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Abstract

Peer-to-peer (P2P) dissemination systems are vulnerable to attacks that may im-
pede nodes from receiving data in which they are interested. The same properties
that lead P2P systems to be scalable and efficient also lead to security problems
and lack of guarantees. Within this context, live-streaming protocols deserve spe-
cial attention since their time sensitive nature makes them more susceptible to the
packet loss rates induced by malicious behavior. While protocols based on dissem-
ination trees often present obvious points of attack, more recent protocols based
on pulling packets from a number of different neighbors present a better chance of
standing attacks. We explore this in SecureStream, a P2P live-streaming system
built to tolerate malicious behavior at the end level. SecureStream is built upon
Fireflies, an intrusion-tolerant membership protocol, and employs a pull-based ap-
proach for streaming data. We present the main components of SecureStream and
present simulation and experimental results on the Emulab testbed that demon-
strate the good resilience properties of pull-based streaming in the face of attacks.
This and other techniques allow our system to be tolerant to a variety of intrusions,
gracefully degrading even in the presence of a large percentage of malicious peers.
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1 Introduction

Access to multimedia contents over the network now accounts for a large
fraction of Internet traffic. This has been possible in great part because of
peer-to-peer (P2P) content distribution tools, which allow the distribution
of popular data to a large number of interested users. One popular style of
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content distribution maps the problem to file sharing, where data is fully
available prior to the dissemination. The main goal in file sharing is that all
nodes receive the entire data within as little time as possible.

In this work, we are focused on a second scenario, P2P live-streaming, where
data should be disseminated as it is generated. This style of distribution is
useful to broadcast live events in close to real time and also to broadcast tele-
vision over the web. In China, for example, live-streaming has become very
popular, where participating peers’ upload bandwidth is used to simultane-
ously propagate several channels to thousands of users [1].

Streaming to a large number of clients would be prohibitively expensive if
the service provider should have enough bandwidth to satisfy all the clients.
Several P2P multicast protocols which rely on users’ upload resources have
been proposed and widely studied as an appealing alternative to IP multicast,
and previous work has shown that it can indeed be as efficient as IP multicast
[2-5,1,6,7]. By having peers contribute to the streaming, anyone may start
their own streaming session to any number of clients. Significant progress has
been made, but little attention has been dedicated to the issue of security in
such systems.

In this paper we target live-streaming, where malicious behavior can prevent
nodes from receiving correct packets in time, and can therefore be severely
disruptive. To illustrate the problem, we looked into the effects of one par-
ticular type of attack when using a single dissemination tree with varying
branching factors and when using the more elegant SplitStream approach [4].
SplitStream is a robust and fair P2P system in which data is broken into
several slices and each slice is propagated through a different dissemination
tree.

As a measure of resilience, we compute the continuity indexr of a streaming
session, which is the ratio of packets received by a peer within acceptable
time. Through simulation we computed the minimum continuity index across
participants for sessions with a thousand homogeneous nodes and varying
ratios of malicious peers not forwarding packets.

In Figure 1, we present simulation results of the average and minimum conti-
nuity index across nodes for sessions with a thousand homogeneous nodes and
various ratios of malicious peers not forwarding packets. In these experiments,
attackers download data from their parents but do not forward it to their chil-
dren. In the case of single trees, most certainly malicious behavior will prevent
individual nodes from receiving any packet even with as low as 5% malicious
members. SplitStream presents better resilience, but the damage incurred to
individual nodes is still very visible.

We built SecureStream, which employs several techniques that reduce the
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Fig. 1. Expected minimum and average continuity indices across all correct members
under omission attacks.

opportunity for an attacker to compromise the quality of a streaming ses-
sion, without incurring a high computational or network overhead. To repel
forgery attacks, we employ an efficient packet authentication technique based
on computing and distributing verification digests. To prevent attacks on the
overlay structure (the membership protocol on top of which multicast systems
operate), SecureStream is built upon Fireflies, a scalable one-hop Byzantine
membership protocol [8]. Fireflies is a probabilistic protocol, in which mem-
bers are presented with a reasonably current view of which members are live
or not.

To achieve tolerance to denial-of-service attacks, SecureStream uses a pull-
based packet dissemination approach, similar to the one used by the Cool-
Streaming [1] and Chainsaw protocols [6]. This approach is attractive because
it offers participants a choice among multiple candidate packet sources. Be-
cause participants are not dependent on any particular peer and can immedi-
ately react to failures or attacks, attacks are less damaging.

Finally, we explore the use of auditing techniques that applied to SecureStream
can help further alleviate the effects of malicious behavior, while incurring
limited additional costs. We propose employing a variable threshold for node

contribution, punishing peers who do not upload at least as much data as
defined by the threshold.

