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Abstract

Genetic algorithms are applied to an impor-

tant, but little-investigated, network design

problem, that of recon�guring the topology

and link capacities of an operational network

to adapt to changes in its operating condi-

tions. These conditions include: which nodes

and links are unavailable; the tra�c patterns;

and the quality of service (QoS) requirements

and priorities of di�erent users and applica-

tions. Dynamic recon�guration is possible in

networks that contain links whose endpoints

can be easily changed, such as satellite chan-

nels or terrestrial wireless connections. We

report results that demonstrate the feasibility

of performing genetic search quickly enough

for online adaptation.

1 INTRODUCTION

There is a growing need for networks to adapt to their

operating conditions in order to maintain acceptable

levels of performance. Networks must increasingly be

able to continue to function e�ectively despite obsta-

cles such as the disabling of portions of the network

by cyberattacks or large 
uctuations in the tra�c pat-

terns and service requirements. Network adaptation

potentially enables not just �ne-tuning in response to

normal variations but also survivability of the network

and its critical applications in the face of catastrophic

failures and large-scale shifts in operating conditions.

Although dynamic routing solutions (e.g., [2]) to some

of these problems exist, routing has natural limita-

tions. For example, a routing algorithm cannot trans-

mit data between nodes for which cyberattacks have

disabled all connecting paths, nor can it transmit a

high bandwidth of data between nodes which have only

a low-bandwidth path between them. Robust network

adaptation requires changes to the underlying network

infrastructure (i.e. topology and link capacities) in re-

sponse to changes in operating conditions.

Despite this need, the problem of automatic, dynamic

redesign of functioning networks has received little at-

tention. One reason for this is that network links were

traditionally cables and hence not dynamically recon-

�gurable like satellite or wireless links. Second, the op-

timization algorithms and computers of the past were

not capable of �nding a new network con�guration fast

enough to support adaptive recon�guration.

In this paper, we investigate the use of a genetic algo-

rithm to dynamically redesign a network with recon-

�gurable links. Before discussing our work, we provide

a brief review of some of the previous work on the use

of genetic algorithms for (static) network design.

1.1 PREVIOUS WORK

There is not just one problem in network design but

rather a whole family. There are three di�erent compo-

nents of a network architecture: the topology, the link

capacities, and the routing policies. Di�erent prob-

lems work with di�erent subsets of these components.

There are also three di�erent basic criteria on which

to judge a network: cost, reliability, and quality of ser-

vice (QoS). Di�erent problems use di�erent subsets of

these criteria, di�erent measures of these criteria, and

combine the criteria they do use in di�erent ways.

A major focus has been minimal spanning tree prob-

lems (e.g., [16, 1, 4]). The only network component

considered is the topology, and the topology is always

a tree. There have been some novel chromosome rep-

resentations used for these problems, including Pr�ufer

encoding [16, 1] and Hu�man trees [8].

When considering factors other than cost, the best

topology is generally a graph rather than a tree. Dif-



ferent problems in optimizing non-tree topologies arise

from di�erent de�nitions of the evaluation criteria. For

example, [13] and [7] use a probabilistic measure of re-

liability, while [9] and [17] use a measure of reliability

based on redundancy. Given a numbering of all possi-

ble links between all pairs of nodes, graph topologies

have been genetically represented as �xed length bi-

nary strings [13, 17] and as variable-length strings of

unique integers [7].

With knowledge of the network tra�c patterns, it is

also possible to optimize the link capacities and rout-

ing policies. In early work, [5] used genetic algorithms

to select a set of link capacities given a �xed topol-

ogy. More recently, with the bene�t of greater com-

putational power, researchers have investigated using

genetic algorithms to simultaneously optimize topol-

ogy and link capacities [18, 9] or all three components

of the network (topology, link capacity, and routing

policies) [12, 11]. It is possible to use a single chro-

mosome that represents all the required information

about a network (e.g., [12]) or to use separate repre-

sentations and solve for the di�erent components in

separate (nested) optimizations [11].

2 ADAPTIVE REDESIGN

2.1 PROBLEM STATEMENT

The adaptive network redesign problem is inherently

a dynamic problem, since network tra�c patterns, re-

quirements and priorities, and available resources (pri-

marily links and nodes) all change with time. In our

current work, we consider a snapshot of the problem at

a particular time, performing the adaptation by solv-

ing for each snapshot independently.

