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ABSTRACT

In this work we present an Outer-Approximation algorithm to obtain the global
optimum of a nonconvex Mixed Integer Nonlinear Programming (MINLP) model for the
scheduling of crude oil movement at the front-end of a petroleum refinery. The model
relies on a continuous time representation making use of transfer events. The proposed
technique focuses on effectively solving a Mixed Integer Linear Programming (MILP)
relaxation of the nonconvex MINLP to obtain a rigorous lower bound on the global
optimum. Cutting planes derived by spatially decomposing the network are added to the
MILP relaxation of the original nonconvex MINLP in order to tighten the lower bound
and reduce the solution times for the MILP relaxation. The solution of this problem is
used as a heuristic to obtain a feasible solution to the MINLP which serves as an upper
bound. The lower and upper bounds are made to converge to within a specified tolerance
in the proposed Outer Approximation algorithm. On applying the proposed technique on
test examples, significant savings were realized in the computational effort required to

obtain the globally optimal solutions and to verify their global optimality.
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1. Introduction

Scheduling and planning of the flow of crude oil is a very important problem in a
petroleum refinery due to the potential realization of large cost savings and improved
feeds. Linear programming (LP) models have been historically used in the analysis of
scheduling and planning problems due to their ease of modeling and solution. Refinery
planning problems have been addressed using computational tools such as AspenTech®
PIMS (Process Industry Modeling System) that are largely based on Successive Linear
Programming. However, it is difficult to model refinery operations since they involve
units operating in both batch and continuous modes along with multiple grades of crude
oil and products. Furthermore, detailed scheduling models often require a continuous
time representation and a more general treatment of nonlinear equations, as well as binary
variables to model discrete decisions which give rise to Mixed Integer Nonlinear
Programming (MINLP) models. These models impart additional flexibility to the
problem allowing the modeling of discrete decisions and constraints.

There are two major approaches for modeling scheduling problems: discrete time
formulations and continuous time formulations (Mendez et al., 2006). In discrete time
models, it is relatively easy to model the material balances and the flow constraints.
However, the number of time intervals required for an accurate representation of the
system is usually very high, thus the resulting models are large in size and
computationally challenging. Continuous time models are smaller in comparison and
allow for a complete utilization of the time domain, although it is difficult to synchronize
the material balances and time sequencing constraints in such a representation. Lee et al.
(1996) have proposed a Mixed Integer Linear Programming (MILP) model for short term
scheduling of crude oil using discrete time intervals. Here, they derive a linear
approximation of the nonlinear mixing operations by replacing bilinear terms in the mass
balances by individual component flows. An MILP model has also been developed by
Shah (1996) for crude oil scheduling where the scheduling time horizon is discretized

into intervals of equal duration, where the requirement is that the operations must start



and end at the boundaries of the intervals. This approach is more restricted as compared
to that of Lee et al. (1996) since the front end of the refinery is decomposed into two
parts — downstream and upstream, and the models corresponding to these are solved
sequentially. A continuous time formulation has been used by Jia et al. (2003) where the
authors present an MILP model developed by relaxing the nonlinear mixing constraints.
They also include the possiblity of incorporating the bilinear equations, thus making the
model an MINLP formulation. A rigorous extension of this model can be found in
Furman et al. (2006), where the authors use a continuous time event formulation to
schedule fluid transfer between tanks, and model the problem as an MINLP. In this work,
the main idea is to allow both inputs and outputs for a tank in a single transfer event. A
comparison of the discrete and continuous time formulations for scheduling for chemical
processes can be found in Floudas and Lin (2004).

In this work, we apply a novel continuous time formulation given by Furman et
al. (2006) to model the literature test cases given in Lee et al. (1996) for short-term
scheduling of crude oil at the front-end of a refinery as an MINLP. This scheduling
problem involves crude oil unloading from a crude supply source to the crude storage
tanks, transfer of crude from these tanks to the charging tanks, and charging the crude
distillation units continuously over a time horizon, with crude mixes from the charging
tanks. We assume that a crude supply plan is in place where we know the crude arrival
times and the corresponding arrival quantities and compositions.

The MINLP corresponding to the scheduling problem is nonconvex due to the
presence of bilinear terms in some of the mass balance constraints, and hence the
standard methods for solving MINLPs (see Grossmann, 2002) may fail to converge to a
solution or lead to sub-optimal solutions. Branch and bound based methods have been
reported in the literature (Sahinidis, 1996; Adjiman et al., 2000) for globally optimizing
nonconvex models. The Outer Approximation algorithms developed by Duran and
Grossmann (1986) and by Fletcher and Leyffer (1994) can vyield globally optimal
solutions only if the feasible space and the objective function of the problem are both
convex. For nonconvex MINLPs, a finitely convergent decomposition algorithm based on
Outer Approximation has been proposed, for instance, by Kesavan et al. (2004) to solve
these MINLPs to global optimality. Nonconvexities have also been handled by Bergamini



et al. (2005), who have presented a global optimization algorithm for Generalized
Disjunctive Programming (GDP) problems. A further extension of the basic idea of Outer
Approximation for the global optimization of deterministic and stochastic nonconvex
MINLPs can be found in Wei et al. (2005).

