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Abstract

Generalised parsing has become increasingly important in the context of software language design and several compiler
generators and language workbenches have adopted generalised parsing algorithms such as GLR and GLL. The original
GLL parsing algorithms are described in low-level pseudo-code as the output of a parser generator. This paper explains
GLL parsing differently, defining the FUN-GLL algorithm as a collection of pure, mathematical functions and focussing on
the logic of the algorithm by omitting implementation details. In particular, the data structures are modelled by abstract
sets and relations rather than specialised implementations. The description is further simplified by omitting lookahead
and adopting the binary subtree representation of derivations to avoid the clerical overhead of graph construction.

Conventional parser combinators inherit the drawbacks from the recursive descent algorithms they implement. Based
on FUN-GLL, this paper defines generalised parser combinators that overcome these problems. The algorithm is de-
scribed in the same notation and style as FUN-GLL and uses the same data structures. Both algorithms are explained
as a generalisation of basic recursive descent algorithms. The generalised parser combinators of this paper have sev-
eral advantages over combinator libraries that generate internal grammars. For example, with the generalised parser
combinators it is possible to parse larger permutation phrases and to write parsers for languages that are not context-free.

The ‘BNF combinator library’ is built around the generalised parser combinators. With the library, embedded and
executable syntax specifications are written. The specifications contain semantic actions for interpreting programs and
constructing syntax trees. The library takes advantage of Haskell’s type-system to type-check semantic actions and
Haskell’s abstraction mechanism enables ‘reuse through abstraction’. The practicality of the library is demonstrated by
running parsers obtained from the syntax descriptions of several software languages.
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1. Introduction

The syntax of a software language is usually defined by
a BNF description of a context-free grammar. Parser gen-
erators such as Yacc or Happy implement (variants of)
BNF and generate parsers for different classes of context-
free grammars. Generalised parsing algorithms such as
Earley [1], GLR [2] and GLL [3, 4] admit all context-
free grammars and compute all possible derivations of
a string [5, 6]. Generalised parsing eases the design of
programming languages because, compared to traditional
techniques, one no longer needs to adjust the concrete
syntax of the language to allow a certain parsing tech-
nique. In particular, the concrete syntax can be made
more abstract if an appropriate disambiguation strategy is
available. Several software language development frame-
works take advantage of generalised parsing. For example,
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Spoofax [7] and the K framework [8] are based on SDF [9],
a formalism for describing context-free grammars for which
GLR parsers are generated. The meta-programming lan-
guage Rascal [10] generates GLL parsers from its syntax
definitions [11].

The first part of this paper describes fun-gll, a purely
functional GLL parsing algorithm given as a collection of
mathematical functions. In contrast to the original de-
scriptions of GLL parsing [3, 4], the data structures used
by the algorithm are modelled by abstract sets and re-
lations rather than specialised implementations. The de-
scription thereby focusses on the general logic of the al-
gorithm and it is not interspersed with specific imple-
mentation details. The algorithm is simplified further by
omitting lookahead and adopting the binary subtree rep-
resentation (BSR) of [12] to collect derivation information.
The binary subtree representation makes it possible to col-
lect all derivations of an input string without the need for
maintaining and constructing graphs. To aid understand-
ing, the algorithm is explained as a generalisation of basic,
well-known recursive descent parsing algorithms. In [13],
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the fun-gll algorithm was given as a Haskell implemen-
tation. The mathematical description of fun-gll in this
paper is intended to appeal to a wider audience. Com-
pared to [13], more detail is provided in relation to the
representation of derivations with BSR sets1.

In languages with higher-order functions, ‘parser combi-
nators’ can be defined as functions that take parsers as ar-
guments, combining them to form new parsers. The basic
parser combinator approach suffers from nontermination
due to left-recursion and from inefficiencies due to back-
tracking. Several methods have been suggested to gener-
alise the approach and increase the class of terminating
and efficient combinator parsers. For example, memoisa-
tion can overcome some of the inefficiencies of backtrack-
ing [14], lookahead can reduce backtracking [15], sophisti-
cated memoisation can handle left-recursion [16], and left-
recursion can be removed automatically [17]. Grammar
combinator libraries extract grammars from combinator
expressions before giving the grammars to a stand-alone
parsing procedure [18, 19] that may be generalised [20].

Based on fun-gll, the second part of the paper defines
generalised parser combinators. The combinator expres-
sions formed by applying these combinators represent BNF
grammar descriptions explicitly. This makes it possible for
the underlying algorithm to compute the grammar infor-
mation necessary for generalised parsing. The algorithm
is described in the same notation and style as fun-gll
and uses the same data structures. The combinators are
defined first as recognition combinators with a simple re-
cursive descent strategy and are subsequently modified to
produce BSR sets and finally to employ all the data struc-
tures of fun-gll. The evaluation section of this paper
demonstrates that the resulting generalised parser combi-
nators have several advantages over grammar combinators.
For example, with the generalised parser combinators it is
possible to parse large permutation phrases [21, 22] and it
is also possible to write parsers for languages that are not
context-free.

The third part of this paper revisits the ‘BNF combi-
nator library’ of [13]. The library is an embedded imple-
mentation of the BNF formalism. The syntax of languages
is specified by writing combinator expressions that repre-
sent BNF grammars directly. The specifications contain
semantic actions for associating semantics with grammar
fragments in order to interpret input strings or to construct
syntax trees. In [13], an implementation of the BNF com-
binator library is given that uses a grammar combinator li-
brary internally. Compared to other grammar combinator
libraries, the extracted grammars are not binarised. The
performance benefits of avoiding binarisation are demon-
strated in [13].

This paper replaces the internal grammar combinators
with the generalised parser combinators, resulting in an al-
ternative implementation of the BNF combinator library.

1BSR sets were referred to as sets of extended packed nodes
in [13].

The alternative implementation is compared with the orig-
inal implementation in the evaluation section of this paper,
demonstrating the aforementioned advantages of parser
combinators over grammar combinators. The practicality
of the BNF combinator library is evaluated with parsers
obtained from syntax descriptions of ANSI-C [23], Caml
Light [24], and CBS [25].

This paper makes the following contributions:

• The fun-gll algorithm is described in mathematical
notation rather than as a concrete implementation in
order to appeal to a wide audience. A Haskell imple-
mentation of fun-gll is given in [13]

• Purely functional, generalised parser combinators are
defined based on the fun-gll algorithm. The parser
combinators are general in the sense that they admit
the full class of context-free languages

• The evaluation section of [13] demonstrates the ad-
vantages of avoiding binarisation whilst constructing
a grammar in the BNF combinator library. An alter-
native implementation of the BNF combinator library,
based on the generalised parser combinators, avoids
grammar generation altogether. This paper demon-
strates that, by avoiding grammar generation, prac-
tical parsers can be obtained for syntax descriptions
that would otherwise produce exponentially large or
infinitely large grammars

2. Grammars and derivations

This section formalises context-free grammars and in-
troduces most of the related concepts and notations used
throughout this paper.

Given distinct sets N of nonterminal symbols and T of
terminal symbols, a context-free grammar Γ is a pair 〈Z, ρ〉
with Z ∈ N (the starting nonterminal of the grammar),
ρ ⊂ N × S∗ a finite relation (the production rules of the
grammar) and S = N ∪ T the set of all symbols. Possibly
decorated variables X,Y denote nonterminals, Z a start-
ing nonterminal, s denotes a (nonterminal or terminal)
symbol, t a terminal, α, β, δ denote sequences of symbols,
τ denotes a sequence of terminal symbols (also referred to
as a t-string), and ε the empty sequence. A sequence of
symbols α is an alternate of nonterminal Y if 〈Y, α〉 ∈ ρ.
The set Γ(Y ) = {α | 〈Y, α〉 ∈ ρ with 〈Z, ρ〉 = Γ} contains
the alternates of Y .

The relation →Γ ⊂ S∗ × S∗ captures derivations in Γ:

αXβ →Γ αδβ
(δ ∈ Γ(X))

(1)

The relations →+
Γ and →∗Γ are the transitive closure and

the reflexive and transitive closure of →Γ respectively. A
derivation in Γ is a sequence α0, . . . , αn such that for all
1 6 i 6 n it holds that αi−1 →Γ αi. A derivation α0 . . . αn
is left-most if for all 1 6 i 6 n it holds that αi−1 =
τXβ and αi = τδβ (for some τ and β) with τ ∈ T ∗. (If
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Tuple ::= "(" As ")"
As ::= ε | "a" More
More ::= ε | "," "a" More

Figure 1: A BNF syntax description defining the grammar ΓTuple.

Rule (1) has the additional side condition α ∈ T ∗, then all
derivations are left-most.) A nonterminal X ∈ N is said
to derive t-string τ in grammar Γ if there is a derivation
from X to τ , i.e. X →∗Γ τ . The language LΓ(X) = {τ |
τ ∈ T ∗, X →∗Γ τ} is the set of t-strings that can be derived
from a nonterminal X in Γ. The language LΓ generated by
the grammar Γ is the language generated by the starting
symbol of Γ, i.e. LΓ = LΓ(Z) if Γ = 〈Z, ρ〉.

The grammar ΓTuple is defined in Figure 1 as an
example. The example is given in Backus-Naur Form
(BNF) [26]. The connection between BNF descriptions
and the formal definition of grammars is well-known.
Nonterminals are written in boldface and terminals are
written as a single character in quotes, e.g. "a". For
brevity, terminals adjacent in a t-string may be written
together within the same pair of quotes, e.g. ",a" instead
of "," "a". The nonterminal Tuple generates the lan-
guage {"()", "(a)", "(a,a)", ...} in ΓTuple.

Recognisers and parsers. A recognition procedure is an al-
gorithm that given a grammar Γ, a nonterminal X, and a
t-string τ , determines whether τ is in LΓ(X), i.e. deter-
mines whether X →∗Γ τ . A parsing procedure is a recog-
nition procedure that provides a proof for X →∗Γ τ , if it
holds, typically in the form of a parse tree. This paper
considers procedures that read t-strings from left to right
and produce left-most derivations (LL procedures).

A recognition or parsing procedure is general if it ter-
minates and gives correct results for all grammars. An LL
parsing procedure is complete if it is general and provides
proof for all possible left-most derivations of the t-string.
A nonterminal X is ambiguous in a grammar Γ if there is
a t-string τ for which multiple left-most derivations show
that X derives τ in Γ.

Complete parsing procedures require sophisticated tech-
nology to efficiently represent all possible derivations of a
t-string. Grammars exist with t-strings that have expo-
nentially many derivations (in the length of the t-string)
and cyclic nonterminals can derive t-strings in infinitely
many ways. (A nonterminal X is cyclic in Γ if X →+

Γ X.)
Several technologies for representing multiple derivations
efficiently are discussed in [6, 12]. This paper adopts the
binary subtree representation approach of [12] in which
a set Υ efficiently embeds (potentially infinitely many)
derivations.

2.1. Binary subtree representations

The following summarises, with some modifications, the
technical material related to binary subtree representa-
tions (BSRs) in [12].

The t-string τ l,r denotes the subsequence of τ ranging
from l to r − 1, i.e. τ l,r = τ2 if τ = τ1τ2τ3 and |τ1| = l
and |τ1τ2| = r. If a sequence of symbols α derives τ l,r in
a grammar Γ, i.e. α→∗Γ τ l,r, then it is said that α derives
the substring of τ with left extent l and right extent r.

A binary subtree representation (BSR) is a structure of
the form 〈g, l, k, r〉, where l 6 k 6 r are natural numbers
and g is a grammar slot2. A grammar slot is a triple of
the form 〈X,α, β〉, denoted3 as X ::= α •β, with 〈X,αβ〉 ∈
Γ(X). If 〈X ::= αs •β, l, k, r〉 is an element of Υ computed
for some grammar Γ and t-string τ , then this BSR element
indicates that α→∗Γ τ l,k and s→∗Γ τk,r according to Υ.

