goals need to be encoded manually, and

this manual encoding needs to carefully ensure all logical properties are main-

tained. On the other hand, contemporary classical and non-deterministic plan-

ning tools typically do not support disjunction on even propositional formulae,

so expanding the planning language to a PEKBs does not limit the planning at

all – it makes modelling some problems more straightforward. In Section 7.5, we

highlight an example of where the lack of handling disjunctive knowledge limits

what we can represent. Further, we dive deeper on the expressive differences

between our approach and related works in Section 8.

PEKBs have been shown to be expressive enough for many applications, such

as collaborative filtering [40] and team formation [50]. The key contribution of

this paper is to show how epistemic planning can be done efficiently. What

is clear is that to solve planning problems efficiently, trade-offs in expressive-

ness must be made. The inclusion of disjunction would immediately rule out

the approach of compiling to classical or non-deterministic planning without

explicitly reifying sub-formulae. Importantly, if classical planners did support

disjunction, then including disjunctive epistemic knowledge bases would require

a double-exponential compilation step just on the epistemic formulae themselves
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[8], rather than polynomial.

As the results in this paper later show, we can indeed solve several stan-

dard benchmarks in epistemic planning more efficiently than other epistemic

planners (both for expressiveness and computational reasons). In our view, to

advance the field of epistemic planning to the point where planners are viable

for solving large-scale planning tasks rather than epistemic puzzles, restricted

representations like PEKBs will be essential.

2.3. Classical and FOND Planning

A classical planning problem consists of a tuple 〈F, I,G,O〉, where F is

a set of fluent atoms, I is the initial state, G is the goal, and O is a set of

operators. A complete state (or just state) s is a subset of the fluents F with

the interpretation that fluents not in s are false (equivalently, this can be seen

as a conjunction between the literals found in s and the negated literals not

found in s). A partial state s is similarly a subset of the fluents F , but has the

interpretation that literals not found in s can take on any value (thus equivalent

to a conjunction of just the literals in s). I is a complete state while G is a

partial state. Every operator o ∈ O is a tuple 〈Preo, eff +
o , eff −o 〉, and we say that

o is applicable in s iff Preo ⊆ s. The set eff +
o (resp. eff −o ) contains conditional

effects describing the fluent atoms that should be added (resp. removed) from

the state when applying the operator. Finally, every conditional effect in eff +
o

or eff −o is of the form (C → l) where C is the condition for the effect and l is a

fluent that is the result of the effect. The condition C consists of a tuple 〈C+, C−〉

where C+ is the set of fluents that must hold and C− the set of fluents that must

not hold. A conditional effect (〈C+, C−〉 → l) fires in state s iff C+ ⊆ s and

C− ∩ s = ∅. Assuming o is applicable in s, and eff +
o (s) (resp. eff −o (s)) are the

positive (resp. negative) conditional effects that fire in state s, the state of the

world s′ after applying o is defined as follows:

s′ = s \ {l | (C → l) ∈ eff −o (s)}

∪ {l | (C → l) ∈ eff +
o (s)}
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Our account of classical planning mirrors the standard representation (see,

for example, [26]), with the exception that we make explicit the fluent atoms

that are added, deleted, required to be in, or required to be absent from the

state of the world. This simplifies the exposition when we encode nested beliefs

as a classical planning problem.

Fully-observable non-deterministic (FOND) planning extends classical plan-

ning with non-deterministic operators. That is, operators can have one or more

effects, and exactly one of these effects occurs when the action is executed.

The planning agent does not know which effect will occur prior to execution,

but can observe which effect occurred immediately after execution. To extend

classical planning, instead of each operator containing a single pair of positive

and negative effects, an operator has a set of non-deterministic effects, with

each containing positive and negative effects: 〈Preo,Eff o〉, in which every non-

deterministic effect E ∈ Eff o consists of two sets of conditional effects, eff +
E and

eff −E . A solution to a FOND planning problem is a policy π, which maps states

to operators. A policy represents a set of possible sequences of actions. If every

sequence in a policy reaches the goal, it is said to be strong ; otherwise, if only

some sequences reach the goal, it is weak.

3. Restricted Perspectival Multi-agent Epistemic Planning

In this section, we define the syntax and semantics of restricted perspecti-

val multi-agent epistemic planning (RP-MEP). At a high-level, this is defined

simply as planning over states of the world where states are PEKBs, instead

of collections of propositional fluents. The choice of PEKBs is suitable for two

reasons:

1. The syntactic restrictions imposed by PEKBs that prevent disjunction and

infinite nesting are consistent with the syntactic restrictions employed by

STRIPS-based planners, in which arbitrary disjunction is not permitted,

and the set of literals (fluents) in a planning problem is finite. In this
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sense, using PEKBs increases the expressiveness of the STRIPS language

to include epistemic formulae.

2. PEKBs come with nice logical and computational properties, as we outline

in this section, and elaborate in Appendix D. First, a consistent PEKB

— that is, one with no contradictory statements — is logically separable,

which means the literals in the knowledge base do not interact to produce

new formulae. Further, a consistent PEKB can be queried in polynomial

time without a pre-compilation step such as the one used by Lakemeyer

and Lespérance [40], and can be queried in constant time with an exponen-

tial pre-compilation step. Finally, a consistent PEKB can be updated with

new literals and remain consistent using a polynomial-time algorithm.

We assume that the state represents the mental model of a particular agent

that perceives an environment that includes all other agents. All reasoning is

from the perspective of this single agent. The fluents that are true in a state

correspond to the RMLs that the agent believes, while the fluents that are false

correspond to the RMLs that the agent does not believe. Action execution,

then, is predicated on the agent believing that the preconditions are satisfied.

Similarly, the mental model of the agent is updated according to the effects

of an action. Note that we do not need to enforce a separation of ontic and

epistemic effects – the same action can update belief about propositions as well

as RMLs. This is due to the interpretation that the state of the world represents

the mental model of a given agent: every effect is epistemic in this sense.

3.1. Syntax

In describing the actions for a RP-MEP problem, we consider both con-

ditional and non-deterministic effects; combined they allow for a rich variety

of epistemic problems to be described. The non-determinism, however, is of a

restricted form in that it is fully observable, meaning that the executing agent

does not know what the outcome of an action will be, however, it will observe

the outcome immediately after executing the action. While we hope to remove
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this restriction in the future, it allows us to account for various contingencies

during the planning process, and model aspects such as questions asked to other

agents in the environment.

The basic atomic action in RP-MEP is a PEKB planning action. Essentially,

an action is just a classical planning action, but in which the preconditions and

effects can be PEKBs instead of just propositions.

Definition 1. RP-MEP Planning Action

A RP-MEP Planning action a is a pair 〈Prea,Eff a〉, in which Prea is a PEKB

capturing the preconditions of a and Eff a is the set of non-deterministic effects

of a, defined as follows. Every non-deterministic effect E ∈ Eff a is constituted

by a set of conditional effects {(γ1, ϕ1), . . . , (γk, ϕk)}, in which each γi is a PEKB

called the condition of the conditional effect, and each ϕi is a RML called the

effect of the conditional effect. A conditional effect (γi, ϕi) is read informally to

say that if the condition is true before the action executes, then the effect will

be true after the action executes.

We can now define a planning problem as follows:

Definition 2. Multi-Agent Epistemic Planning Problem

A multi-agent epistemic planning (MEP) problem D is a tuple of the form

〈P,A, Ag, I,G〉, where P and Ag are as above, A is a set of RP-MEP plan-

ning actions, I is the PEKB representing the initial theory and G is a PEKB

capturing the goal condition.

Following Reiter [63] and van Ditmarsch et al. [19], the above action formal-

ization can be expressed as standard precondition and successor state axioms,

which would then define the meaning of achieving the goal. Using PDL-like

syntax, we interpret [α]G as “G holds after executing action α”. We formally

define this below in Section 3.2.2.

We define a restricted perspectival multi-agent epistemic planning problem

13



(RP-MEP problem) for depth bound d and the root agent ? ∈ Ag as a MEP

problem with the additional restrictions that: (1) every RML is from the per-

spective of the root agent – i.e., it is from the following set:

{�?ϕ | ϕ ∈ LAg,dRML} ∪ {^?ϕ | ϕ ∈ L
Ag,d
RML},

and (2) there is no disjunctive belief: the initial theory, goal specification, and

every precondition are all PEKBs, every effect is a single RML, and every effect

condition is a PEKB.

We address the planning problem from the view of an acting agent, where

the designated root agent ? is the one for which we plan. Intuitively, this means

that conditional effects are formulated in the context of the root agent; e.g.,

we would have a conditional effect of the form ({�?γ},�?ϕ) for action a in a

RP-MEP problem to capture the fact that the root agent will believe ϕ if it

believed γ before a occurred (as formalised in the next section).

This admits a rich class of planning problems; e.g., it is reasonable to assume

that the root agent’s view of the world differs from what a particular agent i

believes, and so another conditional effect of a might be ({�?γ},�?�i¬ϕ) –

even though the root agent believes doing a would make ϕ true if γ holds, the

root agent believes that i will believe ¬φ if γ holds. In particular, this is easily

shown to generalize a standard assumption in the non-epistemic multi-agent

planning literature [44] that all agents hold the same view of what changes after

actions occur.

In the next section, we show how a restricted perspectival multi-agent epis-

temic planning problem can be represented as a classical planning problem,

where the key insight is to encode reasoning features (such as deduction in

KDn) as ramifications realized using ordinary planning operators.

3.2. Semantics

To formally define the semantics of epistemic planning over PEKBs, we use

the notation defined by Miller and Muise [48] for belief update in PEKBs. The

theoretical justification for this process is explored in Appendix D, but for
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clarity we restrict the rhetoric in this section to only those concepts required to

describe our encoding.

3.2.1. Action Progression with PEKBs

While syntactic treatments of belief and knowledge have been proposed in

the past; e.g. [20, 38], PEKBs place restrictions on the syntax of formulae to

provide desirable computational properties. The key result by Lakemeyer and

Lespérance [40] is that by eliminating disjunction from formulae, PEKBs can be

compiled in into a set of prime implicates, similar to the method employed by [8,

9] for the logic Kn. This allows entailment queries to be answered in polynomial

time by structurally traversing the prime implicates instead of querying the

original belief base. The cost is that the compilation into prime implicates is

exponential, rather than double exponential in the case of epistemic logic with

disjunction. One could reason efficiently (polynomial time) at the level of prime

implicates, but we opt to further process the PEKBs so that they are deductively

closed – this will greatly simplify the propositional encoding later in Section 4.

In this section, we define the semantics of epistemic planning over PEKBs.

For this reason, in order to keep the terminology intuitive, we call these PEKB

states. For simplicity, we define a PEKB state P as a deductively-closed subset

of formulae. We use P to denote the PEKB that contains the negation of every

RML in P ; that is P = {¬ϕ | ϕ ∈ P}. Following Definitions 1 and 2, we can

define the procedures to modify PEKBs as follows:

Definition 3. Belief update and erasure in PEKBs

Given deductively-closed PEKBs P and Q, we define P _ Q and P ^ Q as the

belief erasure and belief update of P and Q respectively, as follows:

P _Q = P \Q

P ^Q = (P _Q) ∪Q.

Belief update of P with Q is defined as the standard ‘forget (erase) then conjoin’:

anything in P disagreeing with Q is forgotten, then everything from Q is added.
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Miller and Muise [48] present definitions of belief update and erasure for

PEKBs and evaluate them against the Katsuno and Mendelzon [36] postulates

for belief update [36]. They also show that belief update and erasure in PEKBs

can be computed in polynomial time.

Definition 4. RP-MEP Progression

We define the progression of a single deterministic effect E applied to a deductively-

closed PEKB state P , labelled Progress (P,E), as:

Progress (P,E) = (P _ (R ∪ U)) ^Q

Q =
⋃

(γ,ϕ)∈E

{ψ | γ ⊆ P ∧ ϕ � ψ}

R =
⋃

(γ,¬ϕ)∈E

{ψ | γ ⊆ P ∧ ϕ � ψ}

U =
⋃

(γ,ϕ)∈E

{¬ψ | γ ∩ P = ∅ ∧ ¬ϕ � ¬ψ}.

Q defines the set of literals to be added, R defines the set of literals to be deleted,

while U defines the set of uncertain firing literals to be deleted. Uncertain firing

captures instances in which an agent is unsure whether a conditional effect is

true, denoted γ ∩ P = ∅. If an agent is unsure, then it should not believe

the effect (unless it was already true), but must admit that it could be true.

Therefore, it must not believe the opposite, and we should remove ¬ϕ and

anything that follows from it deductively.

From this, we can define the set of possible progressions of a non-deterministic

RP-MEP action a = 〈Prea,Eff a〉 in a deductively-closed PEKB state P :

Progress (P, a)
def
= {Progress (P,E) | E ∈ Eff a and Prea ⊆ P}

Intuitively, Progress (P, a) is defined as a set of PEKB states, each corre-

sponding to the application of a non-deterministic effect of the RP-MEP action
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a. In case the RP-MEP action a is not executable in P , i.e. Prea 6⊆ P , then

the set is empty.

A (RP-MEP) policy is a function α : P → A mapping PEKB states to

RP-MEP actions (P is used to denote the set of all possible PEKB states).

Valid policies can be partial functions, because their terminating states can be

undefined.

A trajectory is a sequence of PEKB states, and we say that a trajectory

P0, . . . , Pn is induced by a policy α from a PEKB state P iff P = P0 and for

i ∈ [0, n− 1] we have that α(Pi) is defined and that Pi+1 ∈ Progress (Pi, α(Pi)).