In this work, we present an Outer-Approximation algorithm to obtain globally
optimal solutions of the nonconvex MINLPs (with binary integer variables only) arising
in the scheduling of crude oil movement in a petrochemical refinery, where the objective
is to minimize the costs involved in the operation and in maintaining the inventory levels
in the crude tanks. The proposed technique focuses on effectively solving the MILP
relaxation of the nonconvex MINLP to obtain a tight and rigorous lower bound on the
solution of the MINLP. Based on a decomposition of the original MINLP model, we
generate sub-models whose solutions are used to derive valid cutting planes. These cuts
are added to the MILP relaxation of the original problem in order to tighten the relaxation
and reduce the computational expense of solving the relaxations. Numerical examples are
presented to demonstrate that the use of such an algorithm on a class of nonconvex
MINLPs can result in significant computational savings.

This paper is organized as follows. Section 2 presents the problem statement of
the crude scheduling problem while section 3 provides the nonconvex MINLP model. A
discussion of the algorithm is given in section 4. Section 5 presents the different
examples on which the algorithm was applied, and finally, section 6 summarizes some

conclusions and recommendations for future work.

2. Problem Statement

The front-end of a refinery is a network consisting of supply streams, storage
tanks, charging tanks and crude distillation units (CDUs) whose structure is shown in Fig.
1. The supply streams are connected to the storage tanks which are connected to the
charging tanks, which in turn, are connected to the CDUs. The supply streams, which are
crude carrying vessels, deliver crude oil to the storage tanks (intermediate tanks), which

transfer the crude to the charging tanks. Different qualities of crude get blended into



various crude mixtures inside the charging tanks, which are then charged directly to the

distillation units.

Crude Crude
Supply . Distillation
Streams Storage Charging Units
Tanks Tanks —
-
-_—
-

Fig. 1 Schematic of the front-end of a refinery

For scheduling the flow of crude oil in the above network, the following

information is given:
(a) The maximum and minimum inventory levels for a tank (capacity limitations); (b) the
initial total and component inventories in a tank; (c) upper and lower bounds on the
fraction of key components in the crude inside a tank (crude quality limitations); (d)
times of arrival of crude oil in the supply streams; (e) amount of crude arriving in the
supply streams; (f) fractions of various components in the supply streams; (g) demand of
crude-mix to be charged from a charging tank; (h) bounds on the flowrates of the streams
in the network; (i) time horizon for scheduling; (j) cost coefficients for calculating the
various costs involved.

The problem is then to determine the optimum values of the following items in
the system in order to minimize the total operating cost of the network: (i) the total and
component inventory levels in the tanks at various instances of time; (ii) the total and
component flow volumes from one unit to another in a certain time interval; (iii) start and
end times of the flows in each stream present in the network.

Finally, the following operating constraints must hold in the network:
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Simultaneous inputs into and outputs from a tank cannot be allowed. This is done
to allow settling of the crude mix in a tank.

Each distillation unit may be charged by at most one charging tank over a period
of time. This is another operational norm followed in in many refineries.

Each charging tank may charge at most one distillation unit at a point of time.
Each charging tank has to discharge a specified amount of crude-mix to the
various distillation units within the given time horizon.

All the distillation units have to be operated continuously throughout the entire

time horizon.

el

We model the optimization of the network as a nonconvex MINLP problem.
assumptions are made prior to modeling the system:

Perfect mixing takes place in each tank.

Negligible change in specific gravities on mixing.

The crude flows into and from a tank need not be continuous.

Changeover times for CDU charging are neglected.

The mathematical model for the scheduling problem has largely been taken from

Furman et al. (2006) and it mainly involves mass balances, sequencing constraints,

allocati

time m

on constraints, and crude supply and demand constraints. This is a continuous

odel for scheduling for which a number of transfer events are postulated for the

transfer of material between units in the network over a given time horizon, as shown in

Fig. 2.

times h

Unit b

Note that as opposed to most scheduling models (see Mendez et al., 2006), the

ere involve timings of transfer between pairs of units.
1 2
Tabt t Tabt 1
0 — H
Unit a T,,, = start time of transfer
Taz,,, = end time of transfer
Time =

Fig. 2 Timing for transfer from unit ‘a’ to unit ‘b’ in event ‘t’