Let us consider a network that contains both �xed

(wired) links and recon�gurable links. We use a model

for the recon�gurable links that is based upon satel-

lites using a frequency-division multiplexing allocation

scheme. There is a �xed amount of total recon�g-

urable bandwidth available. This bandwidth is unidi-

rectional and is divided into identically sized chunks

called channels. Recon�gurable links consist of one or

more channels con�gured to have the same source node

and destination node. The bandwidth of the channels

of a recon�gurable link add, but the bandwidths of a

recon�gurable link and a �xed link do not add. In-

stead, the link with the higher bandwidth is used and

the other ignored. Each node has a limit on the num-

ber of channels it can send and receive, which is a type

of node-degree constraint [4].

The givens of the problem include:

� available nodes - This is the set of all nodes not

currently disabled by an attack or failure.

� available �xed links - This is the set of all �xed

links not currently disabled by an attack or failure.

Associated with each �xed link is a source node,

destination node, capacity, and inherent transmis-

sion delay (which is the delay associated with the

medium and does not include the delays due to

queueing). Note that, for the purposes of our model,

all �xed links are unidirectional; bidirectional links

are decomposed into two unidirectional ones.

� available channels - For a given problem, the total

number of channels, bandwidth per channel, and

inherent channel transmission delay are �xed.

� data 
ows - Each data 
ow has associated with it

the following information: source node, destination

node, priority rating (a positive integer with smaller

meaning higher priority), protocol (TCP or UDP),

required transmission delay, required dropped pack-

ets, and the statistics of the generated tra�c. We

model the tra�c as bursts of data of random num-

ber of bytes at random intervals, with Gaussian dis-

tributions for the number of bytes and the size of

the interval. The mean and standard deviation are

the required parameters for each of these distribu-

tions. Note that the quality of service (QoS) met-

rics (i.e., dropped packets and transmission delay)

refer to the service as perceived by the application,

not the network. In particular, a packet that is ini-

tially dropped but successfully retransmitted does

not count as dropped but does register a long trans-

mission delay. Hence, the dropped packets metric

only applies to UDP 
ows, since TCP resends all

dropped packets.

The variables over which to optimize are:

� con�guration of each channel - Zero to all avail-

able channels may be added to the network topol-

ogy. The source and destination nodes of each added

channel must be speci�ed.

The constraints to obey are:

� send and receive limits - The number of channels

with a particular node as its source (destination)

cannot exceed the send (receive) limit for that node.

The optimization criteria are:

1. connectivity - The measure of the degree to which


ows are totally disabled due to lack of connectivity

is the sum over all disconnected 
ows of 1

�i
, where

�i is the priority rating of the 
ow (recalling that a

lower �i means a higher priority). Note that TCP


ows will be disabled if there does not exist a path in

both directions between the source and destination

(to allow acknowledgements), while UDP 
ows only



require a path in the forward direction.

2. meeting transmission delay requirements -

The measure of the degree to which the network

does not meet the transmission delay requirements

is the sum over all connected 
ows for which the

requirement is not met of 1

�i
(Di � di), where Di is

the average measured delay (in seconds), di is the

required delay (in seconds), and �i is the priority

rating of the 
ow.

3. meeting dropped packets requirements - The

measure for the dropped packets requirements is the

sum over all connected 
ows for which the require-

ment is not met of 1

�i
(Pi�pi), where Pi is the aver-

age measured percent of packets dropped, pi is the

required percent of packets dropped, and �i is the

priority rating of the 
ow.

The three optimization criteria are combined into a

single score using a weighted sum, w1S1+w2S2+w3S3,

where Si is the score for the i
th criterion. The goal is

to minimize this combined score. For our experiments,

we used w1 = 100, w2 = 1, and w3 = 1.

2.2 GENETIC ALGORITHM

Representation - Each chromosome is a variable-

length list of recon�gurable link allocations, where

each allocation is a 3-tuple (S;D;C) containing the

source node (S), destination node (D), and the num-

ber of channels (C) connecting the source to the des-

tination. Only allocations with a non-zero number

of channels are included in the list. For example,

the chromosome [(6 3 1) (12 2 2)] indicates a recon-

�gurable link with 1 channel from node 6 to node 3,

and a recon�gurable link with 2 channels from node

12 to node 2.

Genetic Operators - We use three operators:

� Crossover - Combine all the allocations from both

parents into a single randomly sorted list. Proceed

through this list including each allocation in the

child chromosome if adding it does not violate any

constraints and if no allocation with the same source

and destination nodes has already been added.