Intuitively, as actions have non-deterministic effects, there are in general many

trajectories which are induced by the same policy.

A PEKB state P is said to be an end state of a policy α from a PEKB state

P0, denoted P ∈ end(P0, α), iff there exists a trajectory P0, . . . , P induced by α

from P0 such that α(P ) is either not defined or empty.

We further assume that a valid policy does not yield inescapable cycles. In

other words, for every trajectory T induced by policy α from a PEKB P , there

exists a trajectory T ′ so that T ·T ′ is induced by α from P and the last state of

T · T ′ is an end state of α. This yields policies that correspond to strong cyclic

plans from FOND planning.

It is worth pointing out the implicit assumption of “fairness”. Loosely speak-

ing, fairness refers to a property of the non-determinism in an environment that

captures the notion of all possible outcomes having some chance of success: if

the agent finds themselves repeatedly in the same situation and executes the

same action, every possible outcome should occur infinitely often in the limit.

Due to our definition of a valid policy, we are assuming fairness. This may be

an abstraction of the true nature of the environment (e.g., a non-deterministic

action that “asks” another agent a question is inherently unfair), but it is still a

useful abstraction for reasoning with both uncertainty in action outcomes and

uncertainty in agent beliefs. There are encoding techniques to solve unfair non-

deterministic planning problems with solvers assuming fairness (e.g., [14]), but

those notions are out of scope for this work.
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3.2.2. Plan Verification and Generation

In this section, we formally define the problems of plan validation and plan

verification for RP-MEP.

Given a conjunction of RMLs φ, we use [α]φ to represent that φ holds in all

trajectories defined by policy α, given some start state. Formally, this is defined

as:

P � [α]φ iff Q � φ for all Q ∈ end(P, α),

in which P is a deductively-closed PEKB. If [α]φ holds in P , then φ holds for

all end states of the policy α from P and α is said to be a strong policy for φ

from P . We define 〈α〉φ as shorthand for ¬[α]¬φ, which means that φ holds on

at least one end trajectory of α. If 〈α〉φ, then α is said to be a weak policy for

φ from P .

The notions of plan verification and generation rely on the idea of a valid

policy for a goal: a policy that achieves the goal from the initial state. Formally,

we have the following type of valid policies.

Definition 5. Plan Verification and Generation

Given an RP-MEP problem, 〈P,A, Ag, I,G〉, a policy α is a valid weak policy

for G iff the following holds:

I |= 〈α〉G

A policy α is a valid strong policy for G iff the following holds:

I |= [α]G

The task of plan verification is to determine if a policy is a valid (weak or

strong) policy for G. The task of plan generation is to generate such a policy.

Our notion of plan generation and verification follows closely that of tradi-

tional fully-observable non-deterministic planning, only with our states of the

world being represented by PEKBs in lieu of an assignment of true/false to the
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fluents in the domain. It is unique in relation to other formalisms of epistemic

planning, in that our restriction to PEKBs is not an assumption that the other

related systems adopt. The more fundamental differences are discussed later in

Sections 7 and 8.

4. Propositional Encoding of RP-MEP

In this section, we show how to encode an RP-MEP into a standard propo-

sitional planning problem, as either classical planning or FOND planning as

required. The novelty in this work is that, given an RP-MEP planning prob-

lem, we convert this into a propositional planning problem that can be solved

with any off-the-shelf classical/FOND planning tool that supports conditional

effects. As FOND planning is a generalisation of classical planning, we define

our encoding for FOND planning only.

The basic framework that we take is as follows. For every RML in the domain

problem, create a standard propositional fluent to represent that RML. Then,

for every action in the original problem, replace each RML with its propositional

fluent, and add new conditional effects to the action to handle the semantics of

RP-MEP. The result is a FOND planning problem in which a solution to the

FOND problem is a solution for the RP-MEP problem.

The remainder of the section will proceed as follows:

1. We present the framework for our encoding of an RP-MEP problem into

FOND planning.

2. We specify how the belief update operator defined in Section 3 is encoded.

3. We specify how to correctly update if an agent is uncertain whether a

conditional effect fires.

4.1. Base Encoding

First, using the theorems for reducing neighbouring modalities outlined in

Section 2.1 (e.g. �i�iφ ≡ �iφ), remove any neighbouring modalities from each
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RML that appears in any part of the planning problem, including preconditions,

effects, fluents, etc. This preserves the semantics of the original problem, but

simplifies the encoding.

Then, we transform the problem into an equivalent propositional planning

problem. Intuitively, every RML in LAg,dRML will correspond to a single fluent in F

(e.g., both �1p and ^1¬p will become fluents), and the operators will describe

how the mental model of our root agent should be updated. Formally, we define

the encoding of a RP-MEP problem as follows:

Definition 6. Encoding of RP-MEP

Let Bi and Ni be functions that map i’s positive (resp. negative) belief from a

PEKB P to the respective fluents:

Bi(P ) = {lφ | �iφ ∈ P}

Ni(P ) = {¬lφ | ¬�iφ ∈ P}

Given a RP-MEP problem, 〈P,A, Ag, I,G〉 and a bound d on the depth of

nested belief we wish to consider, we define the propositional encoding as the

tuple 〈F, I,G,O〉 such that:

F
def
= {lφ | φ ∈ LAg,dRML} I

def
= B?(ClI) G

def
= B?(G)

and for every action 〈Prea,Eff a〉 in A, we have a corresponding operator

〈Preo,Eff o〉 in O such that:

Preo
def
= B?(Prea)

Eff o
def
= {〈eff +

E , eff −E〉 | E ∈ Eff a}

eff +
E

def
= {(〈B?(γ),N?(γ)〉 → lφ) | (γ,�?φ) ∈ E}

eff −E
def
= {(〈B?(γ),N?(γ)〉 → lφ) | (γ,¬�?φ) ∈ E}

Whenever clear from the context, we will use eff +
o and eff −o to refer to the

effects associated with an action with a single outcome.
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4.2. Maintaining Logical Closure

Because of the direct correspondence, we will use the RML notation and

terminology for the fluent atoms in F . The encoding, thus far, is a straight-

forward adaptation of the RP-MEP definition that hinges on two properties:

(1) there is a finite bound on the depth of nested belief; and (2) we restrict

ourselves to representing RMLs and not arbitrary formulae. Crucially, however,

we wish to maintain the assumption that the agents are internally consistent

with respect to KDn, and would like to do so in a pragmatic/syntactic manner.

To accomplish this, we define a systematic closure procedure, Cl, that deduces

a new set of RMLs from an existing one under KDn, allowing us to pre-compute

all of the necessary inferences in advance of planning :

Definition 7. RML Closure

Given an RML l, we define Cl(l) to be the set RMLs that are KDn logical

consequences of l. Cl(l) is computed by repeatedly applying the D axiom

(�iψ ⊃ ^iψ) to the RML, resulting in the set of all RMLs that follow log-

ically from φ using the D axiom. This can be done by simply replacing all

combinations of occurrences of �i with ^i; e.g., for the RML �i^j�kp, the

resulting set would be {^i^j�kp, �i^j^kp, ^i^j^kp}.

Similarly, the closure of a PEKB is simply the union of the closure of its

elements, i.e., Cl(P ) =
⋃
l∈P Cl(l).

Given the finite nature of a single RML, the closure is also finite.

Theorem 1 (Soundness & completeness of Cl). Given a PEKB P in KDn,

Cl(P ) = {ϕ | P � ϕ, where ϕ is an RML}.

Proof. As shown by Miller and Muise [48], a PEKB in KDn is logically separable.

Intuitively, this means that we cannot infer any new RML from a PEKB by

combining two RMLs taken from the PEKB that we cannot already infer from

just one RML. Therefore, to compute Cl(P ) we can just apply the axioms K

and D to individual RMLs in the PEKB P . The repeated application of axioms

21



K and D to each of the RMLs in the PEKB, when computing Cl, is a sound

inference. Note that only a finite number of applications are possible given the

finite nesting of each RML and the finite size of the PEKB.

For completeness, note that because any PEKB P is logically separable, we

can compute {ϕ | P � ϕ}, where ϕ is an RML, by taking the union of {ϕ | l � ϕ}

for each l ∈ P . We can then prove via induction that each ϕ will be in Cl(l):

Case l ≡ �iψ: Axiom D results in ^iψ, which is an RML because ψ is

an RML. Further, ^iψ is in Cl(l) from the definition of Cl (Definition 7). By

induction, any further application of KDn axioms to ^iψ
′ are in Cl(l). Because

ψ is itself an RML and cannot contain disjunction or implication, axiom K does

not apply.

Case l ≡ ^iψ: Axiom D does not apply directly, and by induction, further

application of KDn axioms to ^iψ will be in Cl(l). As with the previous case,

axiom K does not apply.

Therefore, Cl is both sound and complete.

Along with the requirement that an agent should never believe an RML

and its negation, we have two further constraints on the PEKBs that we are

encoding:

φ ∈ s⇒ ¬φ /∈ s

φ ∈ s⇒ ∀ψ ∈ Cl(φ), ψ ∈ s

The enforcement of such state constraints can either be achieved procedu-

rally within the planner, or representationally. We choose the latter, appealing

to a solution to the well-known ramification problem (e.g., [60, 43]), represent-

ing these state constraints as ancillary conditional effects of actions that enforce

the state constraints. The correctness of the resulting encoding is predicated

on the assumption that the domain modeller provided a consistent problem for-

mulation (i.e., there are no inherent inconsistencies in the goal, initial state, or

action effects). This mirrors the common assumption in modelling for planning
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more generally. The ancillary conditional effects for operator o are as follows:

(C → l) ∈ eff +
o ⇒ (C → ¬l) ∈ eff −o (1)

(C → l) ∈ eff +
o ⇒ ∀l′ ∈ Cl(l), (C → l′) ∈ eff +

o (2)

Example 2. Returning to our example, consider the effect of agent 1 telling

secret s1 to agent 2. Assuming there is no positive or negative condition for

this effect to fire, the effect would be (〈∅, ∅〉 → �2s1) ∈ eff +. Using (1) would

create (〈∅, ∅〉 → ¬�2s1) ∈ eff − and (2) would create (〈∅, ∅〉 → ¬�2¬s1) ∈ eff +.

Subsequently, (1) would fire again creating (〈∅, ∅〉 → �2¬s1) ∈ eff −. We can

see already, with this simple example, that effects may cascade to create new

ones.

The second issue is to ensure the state remains consistent under KDn when

removing beliefs. If we remove an RML l, we should also remove any RML

that could be used to deduce l. To compute the set of such RMLs, we use the

contrapositive: ¬l′ will deduce l if and only if ¬l deduces l′ (i.e., l′ ∈ Cl(¬l)).

We thus have the following additional conditional effects for operator o:

(C → l) ∈ eff −o ⇒ ∀l′ ∈ Cl(¬l), (C → ¬l′) ∈ eff −o (3)

Example 3. Consider the effect of an action informing us that agent 2 should no

longer believe that agent 1 does not believe agent 2’s secret: (〈∅, ∅〉 → ¬�1s2) ∈

eff −. Using (3), we would have the additional effect (〈∅, ∅〉 → �1¬s2) ∈ eff −.

If �1¬s2 remained in our knowledge base, then so should ¬�1s2 assuming that

our knowledge base is deductively closed.

The effect of these two rules together is to encode the problem such that

entailment is effectively done by computing the deductive closure of the PEKB

each time an action effect is evaluated, matching the definition of progression in

Section 3. All possible RMLs are pre-compiled into a planning problem, and dur-

ing planning, these are used multiple times, meaning that the pre-compilation is

a valuable step. Given the indexing used in most modern planners, entailment

for checking preconditions and effect conditions in planning actions becomes a

constant-time operation.
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4.3. Uncertain Firing

To complete the faithful transformation of a RP-MEP problem to a FOND

problem, we must also consider the third case of RP-MEP progression defined

in Definition 4: when an agent is uncertain whether a conditional effect should

fire due to the uncertainty of beliefs.

To encode this, we appeal to a common technique in planning under uncer-

tainty (e.g., [59, 55]): when the conditions of a positive conditional effect are not

believed to be false, the negation of the effect’s result can no longer be believed.

Intuitively, if an agent is unsure whether a conditional effect fires then it must

consider the condition’s effect possible, and thus no longer believe the negation

of the effect. We create the following additional conditional effects:

(〈C+, C−〉 → l) ∈ eff +
o ⇒

(〈∅, {¬φ | φ ∈ C+} ∪ C−〉 → ¬l) ∈ eff −o (4)

Example 4. Consider a conditional effect for the action of agent 1 sharing their

secret that stipulates that if agent 2 believes that agent 1 is trustworthy (denoted

as �2t1), then agent 2 would believe agent 1’s secret: (〈{�2t1}, ∅〉 → �2s1) ∈

eff +. Using (4), we would derive the new negative effect (〈∅, {¬�2t1}〉 →

¬�2s1) ∈ eff −. Rule 3 would then fire, which would remove �2¬s1. Intu-

itively, although agent 2 is unsure about agent 1’s trustworthiness, it should no

longer believe that the secret is false.

In what follows, we denote by s′ = result(s, 〈eff +
o , eff −o 〉) the new state

resulting from the application of a non-deterministic effect 〈eff +
o , eff −o 〉 of an

operator o, as formally defined in Section 2.3. With this notation at hand, we

give the following main result.