This paper makes a few important contributions. We present a highly scalable



live-streaming P2P protocol that can tolerate end system attacks. We leverage
previous work and present a comparison of different authentication protocols
for signing and verifying packets efficiently in the context of application level
multicast. We also evaluate the effects of pull based protocols in the presence
of internal malicious peers. Finally, we study the potential of auditing as a
mechanism for encouraging node contribution.

The rest of the paper is organized as follows. In Section 2, the system model
and assumptions are presented, including a list of possible attacks to P2P
streaming systems. A description of the main techniques we employed in build-
ing SecureStream is presented in Section 3. In Section 4 results of the exper-
imental evaluation of the resilience to malicious behavior are presented and
analyzed. Section 5 presents related work, and Section 6 concludes.

2 System Model

Our model of the system assumes the existence of one source, assumed non-
compromised, disseminating data at a fixed rate to a set of receivers with
limited buffering capacity. All nodes have similar download and upload ca-
pacities, slightly larger than the download rate. The desired behavior is that
the streamed data be received within a fixed latency relative to the source’s
original transmission.

The term security in the context of content dissemination protocols requires
further definition. According to [9] multicast systems may have different re-
quirements: secrecy means that only multicast group members (and all of
them) should be able to decipher transmitted data; authenticity means that
each group member can recognize whether a message was sent by a group
member and make sure that the data was not modified in any way; anonymity
implies that identity of group members should be kept secret from outsiders
or from other group members; non-repudiation states that receivers of data
should be able to prove to third parties that the data has been transmitted;
access control means that it should be possible to control the group member-
ship; and finally, service availability means that the system should be always

up.

Not all applications require secrecy and anonymity of data, hence we are not
concerned with these properties. On the other hand, we believe authenticity,
non-repudiation and access-control are essential. We assume that the origi-
nal data is non-compromised, and therefore implicitly achieve data integrity
through authenticity. Our primary focus is on guaranteed availability, namely
mechanisms that prevent nodes from being isolated or severely harmed during
a streaming session. We expect the system to repel external attacks and tol-



erate a limited fraction of internal Byzantine nodes, and to degrade gracefully
as the fraction of Byzantine nodes increases.

SecureStream is an application-level streaming system, and only attacks to
the end system hosts are addressed in this work. Attacks on the underlying
network infrastructure and low-level denial-of-service attacks are thus beyond
the scope of this work.

2.1 Byzantine Behavior

We model all forms of deviation from the original protocol as byzantine behav-
ior. These deviations may be due to node failures, node selfishness or purely
malicious intents. Attacks may originate outside the system or be internal,
and attackers may compromise nodes and then work in cooperation with these
faulty internal peers. One important observation is that we opted for modeling
selfishness as a byzantine behavior, and to assume that most nodes typically
follow the given protocol.

To the best of our knowledge, there has been no evaluation on the percentage
of selfish behavior in live-streaming systems, unlike with file sharing systems,
and the properties of these systems are significantly different. Since nodes are
only required to upload while the streaming session is occurring, it is our belief
that few nodes would opt for deviating from the proposed protocol.

The simplest form of internal attacks are those in which a single node is
compromised. The extent of harm that results depends on many factors, such
as the multicast protocol being used and the location of the malicious node
in the overlay. These effects can be localized and minimized if the protocol in
use has no single points of failure. On the other hand, vulnerable systems like
those based on a single dissemination tree can be crippled if a node high in
the tree is compromised.

Collusion attacks pose much more complex problems; in these, an attacker
compromises a set of nodes and exploits them to perform a coordinated attack
to the system, and may orchestrate the attack to confound whatever defensive
mechanisms are built into the dissemination infrastructure.

For the work presented here, we make several assumptions about compromised
members. They do not have sufficient computational power to break crypto-
graphic building blocks, and cannot forge public key certificates or signatures
of correct or stopped members. A classification of the types of attacks that we
address in our system is presented below.

Membership attacks: The system may be attacked by compromising the



underlying overlay or membership protocol on which it runs. For example,
systems that run on top of ring-based overlays are vulnerable to eclipse
attacks [10], in which an attacker controls a large fraction of the neighbors
of correct nodes, preventing correct overlay operation. Malicious nodes may
also mimic flaky but correct members, or accuse other correct members of
being down.

Forgery: In this category we include all attacks that involve fabrication and
tampering of data being streamed in the system. Given time, these attacks
can be easily avoided by use of a public key infrastructure. However, in the
context of streaming the cost of signatures can become prohibitively high,
forcing us to consider other kinds of data authentication protocols.

Denial-of-service (DoS) Attacks: Attacks in which malicious nodes over-
load peers with requests for packets or large amounts of duplicate packets,
or other attacks that might compromise their ability to contribute to the
streaming session.