Potentially many derivations of a t-string τ in a gram-
mar Γ are embedded in a set Υ of BSRs. For Υ to show
that nonterminals derive substrings of τ in Γ, the following
must hold:

• An element of the form 〈X ::= αs •β, l, k, r〉 can only
be in Υ if:

– when α 6= ε, there must be an element of the form
〈X ::= α • sβ, l, k′, k〉 in Υ. If X is ambiguous in
Γ, this may be the case for several choices of k′

– when s is a terminal, then s is at position k of τ
and r = k + 1

– when s is a nonterminal, then it can be shown
that s→∗Γ τk,r holds according to Υ

• To show that X →∗Γ τ l,r holds according to Υ, when
X is nonterminal, an element 〈X ::= δ • , l, k, r〉 ∈ Υ is
required, for some k and δ ∈ Γ(X). The existence of
such an element may arise from more than one com-
bination of δ and k if X is ambiguous in Γ

• An element of the form 〈X ::= •β, l, k, r〉 is only in Υ
if l = k = r and if β ∈ Γ(X)

A BSR set Υ for which these properties hold is sound in
the sense that it embeds only derivations of substrings of
τ that are valid with respect to Γ. Figure 2 gives a sound
BSR set for the grammar Γtuple that embeds the following
derivation of the t-string "(a,a)":

Tuple0,5

→ "("0,1 As1,4 ")"4,5 {(5), (4), (1)}
→ "(" "a"1,2 More2,4 ")" {(9), (7)}
→ "(a" ","2,3 "a"3,4 More4,4 ")" {(13), (12), (11)}
→ "(a,a)" {(14)}

New symbols appear at each step with superscripts that
indicate which substring of "(a,a)" they derive. This in-
formation is extracted from the BSR elements indicated on

2This simplification to the BSRs of [12] permits less sharing.
3Grammar slots are not written with ε, i.e. X ::= •β, X ::= α • ,

and X ::= • denote slots with the empty sequence as the second,
third, and second and third component respectively.
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{〈Tuple ::= "(" •As ")", 0, 0, 1〉, (1)

〈Tuple ::= "(" As • ")", 0, 1, 1〉, (2)

〈Tuple ::= "(" As • ")", 0, 1, 2〉, (3)

〈Tuple ::= "(" As • ")", 0, 1, 4〉, (4)

〈Tuple ::= "(" As ")" • , 0, 4, 5〉, (5)

〈As ::= • , 1, 1, 1〉, (6)

〈As ::= "a" •More, 1, 1, 2〉, (7)

〈As ::= "a" More • , 1, 2, 2〉, (8)

〈As ::= "a" More • , 1, 2, 4〉, (9)

〈More ::= • , 2, 2, 2〉, (10)

〈More ::= "," • "a" More, 2, 2, 3〉, (11)

〈More ::= "," "a" •More, 2, 3, 4〉, (12)

〈More ::= "," "a" More • , 2, 4, 4〉, (13)

〈More ::= • , 4, 4, 4〉} (14)

Figure 2: A BSR set for the grammar Γtuple and t-string "(a,a)".

the right-hand side. For example, the first step replaces
Tuple with the sequence "(" As ")" following BSR el-
ement (5). The numbers 1 and 4 are extracted from the
combination of the BSR elements (5), (4), and (1) and
determine that As derives the substring "a,a".

Figure 2 contains BSR elements that have not con-
tributed to the derivation and there is no other deriva-
tion of the t-string "(a,a)" to which they may have con-
tributed. However, such redundant elements are expected
in the output of a parsing procedure as no procedure can
foresee, in general, which BSR elements will contribute to
a derivation (without prior knowledge).

Discussion on BSR sets. The parsing algorithms pre-
sented in this paper add an element of the form
〈X ::= αt •β, l, k, r〉 to Υ, with r = k + 1, to record that
terminal t is at position k in the input t-string τ . Any
post-processor therefore no longer needs τ as input to es-
tablish that t→∗Γ τk,k+1. The algorithms add elements of
the form 〈X ::= • , l, l, l〉 to record that ε ∈ Γ(X) so that
post-processors do not require grammar Γ as input. These
are the only elements of the form 〈X ::= •β, l, k, r〉 added
to Υ by the procedures.

The BSR representation Υ is binarised in the sense that
the grammar slot g of an element 〈g, l, k, r〉 in Υ splits an
alternate of X in two. The number k is referred to as pivot
k because k splits the range [l...r] in two. Binarisation is
required to keep the size of Υ under control, ensuring the
worst-case cubic4 complexity of the data structure.

4The number of grammar slots is determined by the number of
symbols in the alternates of the grammar and the indices l, k, and
r are in the range [0...n], where n is the length of the input string.
The number of possible BSR elements is therefore bound by O(n3).

Besides soundness, it is also possible to consider whether
the set Υ computed by a parsing procedure is complete in
the sense that it embeds all derivations of a t-string τ .
In [27], a theorem is stated and proven for an algorithm
similar to fun-gll. The precise connection between BSR
sets and parse forests is explained in [12].

3. Recursive descent

This section describes a straightforward recursive de-
scent parsing procedure by giving first a recognition proce-
dure and subsequently extending it to compute BSR sets.
The resulting parsing procedure forms the basis of the de-
scription of the fun-gll algorithm of Section 4.

3.1. The recognition procedure

The recognition procedure is given a grammar Γ, a t-
string τ , and a nonterminal X, and determines whether τ
is derived by X in Γ. This is done by testing whether |τ |,
the length of τ , is in the result of ‘descending’ nonterminal
X with index 0 (an index into τ). That is, the procedure
determines whether it holds that (the function descend1 is
defined later):

|τ | ∈ descend1(Γ, τ,X, 0)

The purpose of descending a nonterminal X with index l is
to find a set of indices R such that X derives the substrings
tl,r of τ for all r ∈ R, i.e. whether X →∗Γ τ l,r. (This is why
the condition above checks whether |τ | is in the result of a
call to descend1 with 0 as its fourth argument). The index
l is thus referred to as the left extent and the elements of
R are referred to as right extents.

In recursive descent parsing, descending a nonterminal
X involves selecting a subset of the alternates of X for
‘processing’. The selection can be based on lookahead sets
computed for each of the alternates and backtracking can
be used to select the first successful alternate. The con-
sideration of lookahead is orthogonal to the logic of the
recursive descent parser that employs it. In this paper
lookahead is ignored to simplify the presentation of its al-
gorithms. Moreover, in general, lookahead is not sufficient
to rule out all or all but one alternate, and complete pro-
cedures therefore need to accept some form of nondeter-
minism. However, lookahead does result in considerable
efficiency improvements under certain circumstances. The
recognition procedure presented in this section processes
all alternates of a nonterminal and collects their results in
a set (the set R mentioned above) akin to Wadler’s ‘list of
successes’ method [28].

descend1(Γ, τ,X, l) = {r | β ∈ Γ(X), r ∈ process1(Γ, τ, β, l)}

Processing an alternate β of nonterminal X with index
k – referred to as a pivot – involves ‘matching’ all symbols
in β, one after the other, in the order they appear (the def-
inition of process1 is given later). Matching a terminal t is
testing whether t is the next symbol in the t-string, i.e. the
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symbol found at a given index. Matching a nonterminal
symbol is descending the nonterminal.

match1(Γ, t0 . . . tn, s, k) =
descend1(Γ, t0 . . . tn, s, k) if s ∈ N
{k + 1} if s ∈ T and tk = s

∅ otherwise

Descending a nonterminal and matching a terminal both
result in a set of right extents R. Processing an alternate
β = sβ′ is done by descending or matching symbol s to give
R and making a recursive call to process the remainder β′

for each r ∈ R.

process1(Γ, τ, β, k) =
{r | k′ ∈ match1(Γ, τ, s, k),

r ∈ process1(Γ, τ, β′, k′)} if β = sβ′

{k} if β = ε

Initially, pivot k0 equals the left extent of descending X.
Finally, at the base case β = ε, pivot km is discovered as
one of the right extents of descending X. The intermediate
values k1, . . . , km−1 obtained for the pivot by m recursive
calls split a t-string derived by X into m substrings, each
derived by one of the symbols of the alternate.

The following higher-order5 function returns a recog-
niser – a function mapping a t-string to a truth value – for
the language generated by a given nonterminal in a given
grammar:

recogniser for(Γ, X)(τ) =

{
true if |τ | ∈ descend(Γ, τ,X, 0)

false otherwise

For example, the function recogniser for(ΓTuple,Tuple)
is a recogniser for the language {"()", "(a)", "(a,a)", ...}.

Left-recursion. A nonterminal X is left-recursive in a
grammar Γ if X derives, via one or more steps, a se-
quence of symbols starting with X, i.e. if X →+

Γ Xδ
for some δ. If X is left-recursive in Γ, then evaluating
descend1(Γ, τ,X, k), for any τ and k, will require the eval-
uation of process1(Γ, τ,Xδ′, k), for some δ′, which in turn
requires descend1(Γ, τ,X, k). This cyclic dependency re-
sults in nontermination if the procedure is directly imple-
mented as described above.

The next subsection extends the recognition procedure
to a parsing procedure by computing BSR sets. Section 4
extends the resulting parsing procedure to a complete pro-
cedure that works for all grammars including grammars
with left-recursive nonterminals.

5Higher-order functions are described using several layers of
parenthesised parameters. For example, the ‘curried’ version of
a function f with three parameters is defined as f (a)(b)(c) = ...
and is applied as f(1)(2)(3). The uncurried version is defined as
f(a, b, c) = ... and is applied as f(1, 2, 3).

3.2. The parsing procedure

The parsing procedure has a function process2, replacing
process1, that is given a grammar slot 〈X,α, β〉 rather than
just β (as in process1). Moreover, process2 also receives
an additional integer l besides pivot k. Intuitively, the
additional information reflects that the parsing procedure
has descended X with left extent l and that processing the
alternate αβ of X led to processing β. This information
is sufficient to construct the necessary BSR elements. The
result of matching a symbol is no longer just a set of right
extents R, but also a BSR set Υ.

process2(Γ, τ, 〈X,α, β〉, l, k) =
〈{k}, {〈X ::= • , l, l, l〉}〉 if β = ε, α = ε

〈{k}, ∅〉 if β = ε, α 6= ε

continue(Γ, τ, 〈X,αs, β′〉, l, k) if β = sβ′

The base case is split in two by checking whether the
chosen alternate of X is the empty sequence. If so, a
BSR element is added (as discussed at the end of Sec-
tion 2). Matching the first symbol s of β, if any, is done by
continue, defined below, making recursive calls to process2
for all right extents discovered by matching s. Binary
union over matching results is defined component-wise, i.e.
〈R1,Υ1〉∪〈R2,Υ2〉 = 〈R1∪R2,Υ1∪Υ2〉, and

⋃
M denotes

the finitary union over the matching results in M .

continue(Γ, τ, 〈X,αs, β〉, l, k) = 〈R′,Υ ∪Υ′ ∪Υ′′〉
with 〈R,Υ〉 = match2(Γ, τ, s, k)

and 〈R′,Υ′〉 =
⋃
{process2(Γ, τ, 〈X,αs, β〉, l, r) | r ∈ R}

and Υ′′ = {〈X ::= αs •β, l, k, r〉 | r ∈ R}

The initial call to process2 has l = k. Each recursive
call propagates left extent l whilst pivot k potentially in-
creases. At the base case β = ε, it is discovered that k
is one of the right extents of descending X. The inter-
mediate values k1 . . . km−1 obtained for the pivot by the
m = |αβ| recursive calls are stored in the BSR elements
constructed by continue. In this way, the BSR set reflects
the potentially many ways in which αβ derives substrings
of τ .

As before, matching a symbol s is descending s if it is
nonterminal, and testing it against the input t-string if it
is terminal.

match2(Γ, t0 . . . tn, s, k) =
descend2(Γ, t0 . . . tn, s, k) if s ∈ N
〈{k + 1}, ∅〉 if s ∈ T and tk = s

〈∅, ∅〉 otherwise

Descending nonterminal X calls process2 with slot
X ::= •β for each alternate β ∈ Γ(X).

descend2(Γ, τ,X, l) =⋃
{process2(Γ, τ,X ::= •β, l, l) | β ∈ Γ(X)}
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The function parser for returns a parser – a function
mapping a t-string to a BSR set – for the language gener-
ated by a given nonterminal in a given grammar.

parser for(Γ, X)(τ) = Υ

with 〈R,Υ〉 = descend2(Γ, τ,X, 0)

For example, the parser parser for(ΓTuple,Tuple) gives
the BSR set of Figure 2 when applied to "(a,a)".

4. FUN-GLL

This section describes the fun-gll parsing procedure
by generalising the parsing procedure of the previous sec-
tion. The procedure is complete; it prevents nontermina-
tion due to left-recursion, and ‘repeated work’ in general,
through descriptors (similar to the descriptors of [4, 29]
and the states of Earley’s algorithm [1]), and computes
a BSR set that embeds all possible derivations of the in-
put t-string. The complexity is worst-case O(n3) in both
space and runtime, depending on the implementation of
the data structures. A discussion on the implementation
of data structures for GLL parsing can be found in [30].
This section starts with a high-level summary of the algo-
rithm before presenting its formal definition. The formal
definition is explained by referring back to the summary.
The example provided by Figures 3, 4, and Table 1 pro-
vide insight into how the different steps of the algorithm
guarantee termination and completeness.