Theorem 2. Given an RP-MEP action a = 〈Prea,Eff a〉 and E ∈ Eff a, let

〈Preo,Eff o〉 be the operator corresponding to a and Eo = 〈eff +
E , eff −E〉 its

conditional effects corresponding to E, which are obtained according to Def-

inition 6 and rules (1)-(4). Then, for any consistent PEKB P we have that

Q = Progress (P,E) iff Cl(B?(Q) ∪N?(Q)) = result(B?(P ) ∪N?(P ), Eo).
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Proof. First, recall that I
def
= B?(Cl(I)) by Def. 6, hence Cl(B?(I) ∪N?(I)) = I

as N?(I) is empty for any RP-MEP problem (the initial theory is restricted to

positive RMLs only – see Section 3.1). Also, note that the encoded FOND

problem is such that states are in fact always closed, hence we can consider

Cl(B?(P ) ∪N?(P )) in the above theorem. Consider a lφ for which the equality

in the theorem does not hold. Since by Def. 6 lφ ∈ B?(P ) iff �?φ ∈ P (and

similarly for N?), Theorem 1 implies there are four cases to consider, which we

prove by contradiction.

Assume lφ is both in Cl(B?(P )∪N?(P )) and in result(B?(P )∪N?(P ), Eo),

but not in Cl(B?(Q)∪N?(Q)). Then by the definition of Progress (P,E) it must

be that lφ is in (R ∪U) as defined in Def. 4, i.e., it is a fluent to be deleted due

to a conditional effect of E or it is an uncertain firing fluent. Then we have that

(γ,¬�?φ) ∈ E and �?φ ∈ P , with γ ∈ P , or (γ,�?φ) ∈ E and γ 6∈ P . Then

by the definition of eff −E in Def. 6, rules (3)-(4) and the definition of result, it

must be the case that lφ is not in result(B?(P ) ∪N?(P ), Eo) either.

Assume now lφ is in Cl(B?(Q)∪N?(Q)) and Cl(B?(P )∪N?(P )) but not in

result(B?(P ) ∪ N?(P ), Eo). This means that (C → lφ) ∈ eff −E(s) for some C,

with s = Cl(B?(P )∪N?(P )). Then, by the definition of eff −E in Def. 6, it must

be the case that (γ,¬�?φ) ∈ E . As a consequence, φ is in the set R as defined

in Def. 4, which implies that it cannot be in Cl(B?(Q) ∪ N?(Q)), by definition

of Q = Progress (P,E).

The cases in which lφ is not in Cl(B?(Q)∪N?(Q)) nor in Cl(B?(P )∪N?(P ))

but in result(B?(P )∪N?(P ), Eo), or conversely not in Cl(B?(P )∪N?(P )) nor in

result(B?(P )∪N?(P ), Eo) but in Cl(B?(Q)∪N?(Q)) can be easily ruled out by

the definition of eff +
E in Def. 6 and the closure rule (2), as Cl(P ) = {ϕ | P � ϕ}.

Indeed, all and only the positive conditional effect of a RP-MEP action are

encoded as positive conditional effects in the FOND planning problem.

With these extra conditional effects, we have a faithful encoding of the orig-
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inal RP-MEP problem. In other words, a policy α will be found1 for initial

state I and goal G: I |= [α]G.

Theorem 3. Our encoding is sound and complete with respect to RP-MEP.

Proof. The proof is a straightforward extension of the proof for Theorem 2

and the fact that Definition 6 (together with the rules for ancillary conditional

effects) faithfully encode Progress (P,E). Any policy that is derived using a

sound and complete planner on the encoded problem will thus generate a sound

and complete policy.

5. Extensions

Given the core compilation, there are a variety of extensions we have explored

to improve the task of domain modeling. Here, we present some of the key ones

that have had the largest impact.

5.1. Conditioned Mutual Awareness

Our specification of a RP-MEP problem and the subsequent encoding into

classical planning allow us to specify a rich set of actions. Unlike traditional

approaches that compile purely ontic action theories into ones that deal with

belief (e.g., the work on conformant planning by Palacios and Geffner [55]),

we allow for arbitrary conditional effects that include nested belief both as

conditions and as effects.

While expressive, manually encoding effects with nested belief can be in-

volved due to the cascading of ancillary conditional effects. Here, we extend the

scope of ancillary conditional effects to safely capture a common phenomenon

in planning with nested belief: mutual awareness of the effects of actions.

Example 5. In our running example, if an agent enters a room, then we realize

this as an effect: e.g., (〈∅, ∅〉 → at 1 loc1) ∈ eff +. In many applications, other

1This assumes a sound and complete planning algorithm for the encoded problem.
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agents may also be aware of this: e.g., (〈∅, ∅〉 → �2at 1 loc1) ∈ eff +. Perhaps

we wish to predicate this effect on the second agent believing that it is also in

this room: e.g., (〈{�2at 2 loc1}, ∅〉 → �2at 1 loc1) ∈ eff +. It is this kind of

behaviour of conditioned mutual awareness that we would like to capture in a

controlled and automated manner.

By appealing to ancillary conditional effects, we will create new effects from

existing ones. We have already demonstrated the ancillary conditional effects

required for a faithful encoding to adhere to the axioms and state constraints

we expect from our agent. We extend this idea here to capture the appealing

property of conditioned mutual awareness.

Definition 8. Conditioned Mutual Awareness

An RP-MEP planning action a ∈ A is a tuple 〈Prea, µai ,Eff a〉, in which Prea

and Eff a are the same as in Definition 1, and µai ∈ F is the condition for agent

i to be aware of the effects of action a. Note that µai can be a unique fluent that

is either always believed or never believed by a given agent.

Intuitively, agent i is aware of every conditional effect of a only when agent

i believes µai .

For a given set of fluents T , we define the shorthand �iT = {�il | l ∈ T} and

¬�iT = {¬�il | l ∈ T} and model conditioned mutual awareness through the

following two encoding rules for every agent i ∈ Ag to derive new conditional

effects:

(〈C+, C−〉 → l) ∈ eff +
a ⇒

(〈�iC+ ∪ ¬�iC− ∪ {�i µai }, ∅〉 → �il) ∈ eff +
a (5)

(〈C+, C−〉 → l) ∈ eff −a ⇒

(〈�iC+ ∪ ¬�iC− ∪ {�i µai }, ∅〉 → ¬�il) ∈ eff +
a (6)

Note that each form of ancillary conditional effect adds a new positive con-

ditional effect. In the positive case, we believe that the agent i has a new belief
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�il if we believe that agent i had the prerequisite belief for the effect to fire. In

the negative case, we would believe that the agent no longer holds the belief,

but because we take a perspectival view, it is encoded as a positive conditional

effect – i.e., we would believe ¬�il. For instance, the ancillary conditional effect

from our working example says that we should no longer believe the negation

of agent 1’s secret if we do not believe agent 1 is untrustworthy (see Example

4), which would create the following ancillary conditional effect:

(〈∅, {¬t1}〉 → ¬s1) ∈ eff − ⇒

(〈{¬�2¬t1}, ∅〉 → ¬�2¬s1) ∈ eff +.

We restrict the application of the above rules by applying them only if the

following two conditions are met: (1) every RML in the newly created effect

has a nested depth smaller than or equal to our bound d; and (2) if we are

applying the above rule for agent i to a conditional effect (C → l) ∈ eff −o , then

l /∈ {�il′,¬�il′}. The first restriction bounds the number of conditional effects

while the second prevents unwanted outcomes from introspection. To see why

this exception is required, consider the example of a pair of conditional effects

for an action where we discover agent 1 may or may not believe s2 (i.e., we

should forget any belief about what agent 1 believes regarding s2). Omitting

µo1 for clarity, we have the following negative conditional effects:

(〈∅, ∅〉 → ¬�1s2) (〈∅, ∅〉 → �1s2)

If we were to apply the above rules with agent 1, we would add two positive

ancillary conditional effects:

(〈∅, ∅〉 → ¬�1¬�1s2) (〈∅, ∅〉 → ¬�1�1s2)

which subsequently would simplify to the following conditional effects (given

that we combine successive modalities of the same agent index under KDn):

(〈∅, ∅〉 → �1s2) (〈∅, ∅〉 → ¬�1s2)
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Thus, the resulting effects would indicate that the agent reaches an inconsistency

with its own belief. To avoid this issue, we apply rule (6) only when the effect

is not a belief (negative or positive) of the corresponding agent.

Because we can assume that conditioned mutual awareness is given and

computed in the original RP-MEP specification, Theorem 3 continues to hold.

5.2. Always Known Fluents

Some of the time, some things are universal. This is the philosophy behind

our powerful second extension: always known fluents (or AK fluents for short).

These specially designated fluents are such that every agent always knows their

value (true or false), and it is common knowledge among all agents that this

is the case. Having this capability allows us to effectively isolate the epistemic

fragment of a planning problem from the rest of the combinatorics involved –

AK fluents behave just as regular fluents in planning and require no special

treatment to capture nested belief surrounding them. As a common example,

static fluents describing the layout of a map are always commonly known among

the agents, and need not have nested belief associated with them.

Frequently, syntactic sugar for a planning language simplifies the formulation

of a model but does not result in an improved efficiency for solving. This

is not the case with AK fluents. Not only does it simplify the modeling –

allowing the domain designer to focus on only those aspects which should be

epistemic in isolation – it further improves the planner’s capability of solving

the problem because we do not require encoding new fluents for the nested belief

of AK fluents, nor do we require additional effects to handle the nested beliefs.

There is no impact on the space of valid plans, but without the AK treatment,

the classical planner must maintain the nested belief of all agents for these

fluents which is largely redundant. We show how AK fluents are incorporated

to seamlessly work with the encoding presented in Section 4, and the following
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updated version of Definition 6 highlights the key differences in bold font.

Definition 9. Encoding of RP-MEP with AK Fluents

Given a RP-MEP problem, 〈P,A, Ag, I,G〉 where P = Preg∪PAK is composed

of regular fluents Preg and AK fluents PAK (where Preg ∩ PAK = ∅), and

a bound d on the depth of nested belief we wish to consider, we define the

classical encoding as the tuple 〈F, I,G,O〉 such that:

AK(KB)
def
= {lφ | φ ∈ (KB ∩PAK)}

AK(KB)
def
= {lφ | ¬φ ∈KB and φ ∈ PAK)}

F
def
= {lφ | φ ∈ LAg,dRML(Preg)}∪AK(P)

I
def
= B?(Cl(I)) ∪AK(Cl(I))

G
def
= B?(G) ∪AK(G)

and for every action 〈Prea,Eff a〉 in A, we have a corresponding operator

〈Preo,Eff o〉 in O such that:

Preo
def
= B?(Prea) ∪AK(Prea)

and for every set of conditional effects E ∈ Eff a:

eff +
E

def
= {(〈B?(γ) ∪AK(γ),N?(γ) ∪AK(γ)〉 → lφ) | (γ,�?φ) ∈ E} ∪

{(〈AK(γ),AK(γ)〉 → lφ) | (γ,φ) ∈ E and φ ∈ PAK}

eff −E
def
= {(〈B?(γ) ∪AK(γ),N?(γ) ∪AK(γ)〉 → lφ) | (γ,¬�?φ) ∈ E} ∪

{(〈AK(γ),AK(γ)〉 → lφ) | (γ,¬φ) ∈ E and φ ∈ PAK}

Note that the AK fluents can be used as conditions for regular effects, but

if they are changed as part of any effect then only AK fluents may appear as

conditions. We make this assumption as part of the AK extension, as otherwise

uncertainty could propagate from non-AK fluents to AK fluents. With the

restriction in place, every agent will know the true value of every fluent in PAK
(and all have common knowledge that this is the case).
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Generally speaking, we maintain the property that AK fluents are treated

as if they are common knowledge, and use the absence of any particular AK

fluent φ ∈ PAK in the state to represent the fact that φ is commonly known

among the agents to be false.

Aside from the core encoding, we also must consider how the fluents are

treated in the definition of ancillary conditional effects. Depending on the type

of effect, and where the AK fluents exist, we have the following:

• Ancillary effects (1)-(3) are applied as normal if the literal being changed

is from Preg, and not applied at all if it is from PAK .

• For ancillary effect (4), if the original effect is adding a PAK literal, then

it does not need to fire (recall that the negation of a literal from PAK
will never appear in the state, as the absence of the positive literal means

that it’s commonly known to be false). If, on the other hand, the original

effect is adding a Preg literal, then the ancillary effect remains unchanged

– negated PAK literals may be placed in the C− set as a result, but this

is benign as they will never appear in the agent’s knowledge base.

• Finally, ancillary effects (5) and (6) are modified to treat the PAK literals

uniquely, and can only be used for effects that add literals from Preg. The

following is an updated version of (5), and (6) is analogous:

ak(C) def
= {lφ | lφ ∈ C and φ ∈ PAK}

�iC
def
= {�ilφ | lφ ∈ C and φ ∈ LAg,dRML(Preg)}

(〈C+, C−〉 → l) ∈ eff +
o ⇒

(〈�iC+ ∪ ¬�iC−∪ �i{µoi }∪ ak({µoi }) ∪ ak(C+),ak(C−)〉 → �il) ∈ eff +
o

Note that the condition for mutual awareness may be from Preg or PAK .

It is worth reiterating the prevailing assumption regarding the literals from

PAK : if the positive literal is not in the agent’s knowledge base, then it is com-

monly known to be false. As a result, the above restrictions on the ancillary

effects will never add the negation of a literal from PAK as an effect.
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We do not detail a formal proof analogous to that of Theorem 3, but generally

the soundness and correctness can be seen as a direct result of treating the PAK
fluents as common knowledge among all of the agents, and the modifications

listed above simply following that assumption through proper bookkeeping.

6. Action Examples

To give a better sense of what is possible with our epistemic planning frame-

work, we detail a few commonly used action types in the context of nested belief.

This list is by no means exhaustive, but simply serves to illustrate the modeling

possibilities.