Omission Attacks: Given our emphasis on low-latency data delivery, send-
omission is an especially serious type of attack. By not forwarding all or part
of the packets, a malicious node may disrupt overall system’s availability.
The main problem with this kind of attack is that a node’s guilt cannot be
easily proved.

3 Steps to Intrusion-Tolerant live-streaming

SecureStream employs a set of techniques to achieve resilience to the attacks
previously mentioned. We use an intrusion-tolerant membership protocol to
tolerate attacks to the membership layer. We also employ an efficient technique
for avoiding forgery of packets by malicious peers. By employing a pull-based
streaming protocol and imposing a structure to define what peers are allowed
to communicate with one-another, we can avoid high-level DoS attacks and
tolerate omission attacks. We also explore the potential of auditing as a tool
for detecting malicious behavior. In this section, we describe these main com-
ponents in further detail.

3.1 Presenting nodes with a correct view of live members

Peers in SecureStream use the membership knowledge provided by the Fire-
flies protocol to track the status of other peers. Fireflies is composed of three
subprotocols: a pinging protocol is used to detect failures of nodes with an
accuracy independent of message loss; an intrusion-tolerant gossip protocol is
used for dissemination of information between correct members with proba-
bilistic time bound A; and a membership protocol uses accusations and rebut-



Fig. 2. In Fireflies multiple rings are used to define which peers monitor each other:
A monitors B, D and F, and is monitored by E, F and G.

tals to implement the membership information that Fireflies provides. These
components are briefly described below.

Members monitor each other for failure using an adaptive pinging protocol.
Members do not use a static global timeout when waiting for the replies of
ping messages, but rather estimate the probability of message loss and try to
adapt to the message loss characteristics between monitor and monitoree.

Members are organized into rings, and their position on each ring depends on
their identifier. These rings determine which nodes monitor, and are allowed to
accuse, which other nodes (Figure 2). On each ring, each member m; monitors
the lowest ranked successor m; that it believes to be live, and if it detects a
failed node, it issues an accusation for that node.

When an accusation for a member m; is received by a member m;, m; waits a
time period of length 2A, and then removes m; from its view if the accusation
is valid. This time period is established so that an accused member may issue
a new note (a rebuttal) to an accusation against itself. In order to avoid ma-
licious nodes from abusively accusing its correct neighbors in the rings, nodes
may invalidate up to ¢ rings, implying that accusations issued by its neigh-
bors on those rings will not be accepted as valid by any correct member. All
notes and accusations are signed, and a certification authority is responsible
for issuing private/public key pairs and public key certificates.

The dissemination of information such as accusations and rebuttals is per-
formed using a robust gossip protocol. Each member periodically picks a ran-
dom member from its view to exchange state information. The multiple ring
structure induces a gossip mesh resilient to malicious attacks.

3.2 Ensuring Integrity of Data

One second important aspect which needs to be satisfied is that the data being
distributed is correct. Several authentication protocols have been proposed for
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Fig. 3. In the linear digests’ approach, packets’ hashes are computed and combined
into a single digest packet, which is then signed by the sender.

the general multicast paradigm, originally intended for IP Multicast. The stan-
dard point-to-point mechanism of appending a message authentication code
(MAC) computed using a shared key does not meet the security requirements
of a multicast session. If receivers and sender share the same key, any receiver
would be able to forge messages. On the other hand, signing every packet
using a traditional asymmetric cryptographic protocol induces high overhead,
and is therefore not feasible.

Signing a packet consists of computing the hash of the contents of the packet
using a secure hash function, and then signing the hashed value using the
sender’s private key. Variations in the packet size do not significantly con-
tribute to the costs since computing the hash of packets is a cheap operation
compared to the signature/verification operation. The choice of key size to be
used is directly related to how crucial it is that the key be secret for a long
time, and it is often recommended that keys of size 2048 or larger be used.

To avoid signing and verifying every packet, we group the hashes of n packets
into a special message, and have it signed by the source (we call this approach
linear digests)(Figure 3). The signed message needs to be sent to the receivers
prior to the dissemination of data that it corresponds to. This implies in
buffering of content on the source prior to the dissemination of data. The
advantage is that this approach incurs the minimal network overhead of one
hash per packet, while amortizing the cost of a single signature/verification
operation over n packets.

Other approaches have been proposed to address the high costs of authenti-
cating packets in a flow [11-15]. Wong and Lam [11] propose that the source
compute the hashes of a limited number n of consecutive packets in the stream,
and use them as leaves in a Merkle Tree where each internal node consists of
the hash of its children. Each packet is verifiable upon receipt, since it is ap-
pended with the signed root node and the hashes of all needed interior nodes
in the path from the root to itself in the Merkle Tree.