A descriptor is a triple of a grammar slot and two indices
of the input t-string, corresponding exactly to the argu-
ments of process2 (ignoring Γ and τ) and also serving the
same purpose. A descriptor is denoted 〈X ::= α •β, l, k〉.
A worklist R contains the descriptors that require process-
ing; its elements are processed one by one by calling the
function process that replaces process2. A set U stores all
the descriptors that have been added to the worklist pre-
viously and is used to ensure that no descriptor is added
to the worklist a second time. Nontermination due to left-
recursion is simply avoided by never processing the same
descriptor twice. However, the flip side of using descrip-
tors to avoid repeated processing is that extra bookkeep-
ing is required to ensure that all derivation information is
recorded and thus to ensure the completeness of the algo-
rithm. The main challenge to understanding the fun-gll
algorithm is understanding how the algorithm ensures it
records all the required derivation information.

Consider the situation in which the descriptor
〈X ::= α • sβ, l, k〉 has been processed, with s a
nonterminal, having resulted in further descriptors
〈X ::= αs •β, l, ri〉, for all ri in some set R (the set
of right extents discovered by descending s with index
k). If the next processed descriptor is of the form
〈Y ::= α′ • sβ′, l′, k〉, then no descriptors are added to
R as all descriptors of the form 〈s ::= • δ, k, k〉 have
already been added previously. However, since s de-
rives the substrings ranging from k to ri − 1, with

ri ∈ R, the descriptors 〈Y ::= α′s •β′, l′, ri〉 need to
be added to R (if not already in U) and the BSR
elements 〈Y ::= α′s •β′, l′, k, ri〉 need to be added to Υ
for completeness. To avoid missing these descriptors and
BSR elements, the binary relation P between pairs of
commencements and right extents is introduced, where
a commencement is a pair of a nonterminal and a left
extent (i.e. the arguments of descend2). In the example
situation, the set R is embedded in P as specified by the
equation R = {r | 〈〈s, k〉, r〉 ∈ P}. The set P records for
all nonterminals the left and right extents that have been
discovered so far, i.e. forall X, l, and r, it holds that
〈〈X, l〉, r〉 ∈ P implies X →∗Γ τ l,r.

This is not sufficient; some of the descriptors of the form
〈s ::= • δ, k, k〉, or descriptors that follow from these, may
not have been processed yet. This means that there may
be right extents R′, with R′ ∩ R = ∅, for which it holds
that s derives the substrings ranging from k to rj−1, with
rj ∈ R′. When the right extents in R′ are ‘discovered’, it is
necessary to add the descriptors 〈Y ::= α′s •β′, l′, rj〉 and
〈X ::= αs •β, l, rj〉 to R (if not in U) and to add the BSR
elements 〈Y ::= α′s •β′, l′, k, rj〉 and 〈X ::= αs •β, l, k, rj〉
to Υ. The binary relation G between commencements
and continuations is introduced, where a continuation is
a pair of a slot and a left extent. Intuitively, a continu-
ation is an incomplete descriptor ‘waiting’ for a right ex-
tent to take up the role of pivot and thereby completing
the descriptor. That is, for all X, g, l, k, and r it holds
that if 〈〈X, k〉, 〈g, l〉〉 ∈ G, then continuation 〈g, l〉 is com-
bined with r to form descriptor 〈g, l, r〉 (and BSR element
〈g, l, k, r〉) whenever k and r are discovered as a left and
right extent pair of X.

Summary. The fun-gll algorithm is summarised as fol-
lows. While there are descriptors in the worklist, arbi-
trarily select the next descriptor 〈X ::= α •β, l, k〉 to be
processed and

• if β = sβ′ and

– if s is terminal, match the terminal at position
k in the input t-string with s. Only if the match
is successful, add 〈X ::= αs •β′, l, k + 1〉 to the
worklist and add 〈X ::= αs •β′, l, k, k + 1〉 to Υ.

– if s is nonterminal, find R = {r | 〈〈s, k〉, r〉 ∈ P}
and extend G with 〈〈s, k〉, 〈X ::= αs •β′, l〉〉. If R
is empty, descend s by adding 〈s ::= • δ, k, k〉,
for all alternates δ of s, to the worklist (if not
in U). If R is not empty, skip s by adding
〈X ::= αs •β′, l, ri〉, for all ri ∈ R, to the worklist
(if not in U) and by adding 〈X ::= αs •β′, l, k, ri〉
to Υ.

• if β = ε, extend P with 〈〈X, l〉, k〉, and ascend X
by finding K = {〈g, l′〉 | 〈〈X, l〉, 〈g, l′〉〉 ∈ G}, adding
〈g, l′, k〉 to the worklist for all 〈g, l′〉 ∈ K (if not in
U), adding 〈g, l′, l, k〉 to Υ and, if α = ε, adding
〈X ::= • , k, k, k〉 to Υ as well.
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# descriptor action new descr. new BSR G extension P extension
1 〈E ::= •EEE, 0, 0〉 descend 1,2,3 〈〈E, 0〉, 〈E ::= E •EE, 0〉〉
2 〈E ::= • "1", 0, 0〉 match 4 5
3 〈E ::= • , 0, 0〉 ascend 5 1,2 〈〈E, 0〉, 0〉
4 〈E ::= "1" • , 0, 1〉 ascend 6 6 〈〈E, 0〉, 1〉
5 〈E ::= E •EE, 0, 0〉 skip 7,8 3,7 〈〈E, 0〉, 〈E ::= EE •E, 0〉〉
6 〈E ::= E •EE, 0, 1〉 descend 9,10,11 〈〈E, 1〉, 〈E ::= EE •E, 0〉〉
7 〈E ::= EE •E, 0, 0〉 skip 12,13 4,9 〈〈E, 0〉, 〈E ::= EEE • , 0〉〉
8 〈E ::= EE •E, 0, 1〉 descend 9,10,11 〈〈E, 1〉, 〈E ::= EEE • , 0〉〉
9 〈E ::= •EEE, 1, 1〉 descend 9,10,11 〈〈E, 1〉, 〈E ::= E •EE, 1〉〉
10 〈E ::= • "1", 1, 1〉 match
11 〈E ::= • , 1, 1〉 ascend 8,13,14 8,10,11,12 〈〈E, 1〉, 1〉
12 〈E ::= EEE • , 0, 0〉 ascend 5,7,12 2,3,4 〈〈E, 0〉, 0〉
13 〈E ::= EEE • , 0, 1〉 ascend 6,8,13 6,7,9 〈〈E, 0〉, 1〉
14 〈E ::= E •EE, 1, 1〉 skip 15 13 〈〈E, 1〉, 〈E ::= EE •E, 1〉〉
15 〈E ::= EE •E, 1, 1〉 skip 16 14 〈〈E, 1〉, 〈E ::= EEE • , 1〉〉
16 〈E ::= EEE • , 1, 1〉 ascend 8,13,14,15,16 8,10,12,13,14 〈〈E, 1〉, 1〉

Table 1: An example execution of fun-gll with grammar ΓEEE and t-string "1". The BSR elements are enumerated in Figure 4.

E ::= E E E | "1" | ε

Figure 3: The ambiguous and cyclic grammar ΓEEE from [20].

As an example, consider grammar ΓEEE in Figure 3
taken from Ridge [20] and the execution of the fun-gll al-
gorithm in Table 1 with grammar ΓEEE and t-string "1" as
inputs. Each row of the table corresponds to the selection
of a descriptor (second column) from the worklist. The
third column shows the action that has been performed to
process the descriptor as determined by the structure of
the descriptor and the contents of G and P at that step in
the execution. The fourth and fifth column show the de-
scriptors and BSR elements discovered by the action and
the sixth and seventh column show the extensions to G
and P made by the action. Struck out elements in these
columns are duplicate and are therefore not added to the
corresponding set. The numbers in the “new descriptors”
column refer to the numbers in the first column. For exam-
ple, at step 2, the descriptor processed at step 4 is added
to the worklist. The numbers in the “new BSR” column
refer to the indices assigned to the BSR elements in Fig-
ure 4. The descriptors processed in the first three steps
are added to the worklist during initialisation (function
descend in the definition of the algorithm). At steps 1 and
9 non-termination due to left-recursion is avoided.

4.1. The complete parsing procedure

The fun-gll algorithm is formalised by a recursive
function loop that processes the descriptor in the worklist
R by selecting and removing a descriptor in each recur-
sive call until R is empty. The order in which descriptors
are selected is irrelevant to the correctness and worst-case
complexity of the algorithm, but the order might influence
efficiency. An analysis of the influence of the order on ef-

{〈E ::= • , 0, 0, 0〉, (1)

〈E ::= E •E E, 0, 0, 0〉, (2)

〈E ::= E E •E, 0, 0, 0〉, (3)

〈E ::= E E E • , 0, 0, 0〉, (4)

〈E ::= "1" • , 0, 0, 1〉, (5)

〈E ::= E •E E, 0, 0, 1〉, (6)

〈E ::= E E •E, 0, 0, 1〉, (7)

〈E ::= E E •E, 0, 1, 1〉, (8)

〈E ::= E E E • , 0, 0, 1〉, (9)

〈E ::= E E E • , 0, 1, 1〉, (10)

〈E ::= • , 1, 1, 1〉, (11)

〈E ::= E •E E, 1, 1, 1〉, (12)

〈E ::= E E •E, 1, 1, 1〉, (13)

〈E ::= E E E • , 1, 1, 1〉} (14)

Figure 4: A BSR set for the grammar ΓEEE and t-string "1".

ficiency can be found in [29]. The function fungll makes
the initial call to loop given a nonterminal X.

fungll(Γ, τ,X) = loop(Γ, τ, descend(Γ, X, 0), ∅, ∅, ∅, ∅)
descend(Γ, X, l) = {〈X ::= •β, l, l〉 | β ∈ Γ(X)}

The worklist R initially contains all descriptors of the
form 〈X ::= •β, 0, 0〉, for all alternates β of X, as shown
by the application of descend to X and 0.

Processing a descriptor involves executing one of the
descend, ascend, skip, or match actions as previously
explained in the summary of the algorithm. These actions
are formalised by the functions descend , ascend , skip, and
match, defined later. With the exception of descend , these
functions return a pair of sets containing the descriptors
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and BSR elements discovered by executing the correspond-
ing action (the descend action only returns a set of de-
scriptors). Processing a descriptor may involve extending
the relations G and P. The function process is called by
loop to execute one of the actions and to return any ex-
tensions to G and P.

loop(Γ, τ,R,U ,G,P,Υ) =
〈U ,Υ〉 if R = ∅
loop(Γ, τ,R′′,U ∪ {d},G ∪ G′,P ∪ P ′,Υ ∪Υ′) if d ∈ R
with 〈〈R′,Υ′〉,G′,P ′〉 = process(Γ, τ, d,G,P)

and R′′ = (R∪R′) \ (U ∪ {d})

When processed, the descriptor d is added to U and be-
cause no element in U is ever added to R, it is guaranteed
that a descriptor is only processed once. The loop ter-
minates because the number of possible descriptors that
can be added to R is finite. Non-termination due to left-
recursion is thus avoided by ensuring that no descriptor
enters the worklist R a second time. The details of the
ways in which information is added to and obtained from
G and P are crucial to ensuring all the BSR elements re-
quired for completeness are added to Υ. These details are
presented in the definition of process that follows.

For clarity, the definition of process is split into processε
and processsymbol , handling the cases β = ε and β = sβ′

whenever a descriptor 〈X ::= α •β, l, k〉 is processed.

process(Γ, τ, 〈X ::= α •β, l, k〉,G,P) ={
processε(〈X ::= α • , l, k〉,G,P) if β = ε

processsymbol(Γ, τ, 〈X ::= α • sβ′, l, k〉,G,P) if β = sβ′

In the case β = ε (ascend), it is discovered that k is a
right extent, i.e. that X →∗Γ τ l,k. This is ‘remembered’
by returning the commencement and right extent pair
〈〈X, l〉, k〉 to extend P. All continuations K = {〈g, l′〉 |
〈〈X, l〉, 〈g, l′〉〉 ∈ G} are ‘waiting’ for the discovery of ad-
ditional right extents such as k. Ascending X involves
combining the continuations in K with l and k to form
descriptors and BSR elements, as shown by the definition
of ascend given later.

processε(〈X ::= α • , l, k〉,G,P) = 〈〈R,Υ ∪Υ′〉, ∅, {〈〈X, l〉, k〉}〉
with 〈R,Υ〉 = ascend(l,K, k)

and K = {〈g, l′〉 | 〈〈X, l〉, 〈g, l′〉〉 ∈ G}
and Υ′ = {〈X ::= • , l, l, l〉 | α = ε}

If β = α = ε, an additional BSR element 〈X ::= • , l, l, l〉
is returned (note that α = ε implies that l = k).