6.1. Partially and Fully Observable Ontic Actions

Consider a simple ontic action to turn the lights on, which can be captured

as follows, which has the positive effect of enabling lights on, and the negative

effect of enabling lights off :

Pre = {lights off }

µi = >

Eff = {〈eff +, eff −〉}

(〈∅, ∅〉 → lights on) ∈ eff +

(〈∅, ∅〉 → lights off ) ∈ eff −

Suppose instead we were interested in a general flip action. If we assume that

lights on is an AK fluent (otherwise, we would need negative preconditions),

then we could use:
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Pre = ∅

µi = >

Eff = {〈eff +, eff −〉}

(〈{lights on}, ∅〉 → lights on) ∈ eff −

(〈∅, {lights on}〉 → lights on) ∈ eff +

Note that both of these examples consider a fully observable environment,

and so to capture partial observability, we could use:

Pre = {lights off }

µi = in room i

Eff = {〈eff +, eff −〉}

(〈∅, ∅〉 → lights on) ∈ eff +

(〈∅, ∅〉 → lights off ) ∈ eff −

in which the condition on mutual awareness is that the agent is in the room:

µi = in room i.

6.2. Public and Semi-private Announcements

Let us now consider the case of announcements. Interestingly, we capture

both truthful and untruthful announcements in a simple fashion. For example,

the following captures a truthful public announcement that the door is open:

Pre = {door open}

µi = >

Eff = {〈eff +, ∅〉}

∀i ∈ Ag \ {?}, (〈∅, ∅〉 → �idoor open) ∈ eff +
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If we now remove the precondition (that is, set it to the empty set), the

announcement could be an untruthful one.

Suppose we are now interested in making a a semi-private truthful announce-

ment, in the sense that the announcement is heard by all agents present in a

certain room, we could use:

Pre = {door open}

µi = in room i

Eff = {〈eff +, ∅〉}

∀i ∈ Ag, (〈{in room i}, ∅〉 → �idoor open) ∈ eff +

6.3. Yes/No Questions

Suppose we are interested in inquiring whether i believes the lights are on.

Such an action is captured as follows:

Pre = ∅

µi = >

Eff = {〈eff +
1 , ∅〉, 〈eff +

2 , ∅〉}

(〈∅, ∅〉 → �ilights on) ∈ eff +
1

(〈∅, ∅〉 → �i¬lights on) ∈ eff +
2

Such interactions have appeared in works such as [51] on teamwork forma-

tion, where negotiation between agents is conducted through a series of yes/no

questions similar to the one presented here.

7. Evaluation

In this section, we present an evaluation of our ideas over several planning

domains — some inspired from previous literature and others in which our plan-

ner has been used to generate solutions. We evaluate over a series of parameters,

including number of agents and maximum depth of a restricted modal literal.

The vast majority of domains explore settings where inconsistent or incorrect
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belief play a role – a key strength of our planner compared to many epistemic

reasoning systems available.

We implemented the scheme above to convert a RP-MEP planning problem

into a classical planning problem, which can be subsequently solved by any

planner capable of handling negative preconditions and conditional effects. The

compiler consumes a custom format for the RP-MEP problems and can either

simulate the execution of a given action sequence or invoke a classical planner

built using a configuration of the LAPKT planning library [62]. The source

code, benchmarks, and demo of the compilation process can be found online at:

http://pdkb.haz.ca/

Throughout this section, we will use the following notation:

• Ag: the set of the agents in the problem

• d: the maximum depth of nested reasoning

• F : the fluents in the encoding

• ~o: the computed sequential plan

Further, to emphasize one key strength of our choice to build on top of

classical planners, we delineate the difference between the planner originally

used when we introduced the system [53] with the latest incarnation of the same

planner. In some instances, we find a substantial improvement in computation

efficiency, and this is directly attributed to using classical planning as a black-

box technology: as the field progresses, so does the strength of our approach.

7.1. Thief

The Thief [45] problem is one of deception. A simplified version of a com-

puter game, the thief agent must steal an item while avoiding being detected

by guards. The thief agent can use actions to misdirect the guards’ ‘attention’.

The actions in the domain model events in which the one party can make a noise

and the other party notices; one can see the other from behind, learning of their
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location; and both can see each other face-to-face, simultaneously learning of

each others’ locations. In the problem instances, the locations of each is initially

unknown.

We have verified the model of the pre-existing Thief problem, and all of

the existing queries considered in the previous literature posed to demonstrate

the need for nested reasoning (e.g., those found in [45]) are trivially solved in a

fraction of a second.

7.2. Corridor

The Corridor problem involves agents that can walk back and forth between

rooms of a corridor, and state information that they believe to be true within

earshot of the neighbouring rooms [37]. Specifically, an agent broadcasting

proposition q in a room will then be believed by all agents in the same room

as well as neighbouring rooms. As the setting is for a framework of common

knowledge, the belief of proposition q is common among all agents that hear the

statement, and the position of all agents is universally known as well.

This domain was modified to allow for the broadcasting agent to spread

false belief (i.e., to lie about the secret). All those agents within earshot of the

broadcast will adopt whatever is announced, and the goals contain a mix of

agent belief over what is believed to be correct / incorrect.

We varied some of the discussed parameters and report on the results in Ta-

ble 1 (the first Corridor problem corresponds to the one presented by Kominis

and Geffner [37] with the exception of the ability to lie). As the results show, as

the depth and number of agents increase, the compilation time increases expo-

nentially, while the planning time is standard for a classical planning problem

of this scale. There was little difference between the old and new planners, and

only one column for plan size is included as the two planners coincided in this

regard for every problem.

At the extreme end, we found the limit for both what the planning procedure

and our preprocessing approach can accomplish. With 5 agents and depth 5, we

have over 200k fluents created. The compilation to classical planning completes
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|Ag| d |F | |~o|
Time (s)

Solveold Solve Compile Total

3 1 54 8 0.01 0.03 0.10 0.13

5 1 62 8 0.01 0.03 0.14 0.17

7 1 70 8 0.01 0.03 0.18 0.20

3 3 558 8 0.02 0.04 0.78 0.82

5 3 2262 8 0.10 0.13 4.64 4.77

7 3 5950 8 0.60 0.68 15.65 16.33

3 5 18702 8 3.34 3.33 55.69 59.02

5 5 222262 MO MO MO 1776.10 MO

7 5 MO MO MO MO MO MO

Table 1: Results for encoding and planning time for the Corridor problem.

(in just under half an hour), but the planner runs out of memory trying to solve

the problem. Scaling further (with 7 agents), we are not even able to compile

the problem. While it is useful to examine the limits of our approach, we should

emphasize that the majority of interesting use cases we have found for planning

with nested belief is restricted to depth 1-2.

7.3. Grapevine

As a more challenging test-bed, we modelled a setting that combines the

Corridor problem [37] and the classic Gossip problem [23]. In the new problem,

Grapevine, there are three rooms with all agents starting in the first. Every

agent believes their own secret to begin with, and the agents can either move

between rooms or broadcast a secret they believe (or its negation if they wish

to lie). Movement is always observed by all, but through the use of conditioned

mutual awareness the sharing of a secret is only observed by those in the same

room. Unlike the corridor domain above, agents adopt a belief only if they

do not already have an assumption about it. That is, we modelled the notion

that an agent “cannot change their mind”. This problem allows us to pose
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a variety of interesting goals ranging from private communication (similar to

the Corridor problem) to goals of misconception/deception in the agent’s belief

(e.g., G = {�asb,�b¬�asb}).

|Ag| |g| d |F | |~o|old |~o|
Time (s)

Solveold Solve Compile Total

4 2 1 116 4 4 0.07 0.08 0.81 0.89

4 4 1 116 6 6 0.10 0.07 0.83 0.91

4 8 1 116 16 12 0.06 0.08 0.84 0.93

4 2 2 628 6 5 2.31 1.39 13.37 14.75

4 4 2 628 7 7 12.13 1.37 13.24 14.61

4 8 2 628 22 27 216.15 2.35 13.02 15.37

8 2 1 340 4 4 1.02 0.65 5.49 6.14

8 4 1 340 9 11 2.45 1.95 5.47 7.42

8 8 1 340 16 16 2.36 0.83 5.52 6.35

8 2 2 4436 6 5 350.23 309.79 253.69 563.48

8 4 2 4436 12 9 650.78 303.81 260.27 564.07

8 8 2 4436 TO 17 TO 337.48 254.20 591.69

Table 2: Results for encoding and planning time for the Grapevine problem.

Table 2 shows the results of our system in this more involved setting. We

additionally report the size of the goal posed to the planner as |g|. Note that

the results on plan length between the old and new planner are roughly similar,

but there are a number of problems were the new planner finds the solution in

far less time (e.g., two orders of magnitude improvement on the 6th problem).

We discuss the most related epistemic planners in Section 8, and more impor-

tantly why they cannot be used as a comparison on these problems. However,

unlike the Corridor domain above and the Grid domain below, the Grapevine

domain can be modelled in the language used by the newly introduced epistemic

planner EFP2.0 [24]. Table 3 shows a comparison for the first 6 problems (those
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with 8 agents are not solvable due to memory violation). The resource limits for

this evaluation were 1 hour and 32Gb of memory using a stronger machine than

the other evaluations.2 The plan lengths were equivalent, and the discrepancy

on this measure for lines 4-5 stem from the additional “initialize” action that is

used in the RP-MEP encoding.

|Ag| |g| d
|~o| Time (s)

RPMEP EFP2 RPMEP EFP2 EFP2simp

4 2 1 4 4 0.46 39.40 0.67

4 4 1 6 6 0.47 2698.30 100.22

4 8 1 12 TO 0.46 TO -

4 2 2 5 4 9.28 48.43 0.91

4 4 2 7 6 9.26 3413.02 14.37

4 8 2 27 TO 9.76 TO -

Table 3: Results for encoding and planning time for EFP2.0 on the Grapevine problem.

The column for “simplified” demonstrates the solve time if the problem is

simplified so fluents irrelevant to the goal are manually pruned. This is a fairly

straightforward process to approximate, and captures the performance if this

simple preprocessing were done automatically.

We find that as the general plan length grows, as driven by the complexity of

the goals and nesting used to achieving them, the scalability of EFP2.0 suffers.

In some sense, this is to be expected given the richness of the formalism handled

by EFP2.0: complex formulae (including those with disjunction) can be used

which is not the case for RP-MEP. Further, the representation is built using

accessibility relations which means that scaling of nested depth has little to no

impact on the performance.

This domain serves as a prime example of the orthogonal nature of RP-MEP

2We thank the lead author of EFP2.0, Francesco Fabiano, for help running this evaluation.
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and other epistemic planners capable of handling false belief: the scalability and

efficiency seen in RP-MEP comes from its ability to reason over complex action

theories in large state spaces, while its limitation stems from the depth of nesting

and type of formulae that is permitted.

7.4. Selective Communication

This is a collection of domains and problems in the area of selective com-

munication [66]. In a multi-agent system, selective communication is the task

of deciding when and what to communicate between agents to improve the out-

comes of a collective task. For example, in a disaster response scenario, the en-

vironment will be partially-observable and initially, much of it will be unknown.

As individual agents survey the area, they will obtain knowledge about the do-

main and can communicate this information to update other agents. However,

communicating all information can be non-optimal if communication comes at

a cost; e.g. if some agents are human who can become easily overwhelmed,

or if there is a cost of communicating, such as a risk of giving away one’s lo-

cation in an adversarial environment. Using epistemic planning allows us to

model communication as a natural action: communicating knowledge/belief to

another agent updates their beliefs. We further consider the possibility of false

beliefs propagating (e.g., through the malicious spread of misinformation or

faulty communication).

The selective communication domains originally come from Alshehri [3], and

define five different domains in which survivors must be located in a set of rooms

and brought back to a medical area. The five domains are: (1) a simple scenario

in which there is an unknown number of survivors whose location is initially

unknown, and each survivor’s location must be believed by at least one agent

(distributed belief); (2) same as scenario 1 except that all agents must believe

that all other agents believe the locations of all survivors (higher-order epistemic

goal); (3) same as 1 except agents can broadcast belief and a single agent (the

commander) needs to believe the location of all survivors, while all other agents

can be ignorant of their location; (4) same as 2 except communication is one-
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to-one instead of using a broadcast; and (5) same as 1 except in a cluttered

environment with unknown obstacles preventing certain plans, and so sharing

belief about these plans can improve the agents’ navigation.

The five different domains have several problems, by varying the number of

agents and number of rooms to search, based on the well-known Blocks World

For Teams (BW4T) scenario [35]. In our evaluation, we take only the selective

communication model outlined by Alshehri [3], omitting the two baselines of

no communication and communicating all new information. Actions include

moving between rooms, sensing survivors (epistemic), communicating with other

agents (epistemic action), and transporting survivors back to the medical area.

All problems in this set make use of ‘always knowing’ fluents (cf. Section 5.2)

to model static parts of the problem, such as room IDs / locations.

Table 4 shows the results for these. The scenario labels !epgoal, epgoal,

broad, !broad, and blocked respectively correspond to scenarios (1)-(5) de-

scribed above. As with the other domains, we see that the compilation takes

a bulk of the time. However, what this shows different to the Corridor and

Grapevine problems is that the size of the compilation does not affect the clas-

sical planner. That is, given a compilation, long, non-trivial plans can be gen-

erated, in most case in under one second, despite the larger state space. We

also find a substantial improvement in planner performance compared to the

old system used.