In graph-based authentication [13,16,17,14], the source only signs one packet,
and the following packets in the stream are linked to it through hash chains
that allow them to be verifiable. To tolerate packet loss, a graph is used instead
of a single chain. Packets are represented by vertices in the graph, and a
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directed edge between nodes that represent packets P; and P; indicates that
packet P; contains the hash of packet P,. A packet corresponding to a node
can be authenticated if there is a path of already verified packets between the
node and the source node of the graph.

The computational costs at the source and receivers are presented in Fig-
ures 4(a) and 4(b) and the network overheads for different authentication
approaches when streaming 300 Kb/s are presented in Figure 5. We compared
4 techniques: signing and verifying every packet, linear digests, Merkle tree
digests and a simple scheme of graph-based authentication. The code used for
the evaluation was written in Python and executed on a Linux-based Pentium
I1T 850 Mhz with 256 Mb RAM. Linear digests yield the lowest computational
costs. Although the Merkle Tree approach is appealing due to its immediate
verifiability, its network overhead is the highest, since one signature and a few
hashes need to be appended to each packet in the flow.

When the packet sizes are large, which reduces the rate of packets per second,
the computational costs of the three latter techniques are not significantly
different. We therefore used linear digests since it minimizes network overhead
and is the simplest technique. Our experience indicated that when using pull
based streaming, keeping the rate of packets per second larger or equal to 30
yields good results, and reducing it further affects the quality of the streaming.



3.8 Allowing nodes to recover from malicious neighbors

We employ a pull-based approach to disseminate packets, following ideas used
in the Chainsaw protocol [6]. The same rings used in Fireflies are used to
determine a fixed set of neighbors with which each peer can exchange packets.
This imposed mesh structure and the use of authenticated channels between
neighbors allows the system to avoid high-level DoS attacks.

Initially, the source sends notifications to its neighbors as soon as it has avail-
able packets to disseminate. These notifications are small messages used only
to inform neighbors of availability of packets. Each neighbor requests missing
packets according to some pre-specified policy, to avoid overloading the source.
As peers receive packets, they propagate notifications to their neighbors, and
so packets get disseminated along the mesh. This pull-based approach to ac-
quisition of packets yields a highly resilient multicast, since failure or misbe-
havior of one neighbor does not impede a peer from fetching packets from
other neighbors. The predetermined set of neighbors for each peer also makes
it hard for malicious peers to attack individual peers, since attackers lack a
deterministic means of acquiring control of all of its neighbors.

Each member stores packets and forwards them to other peers while the packet
is within its availability window. It also maintains an interest window, smaller
than the availability window, which represents the set of packets in which the
peer is currently interested. Different policies can be employed by peers about
what packets to pick from each of its neighbors, and the choice of the appropri-
ate policy is crucial to achieving best overall performance. Random selection
of neighbors is usually a good candidate, leading to fair load balancing.

There is a predefined limit [ on the number of outstanding requests to any
neighbor. This policy not only improves the flow of packets in the absence of
malicious behavior, but also makes it harder for malicious peers to overrequest
packets from their neighbors. Peers maintain a queue of non-satisfied requests
for packets, and if more than [ requests by the same neighbor are present in
the queue at any time, only the [ most recent ones are maintained.

The protocol is simple and yet highly resilient to failures and attacks. The
overhead incurred by notifications is not significant if large packets are used,
and the protocol avoids receipt of duplicate packets. Since it is completely
decentralized, the protocol does not present any single points of failure, an-
other important consideration when building an intrusion-tolerant streaming
protocol.

To ensure non-repudiation, peers may only forward packets once they have
verified its authenticity. If peers are allowed to forward packets optimistically
before ensuring that the packet has not been tampered with, it becomes in-
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feasible to later identify the peer responsible for the tampering. This can be
explored by malicious nodes, who may overload the system with incorrect
packets without being accountable for them. In the linear digest approach,
the packet that contains the digest is critical to the verifiability of packets,
and therefore should be received by all nodes. Furthermore, it should ideally
be received prior to other packets for which it contains hashes, so that they
can be immediately verified.

In our streaming protocol, simply treating the digest packet as a regular packet
would not yield the desired results. We proposed the following optimization
to ensure immediate verifiability: each peer, when requesting a packet, uses a
special bit in the request messages that indicates whether the digest packet
for the current session has been received or not. Since digest packets are small,
they can be appended to the packet sent in reply to the request. This would
ensure that all packets are immediately verifiable, incurring a small overhead
caused by duplicate digests.