When fluid transfers take place between tanks a and b, these are assumed to take
place over the same transfer event ¢, and for which precedence constraints are imposed
for the start and end times that are unknown. The number of transfer events needed to
characterize the time horizon for each stream is not known as in other continuous time
models, and is chosen arbitrarily before the optimization. A higher number of transfer
events leads to a better representation of the schedule, although it increases the size of the
model. The novelty in the model lies in the fact that inputs and outputs are allowed to
occur in a single transfer event. However, simultaneous input and output is not allowed
for any tank in the same transfer event and therefore all input flows must finish before an
output flow starts for any tank in any transfer event. This kind of formulation reduces the
number of binary variables required in the model. The optimization model consists of

constraints for the crude tanks, for the distillation units, and for the supply streams:

Tank Constraints
Q) Constraints for flow transfers

ver<ySw, YaecAd,VbeBNteT (@)

abt =
vit<vlw,, VceC,VbeBNteT (2)
These constraints force the total flow in a stream (7/¢") from a source tank a to

any destination tank & in a particular transfer event ¢ to zero if the binary
variable, w,, which pertains to the existence of flow in that stream in transfer
event ¢, takes a value of zero. Note that the first subscript denotes the source
from where the flow is taking place, while the second subscript denotes the
destination to where the flow is going. The third and final subscript denotes
the transfer event when the particular flow occurs. The binary variable wg,
represents the existence of flow between source a and tank 4 in transfer event
t. The same is true for binary variable wy., which takes on a value of 1 or 0,
respectively, depending on whether or not there is flow between tank » and a
destination unit ¢ in transfer event ¢. The first subscript in the binary variable
w, stands for the source of the flow, while the second subscript denotes the
destination of the flow. The third and final subscript stands for the transfer
event in which the flow is taking place.



(i)

(iii)

Duration constraints

FS(Th ~To)+ESHA-w, )2V Yae 4, YbeBNVteT
FY(T2, -TE )+ FEHA-w, )2V YceC,,YbeBNteT

(3)

For a flow between source a and tank b, the timing variables 72, and 73,

correspond to the start and end times of flow in a stream from a to 4 in
transfer event ¢. The timing variables 7, and 7,2, are similarly defined for a

flow between tank » and a destination ¢ in transfer event z. H is the overall
time horizon of operation. These constraints are relaxed and the timing
variables can take on any value if there is no flow in a certain transfer event.
The above is expressed through big-M constraints that state that, if there is a
flow in a stream in the network in transfer event ¢, the product of the upper
bound on the flowrate of the crude stream with the duration of flow in the

transfer event gives an upper bound on the total flow volume in that transfer

event.

Fal;(Tazst_Tz;Lst)_FaI;H(l_wast)SVatgtI VCIEAS,VSES,VZET (4a)
E\ﬁ (Tsit - Tslct) - FSIZH(:L_ Wsct) = Vstcott Vee Cs Vse§ Vel

Fp (T2, ~Ty) SV  VeeC,VgeGVtel (4b)

Similarly, as given in eq (4a) and eq (4b), if there is a flow in transfer
event ¢ into or from a tank, the lower bound on the volume of a flow is
obtained by multiplying the fluid flowrate lower bound with the duration of
flow. We should note that for the charging tanks, the start and end times have
to coincide if there is no flow in a particular time event (eq (11b)). This
enforces the continuity of operation of the CDUs under the condition that only
one charging tank can charge a CDU in a certain transfer event.

Simple sequencing constraints
A flow into or from a tank 5 in transfer event ¢ has to take place before the
same flow in event ¢+/. Equations (5) — (10) correspond to this necessary

condition.
Ty 2To —H(@A-w,,) Vaed,VbeBVtel t<[T| (5)
Tl 2Thy Vae 4,,Vbe BVt eT,t<|T| (6)



(iv)

(v)

T 1 2 Thy Vae A4,,Vbe B,VteT,t<|T| (7

Ty 2T —H(@A-w,,) VceC, VbeBVteT,t<|T| (8)
Toeri1 2Tt VeeC,,VbeBVteT,t<|T| 9)
T2 1217, VeeC,,VbeBVteT,t<|T| (10)

If no flow exists between a and b in transfer event ¢ (i.e. w,,, = 0) then the big-

M inequality (5) is relaxed. Similarly, if there is no flow from b to c in the

transfer event ¢ (i.e. w,,= 0) then the big-M inequality (8) is relaxed.

Essentially, it means that if there is no flow in a stream in a transfer event ¢,
then the values taken by the variables pertaining to the start and end times of
flow in transfer event ¢ are meaningless and do not affect the flow times in the
next transfer event when there is flow.