7.5. Hattari

Hattari is a board game where partial information and nested belief plays a

crucial role in the strategy and game mechanics [54]. Players secretly look at a

card with a unique number written on it, and then pass the card to the right for

the next person to look at. After this initial phase, there is common knowledge

shared among every successive pair of players, and the game unfolds through

a mix of deduction and bluffing centered around the ability for individuals to

reason about nested belief.
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Scenario |Ag| |F | |~o|old |~o|
Time (s)

Solveold Solve Comp. Total

!epgoal: 1 3 594 15 15 0.03 0.05 0.70 0.75

!epgoal: 2 3 864 21 21 0.05 0.07 1.11 1.18

!epgoal: 3 4 720 14 14 0.05 0.07 1.10 1.16

!epgoal: 4 4 1032 20 20 0.07 0.09 1.78 1.87

epgoal: 1 3 594 37 42 17.52 0.08 0.70 0.78

epgoal: 2 3 864 46 53 10.88 0.13 1.14 1.27

epgoal: 3 4 720 61 36 659.21 10.67 1.09 11.76

epgoal: 4 4 1032 65 42 1607.87 18.29 1.77 20.06

broad: 1 3 600 19 19 0.08 0.12 0.59 0.71

broad: 2 3 600 19 19 0.03 0.05 0.89 0.93

broad: 3 3 870 25 25 0.07 0.06 1.23 1.29

broad: 4 4 1040 25 25 0.06 0.09 1.84 1.93

!broad: 1 3 732 23 23 0.13 0.14 6.18 6.32

!broad: 2 3 732 23 23 0.13 0.15 6.39 6.54

!broad: 3 4 1264 30 30 0.61 0.60 25.54 26.14

!broad: 4 4 1264 30 30 0.61 0.60 25.31 25.91

blocked: 1 3 1008 50 51 1.39 0.13 2.81 2.93

blocked: 2 3 1416 58 55 0.23 0.23 5.12 5.35

blocked: 3 4 1242 50 53 2.68 0.20 4.68 4.88

blocked: 4 4 1728 TO 73 TO 0.59 8.57 9.16

Table 4: Results for encoding and planning time for the Selective Communication problem.

We modeled the mechanics of the game using the framework presented in

this paper, and embedded the belief maintenance as part of a web application:3

3Source code for the site: https://bitbucket.org/jekegren/hattari-project
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Figure 1: Screenshot of the online Hattari game

http://hattari.haz.ca/

A screenshot of the online game can be seen in Figure 1.

As planning is not a component to this scenario, we do not report on the

evaluation time (which was negligible for the task of belief update). However,

to get a sense of the encoding for the game, the following action demonstrates

the perspectival model for agent ag looking at a card c:

µi = >

Eff = {〈eff +, ∅〉}

(〈{meag}, ∅〉 → holding ag c) ∈ eff +

(〈{holding ag c}, ∅〉 → �agholding ag c) ∈ eff +

We have the following properties of the action:

• The precondition is not listed, as we are only doing belief maintenance

and not planning (the game logic implemented elsewhere dictates what

actions are possible to execute).
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• The condition for mutual awareness is true, meaning that nested ancillary

effects of the form in equation (5) will apply.

• meag is a special fluent believed only by agent ag .

• The perspective of this action may not be from ag ’s point of view.

The last point is of particular interest: when the perspective is from another

agent, the first effect will not fire (as meag is not believed), but the second

one may. Other actions in the domain cause the cards to be rotated between

players, and so a sequence such as [look ag c, pass cards, look ag2 c] from the

perspective of ag will cause the belief base to first contain holding ag c from

the first effect, and then holding ag2 c from the effects of the pass cards action,

and then �ag2holding ag2 c from the second effect of the third action.

This basic form of epistemic update demonstrates the scope of what our

framework for epistemic planning can capture.

7.6. Results Discussion

The results in this section demonstrate that our approach can solve a wide

variety of epistemic planning scenarios, from toy problems in the literature

to larger-scale problems that contain longer plans. The trend shown in the

results, though, is that the compilation time is the bottleneck in the approach;

increasing exponentially in the number of agents and the depth of reasoning.

The planning process is typically fast, and moving forward we hope to reduce

the compilation time by only generating fluents and conditional effects that are

relevant to achieving the goal.

8. Related Work

8.1. Comparison to Other Planners

We contrast our work with the most closely related epistemic planners. In

particular, two planners – EFP and MEPK – have the theoretical capability to
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handle the problems explored in Section 7. However, in practice, modelling and

solving those settings are not feasible for a variety of reasons we detail here.4

8.1.1. EFP

A recent approach to epistemic planning is the EFP planner [41]. The au-

thors present a pair of planners for generating multi-agent epistemic plans: EFP

and PG-EFP. Both are forward-search planners, differing with respect to their

search mechanisms. EFP uses breadth-first search, while PG-EFP uses heuristic

search based on a novel epistemic plan graph. These planners were originally

inspired by and built on the ideas presented in this paper.

Similar to RP-MEP, they syntactically restrict the epistemic formulae they

can represent, however the encoding is different. The authors compare their

planners to the Huang et al. [33] planner and a version of RP-MEP that lacked

the support for AK fluents, all on domains that required only notions of knowl-

edge and not belief. Performance varies on different benchmarks. In general,

RP-MEP demonstrates superior performance at shallow depth, but as d in-

creases, EFP planners demonstrate superior performance. This is because the

size of the RP-MEP problem grows exponentially with increased depth, which

is not the case with the EFP planners.

Most crucially, while the language EFP is built on the mA∗ action language,

which is capable of representing incorrect beliefs of agents, the implementation

of EFP focuses exclusively on nested knowledge. Core aspects of the bench-

marks explored in Section 7, such as agents that share false information, is thus

something we cannot model in EFP1.0 for solver comparison. We should empha-

size, however, that this is a restriction only with the implementation of EFP1.0

and not with the mA∗ language itself. Further, while RP-MEP is restricted to

formulae that are disjunction-free, the EFP system has no such restriction.

Very recently, the EFP1.0 planner was extended to handle a richer class of

4We would like to thank the authors of both systems for working with us to understand

these core differences fully.
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epistemic problems in the EFP2.0 system [24]. The new system builds on the

previous by defining an improved transition function, and includes a host of

planner improvements such as duplicate state detection and reduced state size

representation. Unlike EFP1.0, the EFP2.0 implementation permits certain

forms of inconsistent belief to be modeled. In particular, untruthful announce-

ments are feasible, as long as it does not override prior belief of the agents that

observe the announcement.

For the three main benchmarks explored in Section 7, only Grapevine fol-

lows this style of inconsistent belief.5 The other two domains (Corridor and

Grid) propagate incorrect belief in a manner that cannot yet be modelled by

EFP2.0. On the other hand, the language handled by the EFP2.0 planner cap-

tures disjunction, and thus offers a far richer formalism in that regard. Further,

as noted in the evaluation discussion, EFP2.0 is not impacted by the required

depth of nested reasoning, whereas RP-MEP faces an exponential increase in

the compiled representation size depending on the nested depth.

8.1.2. MEPK

The most closely related planner to our work is MEPK [33]. They take a dif-

ferent approach to epistemic planning by defining algorithms for belief revision

and update over arbitrary KD45n formulae. Their approach exploits the use

of alternating cover disjunctive formulas (ACDF), first defined by Hales et al.

[27]. ACDF is used to represent the knowledge base and all other formulae in

the planning problem, thus requiring a translation from arbitrary formula to

ACDF. The length of an ACDF formula is single exponentially bound by the

length of the original formula. Checking entailment between two ACDF formu-

lae is untractable, so Huang et al. [33] introduce a stronger form of entailment,

computable in polynomial time. This notion is then used to define polynomial-

time belief revision and update operators. A standard search algorithm is then

5See the link below in the discussion of the MEPK planner for the EFP2.0 model for the

first Grapevine problem as an illustrative example.
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used to find plans, with the belief revision and update operators used to define

progression. Similar to our notion of always known fluents, Huang et al. [33]

support static common knowledge, which are propositional formulae that never

change and are common knowledge to all agents. Our always known fluents are

more flexible in one regard, as they can be arbitrarily modified during execution,

however they cannot contain disjunction.

By supporting more expression formulae, Huang et al. [33] are effectively

trading efficiency for expressiveness. Their planner can handle arbitrary KDn

formulae, while ours cannot, but their compilation in ACDF and search are

more expensive than classical or FOND planning.

Unlike the majority of related work listed below, MEPK can handle true

doxastic reasoning, and thus are able to handle notions such as agents that lie

in communication. However, a full empirical comparison between the planners

is not feasible due to the nature of our ancillary effects – in particular those for

uncertain firing and conditioned mutual awareness.

Appendix C demonstrates the core ancillary effects, and the differences

in representations used by RP-MEP and MEPK (PDKBDDL and EPDDL re-

spectively). To further illustrate the incompatible nature, the following is the

smallest problem in the grapevine domain for both languages (it also includes

the format used by EFP2.0 as discussed above):

http://editor.planning.domains/#read_session=UusNZTzIs3

The PDKBDDL representation is under 100 lines in total, while the EPDDL

is a semi-automated conversion from the compiled form of the PDKBDDL re-

sulting in over 12,000 lines for the EPDDL encoding. The reason the EPDDL

representation is so large is a consequence of having to compile all of the epis-

temic inferences into the model similar to RP-MEP. This is necessary since some

key inference steps are not handled natively by the latest version of MEPK, and

thus the full range of ramifications must be provided in the encoding.

RP-MEP takes under a second to solve the problem from start to finish

including the preprocessing (see Section 7 for the details), while MEPK runs out
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of memory in a matter of seconds (both with and without heuristics enabled).

The expected plan length is 4, and the classical planner finds this in 0.06 seconds.

It should be emphasized that this is by no means a fair comparison. It is

essentially asking MEPK to reason about a classical encoding with all of the

advanced doxastic reasoning compiled into the domain; a comparison between

the expressive MEPK planner and a state-of-the-art classical planner. Many

of the ancillary effects we use are handled natively by MEPK, but must be

expanded due to their interaction with the other ancillary effects as a chain of

reasoning. We detail these further in Appendix C.

Conversely, there is no natural re-encoding that avoids this explosion in rep-

resentation. The main reason is that some of the automatic inferences made

by RP-MEP – namely the conditioned mutual awareness and uncertain firing

effects – are interleaved with the remaining inferences that both planners han-

dle. Thus, any effect added by RP-MEP’s compilation that requires a chain

of reasoning with at least one ancillary effect unique to RP-MEP will not be

captured by the native MEPK reasoning. It must be encoded by hand.

Finally, we should emphasize that there is a large space of models that can

be captured by MEPK that cannot be readily modelled and solved by RP-MEP.

In particular, any domain that requires reasoning over disjunctions is something

that distinguishes the two planners from one another. Additionally, the manner

with which we model nested belief means that the scalability of RP-MEP is

largely restricted to small depths, while MEPK does not face such issues.

Ultimately, the two planners offer complementary strengths, and the prob-

lems readily modelled in both PDKBDDL and EPDDL fail to exhibit the true

strengths of either RP-MEP or MEPK. Combining the strengths of both ap-

proaches is an extremely lucrative area for future work.

8.2. Additional Related Work

There is a variety of research related to the ideas we have presented, which

we briefly summarize below.

Reasoning about knowledge and belief has a long history in philosophy, but
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has been gaining increasing prominence in computer science and AI [25] since

the work of Kripke, Hintikka, Prior, among others [39, 31, 61]. In particular, at

least since the eighties, the extension of epistemic logic to reason about actions

has received considerable attention, in languages such as the situation calculus

and propositional modal logic [49, 63, 19].

Our approach builds on the DEL family of languages. Research into DEL

[19], and more recently DEL planning (e.g., [10]), deals with how to reason

about knowledge or belief in a setting with multiple agents, in the interest of

achieving individual or joint goals. Until recently, focus in this area has primar-

ily been on the logical foundations (e.g., semantic considerations) for updating

an epistemic state according to physical (ontic) and non-physical (epistemic) ac-

tions, as well as identifying the classes of restricted reasoning that are tractable

from a computability standpoint [45]. A preliminary version of our article [53]

was among the first approaches to consider the implementation perspective on

epistemic planning. In particular, we leveraged intuitions from state-of-the-art

approaches for automated planning with partial observability, discussed further

below. This necessitated some restrictions on the specification language. While

the full language of DEL is, therefore, clearly more expressive than our ap-

proach in terms of the logical reasoning that an agent can achieve in theory,

this expressiveness increases the computational complexity of the reasoning. In

particular, the practical synthesis of DEL plans remains a challenging prob-

lem. See, for example, [22] on notable progress on this front where the planner

manipulates DEL models directly. We refer interested readers to international

workshops such as [6] for recent advancements, as well as disparate communi-

ties that approach epistemic planning from the perspective of game-theoretic

strategies, linguistics, and so on. (For example, outside of the reasoning about

actions community, the treatment of knowledge and time has also received a lot

of attention in the form of variants of Alternating Temporal Epistemic Logic,

e.g., [56, 32].)

Also adopting the philosophy of trading off expressive power with computa-

tional efficiency, the EL-O framework takes a syntactic restriction on the general
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problem of epistemic planning [17, 18, 16]. Similar to our approach, EL-O is re-

stricted to conjunctions of epistemic literals and the representation is compiled

to a planning formalism. The key distinctions between our work and that of

Cooper et al. are: (1) they choose “knowing whether” as a primitive; (2) our

style of compilation (i.e., using ancillary effects) is unique; and, most crucially,

(3) we capture a form of doxastic reasoning whereas they capture a restricted

form of S5 epistemic knowledge. This final point is a fundamental distinguishing

factor between the approaches – but we note there are situations where either

one would be the preferred setting.