3.4 Punishing Malicious Nodes

Despite the resilience of pull-based streaming to malicious behavior, we can
provide further guarantees to correct peers by auditing their behavior. In this
Section, we explore a simple auditing approach: to ensure that all nodes in
the system contribute more than a particular specified threshold. Violations
to this invariant may lead system nodes who contribute less than a particular
threshold to suffer some type of punishment, such as being expelled from the
system. Independent of the punishment, implementing an auditing component
requires caution, and in this subsection we present some of the techniques we
employ to achieve this goal.

As part of the auditing approach, each peer should group packets it receives
from each neighbor every § seconds. At the end of every interval, each peer
generates and sends one signed receipt for all packets received from each of its
neighbors during that interval, and collects receipts received from them. Peers
are encouraged to forward receipts to their suppliers to guarantee that future
requests for packets continue to be satisfied.

Auditing may be performed by dedicated external auditors, whose role is solely
to identify misbehaving nodes. We propose a decentralized approach, which
combines local auditors, executing at the participating peers, and global au-
ditors, who react to violations reported by the local peers. A local auditor has
two main roles. First, it acts as a representative of its local node, querying it
for the set of packets it received and the set of receipts collected (packets it
sent) over any particular time interval. The auditor publishes this information
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to an assigned subset of its neighboring nodes, from whom other auditors may
obtain it. This level of indirection is used to guarantee that each node provides
the same information to all auditors.

The second role consists of periodically auditing information about the nodes
with whom their local node exchanges packets. For instance, if node A ex-
changes packets with nodes B, C and D in the live-streaming protocol, node
A’s auditor monitors information regarding these three nodes. This involves
ensuring that: (1) the amount of data sent by these nodes satisfies the min-
imum threshold; and (2) the set of packets they claim to have received from
node A corresponds to the set of packets A claims to have sent to them.

In our hybrid model of auditing, global auditors only respond and act upon
violations flagged by the local auditors. In order to avoid delayed detection,
local auditing works continuously within small groups of nodes. We argue that
a variable threshold yields better results than a static one, leaving it to the
global auditors to decide what this value should be. Therefore, besides act-
ing on information provided by local auditors, global auditors also constantly
sample the amount of packets sent and received by randomly chosen individ-
ual nodes, and use this information to decide what the threshold should be at
any point in time.

4 Evaluation

We originally evaluated the resilience of pull-based streaming in the presence of
attacks through simulation. We also implemented SecureStream using Python,
and we validated the simulation results by running experiments with the real
system on the Emulab testbed [18]. Emulab is a network testbed containing
hundreds of nodes, in which real applications may be executed and evaluated.
It allows arbitrary network topologies to be specified, leading to a controllable
and repeatable environment.

4.1 Simulation

We built an event-driven simulator and simulated 200 node networks with
50ms inter-node latency. It would be possible to simulate and present results
for networks with larger numbers of nodes, but a set of experiments on in-
creasing numbers of nodes revealed that the behavior remains the same for
networks as large as 5000 nodes. We opted for a smaller size but repeated each
experiment 100 times to obtain better confidence in our results.
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The target streaming rate in the experiments was fixed to 300 Kb/s, and
packets of 10 Kb were used. Higher streaming rates yielded similar results
as long as the packet size is accordingly increased to maintain a rate of 30
packets/s. Each streaming session lasted for 200 seconds. In the basic setting,
the seed’s upload capacity was fixed to twice the streaming rate while other
peers had a fixed maximum upload capacity of 1.2 times the streaming rate.
These values are used as our baseline since they are the lowest upload rates at
the seed and non-seed nodes respectively that lead to good throughput when
the system is not under attack.

For each streaming session we computed the average and minimum download
and upload rates across all correct members. We repeated each experiment
100 times, and we present the median and 95 percentile intervals across these
repetitions.

We considered four types of malicious behavior. In the first type of attack
malicious peers act as failed, neither requesting nor satisfying requests. In
attack 2 they request packets but do not forward any packets. In attack 3 they
overrequest packets from their neighbors, requesting as many distinct packets
as possible from every neighbor. Finally, in attack 4 they overrequest packets
and do not forward packets. The fourth type of attack is the most disruptive
type and therefore the most likely, while the other three are considered mainly
for comparison purposes.

Figure 6 presents results for the basic setting under each of the attack types.
We are interested in minimizing the overall damage to the streaming session.
Damage is quantified by the impact on average download rates to healthy
nodes, and the minimum download rate for any single healthy node.

As would be expected, the results show that peer failure does not significantly
affect the download rates since peers can still request packets from other cor-
rect neighbors (Figure 6(a)). Since malicious peers do not request packets in
this mode, they do not disrupt the total overall upload capacity. Even though
upload rates are limited, overrequesting attacks are also not significantly dis-
ruptive, due to the random policy used by peers when satisfying neighbors’
requests for packets and the upper limit on the number of outstanding requests
by any neighbor (Figure 6(c)).