Input and output restraints for the entire horizon

A set of constraints have to enforce the condition that any inputs or outputs of
the current transfer event ¢ must occur after the inputs and outputs of the
preceding transfer event. The inclusion of these time constraints, which are
expressed as big-M constraints, enforces the material balances to be calculated
properly across all tanks in the same transfer event.

Ty 2To —H(A=w,,) Vaded, a#a,VbeBNtel,t<|T|

ab,t+1 =

Thyn 2 T2 —H(-w,,) Vaed, VceC, VbeBVteT,t<|T| 1)
Tblc,Hl 2 Tazbt —H(l—W

abt

) Vaed,VceC,VbeBVieT,t<||
Tpri1 2 Ty —H(A=w,,,) Ve, c'eCye#c,VbeBVteT,t<|I|

Also since all inputs into a tank b are required to finish before any output
starts from that tank 4 in any transfer event, we need the following constraint:
T4, ~HQ-wy) <Tr, + Hl-w,,) Yae4,,VYceC,,VbeBVteT (12)
This helps in upholding material balances in the transfer event ¢ and prevents
the situation where output could occur before any input into a tank.

Mass balances

I+ Y Vi =1+ D Vi VteT,VbeB (13)
acd, ceC,
[9 = 1" YheB (14)



(vi)

Lipos® D Viw =Ling+ D Vi Vj€JVteT VbeB (15)

acd, ceC,
Lyg=13" YjeJ VbeB (16)
Vot =3 Vi Va4, VteT,VbeB (17)
jeJ
Viok =3 Vipew VceC,Vtel,¥beB (18)

el
For each tank » € B in the network, we have an overall inventory balance (eq
(13)), individual inventory balances (eq (15)) for each component j € J and
the total flow balances (eq (17) and eq (18)). The inventory balances imply
that the inventory in tank b at the end of a transfer event ¢ is equal to the
inventory at the end of transfer event ¢/ plus the volume flow into the tank
from any input source « in transfer event ¢, minus the flow to any output
destination ¢ in the transfer event 7. The representation of a crude tank is

shown in Fig. 3.

Source ot Crude tank Destination
C Vit E — Vi
beB = ( >
ae Ab Ce Cb

Fig. 3 Crude tank representation

The variables 7;2and 7,, correspond to the total inventory and individual

Jjbt
component inventory in a tank b at the end of transfer event ¢, respectively.
The volume flow balances imply that the total flow into or out from a tank

equals the sum of the individual component flows. %' stands for the total

abt

volume flow from any source a to tank b in transfer event ¢, while v
represents the flow from tank b to a destination ¢ to which this tank is

and v

Jjbct

connected. v,

abt are the respective component flows.

Component balances
On assuming perfect mixing in a tank, the fraction of a component ; in the

output flow from a tank should be equal to the fraction of that component

10



(vii)

(viii)

(ix)

()

present inside the tank. This constraint is formulated as follows, with bilinear
terms, which give rise to the nonconvexity of the model:

[1,2?;_1 + ZV;Z;] Viper = [1 et ZVja,”] Vi VjeJNteTNceC,,VbeB (19)

ae4, aed,

Inventory bounds

The following constraint must hold in order to ensure that the total inventory
in any transfer event does not exceed the upper bound of the inventory since
both inputs and outputs can occur in the same transfer event.

I+ ) Vi <Ij VbeBVieT (20)

acd,

The sum (e, + > v ) is the total inventory in a tank 4 in transfer event ¢

dcdy
before any output flow starts to occur from the tank in the same transfer event.
Bounds on components fractions inside a tank

The fraction of a component in the crude inside any tank should lie between
given bounds. This is enforced by the following constraints:

ol <Iy < oIyt YjeJ VbeBNteT (21)
SiVoet SV < fVoer  Vj€J,VbeBNceCy,VieT (22)
/i and fj; stand for the lower and upper bounds, respectively, of the fraction

of a component ; inside a tank 5.
Crude-mix demand constraints

Each charging tank ¢ € G must charge a specified amount of crude-mix
over the entire scheduling horizon. This volume of crude-mix is distributed to
the different CDUs in the network.

D dVia=DM, VgeG (23)

deD, t

Bound strengthening cuts (optional)

The following constraints may be added to the model in an attempt to
tighten the relaxation of the MINLP model so as to accelerate the convergence
to find the optimal solution. These are derived using a reformulation and

11



linearization technique given in Sherali and Alameddine (1992). In this we
take eq (19) and expand it to get the following equation:

tot tot tot tot .
bt -1 cht Z abt ]bct /bt lV;)ct Z jabt bct \WGJ!VtGﬂVCGCb'VbEB

(24)
Each bilinear term present in the above equation is considered and a
summation is carried out over j € J for each of these bilinear terms, which
results in the following set of equations,