In the case β = sβ′ with s a nonterminal
symbol, the commencement and continuation pair
〈〈s, k〉, 〈X ::= αs •β, l〉〉 is returned to extend G. The set
R = {r | 〈〈s, k〉, r〉 ∈ P} contains all the right extents r
such that s→∗Γ τ l,r. If R is empty (descend), then s is de-
scended with left extent k (potentially for a second time).
If R is not empty (skip), function skip combines the con-
tinuation 〈X ::= αs •β′, l〉 with k and r (for all r ∈ R) to

form descriptors and BSR elements.

processsymbol(Γ, τ, 〈X ::= α • sβ′, l, k〉,G,P) =
〈match(τ, 〈X ::= α • sβ′, l, k〉), ∅, ∅〉 if s ∈ T
〈〈descend(Γ, s, k), ∅〉,G′, ∅〉 if s ∈ N and R = ∅
〈skip(k, 〈X ::= αs •β′, l〉, R),G′, ∅〉 if s ∈ N and R 6= ∅

with R = {r | 〈〈s, k〉, r〉 ∈ P}
and G′ = {〈〈s, k〉, 〈X ::= αs •β′, l〉〉}

In the case β = sβ′ with s a terminal symbol (match),
a descriptor 〈X ::= αs •β′, l, k + 1〉 and BSR element
〈X ::= αs •β′, l, k, k + 1〉 are returned if s is the terminal
at position k in τ .

match(t0 . . . tn, 〈X ::= α • sβ′, l, k〉) =
〈{〈X ::= αs •β′, l, k + 1〉},
{〈X ::= αs •β′, l, k, k + 1〉}〉 if tk = s

〈∅, ∅〉 otherwise

Finally, functions skip and ascend are defined. Function
skip combines a single continuation c with possibly many
right extents R, whereas ascend combines a single right
extent r with possibly many continuations K, to form de-
scriptors and BSR elements with pivot k.

skip(k, c, R) = nmatch(k, {c}, R)

ascend(k,K, r) = nmatch(k,K, {r})
nmatch(k,K,R) = 〈R,Υ〉

with R = {〈g, l, r〉 | 〈g, l〉 ∈ K, r ∈ R}
and Υ = {〈g, l, k, r〉 | 〈g, l〉 ∈ K, r ∈ R}

The function complete parser for returns a complete
parser – a function mapping a t-string to a BSR set that
embeds all derivations of the t-string – for the language
generated by a given nonterminal in a given grammar.

complete parser for(Γ, X)(τ) = Υ

with 〈U ,Υ〉 = fungll(Γ, τ,X)

The generality of fun-gll is demonstrated by apply-
ing it to the example grammar from Ridge [20] shown in
Figure 3. The grammar is highly ambiguous and cyclic
(E can derive itself in at least one step by applying the
rule E → E E E and then applying E → ε twice). Given
the t-string "1", the parser complete parser for(ΓEEE,E)
returns the BSR set of Figure 4. An example execution
of fun-gll with these inputs is given in Table 1. The
resulting BSR set embeds the following derivation:

E0,1 → E0,0 E0,1 E1,1 {(10), (7), (2)}
→ E0,1 E1,1 {(1)}
→ E0,0 E0,0 E0,1 E1,1 {(9), (3), (2)}
→ E0,0 E0,1 E1,1 {(1)}
→ E0,1 E1,1 {(1)}
→ "1"0,1 E1,1 {(5)}
→ "1" {(11)}
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Note that the same sequence of symbols is obtained af-
ter the second and the fifth step. The third, fourth, and
fifth step can be repeated arbitrarily many times to pro-
duce infinitely many derivations. This example shows how
infinitely many derivations can be embedded in a BSR
set for a cyclic grammar. BSR post-processors can im-
plement ambiguity reduction by removing the derivations
that are not preferred. For example, Ridge presents a post-
processor in which spurious repeated steps are avoided, re-
sulting in ‘minimal’ derivations. Instead of the above, the
following derivation would be selected (among others):

E0,1 → E0,0 E0,1 E1,1 {(10), (7), (2)}
→ E0,1 E1,1 {(1)}
→ "1"0,1 E1,1 {(5)}
→ "1" {(11)}

The BNF combinator library discussed in Section 7 im-
plements Ridge’s method to avoid enumerating infinitely
many derivations and enables its users to choose sev-
eral additional ambiguity reduction strategies. A princi-
pled discussion on the development of ambiguity reduc-
tion strategies for filtering BSR sets is warranted but is
out of the scope of this paper. Principled approaches to
disambiguation have been developed in the Ph.D. theses
of Visser, Vinju and Afroozeh and Izmaylova [31, 32, 33].

5. Combinator parsing

The goal of the second half of this paper is to define
generalised parser combinators based on fun-gll and to
demonstrate some of the advantages of using these combi-
nators. This section introduces combinator parsing. The
generalised parser combinators based on fun-gll are de-
fined in Section 6 and are evaluated in Section 8.

5.1. Conventional parser combinators

Parser combinators are a popular alternative to parser
generators as a method for obtaining parsers, especially
in functional programming communities. Rather than
obtaining a parser from a grammar directly, parsers are
composed to form more complex parsers, starting with
simple elementary parsers. The composition of parsers
is expressed through parser combinators. In general, a
parser combinator is a higher-order function combining
one or more parsers, or a higher-order function construct-
ing a parser based on some (non-parser) arguments. A
combinator parser executes the parsers out of which it
is composed typically in a recursive descent, top-down
fashion. Parser combinators have been defined in many
ways [28, 34, 16, 35, 15].

Figure 5 defines a collection of elementary recognisers
and basic recogniser combinators. The recognisers are
functions that, given a t-string and an index of the t-
string, return a set of indices of the t-string. The indices
are similar to the left and right extents of the recogni-
tion procedure of Section 3 in the sense that a recogniser

term0(t)(t0 . . . tm, k) =

{
{k + 1} if tk = t

∅ otherwise

seq(p, q)(τ, l) = {r | k ∈ p(τ, l), r ∈ q(τ, k)}
alt(p, q)(τ, k) = p(τ, k) ∪ q(τ, k)

succeeds(τ, k) = {k}
fails(τ, k) = ∅

recognise0(p)(τ) =

{
true if |τ | ∈ p(τ, 0)

false otherwise

Figure 5: A collection of basic combinators and elementary parsers.

that is given a t-string τ and an index l returns the in-
dices r ∈ R if it recognises the substring ranging from l to
r − 1. Infix operators are often associated with combina-
tors. For example, associating ⊗ with seq and ⊕ with alt
(and granting ⊗ a higher precedence than ⊕), a recogniser
for the grammar ΓTuple is obtained by applying recognise0
to pTuple, defined as follows:

pTuple = term("(")⊗ pAs ⊗ term(")")

pAs = succeeds ⊕ term("a")⊗ pMore

pMore = succeeds ⊕ term(",")⊗ term("a")⊗ pMore

The combinators defined in Figure 5 are for recognition
only. Some combinators for parsing produce derivation
trees [35]. Most combinator libraries, however, integrate
‘semantic actions’ that perform a form of evaluation on the
fly in the spirit of syntax-directed translation [15, 34, 20].
The combinators presented in Section 6 produce BSR sets.
To enable semantic actions, the combinators in Section 6
can be paired with the semantic combinators of [13], as
outlined in Section 7.2.

Advantages of parser combinators. There are several ad-
vantages to writing parsers with parser combinators.
Firstly, a parser combinator library inherits features from
the host language in which it is implemented. For exam-
ple, parsers can be defined within different name spaces,
or within different modules, and the host language’s type-
system type-checks the application of the semantic ac-
tions. Monadic parser combinators even extend the ca-
pabilities beyond parsing context-free languages [34]. Sec-
ondly, parsers and parser combinators are reusable. Bor-
rowing the abstraction mechanism of the host language, it
is possible to abstract over sub-parsers and replace them
with a parameter. For example, pTupleAbs, defined below,
is applied to a recogniser p to obtain a recogniser for the
language of tuples whose elements are recognised by p.

pTupleAbs(p) = term("(")⊗ pAsAbs(p)⊗ term(")")

pAsAbs(p) = succeeds ⊕ p⊗ pMoreAbs(p)

pMoreAbs = succeeds ⊕ term(",")⊗ p⊗ pMoreAbs(p)

A third advantage is that additional parser combinators
and elementary parsers are defined easily, if the underlying
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parser algorithm is sufficiently simple. For example, the
function pred generalises term and returns a recogniser for
the terminals that satisfy the given predicate f :

pred(f)(t0 . . . tm, k) =

{
{k + 1} if f(tk)

∅ otherwise

Overcoming the drawbacks of basic parser combinators.
There is a direct correspondence between the definition
of pTuple above and the rules of the BNF description
of ΓTuple in Figure 1. This observation suggests that it
is possible to write combinator expressions for arbitrary
BNF descriptions of grammars. Although it is possible
to write the combinator expressions, the resulting recog-
nisers fail to terminate if the described grammar is left-
recursive. Moreover, the recognisers exhibit exponential
running times for certain grammars which is caused by
considering both alternatives in applications of alt . In gen-
eral, parsers constructed with parser combinators based on
standard recursive descent parsing inherit the drawbacks
of recursive descent parsing.

A common solution to the problem of left-recursion is
to refactor the grammar to remove left-recursion, either
manually or automatically [17]. Johnson showed that
recognition combinators written in continuation-passing
style can be extended with memoisation to solve the left-
recursion problem [16]. Afroozeh, Izmaylova and Van der
Storm, build on Johnson’s recognition combinators to de-
velop general parser combinators [36]. Frost, Hafiz, and
Callaghan [35] handle left-recursion with a ‘curtailment’
procedure, making at most as many recursive calls as there
are characters remaining in the input t-string.

To avoid parsing inefficiencies in some cases, less näıve
variations of alt can be defined, for example to avoid con-
sidering both alternatives by default [34] or to choose an
alternative using lookahead [15]. Efficiency can be im-
proved with memoisation as well [14, 37].

The resulting algorithms are more complicated, and may
depend on impure methods to detect recursion [38, 19, 39].
As a result, it can be more difficult to extend the combina-
tor libraries with functions such as pred . In general, it is
difficult to reason formally about parsers developed with
parser combinators. In particular, determining the lan-
guage recognised by a combinator parser involves knowl-
edge of the underlying operational details.

5.2. Grammar combinators

The approaches suggested by Devriese and Piessens [18],
Ljunglöf [19], and Ridge [20] have in common that higher-
order functions combine grammar fragments. The result-
ing grammars are passed to a stand-alone parsing proce-
dure which need not be restricted to recursive descent and
can indeed be a generalised parsing procedure. A library
of such grammar combinators6 can be seen as an embed-
ded implementation of BNF with parameterisable nonter-
minals – similar to precc or happy grammars [40, 41]

6The term used by Ljunglöf and Devriese and Piessens.

and macro-grammers [42, 43] – by taking advantage of the
abstraction mechanism of the host language. Like parser
combinators, grammar combinators inherit other features
of the host language that can be leveraged. However, the
user is limited in using these features by the constraint
that combinator expressions must yield context-free gram-
mars. By using a grammar as a level of indirection, it is
possible to reason formally about the language defined by
combinator expressions. Moreover, optimisations such as
lookahead and automatic left-factoring [29] can be realised
without interfering with the combinator definitions as the
underlying parsing procedure is simply replaced.

The next section defines generalised parser combinators
based on the fun-gll algorithm. Section 7 explains how
these combinators are used in practice in a combinator
library that has the advantages of a grammar combinator
library. Section 8 demonstrates that this library is not as
restrictive as a grammar combinator library however.

6. FUN-GLL parser combinators

Parsers written with conventional parser combinators
represent grammar descriptions only superficially. Al-
though a combinator parser may have been written with a
grammar in mind, this grammar is not available to the un-
derlying parsing algorithm. Grammar slots are required,
however, to implement parser combinators according to a
generalised parsing algorithm such as GLR [2], Earley [1],
or GLL [4]. This section demonstrates that it is possible to
define generalised parsing combinators, based on fun-gll
of Section 4, when grammar slots are available.

As mentioned in the previous section, combinator li-
braries that compute grammars exist. Computing a gram-
mar requires the introduction of nonterminals that are
otherwise not present. For example, nonterminals do not
occur in the expressions formed by applying the combina-
tors of Figure 5. The nonterminals are typically introduced
at recursion points and advanced programming techniques
are required that enable the underlying algorithm to ob-
serve recursion [19, 17, 18].

Rather than using such advanced techniques, this sec-
tion adopts the approach taken by Ridge [20] and forces
programmers to insert nonterminals. The combinator
nterm is introduced for this purpose. The disadvantages
of forcing the programmer to insert nonterminals are dis-
cussed in Section 9. The advantages of generalised parser
combinators over grammar combinators are demonstrated
in Section 8.