Figures 6(b) and 6(d) show that attacks in which peers consume packets from
their neighbors, but do not forward packets, inflict the most harm. There are
two main reasons for this vulnerability. First, since peers upload at a maximum
rate of 1.2 times the streaming rate, the overall upload capacity of the system
gets compromised from peers consuming and not contributing to the system.
Second, malicious nodes neighboring the seed might impede some packets from
ever being received by any other peer other than itself.

13
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Fig. 6. Resilience under different types of Byzantine behavior and varying ratios of
attackers

The latter effect causes the 95 percentile interval bars to be wide: there is a lot
of variation depending on the number of compromised peers near the seed. To
make this point clear, in Figure 7 we show the percentage of packets received
by increasing numbers of peers during sample streaming sessions with varying
ratios of Byzantine peers. The metric to focus on here is the fraction of packets
only received by one peer, which is an indicator of malicious nodes neighboring
the seed. Packets received only by malicious peers at the first hop will never be
disseminated in the system. To confirm this hypothesis, we executed the same
set of experiments and restricted the malicious attackers to being located at
least 2 hops away from the seed. The obtained medians were very close to
the medians obtained in the previous experiments. The main difference was
that the percentile intervals were significantly reduced when the seed had no
immediate malicious neighbor, which is an important result since the intervals
are significant in the original experiments with attacks 3 and 4.

To improve the resilience, we can vary parameters to improve the overall
upload capacity of the system, or to avoid situations in which malicious peers
can isolate certain packets. First, we considered the upload capacity of the
members. In Figure 8(a) we varied the value from 1.0 to 2.0 times the streaming
rate and verified the improvements to resilience under attack 4. This graph
presents the average and minimum download rates when the system has 25%
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Fig. 8. Download and upload rates across nodes when maximum upload capacity is
varied

of Byzantine members. The results show that the higher the upload capacity
at non-seed peers the more resilient the system becomes. From Figure 8,
which presents the minimum, average and maximum upload rates of members,
we can see that as a consequence of increasing the upload capacity of peers
the system becomes more unfair, with an increased difference between the
maximum upload rate and minimum upload rate across peers. For the next
few experiments we fixed the upload capacity of non-seed members to 1.4
times the streaming rate.

To improve the packet loss ratio at the first hop from the seed, we varied the
upload capacity of the seed from 1.0 all the way to 6.0 times the streaming
rate. Our results indicated that this naive approach to increasing the upload
rate at the seed does not significantly affect the resilience of the system. We
also observed that the number of neighbors of the seed is a more significant
parameter than the upload capacity of the seed. We fixed the ratio of malicious
nodes at 25%, the upload rate at non-seed nodes to 1.4 times the streaming
rate and at the seed to 4.0 times the streaming rate, and varied the seed’s
number of neighbors from 4 to 20. The median slightly improves as the num-
ber of neighbors is increased, but more important, the percentile intervals are
significantly reduced. In Figure 9(a) we present the absolute sizes of the 95
percentile intervals varying with the number of neighbors of the seed. The
results show that a larger number of neighbors at the seed is desirable. This
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Fig. 9. Sensitivity to number of neighbors

happens because with a higher number of neighbors the percentage of mali-
cious neighbors of the seed tends to be closer to 25% across runs, and therefore
there is less variation in the ratio of packets that are contained at the first
hop from the seed.

Finally, to study the influence of the number of neighbors for each non-seed
peer in the system, we evaluated the resilience with a varying number of rings
used to define neighbors. The upload capacities at the seed and non-seed
members were fixed to 4.0 and 1.4 times the streaming rate, respectively, and
the seed had 16 neighbors. In Figure 9 we present the performance of the
system using between 4 and 12 neighbors per node, both under no attacks
and under attacks of type 4. The results surprisingly show that the use of
larger numbers of neighbors does not improve resilience of the system, and
even reduces when the system is under attack. Even though larger numbers of
neighbors would lead to better connectivity between correct members, it also
presents malicious members with more potential to overrequest packets and
unbalance the system.

4.2 Emulab Testbed

In order to validate our simulation results, we ran experiments on a 200 node
LAN on the Emulab testbed using our Python implementation of the Secure-
Stream system. We performed extensive experiments under various parameter
configurations, observing that the tendencies observed were similar to those
verified through simulation.

To illustrate the behavior of the real system in execution, we present results
of a sample streaming session in which 25% of the nodes are malicious, overre-
questing packets and not forwarding them to neighbors. During the first 100
seconds all nodes act correctly, after which the malicious nodes start overre-
questing and not forwarding packets. We fixed the upload capacity of the seed
and non-seed members to 4.0 and 1.4 times the streaming rate respectively,
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Fig. 10. Sample streaming session on Emulab

and the number of neighbors of the seed and non-seed members to 12 and 8
respectively.