� Local Mutation - Randomly select one allocation in

the parent and randomly choose to either increase

the number of channels by one or decrease it by

one. If the choice was an increase and if this vio-

lates constraints, then attempt to assign the entire

recon�gurable link allocation to a di�erent source

node or destination node; if none of these produces

a legal chromosome, then discard the child.

� Global Mutation - Randomly select a number be-

tween half and all-but-one of the allocations in the

parent. Randomly select this number of allocations

from the parent and add them to the new child.

Complete the child by randomly specifying the re-

maining available channels using the same algorithm

as the initialization procedure, described below.

Initialization - The initialization procedure �lls the

initial population with randomly generated chromo-

somes. To generate a random chromosome, it speci�es

one channel at a time until some resource (total chan-

nels, node send limits, or node receive limits) has been

fully exhausted. For each new channel, it randomly

selects source and destination nodes that have not yet

exhausted their send and receive limits, respectively.

If there is an existing recon�gurable link allocation be-

tween the pair of nodes, it adds an additional channel

to that allocation; otherwise, it creates a new alloca-

tion between the nodes containing one channel.

Evaluation Function - We have modi�ed NS, ver-

sion 2 [15], a packet-level network simulator, to com-

pute the percentage of dropped packets and the aver-

age transmission delay exhibitted, on a per-
ow basis,

by a network during simulation. The evaluation func-

tion �rst converts the chromosome into a description

of the represented network in the format expected by

NS. It then starts the modi�ed NS and sends NS the

network data. NS performs the simulation and re-

turns the QoS statistics. Finally, the evaluation func-

tion uses these statistics to compute the score given in

Section 2.1. We use a packet-level network simulator

rather than a computationally less expensive approach

in order to compute network statistics with greater re-

alism. However, as we discuss below, it is ine�cient

to restart NS from scratch for every evaluation (par-

ticularly because this means restarting its TCL inter-

preter), and this is something we need to change.

Population Management - The genetic algorithm

uses steady-state, worst-one-out replacement. The

population allows no duplicate members. Parents are

selected probabilistically using roulette-wheel selection.

Probabilities are distributed exponentially based upon

rank. The search terminates when the number of eval-

uations reached a threshold.

3 EXPERIMENTAL RESULTS

We had two goals for our experiments and two corre-

sponding sets of experiments. The �rst was to provide

concrete examples of the types of problems that adap-

tive network recon�guration can solve. The second

goal was to investigate the performance of the genetic

algorithm, particularly concentrating on scaling with

problem size and the tradeo� between the execution

time and the quality of the solution found.



Figure 1: The �rst network in the sequence. Note that

the dotted lines in the topology are the recon�gurable

links and the solid lines are the �xed links.

We approximate the search space size as

(M(M � 1))N=N ! (1)

where M is the number of nodes and N is the maxi-

mum number of channels. (There are M(M � 1) pos-

sible ways to assign a source and destination node to

each channel, and hence (M(M � 1))N ways to as-

sign sources and destinations to each of N channels.

However, the networks formed are not unique. For

any network with no two channels sharing the same

source and destination, there are N ! di�erent ways to

form this network; for other networks, there are less.

Hence, Equation 1 is an underestimate but is a good

approximation when N �M=2.)

All of our timing results were performed on a single

850-MHz Pentium. All times are divided into two com-

ponents: the number of total evaluations, which mea-

sures the e�ectiveness of the genetic algorithm search,

and the average time per evaluation, which measures

the e�ciency of the evaluation function.

In our experiments, all �xed links have a capacity of

1000 kbits/sec (except in the random network exper-

iment) and transmission delay of 10 msecs. Likewise,

all channels have a capacity of 1000 kbits/sec and

transmission delay of 10 msecs.

3.1 ILLUSTRATIVE EXAMPLES

A Sample Adaptation Sequence - We start by

examining a sequence of networks that could be snap-

shots of a single network as its operating conditions

change with time. They illustrate, in a simple-to-

understand scenario, the power of adaptive network

recon�guration.

There are three networks in the sequence, each with a

maximum total of four channels. The �rst network in

the sequence has �ve nodes. The tra�c 
ows, pictured

in Figure 1a, are typical of a server (node 1) with mul-

tiple clients (nodes 2-5). The clients communicate only

with the server and not with each other. The server

sends 400 kbits/sec to each client, while each client

Figure 2: The second network in the sequence. Note

that the heavier lines in the 
ows indicate higher pri-

ority tra�c.