As mentioned above, our technique was inspired by recent, state-of-the-art

approaches to planning with partial observability [12, 11]. Of course, planning

with partial observability is a flavor of epistemic planning – in that the uncer-

tainty captures an implicit belief state – albeit a limited one in which beliefs

are not nested. Approaches such as [11] consider the problem of how beliefs can

be represented as classical states, by “compilation.” Thus, from an epistemic

planning standpoint, only individual knowledge of facts about the world (as

opposed to belief) are handled: the agent can “know p holds” (i.e., Kp), “know

p does not hold” (i.e., K¬p), or “not know the value of p” (i.e., ¬Kp∧¬K¬p).

(The multi-agent case is not considered.) The use of a knowledge modality was

extended to be predicated on assumptions about the initial state, leading to

effective techniques for conformant and contingent planning [55, 1].

Kominis and Geffner [37] also take their inspiration from this lineage, and

is the work that is most related to ours. They too share the general motivation

of bridging the rich fields of epistemic reasoning and automated planning by

using classical planning over multi-agent epistemic states. However, the two

approaches are fundamentally different and as a result each comes with its

own strengths and shortcomings. The largest difference is our choice to focus

on belief rather than knowledge – for us, modeling the possibility of incorrect

belief is essential. In contrast, Kominis and Geffner [37] assume that all agents

start with common initial knowledge, and further assume that all action effects

are commonly known to all agents. (We can easily incorporate this setting as
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a special case, but it is not necessary.) Conversely, they are able to handle

arbitrary formulae, including disjunctive knowledge, while we are restricted to

reasoning with RMLs. Moving forward, we hope to explore how we can combine

ideas from both approaches.

The restriction on our specification language builds on a restricted fragment

studied in [40]. They introduce so-called Proper Epistemic Knowledge Bases

(PEKBs), where disjunctive knowledge is not permitted, enabling computation-

ally tractable reasoning. We leverage that fragment in that the preconditions,

goals, and states of our work can be viewed as PEKBs. In that spirit, approaches

such as the 0-approximation semantics [7] are alternate candidates for achiev-

ing tractability in reasoning. See, for example, Son [64]. Our approach can be

seen as having the “Epistemic Closed World Assumption” [65]. In essence, after

compilation, the states contain explicit representation of everything that can be

proved (restricted to our language).

9. Concluding Remarks

We have presented a model of planning with nested belief, and the key

contribution of this paper is to show that epistemic planning within this model

can be done efficiently.

We have demonstrated how a syntactically restricted class of problems in-

volving planning with nested belief can be compiled into classical planning prob-

lems. Despite the restricted form, we are able to model complex phenomena

such as public or private communication, commonly observed action effects, and

non-homogeneous agents (each with their own view of how the world changes).

Our focus on belief (as opposed to knowledge) provides a realistic framework

for an agent to reason about a changing environment where knowledge cannot

be presumed.

To solve this expressive class of problems, we appeal to existing techniques

for dealing with ramifications, and compile the problem into a form that classical

planning can handle. We show that our approach can solve a wide variety of
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epistemic planning scenarios, from toy problems in the literature to larger-scale

problems that contain longer plans – indeed, for problems that can be modeled

in the language of other epistemic planners, we solve them more efficiently by

orders of magnitude. Further, since we use classical planning as a black-box

technology, as the field progresses, so does the strength of our approach. We

have illustrated as such by comparing the performance of our approach using a

modern classical planner versus one from only a few years ago.

In the future, we hope to expand the work in three key directions. First,

we would like to explore other forms of ancillary conditional effects similar to

the conditioned mutual awareness to give the designer greater flexibility during

modelling (e.g., with concepts such as teamwork protocols or social realities).

Second, we want to formalize the connection between general multi-agent epis-

temic planning and the syntactic restriction that we focus on encoding. We hope

to provide an automated sound (but incomplete) approximation of an arbitrary

MEP problem into a RP-MEP problem. Finally, we would like to increase the

expressiveness of our problems, in particular, by introducing a restricted form

of disjunctive reasoning allowing modellers to express the concept of an agent a

knowing whether agent a knows p is true, without agent a knowing whether p is

true or not; for example, agent a sees agent b look at the clock, so a knows that

b knows whether it is passed midnight, but agent a does not know themselves.

While more general disjunction is more expressive, it is more computationally

challenging. ‘Knowing whether’ is by far the most common type of disjunctive

knowledge we have encountered in our applications.
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Appendix A. Glossary of Key Terms

Acronym Extended form Sec. Description

RML restricted modal literal 2.2 literals of the form

φ ::= p | �iφ | ¬φ

PEKB proper epistemic

knowledge base

2.2 a set of RMLs

PINF prime implicate

normal form

2.2 a PEKB representation with polyno-

mial entailment

FOND fully-observable non-

deterministic planning

2.3 classical planning, with non-

deterministic operators

MEP multi-agent epistemic

planning

3 planning problem with bounded-

depth RMLs as fluents

RP-MEP restricted-perspective

multi-agent planning

3 a MEP with a root agent and no

negated belief (RMLs ¬�iφ)

AK always known fluents 5.2 there is common knowledge about

the value of these fluents

Appendix B. Exemplary Domains

Here we detail two domains in the file format used by RP-MEP – the PDKB

Domain Description Language (PDKBDDL). The language is a variant of the

Planning Domain Definition Language (PDDL) [29] which allows for the expres-

siveness of nested agent belief, conditioned mutual awareness, always known

fluents, etc. The first domain demonstrates some of the features of the lan-

guage using the grapevine domain as an example. The second demonstrates the

drawback of RP-MEP not being able to reason with disjunctive beliefs.

Appendix B.1. Grapevine

The following snippets of PDKBDDL demonstrate the features of the spec-

ification language beyond PDDL, and corresponds to the Grapevine problem
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listed in Section 7 where there are 4 agents, 2 goals, and depth 2 reasoning.

Note that while we list four separate examples, they correspond to the same

problem and are connected through the include functionality.

prob-4ag-2g-2d.pdkbddl

{include:domain-4ag.pdkbddl}

(define (problem prob-4ag-2g-2d)

; PDKBDDL allows for including files in order to

; compose common elements.

{include:problem-setup-2d.pdkbddl}

; This indicates the restricted depth of nesting

; that will be compiled

(:depth 2)

; [ag]XYZ corresponds to agent ag believing XYZ

; <ag>XYZ corresponds to agent ag thinking XYZ is possible

; (!fluent) is used in lieu of (not (fluent)) to make

; the task of parsing easier.

(:goal

[b][c](!secret a)

[c](secret a)

)

)

domain-4ag.pdkbddl

(define (domain grapevine)
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; This specifies the finite number of agents

(:agents a b c d)

{include:domain.pdkbddl}

)

domain.pdkbddl

(:types loc)

(:constants )

; Predicates marked with {AK} are "Always Known".

; The remaining predicates will be believed to

; some nesting by the agents.

(:predicates

(secret ?agent)

{AK}(at ?agent - agent ?l - loc)

{AK}(connected ?l1 ?l2 - loc)

{AK}(initialized)

)

(:action move

; The derive-condition specifies the condition for

; mutual awareness. "always" translates to True,

; while "never" translates to False.

:derive-condition always

:parameters (?a - agent ?l1 ?l2 - loc)

63



:precondition (and (at ?a ?l1)

(connected ?l1 ?l2)

(initialized))

; Note again that we use (!at ...) rather than

; the common PDDL style of (not (at ...))

:effect (and (at ?a ?l2) (!at ?a ?l1))

)

(:action share

; This condition stipulates that agents are aware

; of this action when they are "at" the location.

; The parameter ?l is bound to the ?l listed in

; the :parameters section, and $agent$ is a stand-in

; for every agent in the domain.

:derive-condition (at $agent$ ?l)

:parameters (?a ?as - agent ?l - loc)

; Note that belief can be part of the precondition.

:precondition (and (at ?a ?l)

(initialized)

[?a](secret ?as))

; Quantification will include all agents, including

; the acting one.

:effect (and

(forall ?a2 - agent
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(when

(and (at ?a2 ?l)

<?a2>(secret ?as))

[?a2](secret ?as)))

)

)

(:action fib

:derive-condition (at $agent$ ?l)

:parameters (?a ?as - agent ?l - loc)

:precondition (and (at ?a ?l)

(initialized)

[?a](secret ?as))

:effect (and

(forall ?a2 - agent

(when

(and (at ?a2 ?l)

<?a2>(!secret ?as))

[?a2](!secret ?as)))

)

)

(:action initialize

:derive-condition never

:precondition (and)

:effect (and

(initialized)

(forall ?ag - agent

[?ag](secret ?ag))

)

65



)

problem-setup-2d.pdkbddl

(:domain grapevine)

(:objects l1 l2 l3 - loc)

; This allows us to project to individual agents, and is

; not discussed in this paper.

(:projection )

; The task of valid_generation is to create a plan. To

; confirm a plan instead, valid_assessment can be used,

; along with a list of actions in a :plan field.

(:task valid_generation)

; The :init-type indicates the assumption of the root

; agent. Here, it means that every RML not listed is

; presumed to be possible.

(:init-type complete)

(:init

; Map

(connected l1 l2)

(connected l2 l1)

(connected l2 l3)

(connected l3 l2)

; Agents all in l1

(forall ?ag - agent (at ?ag l1))
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; Agents all believe others think secrets are possible

(forall ?ag1 - agent

(forall ?ag2 - agent

(forall ?s - agent

(and

[?ag1]<?ag2>(secret ?s)

[?ag1]<?ag2>(!secret ?s)

))))

)

Appendix B.2. Envelope

The structure of this domain is that two agents observe a secret in an en-

velope, and they update their nested belief about the truth/falsehood of that

secret. We consider the viewpoint of both the first and second agent to open

the envelope in this setting. In PDKBDDL:

PDKBDDL

(define (domain envelope)

(:agents alice bob)

(:types )

(:predicates (secret) )

(:action check

:derive-condition always

:parameters (?ag - agent)

:precondition (and)

:effect (and (when (secret) [?ag](secret))

(when (!secret) [?ag](!secret)))

)

)
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(define (problem future-reasoning)

(:domain envelope)

(:projection )

(:depth 2)

(:task valid_assessment)

(:init-type complete)

(:init

(forall ?ag1 - agent (and

<?ag1>(secret)

<?ag1>(!secret)

(forall ?ag2 - agent (and

[?ag2]<?ag1>(secret)

[?ag2]<?ag1>(!secret)))))

(secret)

)

(:goal (and [bob][alice](secret)))

(:plan

(check bob)

(check alice)

)

)

Notice that the agents begin believing the secret (and its negation) is pos-

sible. Also, they believe that the other agents thinks it possible as well. The

action to check is extremely compact and simple: for the agent that checks,

they’ll learn the true value of the secret.

With the mutual awareness aspect of RP-MEP, we have a further ramifi-
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cation that if the agent believes the secret (resp. its negation) when the other

agents checks, then they’ll come to believe the other agent believes (resp. doesn’t

believe) it as well. The syntax used above is to verify that the plan [(check bob),

(check alice)] achieves the goal of [bob][alice](secret).

This is readily handled by RP-MEP. After the first action, bob believes the

secret, and through the ancillary effects bob comes to believe alice does as well

after the second action. However, the reversed plan no longer works:

PDKBDDL

...

(:plan

(check alice)

(check bob)

)

...

Here, bob would need to retain the information that alice believes either the

secret or its negation, and then reconcile that disjunctive fact with their own

discovery of the true value. We also see this phenomenon in the Hattari domain.

Appendix C. Encoding Ancillary Effects

Here we demonstrate the encoding of the core concepts of RP-MEP – an-

cillary effects – in both our modelling language (PDKBDDL), as well as that

of MEPK (EPDDL). Most of the ancillary effects that we handle as part of the

preprocessing are natively handled by the MEPK planner, and these examples

serve to illustrate the commonalities.

Appendix C.1. Negation Removal

The first example is a simple domain to demonstrate the impact of negation

removal, corresponding to Eqn (1). We list the entire domain and problem

for both languages, but subsequent examples will just show the relevant action

descriptions for the particular phenomenon.
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PDKBDDL

(define (domain negation-removal)

(:agents a)

(:types )

(:constants )

(:predicates (p) (q))

(:action apply

:derive-condition always

:precondition (and )

:effect (and [a](p))

)

(:action check

:derive-condition always

:precondition (and (not <a>(!p)))

:effect (q)

)

)

(define (problem prob)

(:domain negation-removal)

(:projection )

(:depth 2)

(:task valid_generation)

(:init-type complete)

(:init

<a>(p)

<a>(!p)

)

(:goal (q))
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)

Note that the general structure of these examples are to make the goal fluent

(q) true, which can only occur in the action sequence [apply,check]. It is the

‘check’ action that checks (through its precondition) that the effect of ‘apply’ is

correctly handled. Here is the equivalent problem for EPDDL used by MEPK:

EPDDL

(define (domain negation-removal)

(:objects)

(:agents a )

(:predicates (p) (q) )

(:action apply

:category (ontic)

:parameters ()

:precondition (True)

:effect (<{(True)} {(K_a (p))}>))

(:action check

:category (ontic)

:parameters ()

:precondition (not (DK_a (not (p))))

:effect (<{(True)} {(q)}>))

(:init (and (DK_a (p)) (DK_a (not (p)))))

(:constraint (True))

(:goal (q))

)

The correspondence between the languages is fairly direct. For every ‘[agent]’

in PDKBDDL, we have ‘K agent’ in EPDDL, etc. Both planners successfully
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handle this problem, as it only requires removing the negated information of an

effect from the knowledge base.