Figure 10(a) presents the minimum and average continuity indices of correct
peers throughout the sample session. Around the hundredth second, the aver-
age and minimum continuity indices decrease with the insertion of malicious
peers. The minimum, average and maximum upload factors across all correct
peers is presented in Figure 10(b). At the point when malicious nodes are
inserted, the upload factors across correct peers increases to compensate for
the malicious peers consuming the scarce resources from the system.

We also observed the effect of the system in the latency of packets. In Fig-
ure 11(a), a slight increase in the overall average and maximum delays per
packet in the presence of attackers may be observed. Furthermore, an inter-
esting behavior can be observed in Figure 11(b), which presents the minimum,
average and maximum packet delays for each node in the system, relative to
the time of origin of the packet at the source.

Unlike our initial suspicion, all nodes presented similar packet delays over
the streaming session. This indicates that being close to the source does not
imply in receiving packets faster than other nodes, since not all packets will
be requested from the source, because of the limit in number of outstanding
requests. To verify if this behavior might vary when the system scales to larger
numbers of nodes, we simulated networks with up to five thousand nodes.
The maximum latency used for bigger networks needs to be increased, but the
average latency per node is still similar.

We also looked into the number of hops taken by packets before reaching all
nodes. For the same streaming session, we registered the number of hops taken
by each packet before reaching each node. In Figure 12 we present the CDF
of the average and maximum number of hops taken by packets. This graph
shows that for our sample session with 200 nodes, the average number of hops
mostly varies between 3 and 5, while the maximum number of hops taken by
each packet varies between 8 and 22. This large variation in the maximum
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number of hops is also verified by the large variation in maximum latency
observed in Figure 11(a).

4.8  Auditing

We also explored the potential of employing auditing in our simulations. Au-
diting ensures that nodes contribute more than a particular threshold factor
t of upload capacity. A threshold of 0.5 during a 300 Kb/s streaming session,
for instance, implies that nodes uploading less than 150 Kb/s will be removed
from the system. To evaluate the effect of applying such thresholds both in the
absence and presence of freeloading nodes (nodes that voluntarily contribute
less than what is expected from them), we simulated audited sessions with
1000 nodes.

Figure 13 presents a detailed set of results on applying different thresholds to
different freeloading profiles. The ratio of freeloading nodes was fixed to 30%,
and their contribution factor (ratio relative to the streaming rate) is varied
between 0, 0.25, 0.50, and 0.75 (0 meaning they do not contribute at all). We
also consider a final profile named miz, where freeloading nodes have different
contribution factors, uniformly distributed among 0, 0.25, 0.50 and 0.75.

Columns are clustered based on the threshold used to punish nodes (¢). Within
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each column we present the percentage of correct nodes that have an average
upload factor of more than 98%, between 95% and 98%, false positives and
others. False positives are correct nodes who get incorrectly punished by the
auditing system. Notice that a threshold of 0 is equivalent to a system without
auditing.

To help understand the graph, let us consider, for instance, the set of bars
when ¢t = 0.4. A threshold of 0.4 will detect and remove all freeloaders with an
upload factor of 0 or 0.25. This may be confirmed in the first two bars, which
indicate that the streaming quality is good, with almost all nodes receiving
more than 95% of the data. The third bar, in which freeloaders have an upload
factor of 0.5 presents unsatisfactory results, with no node receiving over 95%
of the data. This was expected, since a threshold of 0.4 is not able to detect
freeloaders that contribute with a factor of 0.5.

In the fourth bar, even though freeloaders do not get detected, they also do
not disrupt the system significantly, since they contribute at a factor of 0.75,
which is close to the ideal factor of 1.0. This is confirmed by the fact that
even when there is no auditing (threshold is 0), the quality of the stream is
satisfactory . The same observation holds for the miz configuration.

Two metrics are important when deciding the right threshold to apply: the
quality of the streaming, captured by the percentage of nodes receiving over
95% of data; and the ratio of false accusations, which should be ideally null.
From Figure 13 it is reasonable to assume that opting for a threshold such as
t = 0.6 is the best approach, since it provides satisfactory streaming quality
under the 5 different configurations. However, the goal of minimizing the ratio
of false positives motivates the use of a dynamic threshold value, adjusted
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by global auditors based on sampling the current stream quality and upload
factors of nodes across the system. One possibility consists in maintaining a
null threshold (t = 0) while the actual download rates across the network are
satisfactory, that is, not punishing nodes unless the performance of the session
is compromised. As the system starts to degrade, global auditors may slowly
increase the threshold until the performance improves again.