Figure 3: The third network in the sequence.

sends 40 kbits/sec to the server, all using the TCP

protocol. The priorities are all 5, and the required

latency is 10 msecs (since it is using TCP, dropped

packets are not a criterion). There exist bidirectional

�xed links between nodes 1 and 4 and between nodes

1 and 5. Each node has a limit of 3 send channels and

3 receive channels.

Clearly, the best solution is the one shown in Figure 1b,

with four recon�gurable links, each containing 1 chan-

nel, that e�ectively form bidirectional links between

nodes 1 and 4 and between nodes 1 and 5. The solu-

tion thus provides a single-hop path for all 
ows.

The second network in the sequence is the same as

the �rst except for the addition of two high-priority

(priority 1) 
ows, one from node 2 to node 3 and the

other from node 3 to node 2 (e.g., a teleconference be-

tween two CEOs, or communication between two units

in battle). The 
ows are shown in Figure 2a. The new

optimal con�guration is that shown in Figure 2b, since

it provides full connectivity, a one-hop connection for

all high priority 
ows, and a maximum delay of two

hops for the lower priority 
ows.

The third network in the sequence is shown in Fig-

ure 3a and is the same as the second except that all

the �xed links have been disabled (e.g., due to a co-

ordinated cyberattack). It is now impossible to fully

connect all the nodes (4 unidirectional links can con-

nect at most 4 nodes), so there is a choice about which

node to leave out of the network. The best con�gu-

ration is to use the channels to form a ring network

between the four of the nodes, three of which must be



Figure 4: The �rst bottleneck network.

nodes 1, 2 and 3. An example of such a network is

shown in Figure 3b.

The genetic algorithm �nds all solutions always in well

under 500 evaluations. To perform 500 evaluations

requires 4 minutes, or 0.48 secs per evaluation. Almost

all of this time (between 0.4 and 0.45 seconds) is spent

restarting NS; by eliminating this restart, we could get

the runtime down to under 30 seconds.

Bottleneck Networks -We consider two more exam-

ple networks, larger than the previous ones. Both have

paths of �xed links with su�cient capacity to handle

the tra�c for any individual 
ow, but there exists a

bandwidth bottleneck when considering the 
ows in

aggregate. Recon�gurable links are used to relieve the

bottleneck.

The �rst \bottleneck" network is shown in Figure 4.

Each of nodes 1-5 sends data to each of nodes 6-10.

All 25 
ows are identical: transmitting an average of

200 kbits/sec, using the UDP protocol, having prior-

ity 2, and requiring 0% dropped packets (with no re-

quirement on latency). There are four available chan-

nels. Without the bene�t of the recon�gurable links,

all 5000 kbits/sec of the aggregate tra�c would travel

across the central link between nodes 11 and 12 (which

has capacity of only 1000 kbits/sec). An optimal solu-

tion is shown in Figure 4, using the recon�gurable links

(dotted lines) to relieve this bottleneck by bypassing

the central link. (There are �ve equivalent solutions.)

The second bottleneck network is shown in Figure 5.

Each of nodes 1-10 sends data to each of nodes 11-

20. All but one of the 100 
ows are identical: sending

an average of 50 kbits/sec, using the UDP protocol,

having priority 100 and required dropped packets 0%

(with no requirement on latency). The 
ow between

nodes 1 and 11 di�ers from the other 
ows in that

it has priority 1, which is much higher than the oth-

ers, and that it has a required latency of 10 msecs.

There are six available channels. As with the �rst

bottleneck network, without recon�gurable links, all

5000 kbits/sec of tra�c would travel across the cen-

Figure 5: The second bottleneck network. Note that

�ve channels form a single high-capacity link between

nodes 21 and 22, replacing the original lower-capacity

�xed link.

tral link between nodes 21 and 22 (which has capacity

of only 1000 kbits/sec). The solution is pictured in

Figure-5b: use �ve channels to relieve the bottleneck

by replacing the central link with a higher-capacity re-

con�gurable link, and use the sixth channel to directly

connect nodes 1 and 11 and thereby provide the re-

quired latency. Note that in going from the �rst to

the second network the optimal strategy changes from

bypassing the central link to building up the central

link.