DIV =11 Vee VteT,VeeC, VbeB
jeJ

D Vit Vi =Vi Vet Vae 4, VteT,YceCy,VbeB

jeJ

21”’ ylot ot plot e T YeeC,,VbeB (243)
jb,t=1 " bet b,t=1 " bet cel,Vecel,, Vbe

jeJ

D Vi Vit =Visi Vit Vae 4,,VteT,VceC,,VbeB
jeJ

Distillation Units
Each distillation unit & € D is modeled with the following set of constraints:
Q) Allocation constraints
The conditions that each distillation unit can be charged by at most one
charging tank in a transfer event and at most one CDU can be charged
by a single charging tank in a transfer event are enforced by eq (25)

and eq (26) respectively.

dwu <l VdeDVieT (25)
geGy
ngd, <1 VgeG,VteT (26)

deD,

(i) Continuous operation constraint
Each crude distillation unit (CDU) must be operated continuously and
the total time of operation of each CDU must be equal to the time
horizon H (eq (27)). Because of the continuity required in the duration
of operation, and the requirement that only one charging tank can

12



charge a CDU over a period of time, for a CDU which is charged in
transfer event 7, the next charge (in transfer event ¢+7) will start at the

ending time of the current transfer event ¢. This is enforced by eq (28)

and eq (29).

D YT -Tgl=H VdeD (27)
t geGy

Tu2To,—HQ-w,,) Vg.g'eG,g#g ,VdeDVieT,t<|T| (28)

Ty <Toy+H(l-w,,) Vg.g'€G,g#g VdeDVteT,t<|T| (29)
Supply Streams
The supply streams have to follow certain mass balance and timing constraints:
Q) Timing Constraints
star 1
T <T, +H(l-w,) VpePVseS, VteTl

end :gt (30)
=1, -Hl-w,) VpePVseS, VteT

pst
These constraints state that all the flows from a supply stream p to

storage tank s in any transfer event must start after a particular time

(7,“") and end before a certain time (T;"" ). It is to be noted that

the flow from a supply stream can be split such that one or more
storage tanks are simultaneously fed by a single supply stream.
Also, two or more suppply streams can feed the same storage tank

at the same time.

(i) Overall mass balances
The total amount of crude oil arriving in a supply stream p (given

by v3*"V), must be completely transferred to the storage tanks

over the set of all transfer events in the horizon.
Z Z vit=yseY ypep (31)

tel seS,

(ili))  Component balances

13



The component flow from a supply stream p to a tank s (storage
tank) in a transfer event ¢ is equal to the product of the total flow
from that supply stream to the tank and the fraction of the

component in the supply stream which is known.

Vi = [P0V VjeJ,VseS, VpePVieT (32)

Jjpst pst

s . -
=PPY is the fraction of component ; in the supply stream p.

Variable bounds
All the continuous variables must lie between specified bounds and the
discrete variables can be either O or 1.
0</l, <1l VjeJVbeBVteT
IF <12 <I1) YbeBVtel
0<V, <Vy VjeJ Vacd,VbeBNteT
0<V,u <Vy VjeJNceC,VbeBVtel
0<V2 <vy Yaed,VbeBVteT
o<vre <vy VeeC,VbeBNVteT
0<TY, <H VYVaed,VbeBN\NteT (33)
0<T3 <H VaecA,VbeBVteTl
0<T: <H VceC,VbeBV\NteTl
0<T2,<H VceC,VbeB\VteT
TS <TY"<H VpeP
T <TS <H VpeP

Wabt» Woer € {0!1}

Objective function

The objective function used in this work is similar to the one used in Lee et al.
(1996).

14



min z = Csea z (T}f”m - T;mml )+ Cunload Z (T;”d - T[f’“” )+

peP peP
+H| D Cinv(b) x| DI+ D Vi) + D I+ 21 | /(2% NE +1) (34)
beB t ac4, t<‘T‘
+ Cset(z Z Z Weg — ND)
deDgeG, t

where CseaZ(T;’”” —T;”"””) is a waiting cost for a supply stream while the term
p

Cunload z (Tpe”" —T,“") represents the unloading cost of crude for a supply stream. The
p

total inventory maintenance cost of all the tanks in the system is given by the

beB t ac4, t<‘T‘

approximation H[Z Cinv(b) x (Z '+ D i)+ > I+ 21 H/(z x NE +1) . This term is

written in this way, since the model allows for both input into and output from a tank in
the same transfer event, although they cannot be simultaneous. The last term

Cset(Y" D" wy, —ND) corresponds to the setup cost of charging the ‘ND’ CDUs with

deDgeG, 1
different crude-mixes.

Equations (1) — (23), (25) — (34) comprise the MINLP model (P) which is to be
optimized.