5 Related Work

Recent work on peer-to-peer streaming systems has focused on improving
fairness among peers and resilience to churn, and have not addressed behavior
in the presence of malicious peers. Splitstream [4] breaks the data into stripes
and disseminates each stripe through a different dissemination tree. Ideally,
each peer is an internal node in only one these trees, and therefore the system
as a whole is fair. Figures 1(b) and 1(d) present SplitStream’s resilience to
omission attacks. Bullet [5] is another protocol which attempts to improve
fairness by breaking the stream into packets and sending them to peers through
different dissemination paths. Packets are pushed down a tree to certain peers
and then exchanged between peers through random connections.

The pull-based style of streaming used in our system was previously used
in CoolStreaming [1] and Chainsaw [6]. Coolstreaming breaks the data into
packets and peers organized into a mesh request packets from their neighbors
using a scheduling algorithm to identify the best sources of packets. Chainsaw
uses a simpler policy for requesting packets from neighbors, randomly fetching
packets from neighbors with available packets respecting only a limit on the
number of outstanding requests. Chainsaw presents smaller delays for the
receipt of packets compared to the Coolstreaming protocol.

Omission attacks are often characterized as rational behavior and there has
been a lot of work regarding incentives for peer-to-peer systems. Most work
on incentives has focused in file sharing systems such as Bittorrent [19], which
present significantly different properties, and cannot be directly transferred to
streaming protocols. Some more recent work has focused on rational behavior
in live-streaming systems.

Ngan et al. [20] consider fairness issues in the context of tree-based peer-
to-peer streaming protocols. The authors present mechanisms that can dis-
tinguish peers according to their level of cooperation to the system. One of
their techniques involves the reconstruction of trees as a way of punishing
freeloading nodes. Most of their mechanisms require peers to keep track of
their parents’ and children’s behavior.
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PULSE [21] is a P2P live-streaming system that tries to reward nodes that
contribute resources and discourage peers from contributing an insufficient
amount of resources. The main idea consists in using a pull-based dissemi-
nation protocol and moving nodes that contribute more closer to the source,
therefore having a smaller lag for packets received. The system makes a few
assumptions which could be compromised by malicious nodes present in the
system, such as requiring that nodes have some knowledge of other nodes in
the system. Also, the system is only evaluated in heterogeneous settings, show-
ing that nodes with higher upload capacity have a smaller latency compared
to less favored nodes. Results in a homogeneous setting are not presented.

In [22], the use of incentives is explored as a way of avoiding the presence
of selfish nodes in the Chainsaw protocol [6]. This work argues why some
naive approaches to enforcing incentives do not work, similar to the analysis
presented in our work, and propose and evaluate the use of a technique that
relies on preferential uploading to neighbors. Nodes that contribute more are
more prone to receiving data back, but in a not so fixed manner as a tit-for-tat
approach. Only preliminary results are presented, and malicious behavior is
not the focus of the work.

Even though incentives encourage nodes to contribute and avoid nodes from
acting selfishly, they do not extend the effect to nodes who are in the system
with malicious intentions.

Drum|[23] targets DoS attacks on gossip-based multicast protocols, eliminating
vulnerabilities to such attacks. The main idea in Drum is to have half of the
links of each peer be picked by the peer itself, and half be picked by other
peers. That way, even if only malicious peers connect to a peer, the peer
can still get correct data from the peers that it picks. The authors showed
that the approach works well for multicast protocols which do not have time
delays, but have not studied its performance for multicast systems where a
high throughput of packets is desired and the upload capacities are limited.

BAR Gossip [24] is a live-streaming approach that tolerates the existence of
selfish and malicious nodes. Time is divided into rounds, in which each peer
communicates with another peer selected using a pseudo-random function. In
each round, peers exchange their current history containing the identifiers of all
the current data, as basis for the next exchanges. Nodes also perform a phase of
optimistic push, forwarding useful updates to another pseudo-randomly picked
peer with no guarantee of useful return. The approach requires that the broad-
casting seed has full knowledge of all members in the system and always uni-
casts each update to 5% of the nodes, a limitation on scalability.
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6 Conclusions

We presented the design and evaluation of SecureStream, a P2P live-streaming
protocol tailored to handle byzantine attacks. We described the main compo-
nents of SecureStream and the main techniques employed to resist against
DoS, forgery, membership and omission attacks. Furthermore, we considered
the benefits of employing an auditing system to avoid the damage incurred by
freeloading behavior of nodes. We evaluated our system through simulation
and emulation. Our results indicate that SecureStream tolerates a limited per-
centage of malicious nodes in the system, and that with the aid of an auditing
component, it is able to provide satisfactory quality in the face of even larger
attacks.
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