The core BNF combinators. This section makes two signif-
icant changes to the combinators of Figure 5 to enable the
underlying algorithm to compute grammar slots. Firstly,
the combinator nterm is introduced to inject nonterminals
into combinator expressions. Secondly, the combinators
are restricted in their applicability so that combinator ex-
pressions have a structure that resembles a BNF grammar
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nterm : N × Choice → Symb

term : T → Symb

seqOp : Sequence × Symb → Sequence

seqStart : Sequence

altOp : Choice × Sequence → Choice

alt : Choice

Figure 6: The signatures of the BNF combinators.

description more directly. The richer structure of combina-
tor expressions makes it possible to extract grammars (and
thus grammar slots) from combinator expressions without
the need to binarise the grammar [13]. A third change is
superficial, renaming seq to seqOp, succeeds to seqStart ,
alt to altOp, and fails to altStart , so that their names are
suggestive of their roles in a BNF description.

The combinators are applied to form one of three differ-
ent types of combinator expression: symbol expressions,
sequence expressions and choice expressions. Symbol ex-
pressions represent symbols in BNF, a sequence expres-
sion represents a sequences of symbols (an alternate, or
part of an alternate), whereas a choice expression repre-
sents the choice between several alternates. Figure 6 gives
signatures to the combinators, showing for each combina-
tor which type of combinator expression is formed when it
is applied and restricting its operands to specific types of
combinator expressions or symbols. As before, the distinct
sets T and N contain terminal symbols and nonterminal
symbols respectively. The combinators are referred to
as ‘BNF combinators’ because their expressions represent
BNF grammar descriptions explicitly.

A sequence expression constructed by seqStart repre-
sents the empty sequence of symbols. Each application
of seqOp adds an additional symbol (second argument) to
the end of a sequence (first argument). The combinator
seqOp therefore relates to juxtaposition in a BNF rule.
Similarly, a choice expression constructed by altStart rep-
resents the empty sequence of alternates. Each application
of altOp adds an additional alternate (second argument)
to an other sequence of alternates (first argument). The
combinator altOp therefore relates to the | operator in a
BNF rule. An application of nterm groups zero or more
alternates (second argument) under a single nonterminal
(first argument). The combinator nterm hence relates to
the ::= operator of a BNF rule. An application of term
lifts a terminal symbol to a symbol expression. The com-
binator term relates to terminals as they appear in the
right-hand sides of BNF rules. Figure 7 shows the symbol
expressions that represent the nonterminals of ΓTuple de-
fined in Figure 1. Figure 8 shows the symbol expression
that represents the More nonterminal as a tree.

The expressions of Figure 7 are verbose and difficult to
read. As shown in [13] (and by the examples of Section 7),

the user-experience of conventional combinator libraries
is recovered by introducing infix operators and automatic
conversions between the different types of combinator ex-
pressions. This material is not repeated in this paper. In-
stead, Section 7 discusses an alternative implementation
of the combinator library of [13]. The alternative imple-
mentation is made possible by the generalised parser com-
binators introduced in this section.

The remainder of this section gives three alternative
definitions of the BNF combinators: first as recognition
combinators, then as parser combinators, and finally as
generalised parser combinators based on the fun-gll al-
gorithm. The definitions of the combinators in this section
show a similar progression to the definitions of the recog-
nition and parsing procedures in Sections 3 and 4.

6.1. The recognition combinators

GLL algorithms generalise recursive descent parsing by
managing continuations themselves, rather than relying
on the call-stack of a host language [4, 29]. In fun-gll,
the relation G is used for this purpose. The parsing algo-
rithm implemented in the generalised parser combinators
of this section manages continuations in the same way
as fun-gll. This is made possible by giving the defini-
tions in ‘continuation-passing style’. Examples of com-
binators definitions in continuation-passing style can be
found in [16, 19, 12]. The reader is referred to [44] for a
general overview on designing and implementing combina-
tor libraries. The recognition combinators that are defined
next demonstrate how continuation-passing style is used in
this section.

Figure 9 defines the BNF combinators as recognition
combinators. The definitions differ from those of Fig-
ure 5 in two important ways due to the application of
continuation-passing style. Firstly, the recognition func-
tions receive a continuation function (for which the place-
holder c is used) as an additional argument. A contin-
uation function takes an index of the input t-string and
returns a Boolean. Secondly, the result of evaluating a
combinator expression is a Boolean rather than a set of
indices. When recognition fails, the result is false instead
of the empty set. When recognition succeeds, the result
of applying the continuation function to k + 1 is returned
rather than {k+ 1}. Note that the same continuation can
be applied several times when multiple alternates are suc-
cessful. This follows from the definition of altOp, in which
c is given to both operands p and q.

The recognition combinators do not take advantage of
the additional information provided by nonterminals in-
jected with nterm nor by the richer structure of combina-
tor expressions. The parser combinators that are defined
next demonstrate how this additional information can be
used to compute the grammar slots of BSRs.

6.2. The parser combinators

This paper has so far considered a BSR set to be com-
puted with respect to a grammar that is known before-
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bnfTuple = nterm(Tuple, altOp(altStart , seqOp(seqOp(seqOp(seqStart , term("(")), bnfAs), term(")"))))

bnfAs = nterm(As, altOp(altOp(altStart , seqStart), seqOp(seqOp(seqStart , term("a")), bnfMore)))

bnfMore = nterm(More, altOp(altOp(altStart , seqStart), seqOp(seqOp(seqOp(seqStart , term(",")), term("a")), bnfMore)))

Figure 7: Symbol expressions for ΓTuple without infix operators and automatic conversions.

nterm(More, ...)

altOp

altOp

seqStartaltStart

seqOp

nterm(More, ...)seqOp

term("a")seqOp

term(",")seqStart

s5

s1

s2

s3

s4

s1 : More ::= • "," "a" More

s2 : More ::= "," • "a" More

s3 : More ::= "," "a" •More

s4 : More ::= "," "a" More •

s5 : More ::= •

Figure 8: The symbol expression that represents the nonterminal
More as defined in Figure 1. The sequence expressions within the
symbol expression are labelled with the grammar slots s1, . . . , s5.

hand. However, a BSR set can be computed from a BNF
combinator expression so that it is valid with respect to the
grammar represented by the combinator expression, with-
out actually constructing the grammar. To do so, a gram-
mar slot is computed for each sequence expression. Con-
sider the symbol expression visualised in Figure 8. The se-
quence expressions within the expression are labelled with
the grammar slots that need to be computed for them.

To compute grammar slots for all occurrences of se-
quence expression, some information is propagated ‘down-
wards’, while other information is sent ‘upwards’. Send-
ing information upwards means giving the information as
input to a continuation function, whereas sending infor-
mation downwards means passing it as input to a sub-
expression. A sequence expression sends upwards the se-
quence of symbols it represents. This is the sequence "a,"

in the case of the sequence expression s3 of the exam-
ple. A sequence expression receives the nonterminal sym-
bol represented by the closest ancestor that is a symbol
expression. This is the nonterminal More for all sequence
expressions in the example. A sequence expression also re-
ceives the symbols represented by the ‘rest’ of the sequence
in which it appears. This is the sequence "a" More in the
case of s2. The definitions of seqStart and seqOp given
later show in detail how slots are computed.

In Section 3, a left extent and grammar slot were added
to the input list of the function process1 to extend the

nterm1(X, p)(τ, k, c) = p(τ, k, c)

term1(t)(t0 . . . tn, k, c) =

{
c(k + 1) if tk = t

false otherwise

seqStart1(τ, k, c) = c(k)

seqOp1(p, q)(τ, k, c) = p(τ, k, c′) with c′(r) = q(τ, r, c)

altStart1(τ, k, c) = false

altOp1(p, q)(τ, k, c) = p(τ, k, c) ∨ q(τ, k, c)
recognise1(p)(τ) = p(τ, 0, c)

with c(r) =

{
true if r = |τ |
false otherwise

Figure 9: The BNF combinators defined as recognition combinators.

recognition procedure to a parsing procedure. In this sec-
tion, the same modification is made to the input list of
continuation functions. Continuation functions are also
modified to return BSR sets. The function continue1 is
given a BSR 〈X ::= α •β, l, k, r〉 and a continuation func-
tion c. It applies c to the descriptor7 〈X ::= α •β, l, r〉 and
adds the BSR to the result of applying c.

continue1(〈X ::= α •β, l, k, r〉, c) =

c(〈X ::= α •β, l, r〉) ∪Υ

with Υ = {〈X ::= α •β, l, k, r〉 | α 6= ε ∨ β = ε}

The definitions of seqStart and seqOp are as follows:

seqStart1(τ,X, β, l, c0) = continue1(〈X ::= •β, l, l, l〉, c0)

seqOp1(p, 〈s, q〉)(τ,X, β, l, c0) = p(τ,X, sβ, l, c1)

with c1(〈X ::= α • sβ, l, k〉) = q(τ,X ::= αs •β, l, k, c2)

with c2(〈X ::= αs •β, l, r〉) =

continue1(〈X ::= αs •β, l, k, r〉, c0)

Besides the t-string τ , a sequence expression receives the
left extent l, the continuation function c0, and nontermi-
nal X and symbol sequence β for constructing a slot (as
explained in the context of Figure 8). An occurrence of
seqStart computes the slot X ::= •β and calls continue1

with the BSR 〈X ::= •β, l, l, l〉 and continuation function

7Descriptors are used as a convenience here. The generalised
parser combinators given later in this section actually use descriptors
for the same purpose as for which they were introduced in Section 4.
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c (which will add the BSR to the BSR set only if β = ε).
The second operand of an occurrence of seqOp represents
a symbol s that is added to the sequence β when given as
input to the first operand p. The continuation of p may be
applied to the slot computed for p, providing the α such
that X ::= αs •β is the slot computed for this occurrence
of seqOp. The application of the second operand q shows
that a symbol expression receives the slot computed for
its parent. The continuation of q is applied when a right
extent r is found for the symbol s, which is used together
with the computed slot, left extent l, and pivot k, to form
the BSR 〈X ::= αs •β, l, k, r〉. The BSR is used in a call
to continue1.

As mentioned above, a symbol expression representing
some s receives the slot X ::= αs •β computed for its par-
ent. An occurrence of nterm1 defers evaluation to its sec-
ond operand p, a choice expression, providing s as input
(and pivot k takes up the role of left extent). The input s is
required for computing slots for the sequence expressions
that form the choice expression p.

nterm1(s, p) = 〈s,nterm parser1(p)〉
nterm parser1(p)(τ,X ::= αs •β, l, k, c) = p(τ, s, k, c′)

with c′(〈s ::= δ • , k, r〉) = c(〈X ::= αs •β, l, r〉)

The continuation c′ of p receives a right extent r, discov-
ered for s by p, and applies the continuation c to the de-
scriptor 〈X ::= αs •β, l, r〉, indicating that αs derives τ l,r.

An occurrence of term matches the terminal symbol s it
represents against the terminal at position k in the input
t-string and, if the match was successful, applies its con-
tinuation function to the descriptor 〈X ::= αs •β, l, k + 1〉.

term1(s) = 〈s, term parser1〉
term parser1(t0 . . . tn, X ::= αs •β, l, k, c) ={

c(〈X ::= αs •β, l, k + 1〉) if tk = s

∅ otherwise

If the match fails, the continuation function is not applied
(and no BSRs are added). Evaluating an occurrence of
altStart has the same effect as failing to match a terminal
(recall that altStart replaced fails of Figure 5):

altStart1(τ, s, k, c) = ∅
altOp1(p, q)(τ, s, k, c) = p(τ, s, k, c) ∪ q(τ, s, ε, k, c)

An occurrence of altOp is evaluated by applying both its
operands and uniting the BSR sets produced by each ap-
plication. The second operand q is a sequence expression
and receives nonterminal s and the empty sequence of sym-
bols ε. The given sequence is empty because q represents
the end of an alternate (consider s4 and s5 in Figure 8).

Function parse1 generates a parser for a symbol expres-
sion p based on a nonterminal X that should not appear

as the first operand of any occurrence of nterm1 in p:

parse1(〈s, f〉)(τ) = f(τ,X ::= s • , 0, 0, ĉ)

with ĉ(〈X ::= s • , 0, r〉) = ∅
and X a fresh nonterminal

If at any point during a parse the continuation ĉ is given
a right extent r such that r = |τ |, then the t-string τ is
recognised by the parser and the BSR set computed by the
application of f embeds its derivations.

The parsers generated by parse1 exhibit the same draw-
backs as those generated by parser for in Section 3. The
generalised parser combinators that are defined next over-
come these drawbacks in the same manner as the fun-gll
algorithm, using the set U of descriptors to avoid repeated
work and using the relations G and P to ensure that all
possible derivations are recorded.