4. Solution Strategy

Large scale MINLPs such as problem (P) require specialized solution algorithms.
We propose a specialized Outer-Approximation algorithm for solving the nonconvex
model (P) to global optimality within a specified tolerance. In the proposed technique, we
generate lower and upper bounds on the global optimum of (P) over a search region by

solving separate models, which are then converged in the proposed algorithm.

4.1  Lower Bounding problem
A rigorous lower bound on the global optimum of problem (P) can be obtained by
solving an MILP relaxation of the original nonconvex MINLP model (P). This relaxation

can be constructed by replacing the nonlinear equation (19) with eq (35) and using

15



convex envelopes (see McCormick, 1976) (eqs (36) — (39)) for the bilinear terms

appearing in eq (19), as given by the constraints below,

[VJ

ac4, ac4,

L L yrot Li,L

I]ba 21V iper Vel p s = 1p Ve

U U rtot Uy, U

I,ba 21y Vipes ¥ VoeLpya =1y Ve
tot

[jbct = Ib Viber + Vbc Iy [b Vbc

tot
[]ba = Ib Viper + Vbc]b,t—l - Ib Vbc

VI o pLytot | gL LyL
Lipes 2 1y Vipes +Vped jpy i =1 Ve
Uyrtot | 17U UpU
Lt 2 1,V Vel iy =1 Ve
tot U
Lper < TV VoL jy i ~1;Vy,

|24 tot
Tiper < 1)V + Vel bi-1 -1V,

Ly tot Ly /L
Vjabct = V ijct + Vbc Vabt - Vabec

tot

U
Vjabct = ab ]bct + Vbc Vabt Vbc

tot
Vjabct < V V/bct + Vbc Vabt -V, bec

Vjabct = V ijct + Vchmt - Vali Vbc

V abct 2V, betgtt + Vch

J Jjabt -V, bec

V jabct = V Vbtgtt + Vbc 4

J Jjabt Vab Vbc

tot
Vi abct <VaVoel +Vio Viabe = ViiVie

V abct = V Vbtgtt + Vch

J Jjabt Vab Vbc

VT .
Jbct Z jabC[_[jbC[ Z Jjabct VJEJIVtET’VCECb’VbEB

Vj,VceC,,VteT ,Vbe B
Vj,VceCy,,Vtel,Vbe B
Vj,VceC,,VteT,VbeB
Vj,VceCy,,VteT,Vbe B

Vj,VceC,,VteT,Vbe B
Vj,VeeC,,VteT,VbeB
Vj,VceCy,,VteT,Vbe B

Vj,VeeC,,VteT,Vbe B

Vj,Yae 4,,YceC,,VteT ,VbeB
Vj,Vae A, VceC,,VteT,Vbe B
Vj,VYae A,,YceC,,VteT,Vbe B
Vj,Vae A4,,YceC,,VteT ,VbeB

Vj,VYae 4,,YceCy,,VteT,Vbe B
Vj,Vae 4, VceCy,VteTl,Vbe B
Vj,Vae A,,YceCy,VteT,VbeB

Vj,VYae 4,,YceC,,VteT,Vbe B

(35)

(36)

(37)

(38)

(39)

The relaxed MILP problem (R) consists of egs (1) — (18), (20) — (23), (25) — (39).

The MILP relaxation (R) is often very large in size and requires significant computational

effort to solve. To reduce the computational effort in solving this problem, we add cutting

planes to model (R) which are derived using a technique, similar to that given in
Karuppiah and Grossmann (2006). The description of the derivation of these cutting

planes follows. The network is split into separate decoupled structures, as shown in Fig.

3, following the concept of spatial decomposition (e.g. see Jackson and Grossmann,

2003). Here the network is split into two decoupled sub-structures, although more sub-
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tructures are possible. The sub-structure to the left of the dotted line in Fig. 3, which is
called D1 while the sub-structure on the right is termed D2. Physically, such a split can

be interpreted as cutting the pipelines between some of the units in the network.

Crude Crude

Supply . Distillation

Streams Storage Charging Units
Tanks Tanks

D1

-- D2

Fig. 3 Spatial decomposition of network structure

We then duplicate the variables pertaining to the flow existence (binary
variables), total flow, component flows, and start and end times of flow for all the
connections in the network that have been split. We end up with two sets of duplicate

mnt mnt' =mnt* ""mnt

variables {V"’"l A 0/) W ptl ST } VmeM,VneN,,Vt and

iz ye (T2, 122 0E,)  vmeM,vneN,, v, one set for each decomposed problem, and

mnt Jm mnt* “mnt "'mnt

YmeM,VneN,

m?

vt with these newly

mnt! mnt' £ mnt) mnt}

replace the variables {Vt‘” Vit () T T W

created variables in model (P). The subscript m stands for the source of the pipeline that

has been split, while the subscript » stands for the destination of a pipe that has been split.