The genetic algorithm consistently �nds an optimal

solution to the �rst bottleneck problem in under 1000

evaluations. These 1000 evaluations required 20.5 min-

utes, an average of 1.23 seconds per evaluation. Ac-

cording to Equation 1, the search space size is 1.3x107.

The genetic algorithm consistently �nds the solution

to the second problem in under 10,000 evaluations,

requiring 394 minutes (2.36 seconds per evaluation).

The search space size is 1.4x1013.

3.2 PERFORMANCE INVESTIGATIONS

We investigate the performance of the genetic algo-

rithm on families of networks, where all the networks

in a family have the same basic statistical properties

but di�erent sizes. This permits us to investigate the

scaling properties of the genetic algorithm as a func-

tion of the size of the network. We used �ve di�erent

families, one family of \ring" networks plus four fam-

ilies of random networks.

For each network used to explore performance, we per-

formed the same set of experiments, running the ge-

netic algorithm ten times with each of the following

sets of parameters:

� popsize = 20, probdecay = 0.7, maxevals = 100

� popsize = 40, probdecay = 0.8, maxevals = 300

� popsize = 100, probdecay = 0.9, maxevals = 1000

� popsize = 300, probdecay = 0.967, maxevals = 3000



Figure 6: The 8-node, 4-channel ring network.

� popsize = 1000, probdecay = 0.99, maxevals = 10000

Here, popsize is the population size, probdecay is the

parameter that determines the exponential distribu-

tion of parent selection probabilities, and maxevals is

the number of evaluations before terminating the run.

A small population size and high selection pressure

(small probdecay) mean that the genetic algorithm will

converge (through loss of diversity) quickly, and are

hence appropriate for a short run.

Ring Networks - We start by examining perfor-

mance on a family of highly contrived networks, which

we call \ring" networks. This family of networks has

three important properties. First, it contains networks

with arbitrarily large and small numbers of nodes and

available channels, hence allowing an investigation of

how the algorithm scales with network size. Second,

each network has a known best solution and hence al-

lows comparison with this known optimum. Third,

the optimization problems are especially di�cult for

a genetic algorithm and hence provide worst-case sce-

narios.

A member of this family has N channels and a net-

work with M = kN nodes, where k and N are pos-

itive integers. There are M identical 
ows, with one


ow from node i to node (i � 1) for each i = 2; :::;M

and one 
ow from node 1 to node M . Each 
ow uses

the TCP protocol, has a required latency of 10 msecs,

and transmits 800

k
kbits/sec. There are M �xed links,

one from node (i � 1) to node i for each i = 2; :::;M

and one from node M to node 1. The �xed topology

requires packets to travel (M � 1) hops. An optimal

placement of recon�gurable links connects every k
th

node in reverse order from the �xed links and reduces

the number of hops to k. Figure 6 shows this net-

work when M = 8 and N = 4, along with an optimal

solution. (The other optimal solution is obtained by

rotating each recon�gurable link one node clockwise.)

This problem is very di�cult for a genetic algorithm

because of the existence of multiple completely dis-

tinct solutions (i.e. solutions that have no recon�g-

urable link in common). The genetic algorithm has
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trouble keeping the building blocks from these di�er-

ent solutions separate. This is generally not a problem

in less contrived networks.

We ran experiments on ring networks with six di�erent

node/channel (i.e., M/N) con�gurations: 8/4, 12/6,

16/8, 20/5, 20/10, and 40/10.

For the 16/8 network and for each of the genetic al-

gorithm parameter sets, Figure 7 shows the progress

of a run (averaged over ten independent runs) plotted

as the value of the best individual versus the number

of evaluations (i.e., the number of con�gurations tried

so far). Note how the smaller population with greater

selection pressure starts out better but quickly stops

making progress due to convergence. A larger popula-

tion and smaller selection pressure requires longer to

converge but eventually does better by exploring more

of the space.