6.3. The generalised parser combinators

The definitions of the generalised parser combinators are
explained as a modification of nterm1, term1, seqStart1,
seqOp1, altStart1, and altOp1 given earlier. The main dif-
ference is that a continuation function no longer returns
just a BSR set. Instead, a continuation function returns
a function that given a tuple of the form 〈U ,G,P, C,Υ〉
returns a tuple of the form 〈U ′,G′,P ′, C′,Υ′〉 for which it
holds that U ⊆ U ′, G ⊆ G′, P ⊆ P ′, C ⊆ C′, and Υ ⊆ Υ′.
A function of this type is referred to as a command. A
continuation function is a function that returns a com-
mand given a descriptor. Continuation functions return
commands to perform the bookkeeping tasks that are es-
sential to the fun-gll algorithm: inserting the required
descriptors, BSR elements, and elements of G and P. The
descriptor argument informs the continuation that its be-
haviour is that of processing the given descriptor and is
thus a way to determine whether the continuation has been
executed already. Non-termination due to left-recusion is
avoided by ensuring no continuation is executed with the
same descriptor a second time. As shown by the definition
of continue2 given below, a continuation only exhibits its
effects if its descriptor argument is not already in U .

The sets U , G, P, and Υ serve the same purpose as
in Section 4. Unlike in fun-gll, there is no worklist R.
The additional relation C maps continuations to contin-
uation functions. An invariant that is to be maintained
by commands is that if a commencement 〈X, l〉 is mapped
to continuation 〈g, l′〉 in G, i.e. 〈〈X, l〉, 〈g, l′〉〉 ∈ G, then
there exists exactly one continuation function c such that
〈〈g, l′〉, c〉 ∈ C. Intuitively, if 〈〈g, l′〉, c〉 ∈ C, then when-
ever continuation 〈g, l′〉 is combined with a right extent r
to form a descriptor 〈g, l′, r〉, c is the code for processing
that descriptor, i.e. c is applied to 〈g, l′, r〉 where process
would be applied to 〈g, l′, r〉 in the fun-gll algorithm.
The relation C is introduced so that usages of G are iden-
tical to those of Section 4. Implementations can ‘merge’
G and C so that the continuation c is stored alongside the
continuation 〈g, l′〉.
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The definitions of the combinators altStart2 and altOp2

are modified slightly:

altStart2(τ, s, k, c)(σ) = σ

altOp2(p, q)(τ, s, k, c) = p(τ, s, k, c) ◦ q(τ, s, ε, k, c)

The command returned by an application of altStart2

makes no changes to the data structures. The command
returned by altOp2 is the composition of the commands
for its two operands p and q so that both operands exhibit
their effects.

The definition of term2 shows that failing to match the
next terminal in the input t-string means that the data
structures remain unchanged:

term2(s) = 〈s, term parser2〉
term parser2(t0 . . . tn, X ::= αs •β, l, k, c)(σ) ={

c(〈X ::= αs •β, l, k + 1〉)(σ) if tk = s

σ otherwise

The continuation is applied if the terminal at position k of
the input t-string matches s. Note that as in the previous
subsection, symbol expressions evaluate to a pair of which
the first component is a symbol and that this symbol is
required for computing the grammar slots.

The new definitions of seqStart and seqOp differ in that
they apply continue2 (given later) rather than continue1:

seqStart2(τ,X, β, l, c0) = continue2(〈X ::= •β, l, l, l〉, c0)

seqOp2(p, 〈s, q〉)(τ,X, β, l, c0) = p(τ,X, sβ, l, c1)

with c1(〈X ::= α • sβ, l, k〉) = q(τ,X ::= αs •β, l, k, c2)

with c2(〈X ::= αs •β, l, r〉) =

continue2(〈X ::= αs •β, l, k, r〉, c0)

As continue1, the function continue2 receives a BSR to-
gether with a continuation function c, and it applies c to a
descriptor. However, c is only applied if the descriptor is
not in U . The descriptor is added to U as part of the appli-
cation of c. The BSR element is added to Υ independent
of whether the descriptor is in U .

continue2(〈X ::= α •β, l, k, r〉, c)(〈U ,G,P, C,Υ〉) =
c(〈X ::= α •β, l, r〉)(〈U ∪ U ′,G,P, C,Υ ∪Υ′〉)

if 〈X ::= α •β, l, r〉 6∈ U
〈U ,G,P, C,Υ ∪Υ′〉 otherwise

with Υ′ = {〈X ::= α •β, l, k, r〉 | α 6= ε ∨ β = ε}
and U ′ = {〈X ::= α •β, l, r〉}

Recall the definition of nterm1. The subexpression p of
nterm1(s, p) is evaluated with a continuation function that
may be applied to a descriptor of the form 〈s ::= δ • , k, r〉,
indicating that the alternate δ of s derives τk,r. In fun-
gll, a descriptor of this form is processed by processε and

involves executing the continuations found for the com-
mencement 〈s, k〉 in G (corresponding to the ascend ac-
tion). The function cont for defined below creates a con-
tinuation function for a given nonterminal s and choice ex-
pression p that executes the continuations retrieved from
G (directly rather than via a worklist).

cont for(s, p)(〈s ::= δ • , k, r〉)(〈U ,G,P, C,Υ〉) =

◦ {c(〈g, l′, r〉) | 〈〈s, k〉, 〈g, l′〉〉 ∈ G, 〈〈g, l′〉, c〉 ∈ C}(σ′)
with σ′ = 〈U ,G,P ∪ {〈〈s, k〉, r〉}, C,Υ〉

For each continuation 〈g, l′〉 found in G, the corresponding
continuation function c is found in C and c is applied to
the descriptor 〈g, l′, r〉, resulting in a command for each
continuation. The commands are composed; the nota-
tion ◦{x1, . . . , xn} denotes the composition of the func-
tions x1, . . . , xn in an arbitrary order. The right extent r
is recorded by adding 〈〈s, k〉, r〉 to P.

The continuation function cont for(s, p) is given to
p when nterm parser2(p) – the second component of
nterm2(s, p) – is evaluated with some index k, but only
if there is no right extent r such that 〈〈s, k〉, r〉 ∈ P
(descend).

nterm2(s, p) = 〈s,nterm parser2(p)〉
nterm parser2(p)(τ,X ::= αs •β, l, k, c)(〈U ,G,P, C,Υ〉) ={

p(τ, s, k, cont for(s, p))(σ′) if R = ∅
◦{c(〈X ::= αs •β, l, r〉) | r ∈ R}(σ′) otherwise

with R = {r | 〈〈s, k〉, r〉 ∈ P}
and σ′ = 〈U ,G ∪ G′,P, C ∪ C′,Υ〉
and G′ = {〈〈s, k〉, 〈X ::= αs •β, l〉〉}
and C′ = {〈〈X ::= αs •β, l〉, c〉}

If there are such right extents (skip), i.e. R 6= ∅, then con-
tinuation function c, given to nterm parser2(p), is applied
to each descriptor 〈X ::= αs •β, l, r〉 with r ∈ R. The
slot X ::= αs •β is the slot computed for the parent of
nterm2(s, p). The slot forms a continuation together with
the given left extent l. The continuation is stored in G
and is mapped to c in C. The definition of nterm2 shows
a striking resemblance with the memoisation combinator
of Johnson’s recognition combinators [16], as is briefly dis-
cussed in Section 10.

Function parse2 is similar to parse1:

parse2(〈s, f〉)(τ) = Υ

with 〈U ,G,P, C,Υ〉 = f(τ,X ::= s • , 0, 0, ĉ)(σ̂)

and ĉ(〈X ::= s • , 0, r〉)(σ) = σ

and σ̂ = 〈∅, ∅, ∅, ∅, ∅〉
and X a fresh nonterminal

The command produced by evaluating the second compo-
nent of the given symbol expression is applied to a tuple
of empty sets, initialising the data structures used by the
algorithm. Only the final BSR set Υ is returned by the
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parser. The initial continuation ĉ returns the identity com-
mand given a descriptor 〈X ::= s • , 0, r〉. The t-string τ is
recognised if there is an application of ĉ with r = |τ |.

This section defined the BNF combinators nterm, term,
seqStart , seqOp, altStart , and altOp as general parser com-
binators. The combinators are general in the sense that
for any t-string τ and symbol expression p that repre-
sents a grammar Γ it holds that parse2(p)(τ) evaluates
to a finite BSR set that embeds all derivations of τ in
Γ. Non-termination due to left-recursion is avoided by
using descriptors to avoid executing the same continua-
tion a second time (see the definition of continue2). It
is still possible, however, to write symbol expressions for
which the generated parser fails to terminate for some in-
put t-strings. This is the case when the symbol expression
does not actually represent a context-free grammar. How-
ever, there are symbol expressions that do not represent
a context-free grammar for which the parser still termi-
nates and computes a meaningful and correct result. This
is an advantage of using parser combinators over grammar
combinators and is considered in more detail in Section 8.
The examples in Section 8 show what sort of symbol ex-
pressions do not represent context-free grammars and how
meaningful results can still be produced for some of these.

7. The BNF combinator library

This section summarises the second half of [13] in which
the ‘BNF combinator library’ is introduced as a literate
Haskell program. The library is discussed in this paper
to demonstrate one way in which the generalised parser
combinators of the previous section can be used in practice
and to show that they can be used with semantic actions.
The library is also the vehicle with which the experiments
in the evaluation section have been performed.

The BNF combinator library is similar in functional-
ity and architecture to the P3 grammar combinator li-
brary presented by Ridge at SLE in 2014 [20]. The nov-
elty of the BNF combinator library is that it implements
the BNF formalism more directly compared to conven-
tional parser combinator libraries or grammar combinator
libraries. The underlying grammar-extraction algorithm
is simpler compared to that of P3 and the other grammar
combinator libraries mentioned in Section 5. Most impor-
tantly, the algorithm avoids binarisation of the extracted
grammar. The evaluation section of [13] demonstrates the
negative effects of binarisation on the runtime of the un-
derlying parsing procedure.

This section introduces the BNF combinator library by
giving example syntax descriptions in §7.1 and giving an
overview of the library’s architecture in §7.2. In §7.2 it
is also explained how an alternative implementation of
the BNF combinator library is enabled by the generalised
parser combinators of the previous section. The two ver-
sions of the library are compared in Section 8.

7.1. Examples

The BNF combinator library is presented in [13] without
considering lookahead, error reporting and disambigua-
tion. An implementation with these features is available as
the gll package [45] on Haskell’s package manager Hack-
age. The examples written in this section are written
with the functions and infix operators exported by the
GLL.GrammarCombinators module of the package.

The following Haskell code fragment shows how Γtuple

of Figure 1 is described with BNF combinators.

bnfTuple = "Tuple"

〈::=〉 char ’(’ ∗∗〉 bnfAs 〈∗∗ char ’)’

bnfAs = "As"

〈::=〉 satisfy 0
〈||〉 (1+) 〈$$ char ’a’ 〈∗∗〉 bnfMore

bnfMore = "More"

〈::=〉 satisfy 0
〈||〉 (1+) 〈$$ char ’,’ 〈∗∗ char ’a’ 〈∗∗〉 bnfMore

The 〈::=〉 operator is the exported infix version of nterm,
〈||〉 of altOp, and 〈∗∗〉 of seqOp. Function satisfy is the
exported version of seqStart and char is one of several
exported versions of term. The operator 〈::=〉 has the
lowest precedence, the precedence of 〈||〉 is higher than
that of 〈::=〉 but lower than that of 〈∗∗〉. The argument of
satisfy is the semantic value that gives an interpretation to
the alternate it constructs. For example, the nonterminal
"As" describes the language of zero or more occurrences
of the character ’a’ separated by commas. The associ-
ated semantic actions count the occurrences of ’a’. The
first alternate of "As" corresponds to zero occurrences, the
number to which satisfy is applied. The operators 〈∗∗ and
∗∗〉 are variants of 〈∗∗〉 that suppress the semantic value of
their right and left operand respectively. The 〈$$〉 operator
occurs at the start of an alternate and inserts a semantic
function8 that is applied to the semantic values produced
for the symbols of the alternate, ignoring the semantic val-
ues that are suppressed. The 〈$$ operator is a variant of
〈$$〉 that suppresses the semantic value of the first sym-
bol of the alternate. The operators 〈$$〉, 〈∗∗〉, and their
variants have the same precedence and are left-associative.

The main difference compared to popular Haskell parser
combinator libraries such as parsec and uu-lib is the
requirement to use 〈::=〉 to insert a nonterminal name
into recursive combinator expressions. The inserted name
is used internally for detecting recursion and computing
grammar slots. Drawbacks and alternatives to this form
of nonterminal insertion are discussed in Section 9.

An interesting advantage of combinator parsing is the
ability to use the abstraction mechanism of the host lan-
guage. The BNF combinator library takes advantage by
defining several functions that closely correspond to pop-
ular extensions of BNF, capturing common patterns such

8The word ‘semantic function’ is used instead of ‘semantic action’
to emphasise that it is a pure function.
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as optionality and repetition. The definition of a function
for optionality is given as an example:

optional p = mkNt p "optional" 〈::=〉 satisfy Nothing
〈||〉 Just 〈$$〉 p

Haskell’s Maybe type is used to wrap the semantic value
of p with Just if p is chosen, or to give Nothing other-
wise. The function mkNt is given a BNF description and
a string and generates a unique nonterminal name based
on its inputs. The function assumes that all the nontermi-
nals in the BNF description have unique names and that
the string is not used as a nonterminal name anywhere
else. The application of mkNt is necessary to ensure that,
for example, optional (char ’a’) and optional (char ’b’)
describe different nonterminals. In general, if a BNF de-
scription is parameterised, then the parameters need to be
taken into account when injecting a nonterminal name.