The variables {V’”’ Vit (9, Ty T,ﬁm,wmn,} VmeM,vneN,, vt are said to be the linking

mnt? mnt?

variables since they link the different sub-structures. The remaining variables in model
(P) are called non-linking variables since they are separate for both sub-structures D1 and
D2. Due to the introduction of the duplicate variables, the equations involving the split
pipelines get duplicated and are written in terms of the variables

{V"”’l Vit () Trom T W vmeM,vneN, vt (equations corresponding to D1) and

mnt mnt - mnt mnt} m

YmeM,VneN,

m?

vt (equations corresponding to D2). Further,

mnt 7 jmnt mnt' - mnt) mnt}

{sz,z p2 (Vj),TLZ 722 2

since these newly formed variables are duplicates of the variables present in the original
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model, they are related by the following equality constraints which are added to model

(P):

ylotl _yioh2 o YmeM,YneN,, VteT (40)
View Vi =0 VjeJ VmeM,VneN, vteT (41)
TH 722 -0  VYmeM,VneN, VieT (42)
721 _T22_0  VYmeM,VneN, VteT (43)
wh, —w2 =0  VmeM,VneN,, VteT (44)

Equations (40) — (44) are then dualized, that is, they are multiplied by the Lagrange

multipliers 4, 25, (7). Aiys Ao @nd - 2,

‘mnt ' 7 jmnt v “mnty “Ymnt ‘mnt

YmeM,vneN,, vt, respectively, and

transferred to the objective function. This yields a Lagrangean relaxation of the original
problem, which is denoted by (LRP), and is decomposable into smaller sub-problems
corresponding to D1 and D2, which are easier to solve.

The model (LRP) is decomposed into two smaller sub-problems (LD1) and (LD2)
such that model (LD1) includes equations and variables pertaining to structure D1, while
model (LD2) includes equations and variables corresponding to the structure D2. The
bounds of all the non-linking variables in both the sub-problems are the same as in the
original full space problem (P). For the case of the duplicate variables, their bounds are
the same as the bounds of the corresponding linking variables in the original problem.
The two models (LD1) and (LD2) are as follows:

min 2"t = Csea Y (1, ~T"™")+ Cunload " (T5" ~T") + H[ Y. Cinv, x [Z I+ v+ e 2a ]] (2x NE +1)

PPy pePp beBp; t acd, !<‘T‘

+ Cset( z z z Wea = NDpy) +

deDp geG, t

PIDIDIIALHED WY WIS AR I W I AT I I WA i) I I I A

meM neN,, t Jj meMneN, t meM neN,, t meM neN,, t meM neN,, t

s.t.  constraints corresponding to units and connections in D1

(LD1)
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PpePp, pePp, beBp, t ac4, t<‘T‘

+Csel( z z zwgd[ —NDpy)+

deDp, geG, t

SIDIPWLTEE 3 I IV NGIED 35 ID W ALEED 3D I WALED 3D 3p 3 NS

meM neN,, t Jj meMneN,, t meM neN,, t meM neN,, t meM neN,, t

min 272 = Csea M (T, ~T3"™") + Cunload Y (T3" ~T,") + H{ D Cinv, x {2(1;7 + DT Y g 20 H (2% NE+1)

s.t. constrains  correspondng to units and connectiors in D2
(LD2)
The MILP relaxations of models (LD1) and (LD2), termed (LD1-R) and (LD2-R),

respectively, are constructed by replacing the nonlinear terms in these models by convex
envelopes. Models (LD1-R) and (LD2-R) are solved to obtain solutions z; and z,,

respectively. Using these solutions, the following valid linear cuts are generated in the
full space of the original problem, which are given by eqs (45) and (46).

7 < CseaZ(Y;j R Y L Cunl oai(T; '7‘1—7; “r+ z Ciny, X{Z(I,’;t" + ZV;Z;) + ZI,T + 2[2"”'”’]}/ @xNE+)

by peby beBpy t a4, 1]
+Csef Z Zngd,—NQ,lH
deDpy, geG; t
2 2D Fiinct 2D 22 Pt 2, 2D Pt 2, 2D Pt 2, 2D Pt
meMneN,, t Jj meMneN,, t meMneN,, t meMneN,, t meMneN,, t

(45)

z< CseaZ(Y;m”—T;’mv"j +Cunloat§:(7;’"d—7;§mr + Z Ciny X[Z(]}t;;t-i- ZV;Z;) Y +2[};”’H°']J/ (2xNE+])
1]

ey ey beBp, t aed,
+Csef Z Zngd,—Nl}nH
deDp, geG; t
- Z zzflm m(;;t_zz Zzﬁjygnl/jmm_ Z Zzﬂﬁztz;lnm_ Z Zzﬂ%ﬁm_ Z zzﬂxntw/mnt
meMneN,, t J meMneN,, t meMneN,, t meMneN,, t meMneN,, t