Net- Search 100 300 1000 3000 10000 A B C E95 E99 Secs/

work Space Evals Evals Evals Evals Evals Eval

8/4 4.1E5 .75 .27 .20 .18 .18 .18 1100 1.65 6 16 0.69

12/6 7.3E9 1.90 1.14 .80 .48 .31 .27 22 .559 210 3800 0.93

20/5 6.6E10 5.01 3.30 1.97 1.48 1.27 .97 57 .572 190 3100 1.28

16/8 2.7E14 2.8 2.2 1.70 1.12 .69 .36 12 .337 7300 8.6E5 1.24

20/10 1.7E19 4.5 3.3 2.6 1.88 1.15 .44 17 .315 1.3E4 2.2E6 1.55

40/10 2.4E25 13.2 11.0 7.5 5.6 3.8 1.9 54 .332 8300 1.1E6 3.20

Table 1: Results for the ring networks

Table 1 provides a summary of the results for the dif-

ferent ring networks. Each row contains the results

from one network. Column 1 contains the network

name, and column 2 has the search space size as given

by Equation 1. Columns 3-7 contain for each of the

�ve parameter sets the value of the best individual at

the end of a run averaged over the ten runs. The val-

ues in columns 3-7 provide �ve data points for the map

between the number of evaluations performed and the

quality of the solution.

As more evaluations are performed, the expected value

of the best solution asymptotically approaches the op-

timal value. This leads us to a model for this relation-

ship of the form

V = A+BE
�C (2)

where V is the expected value of the best individual,

E is the number of evaluations, and A, B and C are

constants determined by the data. The constant A is

the value of the best possible solution, which is known

for the ring networks. We use the �ve data points to

do a least-squares regression analysis to �nd B and C.

We report A, B and C for each network in columns

8-10 of Table 1. Figure 8 shows an example graph of

this curve for the 16/8 ring network.

The constant C measures on average how quickly the

search approaches the optimal solution. After E eval-

uations, the search has roughly proceeded 1�E
�C of

the way from a random solution to the best solution.

To �nd a solution that is a fraction f of the way to the

optimal solution therefore requires roughly (1� f)
�1

C

evaluations. In columns 11 and 12 of Table 1, we re-

port the number of evaluations required to achieve 95%

and 99% of the optimal solution, given by

E95 = 20
1

C ; E99 = 100
1

C (3)

Figure 8 shows these values for the 16/8 ring network.

Random Networks -We next examine optimization

performance on a set of randomly generated networks.

While ring networks provide a worst-case optimization

Net A B C E95 E99 S/E

8/4 .064 .91 .697 74 740 0.69

12/6 .038 150 1.63 6 17 0.90

20/5 .201 2.8 .599 150 2200 1.43

16/8 .078 5.7 .821 38 270 1.10

20/10 .092 2.5 .523 300 6700 1.49

40/10 .30 11 .512 350 8100 3.50

Table 2: Results for sparse/light random networks

Net A B C E95 E99 S/E

8/4 .102 13 1.10 15 66 1.49

12/6 1.53 11 .381 2600 1.8E5 1.86

20/5 2.74 7.5 .364 3800 3.1E5 3.25

16/8 .99 8.6 .434 990 4.1E4 2.70

20/10 2.07 12 .440 910 3.5E4 3.34

40/10 6.35 21 .330 8800 1.1E6 7.04

Table 3: Results for sparse/heavy random networks

problem, we also would like results for more typical

networks. While we do not know the best solution

for these networks a priori, we can still use a regres-

sion analysis similar to (although less accurate than)

that used for the ring networks to estimate how per-

formance varies with the number of evaluations.

Given a speci�ed number of (i) nodes, (ii) available

channels, (iii) bidirectional �xed links, and (iv) traf-

�c 
ows, our software randomly generates a network

with these dimensions. The random components in-

clude: (i) the �xed topology, (ii) the �xed link capaci-

ties (1000, 2000 or 3000 kbits/sec), and (iii) the source,

destination, priority (1, 10 or 100), protocol (UDP or

TCP), and bandwidth (100, 400 or 1000 kbits/sec) of

each 
ow. Required latency and dropped packets were

always 0.

For the experiments, we have used families of six net-

works. For each family, the number of nodes (M) and

satellite channels (N) are the same six pairs of values

as for the ring networks, hence permitting comparisons



Net A B C E95 E99 S/E

8/4 .045 1.2 .520 320 7000 0.75

12/6 .024 .65 .760 52 430 1.02

20/5 .089 1.2 .640 110 1300 1.76

16/8 .049 1.6 .773 48 390 1.35

20/10 .066 1.0 .540 260 5100 1.77

40/10 .159 1.9 .382 2500 1.7E5 4.82

Table 4: Results for dense/light random networks

Net A B C E95 E99 S/E

8/4 .103 150 1.48 8 22 1.62

12/6 .55 120 1.16 13 53 2.19

20/5 1.04 23.6 .823 38 270 4.16

16/8 .33 4.1 .576 180 3000 3.14

20/10 0.67 3.7 .368 3400 2.7E5 4.04

40/10 1.67 42.3 .696 74 750 9.59

Table 5: Results for dense/heavy random networks

of optimization performance between networks with

the same search space size. The number of �xed links

is pM and number of 
ows is qM , where q and p are

constant for a family. We have used q = 1 and q = 2,

referred to as \sparse" and \dense" respectively, and

p = 1 and p = 4, referred to as \light" and \heavy"