The following example demonstrates how Haskell’s stan-
dard library function map can be used to effectively gen-
erate a BNF description.

bnfKeywords xs = chooses "keywords" (map keyword xs)

The function bnfKeywords is given a list of strings and
generates a BNF description that defines the nonterminal
"keywords" with an alternate for each string. Each alter-
nate is formed by applying keyword to one of the strings.
The function keyword is similar to char except that it
matches a particular string rather than a single character.
Function chooses is a variant of 〈::=〉 that expects a list of
alternates as its second argument, enabling nonterminals
with a number of alternates that is unknown statically.

7.2. Architecture of the BNF combinator library

The BNF combinator library described in [13] is imple-
mented as a collection of ‘external’ combinators (available
to the programmer) that generate expressions by applying
the combinators of two ‘internal’ libraries (hidden from the
programmer). Each of the three libraries implements the
BNF combinators of Figure 6 in different ways, providing
different instantiations for the types Symb, Sequence, and
Choice. The interconnection between the external and
internal libraries is summarised as follows:

• An expression formed by applying the internal gram-
mar combinators is evaluated to yield the grammar
represented by the combinator expression

• An expression formed by applying the internal se-
mantic combinators has semantic actions embedded
within it and computes grammar slots for its sequence
expressions in the way described for the parser combi-
nators in Section 6. The expression is evaluated given
a BSR set and uses the slots to find pivots in the BSR
set in order to enumerate derivations9 and execute the

9Cyclic grammars that may admit infinitely many derivations of
an input string are dealt with in the way described at the end of
Section 4. Disambiguation strategies can be used to filter out certain
pivots, for example by applying the ‘longest match’ rule.

semantic actions that interpret the derivations

• An expression formed by applying the external com-
binators generates expressions of the same structure
in the two internal libraries. The generated gram-
mar combinator expression is evaluated to produce
a grammar. The grammar is given to an implemen-
tation of fun-gll to yield the BSR set for a given
t-string. The generated semantic combinator expres-
sion is evaluated to yield the interpretations of the
derivations embedded in the BSR set

• The functions and operators such as 〈::=〉, 〈$$〉, 〈||〉
and satisfy , used in the examples of §7.1, are defined
as syntactic sugar on top of the external combinators

The architecture of the library is visualised in Figure 10.
The parser combinators of the previous section enable

an alternative implementation of the BNF combinator li-
brary. The parser combinators can be used to replace
fun-gll and the internal grammar combinators because
they compute BSR sets directly. The architecture of the
alternative implementation of the library is visualised in
Figure 11. Replacing the internal grammar combinators
with the generalised parser combinators has proven to be
straightforward. The alternative library is available as the
fungll-combinators package [46] on Hackage. The two
implementations are compared in Section 8.

8. Evaluation

The previous section gives an overview of the ‘BNF com-
binator library’, initially introduced in [13], for writing
syntax descriptions that admit generalised parsing. Ex-
amples of using the library are given in §7.1. An alter-
native architecture for the library is suggested at the end
of §7.2. In the alternative, the generalised parser combi-
nators of Section 6 replace the internal grammar combi-
nators of the library. This section compares the two im-
plementations of the library based on the alternative ar-
chitectures. The libraries export their functionality in the
GLL.GrammarCombinators and GLL.ParserCombinators
modules. The modules can be used interchangeably as
their interfaces are identical and switching between li-
braries for the experiments of this section is as simple
as changing an import statement. The only difference is
that GLL.GrammarCombinators uses an internal gram-
mar. Some of the advantages of avoiding an internal gram-
mar are discussed in §8.2. In particular, §8.2 shows that
parsers can be obtained for a larger class of syntax descrip-
tions, including descriptions that do not specify a context-
free language. In §8.1, the running times for parsing large
inputs for real-world languages are compared.

All tests in this section have been executed without
lookahead tests under Ubuntu 14.04 on a laptop with
quad-core 2.4GHz processors and 8GiB of RAM. Looka-
head has been switched off because the implementation

16



External expr.

Grammar

Grammar expr.

String fun-gll BSR set Semantic expr. Semantic values

−→ input

99K output

function

data

Figure 10: The architecture of the BNF combinator library with internal grammar combinators.
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Figure 11: The architecture of the BNF combinator library with internal parser combinators.

Table 2: Parsing ANSI-C files (in seconds).

Tokens 1515 8411 15589 26551 36827
Grammar 0.45 2.48 4.46 8.01 10.52
No Grammar 0.48 2.62 4.89 8.36 11.41
Factor 1.07 1.06 1.10 1.04 1.08

Table 3: Parsing Caml Light files (in seconds).

Tokens 1097 4534 8846 15910 28703
Grammar 1.25 4.02 7.92 13.47 27.28
No Grammar 1.38 4.07 8.68 14.81 28.55
Factor 1.10 1.01 1.10 1.10 1.05

of the BNF combinator library with internal parser com-
binators does not currently support a form of lookahead.
Possible approaches to extending the generalised parser
combinators with lookahead are discussed in Section 9.

8.1. Performance

The running times of GLL.GrammarCombinators and
GLL.ParserCombinators are compared by running parsers
for the syntax descriptions of three software languages:
two programming languages – ANSI-C and Caml Light –
and the semantic specification language CBS [25]. The
running times include a lexicalisation phase which pro-
duces a sequence of ‘tokens’, given as input to the pars-
ing phase. In the case of CBS, the running times in-
clude semantic evaluation and disambiguation, produc-
ing an abstract syntax tree that is printed to a file. For
each language, considerable software-language engineering
projects10 have been selected: an in-house parser genera-
tor in ANSI-C, a Caml Light compiler in Caml Light, and

10The three case studies are taken from [13]. The rows labelled
‘Grammar’ correspond to the rows labelled ‘Flexible’ in [13]. The
numbers differ slightly because the experiments were run again.

Table 4: Parsing and pretty-printing CBS files (in seconds).

Tokens 2653 14824 17593 21162 26016
Grammar 1.30 11.68 15.07 19.63 29.54
No Grammar 1.10 9.18 11.28 15.16 21.80
Factor 0.85 0.79 0.75 0.77 0.75

a complete semantic specification in CBS. The test files
are the result of composing varying selections of source
files taken from these projects in order to create files of
several sizes. The running times are shown in Tables 2, 3,
and 4. The rows starting with ‘Grammar’ and ‘No Gram-
mar’ show the running times of the two alternative im-
plementations of the BNF combinator library, with and
without generating an internal grammar. The rows start-
ing with ‘Factor’ shows the relative difference in running
times between the two implementations.

The syntax description of ANSI-C is a direct transcrip-
tion of the grammar listed by Kernighan and Ritchie [23].
This grammar is written in BNF (without extensions).
The grammar is nondeterministic and left-recursive. The
grammar generated by the internal grammar combinators
of GLL.GrammarCombinators has 229 alternates and 71
nonterminals. The syntax description of Caml Light is
taken from the Caml Light reference manual by Leroy [24].
The grammar is highly nondeterministic and has many
sources of ambiguity. In particular, the grammar contains
a large and highly nondeterministic nonterminal for ex-
pressions. The combinator description of the grammar
makes heavy use of abstraction to capture EBNF nota-
tions. The grammar generated by the internal grammar
combinators of GLL.GrammarCombinators has 285 alter-
nates and 134 nonterminals. The syntax description for
CBS is nondeterministic and has several sources of ambi-
guity. The grammar generated by the internal grammar
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combinators of GLL.GrammarCombinators has 257 alter-
nates and 126 nonterminals.

The experiments show that for ANSI-C and Caml Light
there is a decrease in performance of between 4% and 12%
using the internal parser combinators. However, for CBS
there is a performance increase of 15-25%. The main con-
clusion is that both implementations of the BNF combi-
nator library are practical to use for real-world languages,
even without specialised performance engineering, thus
demonstrating that practical implementations of the gen-
eralised parser combinators are possible. The experiment
is in part a repeat of the experiment in [13] which did
not include the generalised parser combinator alternative
(‘No Grammar’), but instead demonstrated the advantage
of the internal grammar combinators (‘Grammar’) over
a variant that generates binarised grammars (both with
and without lookahead). More information about the lan-
guages and test strings can be found in [13].

8.2. The benefits of avoiding grammar generation

Both implementations of the BNF combinator library
are general in the sense that terminating parsers are avail-
able for all syntax descriptions that describe context-free
languages. However, syntax descriptions that do not de-
scribe a context-free language can be written, in which case
the grammar extraction algorithm of the internal grammar
combinators fails to terminate. Moreover, syntax descrip-
tions that produce very large grammars for which parsing
is not practical can also be written. An example of the
latter is given by permutation phrases. An example of the
former is given at the end of this section.

Permutation phrases. A permutation phrase is a sequence
of permutable elements in which each element occurs ex-
actly once and in any order [21]. The following experiment
involves a variation of permutation phrases that allows el-
ements to be included optionally, i.e. elements occur at
most once. Real-world examples of permutation phrases
are provided by the ‘modifiers’ associated with fields and
methods in Java [43] and the ‘declaration specifiers’ of
C [21]. For example, the optional modifiers ’static’,
’final’, and ’public’ can be written in any order in the
signature of a Java method.

In BNF, the syntax of permutation phrases can be
captured by a nonterminal with an alternate for each
of the possible permutations of the elements. Such a
syntax description is not desirable for several reasons,
e.g. the description is error-prone and tedious to main-
tain. Moreover, the number of alternates grows expo-
nentially in the number of permutable elements. The
syntax of permutation phrases can be capture more
conveniently with parser combinators [22]. With the
BNF combinator library, the syntax of permutation
phrases of length three can be described as follows.

Table 5: Parsing permutations with internal grammar combinators.

#Elements 10 11 12 13 14
Time (sec) 0.16 0.5 1.05 2.17 5.24
#Nonterminals 1028 2052 4100 8196 16388

Table 6: Parsing permutations with internal parser combinators.

#Elements 50 100 150 200 250
Time (sec) 0.11 0.75 2.36 5.55 10.75

bnfPermP3 m1 m2 m3 =
foldr mkNt "Perm3" [m1 ,m2 ,m3 ]
〈::=〉 satisfy [ ]
〈||〉 (:) 〈$$〉 m1 〈∗∗〉 bnfPermP3 fails m2 m3
〈||〉 (:) 〈$$〉 m2 〈∗∗〉 bnfPermP3 m1 fails m3
〈||〉 (:) 〈$$〉 m3 〈∗∗〉 bnfPermP3 m1 m2 fails

This example is an adapted version of the PermP3 example
of [43]. Function fails is the external version of altStart .
The function bnfPermP3 receives the BNF descriptions of
three permutable elements m1 , m2 , and m3 . The second
alternate selects m1 and the recursive call disables m1 for
further selection by replacing it with fails (and similarly
for the third and fourth alternate). The first alternate se-
lects no element. The semantics of a permutation phrase
is a list of semantic values for the elements in the order
the elements occurred in the phrase. The syntax of Java
modifiers is expressed by specialising bnfPermP3 :

bnfModifiers = bnfPermP3 (keyword "static")
(keyword "final") (keyword "public")

The usage of mkNt in the definition of bnfPermP3 guar-
antees that each recursive application of bnfPermP3 to
different arguments results in different nonterminals being
injected with 〈::=〉. In variants of bnfPermP3 with larger
number of permutable elements, the number of recursive
applications with different arguments grows exponentially.
As a result, the size of the grammars generated by the
internal grammar combinators grows exponentially. To
demonstrate this, a function has been defined that gener-
ates the BNF syntax description of permutation phrases of
n elements, with n as input to the function. The function
has been called with several values for n. For each value
of n the number of nonterminals of the internal grammar
has been recorded, together with the number of seconds it
takes to parse a particular permutation of n elements. The
results are given in Table 5 and show how grammar size
and running times grow exponentially. The running times
are dominated by grammar generation. Running the same
experiments with the internal parser combinators shows
the possibility to parse much larger permutations. These
results are given in Table 6. The running times in Table 6
are dominated by executing the semantics.