Appendix C.2. Closure

Next, we consider the application of logical closure to effects (cf. Eqn (2)).

PDKBDDL

...

(:action apply

:derive-condition always

:precondition (and )

:effect (and [a](p))

)

(:action check

:derive-condition always

:precondition (and <a>(p))

:effect (q)

)

...

EPDDL

...

(:action apply

:category (ontic)

:parameters ()

:precondition (True)

:effect (<{(True)} {(K_a (p))}>)

)

(:action check

:category (ontic)
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:parameters ()

:precondition (DK_a (p))

:effect (<{(True)} {(q)}>)

)

...

Again, we find that both RP-MEP and MEPK readily handle this situation.

Appendix C.3. Inverted Closure

Corresponding to Eqn (3), the inverted closure ensures that the knowledge

base doesn’t contain information that would entail something we are removing.

Once again, both RP-MEP and MEPK handle this situation equally well.

PDKBDDL

...

(:action apply

:derive-condition always

:precondition (and )

:effect (and (not <a>(p)))

)

(:action check

:derive-condition always

:precondition (and (not [a](p)))

:effect (q)

)

...

(:init [a](p) )

...
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EPDDL

...

(:action apply

:category (ontic)

:parameters ()

:precondition (True)

:effect (<{(True)} {(not (DK_a (p)))}>)

)

(:action check

:category (ontic)

:parameters ()

:precondition (not (K_a (p)))

:effect (<{(True)} {(q)}>)

)

...

(:init (K_a (p)))

...

Appendix C.4. Uncertain Firing

The final ancillary effect, corresponding to Eqn (4), highlights where the

two approaches diverge. “Uncertain firing”, as identified in the text, is a known

phenomenon for belief update in action theories with partial observability. The

distinguishing factor is that this inference involves reasoning about how an action

affects the world. The previous three examples simply refer to ramifications of

maintaining a consistent KDn knowledge base.

From the PDKBDDL, notice that the agent begins thinking (q) must be

false, but then comes to think it may be possible.
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PDKBDDL

...

(:action apply

:derive-condition always

:precondition (and )

:effect (and (when (p) (q)))

)

(:action check

:derive-condition always

:precondition (and <a>(q))

:effect (r)

)

...

(:init [a](!q) )

(:goal (r))

...

The corresponding EPDDL, with an added effect to ensure that the agent

knows about the conditional effect (i.e., “K a (p) → K a (q)”) is as follows:

EPDDL

...

(:action apply

:category (ontic)

:parameters ()

:precondition (True)

:effect (<{(p)} {(q)}>

<{(K_a (p))} {(K_a (q))}>)

)

(:action check
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:category (ontic)

:parameters ()

:precondition (DK_a (q))

:effect (<{(True)} {(r)}>)

)

...

(:init (K_a (not (q))))

(:goal (r))

...

MEPK does not handle this case. The reason being is that any ramification

that involves knowledge about the impact an action has on the world is not cap-

tured by the planner natively. In order to cover the case of uncertain firing, the

ramification must be written manually. This would correspond to the domain

author specifying an effect of the form:

EPDDL

<{DK_a (p)} {DK_a (q)}>

While this is a minor modification to make the domain work correctly with

MEPK, note that it is a ramification of sorts that needs to be covered auto-

matically. Otherwise, all ramifications become essentially those that must be

written by hand. See Section 8.1.2 for further discussion.

While we do not detail an example of conditioned mutual awareness, the im-

pact is the same. MEPK does not have a native treatment of such phenomenon

(i.e., subsets of agents that are mutually aware of the impact an action has),

and thus must be modelled by hand.

Appendix D. PEKBs for Efficient Planning

Here, we outline a theory of Proper Epistemic Knowledge Bases (PEKB)

that are suitable for epistemic planning in a KDn/KD45n context.
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Appendix D.1. PEKBs

In this work, we expand the theory of PEKBs for the logic of KDn and

KD45n, suitable for representing epistemic planning problems on top of STRIPS-

based planners. The choice of PEKBs is suitable for two reasons:

1. The syntactic restrictions imposed by PEKBs that prevent disjunction and

infinite nesting are consistent with the syntactic restrictions employed by

STRIPS-based planners, in which arbitrary disjunction is not permitted,

and the set of literals (fluents) in a planning problem are finite. In this

sense, using PEKBs increases the expressiveness of the STRIPS language

to include epistemic formulae.

2. PEKBs come with nice logical and computational properties, as we show

here. First, a consistent PEKB — that is, one with no contradictory state-

ments — is logically separable, which means the literals in the knowledge

base do not interact to produce new formulae. Further, a consistent PEKB

can be queried in polynomial time without a pre-compilation step such as

the one used by Lakemeyer and Lespérance [40], and can be queried in

constant time with an exponential pre-compilation step. Finally, a consis-

tent PEKB can be updated with new literals and remain consistent using

a polynomial-time algorithm.

Thus, given these two above properties, PEKBs make a suitable representa-

tion for extending classical planning over belief bases. In the remainder of this

appendix, we prove these properties of PEKBs and analyse their complexity.

Appendix D.2. Logical Separability in PEKBs

The property of logical separability of formulae in PEKBs is a key property

in the complexity analysis of PEKBs.

Definition 10. Logical Separability [40]

The set of RMLs P is logically separable if and only if for every consistent set
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of RMLs P ′ the following holds:

if P ∪ P ′ |= ⊥ then ∃ϕ ∈ P, s.t. P ′ ∪ {ϕ} |= ⊥

Intuitively, a set of formulae is logically separable if we cannot infer anything

by combining two or more formulae from the set. E.g., {�ip,�i(p ⊃ q)} is not

logically separable, because we can infer �iq from the combination of the two

formulae in the set. The set {�ip,�i(p ⊃ q)}∪{^i¬q} is inconsistent, but ^i¬q

is consistent with both other formulae individually. Logical separability plays

an important role later, as examples such as the one above are forbidden. The

core issue is the use of disjunction (manifest in the example as an implication)

which opens the door to case-based reasoning and far more complex issues when

it comes computing all possible ramifications.

To simplify the notation, we will denote a PEKB as a conjunction

Γ

∧ ^iψi1 ∧ . . . ∧ ^iψim ∧�iχ
i
1 ∧ . . . ∧�iχ

i
n

∧ ^jψj1 ∧ . . . ∧ ^jψjm ∧�jχ
j
1 ∧ . . . ∧�jχ

j
n

∧ · · ·

Here, Γ is a conjunctive propositional formula, and we have grouped the �

and ^ operators for each particular agent so that each ψ and χ symbols can be

used to unambiguously identify the outermost operator.

Theorem 4. Given a PEKB P in KDn assumed to be in the form above, we

have that P |= ⊥ iff at least one of the following holds:

(a) Γ |= ⊥

(b) ψik ∧ χi1 ∧ . . . ∧ χin |= ⊥ (for some agent i and index k)

(c) χi1 ∧ . . . ∧ χin |= ⊥ (for some agent i).

78



Proof. A proof for the logic Kn (for which only parts (a) and (b) above are

required) is presented by Bienvenu [9] (see Theorem 1, part (3)) for the single

agent case. It is straightforward to see that with the addition of the axiom D,

that part (c) must be added as a consistent PEKB cannot contain the formula

�i⊥. Finally, we note that Bienvenu’s [9] proof extends to the multi-agent

case KDn because two or more agents can believe contradictory propositions in

KDn— it is only an agent’s internal beliefs that must be consistent.

Following directly from KDn, we can use the following lemma (cf. [34, 15]):

Lemma 1. ϕ |= ψ implies ^iϕ |= ^iψ and �iϕ |= �iψ

Theorem 5. Given a consistent PEKB P and RML ψ in KDn, if P |= ψ then

∃ϕ ∈ P , s.t. ϕ |= ψ

Proof. We prove this inductively on the structure of ψ. Assume P = (Γ∧^iψ1∧

. . . ∧ ^iψm ∧�iχ1 ∧ . . . ∧�iχn).

The case of ψ ≡ γ, with γ being some conjunct in Γ, is straightforward

because PEKBs contain no disjunction. For the ψ ≡ �iψ′ case, P |= �iψ′

iff P ∧ ^i¬ψ′ |= ⊥. From Theorem 4 and the assumption that the PEKB is

consistent, it follows that χ1 ∧ . . . ∧ χn |= ψ′. By induction, there must be

some χk ∈ {χ1, . . . , χn} such that χk |= ψ′. From Lemma 1, we know that

�iχk |= �iψ′ and that �iχk ∈ P , so this case holds.

The case of ψ ≡ ^iψ′ is similar. If P |= ^iψ′, then from Theorem 4, it follows

that either for some ψj ∈ {ψ1, . . . , ψm}, we have that ψj ∧ χ1 ∧ . . . ∧ χn |= ψ′,

or that χ1 ∧ . . . ∧ χn |= ψ′. By induction, it must be that ψj |= ψ′ or χk |= ψ′

for some χk ∈ {χ1, . . . , χn}. From Lemma 1 and axiom D, we know that either

^iψj |= ^iψ′ (where ^iψj ∈ P ), or �iχk |= ^iψ′ (where �iχk ∈ P ); so this

case holds. From the three cases, the theorem holds.

From the above theorem, it is clear to see that if a PEKB is inconsistent,

this inconsistency can be detected by checking all pairwise RMLs. Theorem 5

provides us with a very direct and tractable procedure for inference with PEKBs.

The following corollary follows directly from Definition 10 and Theorem 5.
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Corollary 1. A consistent PEKB in KDn is logically separable.

Corollary 1 is an important property in the context of the computational

complexity of RP-MEP: given a PEKB P in KDn with n elements, to update

it with a new RML ϕ, we only need to check ϕ against each element in P to

check if it is inconsistent with the belief base, which is in O(n · d) (with d being

the depth of the RML). Thus, detecting inconsistency (and performing belief

update), requires only a pairwise check of all elements in the PEKB, which has

time complexity of just O((n · d)2).

Appendix D.3. Entailment in Consistent PEKBs

For definition purposes, we consider the space of all PEKB ’s as a partially-

ordered set (poset) (R, |=), in which R is the set of all RMLs. We use P and Q to

refer to subsets of R (that is, P and Q are PEKBs), and we use P to denote the

PEKB that contains the negation of every RML in P ; that is P = {¬ϕ | ϕ ∈ P}.

Figure D.2 shows a Hasse diagram of a poset. The poset is bounded, with the top

element ^^^p and the bottom element ���p. We only focus on posets across

RMLs with the exact same prefix of agent modalites. That is, sequences of either

� or ^ operators that use the some ordering of agents. The appropriateness of

this simplification will become clear in Definition 12 and Theorem 6.

Definition 11. Upwards and downwards closure

Given an RML ϕ, we define the upward closure ↑ϕ of ϕ as the upward closure

with respect to its poset, defined as:

↑ϕ = {ψ | ϕ |= ψ}

The downward closure of l, denoted ↓ϕ, is just ↑¬ϕ; that is ↓ϕ = {ψ | ψ |= ϕ}.

The upward closure of a PEKB P is ↑P =
⋃
ϕ∈P ↑ϕ. The downward closure

of a PEKB P is defined as ↓P =
⋃
ϕ∈P ↓ϕ, or alternatively ↓P = ↑P .

Intuitively, the upward closure of a PEKB ↑P is all RMLs that are entailed

by P ; and the downwards closure ↓P is all RMLs that entail an RML in P .

Thus, ↑�ip = {�ip,^ip}; and ↓^ip = {�ip,^ip}.
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���p

�^�p^��p ��^p

^�^p^^�p �^^p

^^^p

Figure D.2: A representative Hasse diagram with bottom element ���p. The shaded set

represents ↓�^^p, which would be removed if �^^p was erased from a PEKB containing

���p. The shaded formula ^��p should be the RML that remains, because it is the maximal

RML in ↑���p that is not in with ↓�^^p.

We introduce the new notation for closure here to unify the notation of

upward/downward closure that the main text did not require (↑ is analogous

to Cl, and ↓ is newly introduced). The upward or downward closure of any

PEKB is finite. The logical separability of PEKBs means that combining two

RMLs cannot produce any new RMLs that we cannot get from inferring from

just one. For each RML, the number of RMLs that it entails is finite: we can

only repeatedly apply the axiom D, thus traversing up the poset lattice, until

we reach the top element.

Definition 12. Algorithm for PEKB Entailment in KDn

Given a consistent PEKB P and a query ϕ that is a conjunction of RMLs,

we define KDn entailment P |=PEKB ϕ as:
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P |=PEKB p iff p ∈ P

P |=PEKB ϕ ∧ ψ iff P |=PEKB ϕ and P |=PEKB ψ

P |=PEKB ¬ϕ iff P 6|=PEKB ϕ

P |=PEKB �iϕ iff for some �iψ ∈ P , {ψ} |=PEKB ϕ

P |=PEKB ^iϕ iff for some �iψ ∈ P , {ψ} |=PEKB ϕ or

for some ^iψ ∈ P , {ψ} |=PEKB ϕ

Theorem 6. The entailment algorithm defined by |=PEKB is sound and com-

plete in KDn: i.e., P |=PEKB ϕ iff P � ϕ, where � is the standard entailment

defined in Section 2.

Proof. The cases for the propositional primitive, conjunction and negation are

straightforward from their definition. Given that we assume the query is a

conjunction of RMLs, the conjunction in Definition 12 is the only inductive

argument required – this follows the standard notion of entailment for a con-

junctive query. Therefore, we must only consider P |=PEKB ϕ where ϕ is an

RML.

In this case, we can appeal to Theorem 1 (capturing the ways one RML

entails another) and Theorem 5 (capturing logical separability) to ensure that

P |=PEKB ϕ if and only if P |= ϕ, where ϕ is an RML.