respectively, leading to four families of random net-

works: sparse/light, sparse/heavy, dense/light, and

dense/heavy. For each of these families of random net-

works, we have done the same experiments and anal-

ysis as for the ring networks, except that we do not

know apriori the optimal solution and hence the value

to use for the A term. We instead estimate the opti-

mal solution as the best solution found in any of the

ten runs for any of the genetic algorithm parameters.

The results are shown in Tables 2-5.

Analysis of Results - The central question is

whether the optimization algorithm will support on-

line adaptation by producing good enough con�gura-

tions fast enough. While there is no clear threshold

de�ning good enough or fast enough, we take 95% of

the optimal solution in ten minutes to be our standard.

For small networks (� 20 nodes and � 5 channels), the

optimization algorithm will support online adaptation.

It will consistently �nd the 95% solution in under 10

minutes. Once we �x the NS restart problem with the

evaluations, it will do even better, potentially reaching

the 98% or 99% solution in the given time.

For mid-sized networks (� 40 nodes and � 10 chan-

nels), the optimization algorithm will be su�cient for

online adaptation only with the help of additional

hardware to speed the optimization. Genetic algo-

rithms are inherently parallelizable, with a near linear

speedup as a function of the number of processors up

to a large number of processors [3]. Assuming a 100-

processor cluster providing a factor of 100 speedup, all

of the reported networks would reach their 95% solu-

tion within ten minutes.

For larger networks, the highly superlinear (potentially

exponential) scaling of the algorithm means that more

hardware will not address the scaling problem. In-

stead, fundamental improvements to the algorithm are

required.

One potential source of improvements to the genetic

algorithm is to use the fact that network adaptation is

a continuous process. A solution that was good a few

minutes earlier is still most likely a good solution. Par-

ticularly for big networks, the current optimal con�gu-

ration is likely only at most a small perturbation from

the previously optimal con�guration. By including the

previous best con�guration in the initial population of

the genetic algorithm to determine the current con�g-

uration, the algorithm gets a big head start and can

�nd a good solution in far less time [14].

Another approach to improving the genetic algorithm

is to incorporate heuristics, such as some of those in

[10] into the algorithm. These heuristics can be used

both when generating the initial population and as

part of the genetic operators, and will often improve

the search by a large amount [6].

A second question is how search time varies with the

network. The size of the search space is the single

biggest factor in
uencing search di�culty. It grows

very quickly with the number of nodes and channels,

resulting in a rapid growth in the number of evalua-

tions required to �nd a good solution. (This growth is

shown in Tables 1-5 as a general increase in E95 and

E99 with search space size.) However, when we exam-

ine the random networks, we see that there are some

networks with large search spaces that are much eas-

ier to solve than others with smaller seach spaces (e.g.,

see Table 4). Also, the random networks with heavy

tra�c tend to be more di�cult to solve than networks

with the same size search space but with light tra�c.

This is likely because more 
ows mean more tradeo�s

and hence more di�cult decisions. However, as both

the ring and random networks show, even networks

with light tra�c can present di�culties.

4 CONCLUSION

We have introduced an important, little-investigated

problem, that of determining at any given time the op-



timal con�guration of a recon�gurable data network.

Finding a good con�guration is a critical part of the

process of adaptively recon�guring a network online.

Adaptive network recon�guration o�ers the bene�ts of

survivability in the face of major changes in network

operating conditions and performance �ne-tuning in

response to minor changes in operating conditions.

We have developed an algorithm for solving the prob-

lem using a genetic algorithm. In its current form, it

is too slow for online adaptation. However, the sim-

ple step of distributing the evaluations of the genetic

algorithm across many machines would make it fast

enough for small and mid-sized networks. Improve-

ments to the core algorithms of the genetic algorithm

could potentially make it fast enough for networks with

large numbers of nodes and recon�gurable links.

Future work should focus on making adaptive network

recon�guration a reality rather than just a possibility

through (i) speeding the optimization by tuning the

algorithm and (ii) integration with actual networks.
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