Beyond context-free languages. The example of permuta-
tion phrases shows that using recursion it is possible to
write syntax descriptions that produce exponentially large
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internal grammars. The following example shows that us-
ing recursion it is also possible to give syntax descriptions
for languages that are not context-free. Such descriptions
cause nontermination when executed with internal gram-
mar combinators. However, parsing is still possible in some
cases with the internal parser combinators. Consider the
following syntax description:

scales a = scales (char ’a’)
scales p = mkNt p "scales"

〈::=〉 1 〈$$ p
〈||〉 (1+) 〈$$ p 〈∗∗〉 scales (parens p)

parens q =
mkNt q "parens" 〈::=〉 char ’(’ ∗∗〉 q 〈∗∗ char ’)’

The argument of scales changes in every recursive call
so that mkNt produces a new nonterminal name for ev-
ery recursive call. As a result, attempting to gener-
ate a grammar for scales a results in nontermination.
The fact that no grammar can be generated for scales a
is unsurprising given that it describes the language
{"a", "a(a)", "a(a)((a))", ...} which is not context-free.
However, with the internal parser combinators, this ex-
ample does give a terminating parser that recognises
the language. The parser terminates because the in-
dex of the input t-string is increased before a recur-
sive call is made. Eventually, the end of the t-string is
reached and no alternate of scales is applicable. The syn-
tax description scales a ′, given below, for the language
{"a", "(a)a", "((a))(a)a", ...} does not admit a termi-
nating parser.

scales a ′ = scales ′ (char ’a’)
scales ′ p = mkNt p "scales’"

〈::=〉 1 〈$$ p
〈||〉 (1+) 〈$$〉 scales ′ (parens p) 〈∗∗ p

In this case, a recursive call is made without getting closer
to the end of the input t-string. This problem is similar to
that of left-recursion. The problem is different, however,
as evidenced by the observation that GLL’s solution to
left-recursion does not apply. A recursive call for a left-
recursive non-terminal results in a descriptor being created
which is already in the set U (and therefore not processed).
In this case, a recursive call results in a new nonterminal
name and thus in a descriptor not present in U .

This section has demonstrated that parsers can use the
binary subtree representation of derivations even if no
(context-free) grammar is known beforehand or possible.
The BNF combinator library with internal parser combi-
nators has been shown to exhibit several benefits over the
alternative with internal grammar combinators. Firstly,
by using parser combinators internally, exponential run-
ning times are avoided for syntax descriptions that gen-
erate exponentially large internal grammars. Permutation
phrases have been given as an example. Secondly, parsers
can be obtained for syntax descriptions that do not de-
scribe context-free languages. Monadic parser combina-
tors also extend parsing beyond context-free languages [34]
(see Section 10 for a brief comparison).

9. Conclusions and future work

FUN-GLL. The first part of this paper gives a purely
functional description of fun-gll, a generalised top-down
(GLL) parsing procedure. In contrast to the original de-
scriptions of GLL parsing [3, 4], the data structures used
by the algorithm are modelled by abstract sets and rela-
tions rather than specialised implementations. The binary
subtree representation (BSR) of [12] makes it possible to
collect all derivations of an input t-string without the need
for maintaining and constructing graphs.

The fun-gll algorithm is defined as a collection of func-
tions that are written in a notation that can be seen as
a functional pseudo-code. Implementations of fun-gll
in functional languages can be derived more or less di-
rectly from these definitions, of which an example is pro-
vided by the Haskell implementation in [13]. The main
challenge for the programmer is to develop efficient imple-
mentations of the algorithm’s data structures. The reader
is referred to [30] for a discussion on GLL’s data struc-
tures. Implementations in procedural languages should be
equally straightforward and might benefit from iteration
and mutable data. An important motivation for the work
presented in this paper has been to make GLL parsing
accessible to a wider audience.

FUN-GLL parser combinators. The second part of this
paper shows that parser combinators that employ a gener-
alised top-down parsing algorithm very similar to fun-gll
can be defined. Conventional parser combinators, which
only represent grammar descriptions superficially, cannot
implement generalised parsing algorithms such as GLR,
GLL, and Earley because these algorithms require gram-
mar slots. The generalised parser combinators of this pa-
per force the programmer to inject nonterminal names so
that grammar slots can be computed. Computing gram-
mar slots is simplified by restricting the applicability of the
combinators and thereby giving combinator expressions a
richer structure. Several other approaches to generalising
the combinator approach to parsing have been discussed
in Section 5.

The algorithm underlying the generalised parser combi-
nators uses descriptors to prevent duplicate work and to
prevent non-termination in the face of left-recursion, ex-
actly as the fun-gll algorithm. The algorithm guarantees
that all derivation information is discovered by using the
data structures of fun-gll in the same way as the fun-
gll algorithm. The main difference between the two algo-
rithms is that the algorithm underlying the parser combi-
nators does not use a worklist to process descriptors. This
design decision preserves a strong connection to conven-
tional parser combinator definitions. The algorithm has
been presented by the gradual extension of simple recog-
nition combinators to parser combinators that compute
BSR sets to the generalised parser combinators.

Although the generalised parser combinators compute
grammar slots, they crucially do not compute an actual
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grammar. As demonstrated in Section 8, this makes it pos-
sible to write parsers for permutation phrases that would
otherwise induce exponentially large grammars. Parsers
can also be written for languages that are not context-free.
These observations demonstrate that the BSR representa-
tion of derivations can be used in situations in which no
context-free grammar is available (or possible).

The benefits of the generalised parser combinators are
not limited to applications in combinator parsing. The
combinator definitions may provide inspiration for devel-
oping the backend of a parser generator. A straightforward
implementation of such a backend produces a combinator
expression that represents the input grammar by apply-
ing the combinators directly. More efficient implementa-
tions can generate variants of the combinators that are
specialised with respect to particular grammar fragments
and then combine the specialised variants to form a parser.

Adding a form of lookahead to the generalised parser
combinators is more complicated than it is for grammar
combinators because there is no explicit grammar object.
Multiple approaches to adding lookahead are possible and
have been considered. For example, lookahead sets can be
pre-computed alongside the grammar slots (§6.2). Alter-
natively, lookahead sets can be computed on the fly in a
form of caching. The technical presentation and evaluation
of these approaches are left as future work.

The BNF combinator library. In [13], the BNF combina-
tor library is introduced for developing syntax descriptions
that admit generalised parsing. The BNF combinators
take advantage of Haskell’s strong type-system to type-
check semantic actions, of type-classes to present a flexi-
ble user-interface, and of its abstraction mechanism to de-
fine functions for combining syntax descriptions, enabling
‘reuse through abstraction’.

Experience has shown that the BNF combinator library
is practical and easy to use. The library has been used
to describe the syntax of several software languages (in-
cluding ANSI-C and Caml Light). The syntax descrip-
tions are easy to develop, verify and debug. Without spe-
cialised engineering, the parsers for these syntax descrip-
tions show acceptable running times. The benefits of de-
veloping syntax without having to consider left-factoring
or left-recursion removal are worth the price of generalised
parsing. Moreover, if parsing speed is essential, the de-
scriptions can be refactored for efficiency. Earlier work by
two of the authors of this paper has demonstrated that
GLL algorithms can be extended to perform left-factoring
automatically [29]. Adjusting this technique to work with
BSR representations, bringing it into the scope of the algo-
rithms of this paper, is an interesting line of future work.

There are two main caveats concerning the usability of
the BNF combinators. Firstly, as a language evolves, it
is hard to keep track of which nonterminals have already
been used across its syntax description. When defining a
recursive function that combines grammar fragments, care
must be taken to ensure that the inserted nonterminal re-

flects the parameters. As a pure alternative to nontermi-
nal insertion, Devriese and Piessens suggest primitive re-
cursion constructs defined with datatype generic program-
ming [47]. Impure alternatives typically involve the auto-
matic generation of references for nonterminals [39, 38, 19].

Secondly, disambiguation is required for ambiguous syn-
tax, before or during semantic evaluation. The current
ambiguity reduction strategies are low-level, defined di-
rectly on BSR sets, and may not comfortably deal with
certain ambiguities. Further research is required to de-
termine which high-level strategies are necessary, and to
discover how these strategies are realised by filtering BSR
sets.

10. Related work

Section 5 discussed the work of several authors on parser
combinators and on approaches to generalising parser com-
binators. In [13], Ridge’s P3 library is compared with the
BNF combinator library.

GLL parsing. Since generalised top-down (GLL) parsing
emerged [3, 4], several GLL algorithms have been pub-
lished [29, 48]. These algorithms are described in low-level
pseudo-code as the output of a parser generator. The fun-
gll has been described as a collection of pure functions
and at a higher level of abstraction, abstracting over the
grammar and modelling the data structures as sets.

Spiewak has also adapted GLL to a functional setting
by defining ‘GLL combinators’ in Scala [49]. Spiewak’s
GLL combinators and fun-gll both use a ‘trampoline’ to
loop through descriptors for processing. The GLL combi-
nators apply semantic actions on the fly, without collecting
derivation information. However, to ensure that at least
one derivation is preserved by disambiguation it is neces-
sary, in general, to use a data structure, such as a BSR set,
as an intermediary between parsing and semantic evalua-
tion.

fun-gll can be seen as a high-level, functional descrip-
tion of RGLL [29], bearing also a striking resemblance to
Johnson’s recognition combinators. The connection be-
tween Johnson’s combinators and GLL has also been ob-
served by Afroozeh and Izmaylova [48]. The algorithms
have in common that for each call to the parse function of
a nonterminal X with left extent l (descending X with l)
right extents and continuations are recorded to ensure all
derivations are discovered. The ‘continuations’ recorded
by Johnson’s combinators are the continuation functions
of the continuation-passing style in which the combinators
are defined. The right extents and continuation functions
are recorded together in a memoisation table for the pair
〈X, l〉, referred to as a ‘commencement’ in the descrip-
tion of fun-gll. In fun-gll, continuations are modelled
by a pair of a grammar slot and a left extent, and are
recorded in relation G that serves the same purpose as the
GSS of GLL. The fun-gll-based parser combinators are

20



also defined in continuation-passing style, and record con-
tinuation functions alongside continuations in the relation
C. Johnson’s recognition combinators can be modified to
return BSR sets, thus extending the combinators to gener-
alised parser combinators (demonstrated in [12] and [27]).

Grammar combinators. A grammar combinator library
can be seen as an embedded DSL for describing syntax,
generating parsers at run-time. In this light, a parser com-
binator library provides a shallow embedding, whereas a
grammar combinator library provides a deep embedding.
Theoretically, shallow and deep embeddings are closely re-
lated [50], but in practice implementations differ signifi-
cantly. A shallow embedding is usually easier to extend,
and its implementation more succinct. In a deep embed-
ding it is easier to perform program transformations and
pre-computation. Devriese and Piessens show how gram-
mar combinators are defined in ‘finally tagless’ style [47],
which is one of several techniques developed to overcome
these differences [51, 52].

Dureg̊ard and Jansson have developed an embedded
parser generator library with meta-programming in which
Template Haskell code defines a grammar for which a
parser is generated at compile-time [53]. These techniques
can also be applied to the BNF combinator library, remov-
ing the constant run-time overhead of generating a gram-
mar and computing lookahead sets. Devriese and Piessens
have used Template Haskell to perform grammar trans-
formation on the grammars generated by combinators at
compile-time [18].

Monadic parser combinators. As demonstrated in Sec-
tion 8, the generalised parser combinators of this paper
make it possible to obtain parsers for languages that are
not context-free. Monadic parser combinators also extend
parsing beyond context-free languages by enabling the con-
struction of parsers based on semantic values produced by
earlier parse results [34]. A theoretical or practical com-
parison has not been made between the two approaches.
For example, it is interesting to compare the classes of
languages for which parsers can be written. Note that
monadic parsing and generalised parsing are fundamen-
tally at odds because, in order to support principled disam-
biguation strategies, generalised parsers need to produce
intermediate representations of derivations (such as parse
forests or BSR sets) and should not perform evaluation on
the fly to avoid spurious, premature results.

Macro-grammars. This paper has given examples that
show the abstraction mechanism of Haskell can be lever-
aged by the BNF combinator library to abstract over
grammar fragments. As shown in §8.2, the ability to ab-
stract over grammar fragments makes it possible to de-
scribe the syntax of languages that are not context-free.

In 1968, Fischer introduced the inside-out (IO) and
outside-in (OI) macro-grammars as strict super-classes of
the context-free grammars [42]. Macro-grammars obtain

their power by allowing production rules to abstract over
sequences of symbols. The BNF combinator library can
be used to describe OI macro-grammars. However, as ex-
plained in §8.2, a terminating parser cannot be obtained
for all of these descriptions.

In [43], Thiemann and Neubauer analyse the condi-
tions under which macro-grammars can be transformed
into equivalent context-free grammars. Thiemann and
Neubauer present an algorithm that determines whether a
macro-grammar satisfies these conditions. It may be pos-
sible to incorporate this algorithm in the BNF combinator
library in order to prevent nontermination when gener-
ating internal grammars. An extension to the algorithm
may be possible as well, enabling the algorithm to deter-
mine exactly whether syntax descriptions can be handled
by the internal parser combinators.
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