Theorem 7. Entailment for consistent PEKBs in KDn has worst-case com-

plexity of O(|P | · |ϕ| · d), in which |P | is the PEKB size, |ϕ| is the number of

conjuncts in the query, and d is the longest RML in the PEKB or query.

Proof. Given the logical separability, we simply need to compare each element

in the PEKB with each element of the conjunction in the query, which is |P |·|ϕ|.

For each query, the worst case is to compare along the length of the RML using

the last two rules until a propositional literal is encountered, thus the worst case

complexity is O(|P | · |ϕ| · d).
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Definition 13. Entailment as closure

Given a consistent PEKB P , and a query ϕ in KDn that is a conjunction of

RMLs, we define entailment as: P |=PEKB ϕ iff for all ψ ∈ ϕ, ψ ∈ ↑P . In other

words, if we compute the closure of P , we need only check containment in the

closure for every RML in the conjunction ϕ.

The soundness and completeness of this holds trivially from the definition

of closure.

Theorem 8. Entailment as (upward) closure for consistent PEKBs has worst-

case complexity of O(|P | · |ϕ| · 2d), in which |P | is the size of the PEKB, |ϕ| is

the number of conjuncts in the query, and d is the longest RML in the PEKB

or query. However, if each RML is indexed using, for example, hashing when it

is computed as part of a the closure, complexity is O(|ϕ|) for any query once

the closure is computed.

Proof. The size of ↑P is |P | · 2d, because for each RML of length d, there are

2d RMLs that follow from it by applying axioms K and D. Thus, the closure

is computed in O(|P | · 2d) time, and then ϕ queries must be run against each

RML in ↑P , which has a worst case of O(|P | · |ϕ| · 2d). If each RML in ↑P is

indexed using hashing and the depth is bounded, the lookup becomes constant,

so the complexity is just looking up |ϕ| number of queries.

Using indexing still requires a compilation of ↑P , which has a worst-case

complexity of O(|P |·2d). However, if there are multiple queries to be run against

the knowledge base, using compilation and hashing as a way of ammortizing the

cost is valuable. In Section 4, we showed how this compilation is encoded within

a planning model, so the lookup provides significant value.

Appendix D.4. Belief Erasure and Update in PEKBs

Here, we outline a polynomial-time algorithm for belief update — a key

property required for PEKBs to be useful in planning.
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Our definition of belief update in PEKBs uses the ‘forget-then-conjoin’ ap-

proach of first removing any beliefs that conflict with the update, and then

adding the update. This ‘forgetting’ process, which Katsuno and Mendelzon

[36] term belief erasure, is not simply the act of subtracting the negation of

the RMLs in the update, because we must also remove any RML that implies

the negated update. For example, given the PEKB {^ip,�ip}, removing ^ip

should also remove �ip; otherwise, the belief base would still entail ^ip. Fur-

ther, a belief erasure operator should follow the principle of minimal change:

when removing belief from an existing belief base, we should remove only what

we must so that the belief base no longer entails the removed belief.

Definition 14. Prime PEKBs

A PEKB P is prime if and only if all elements in P are prime implicates of P

(maximal elements); that is, for all ϕ,ψ ∈ P , if ϕ |= ψ then ψ |= ϕ. The set of

maximal elements of a PEKB is denoted max(P ).

Note that for any PEKB P (prime or otherwise) and an RML ϕ, we have

that P |= ϕ iff ϕ ∈ ↑P .

Definition 15. Belief erasure in PEKBs

Given PEKBs P and Q, we define P _ Q as the belief erasure of Q from Q as

follows:

P _Q = max(↑P \ ↓Q)

That is, take the upward closure of P and remove the downward closure of Q,

removing any non-prime RMLs. This removes Q and anything that implies it,

leaving those things that are in the upward closure of P that do not entail Q.

Theorem 9. The complexity of P _ Q, where P and Q are both prime, is

O(|P | · |Q| · d), in which d is the depth of the longest RML in P or Q. If

instead we calculate P _Q by calculating ↑P and ↓Q, and the subtracting their
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difference, the complexity is O(2|P | · 2|Q| · d).

Proof. Given the logical separability of PEKBs, we need to only calculate the

erasure of each pair in P ×Q. This erasure can be done linearly in the depth of

the RMLs. For each modal operator index that is �i in both ϕ and ψ, create

a new RML that is equivalent to ϕ but with ^i at that index, and then take

the top elements of this set. This can be calculated by traversing up the poset

until we reach the top elements (see Figure D.2 for an example), which has a

maximum depth of d.

If we instead calculate the upward and downward closure of P and Q re-

spectively, we need to just iterate through the 2|P | × 2|Q| pairs and remove any

from ↑P that occurs in ↓Q. Checking each pair has linear complexity in d,

although as with entailment, this operation can be done in constant time with

indexing.

Given a belief erasure operator, belief update for a PEKB is straightforward:

update is forget (erase) then conjoin, eliminating any RML that is not prime.

Definition 16. Belief Update in PEKBs

Given PEKBs P and Q, we define belief update of P with Q, denoted as P ^Q,

as follows:

P ^Q = max((P _Q) ∪Q)

That is, remove anything that conflicts with Q, then add the elements in Q,

and take the maximal elements from the result.

The complexity of this is just the complexity of belief erasure, with the added

overhead of adding the new elements in Q into the PEKBs.

This update operator observes the property of relevant minimal change [57].

Because PEKBs are logically separable, it is clear to see that any RMLs that

are not related to the new RMLs remain in the knowledge base.

Thus, we have defined belief erasure and belief update for PEKBs.
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Appendix D.5. Analysis of Belief Update and Erasure Operators

In this section, we extend the results by Miller and Muise [48] that analyse

these operators with respect to the classic belief update postulates from Katsuno

and Mendelzon [36]. Specifically, we include proofs that did not appear in

the published version. These results show that the belief update and erasure

operators are satisfiable and correct.

Appendix D.5.1. KM Postulates for Belief Update

Katsuno and Mendelzon [36] propose a set of postulates for belief update

called the Katsuno-Mendelzon (KM) postulates. These postulates, which echo

the AGM postulates for belief revision [2], specify eight properties that a belief

update operator should have to be an appealing update mechanism (phrased

using our notation):

U1 P ^Q |= Q

U2 If P |= Q then P ^Q ≡ P

U3 If P and Q are satisfiable, then P ^Q is satisfiable

U4 If P ≡ P ′ and Q ≡ Q′ then P ^Q ≡ P ′ ^Q′

U5 (P ^Q) tR |= P ^ (Q tR)

U6 If P ^Q |= R and P ^R |= Q then P ^Q ≡ P ^R

U7 If P is complete then (P ^Q) t (P ^R) |= P ^ (Q ∨R)

U8 (P ∨Q) ^R ≡ (P ^R) ∨ (Q ^R)

Because PEKBs do not permit disjunction, U7 and U8 are not relevant for

our belief update operator.

Despite their widespread use, it is not commonly accepted that all postulates

are desirable for all belief update operators. Herzig and Rifi [30] argue that

only postulates U1, U3, U8, and (possibly) U4 should be satisfied by all update

operators.
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Theorem 10. KM postulates U1, and U3-U6 hold for PEKB belief update

operator ^. U2 holds if P is satisfiable.

Proof. The proofs for U1 and U4 are straightforward.

U2: From the definitions of ^ and _, P ^Q is equivalent to max(↑P \↓Q)tQ.

If P |= Q and P is satisfiable, we know that ↑P ∩ ↓Q = ∅, and therefore

↑P \ ↓Q = ↑P . Further, if P |= Q, we know that ↑Q ⊆ ↑P , and therefore,

↑P ∪↑Q = ↑P , and therefore max(↑P ∪↑Q) = max(↑P ), meaning that postulate

U2 holds.

U3: Assume that the postulate does not hold, so P 6|= ⊥ and Q 6|= ⊥, but

P ^Q |= ⊥. If this is the case, then there is some φ such that ↑P \ ↓Q |= φ and

↑Q |= ¬φ. However, from the definition of downwards closure, we know that

↓Q = ↑Q, meaning that ↑P \↑Q |= φ. If ↑Q |= ¬φ then it must be that ↑Q |= φ,

and as a result, ↑P \ ↑Q 6|= φ, violating our assumption. Therefore, postulate

U3 holds.

U5: Assume that the postulate does not hold. This implies that there is

some φ such that ↑P \ ↓Q tR t (Q t R) |= φ and ↑P \ ↓Q t (Q t R) 6|= φ.

Because QtR occurs in the latter, φ cannot be entailed by QtR. This implies

that: (a) ↑P \ ↓Q tR |= φ; but (b) ↑P \ ↓Q 6|= φ. From (a), we know that that

↑P |= φ, and so for (b) to hold, it must be that ↓Q |= φ. However, ↓Q tR |= ↓Q,

meaning that ↑P \ ↓Q tR 6|= φ, which contradicts (a). Therefore, postulate U5

holds.

U6: Assume that the postulate does not hold, then this means that if: (a)

↑P \ ↓Q t Q |= R and (b) ↑P \ ↓R t R |= Q, then there exists some φ such

that ↑P \ ↓Q t Q |= φ but ↑P \ ↓R t R 6|= φ (or vice-versa, but the cases are

symmetric). It cannot be that case that Q |= φ, otherwise from (b) it would

follow that ↑P \ ↓R t R |= φ, violating our assumption. Therefore, it must

be that P |= φ and Q 6|= φ, and (↑P \ ↓R) t R 6|= φ. Because P |= φ, it

must be that ↓R |= φ, and therefore R |= ¬φ. But from (a), this implies that

↑P \ ↓Q t Q |= ¬φ, contradicting our assumptions. Therefore postulate U6

holds.
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Katsuno and Mendelzon [36] present the so-called representation theorem,

which shows the completeness of the belief update operator. It is clear that the

pre-order on interpretations defined by Katsuno and Mendelzon can simply be

defined over the poset corresponding to the elements in the PEKB. Due to the

logical separability of PEKBs, Definition 3 amounts to an equivalent notion of

Katsuno and Mendelzon’s representation theorem.

Appendix D.5.2. KM Postulates for Belief Erasure

Katsuno and Mendelzon [36] also propose a set of postulates for belief erasure

based on the principle of minimal change: when removing belief from an existing

belief base, we should remove only what we must so that the belief base no longer

entails the removed belief. These postulates phrased using our notation are:

E1 P |= P _Q

E2 If P |= Q then P _Q ≡ P

E3 If P is satisfiable then P _Q 6|= Q

E4 If P ≡ P ′ and Q ≡ Q′ then P _Q ≡ P ′ _Q′

E5 (P _Q) tQ |= P

E8 (P ∨Q) _R ≡ (P _R) ∨ (Q _R)

E8 does not make sense because PEKBs cannot contain disjunctive formulae.

Katsuno and Mendelzon [36] define an identity, a mirror of the identity

Harper introduced that expresses belief contraction in terms of set operations

and belief contraction [28]. Katsuno and Mendelzon’s identity can be expressed

as:

P _Q ≡ P u (P ^Q) (D.1)

in which P uQ = max(↑P ∩↑Q). Intuitively, this identity stipulates that erasing

Q should be the same as restricting the belief base to what would hold if the

negation of Q was added.
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Katsuno and Mendelzon [36] show that if the identity in Equation D.1 holds

and the ^ operator satisfies postulates U1-U4 and U8, then the _ operator satis-

fies postulates E1-E5 and E8. The following counterexample demonstrates that

Equation D.1 does not hold on our operators: P = {�ip} and Q = {^ip,^i¬p}.

From this, P _Q = {}, while P ^Q = {^ip,^i¬p}, which when intersected with

↑P leaves {^ip}.

Katsuno and Mendelzon [36] define a second identity between update and

erasure:

P ^Q ≡ (P _Q) tQ (D.2)

This mirrors the Levi identity for belief revision and contraction [42]. They

show that if this identify holds and the _ operator satisfies E1-E4 and E8, then

^ satisfies U1-U4 and U8. Equation D.2 is just our definition of belief update,

and Katsuno and Mendelzon’s theorem about the relationship between the two

sets of postulates holds:

Theorem 11. KM postulates E1, E3, and E4 hold for the PEKB belief erasure

operator. E2 holds if P is satisfiable.

Proof. The proofs for E1, E3 and E4 are straightforward, so are omitted.

E2: Assume that the postulate does not hold. Then, there is some φ such

that P _ Q 6|= φ but P |= φ (the reverse cannot hold because _ is defined as

set complement). From the definitions of _ and downwards closure, this implies

that ↑P \ ↑Q 6|= φ. For this to hold, it must be that ↑Q |= φ, which implies that

Q |= ¬φ. However, from the premise P |= Q, this implies that P |= ¬φ, which

contradicts the assumption P |= φ, so postulate E2 holds if P is satisfiable.

If P is unsatisfiable, postulate E2 not hold. A counterexample is P = {p,¬p}

and Q = {p}.

The E5 postulate does not hold. As a simple counterexample to this, consider

the PEKBs P = {�ip} and Q = {^ip}. Erasing Q from P will result in an

empty set, and then adding Q will result in {^ip}, which does not entail �ip.
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Finally, we note briefly on a controversial6 postulate — the recovery postu-

late:

(P _Q) ^Q |= P

This extends postulate E5, using ^ instead of t. The counterexample for E5

serves to show this postulate does not hold. However, we can characterise

precisely when postulate E5 and the recovery postulate are satisfied: when

Q = ↓Q. This follows directly from the definition of _.

6See a discussion of the issues surrounding the postulate in Makinson [46].
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