(46)
Theoretical properties of such cuts are given in Karuppiah and Grossmann (2006).
Namely, the cuts are valid when added to the original problem, and the inclusion of the
cuts into the relaxation (R) produces a lower bound at least as strong as the lower bound
obtained from Lagrangean decompsotion and the one obtained by solving (R) without
any cuts. The Lagrange multipliers used in these cuts can be updated using a procedure
given in the appendix, and additional cuts can be derived as described above. This

procedure of updating the multiplers and adding cuts can be performed any number of
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times. It is important to note that the performance of these cuts in reducing the solution
time of the relaxation strongly depends on the values of the Lagrange multipliers. The
cuts (egs (45) and/or (46)) are then added to (R) which is the MILP relaxation of model
(P) to get a modified MILP model (RP). On solving (RP), we obtain a valid lower bound
on the solution of (P).

4.2 Upper Bounding Sub-problem

We fix the binary variables in problem (P) to the values obtained from the
solution of (RP), and obtain a nonconvex NLP model (P-NLP) which is solved to global
optimality with any standard method. This then yields an upper bound on the solution of
(P). The optimal values of the variables obtained from the solution of (RP) are then used
as a starting point for the NLP solver. In case the model (P-NLP) is found to be infeasible
for these integer values, we use as a heuristic to obtain alternate sub-optimal integer
solutions by solving (RP) for an specified amount of time, and select the best found

integer solution.

4.3 Outer Approximation Algorithm
The proposed Outer Approximation algorithm is shown in flowchart form in Fig. 4.

’ Preprocessing ‘

A4
‘ Bound Contraction ‘ <= optional

\ 4

R Solve Lower Bounding
Problem

A4

Solve Upper Bounding
Problem

Add Integer Cuts

No

Yes STOP
UB - LB < tolerance ? .
Solution = UB

Fig. 4 Proposed Outer Approximation algorithm

20



The algorithm is along the lines of the techniques proposed by Duran and Grossmann
(1986), Kesavan et al. (2004), and Wei et al. (2005) and is outlined as follows:

a. Preprocessing The bounds of the variables in the model are determined by physical
inspection of the network structure and using the numerical data given for the tanks,
supply streams and the distillation units. Also, in this step, the original nonconvex
MINLP may be locally optimized to obtain an initial overall upper bound (OUB) for the
objective function.

b. Bound Contraction (Optional) The bounds of variables appearing in the nonconvex

terms maybe contracted by solving a set of LPs using a procedure given in Zamora and
Grossmann (1999), or the range reduction techniques in Tawarmalani and Sahinidis
(2002).

C. Lower Bound Generation Generate a valid lower bound for the solution of the

nonconvex MINLP following the technique outlined in section 4.1.
d. Upper Bound Generation Generate an upper bound using the method given in section

4.2 and update the OUB if the current upper bound is found to be better than the existing
OUB.

e. Integer Cuts Using the integer solution obtained from solving (RP), add an integer cut
to model (RP) to exclude this particular combination of binary variables. It is important
to note that if the model (P-NLP) is not globally optimized in step d, adding these integer
cuts to the relaxation in the next iteration could potentially cut off the global optimum.

f. Termination lterate between solving models (RP) and (P-NLP) till the lower bound
exceeds the upper bound or the relaxation gap between the lower and upper bounds is
less than a specified tolerance. Convergence to the global optimum is not guaranteed if a

local NLP solver is used in step d above.

Remarks
Q) In a more traditional Lagrangean decomposition approach, the network is
usually decomposed such that all the units present in it are separated. On
solving the sub-models corresponding to every unit in the network, we obtain
very weak cuts. To avoid this problem, we decompose the network into only
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two or three sub-structures. It is found heuristically that decomposing the
network into unbalanced sub-structures and using cuts derived from the
smaller sub-structures leads to a better performance of the algorithm.

(i) There are multiple ways to split the network and generate sub-structures and
corresponding cutting planes. For example, the structure shown in Fig. 1 can
also be split into two sub-structures D3 and D4 as shown below in Fig. 5. Also

the original network structure can be split into more than two sub-structures.

Crude Crude
Supply Storage Charging Distillation
Streams S~ Tanks Tanks Units

S ~ D4 N

Fig. 5 Alternate decomposition scheme for network in Fig. 1

(ii1) A proposed heuristic rule on how to split the original structure is as follows:

(@) Count the number of binary variables (nb) and constraints (nc) in the
original MINLP model (P) pertaining to the optimization of the whole
network structure.

(b) Pick the largest sub-structure resulting from the proposed split scheme
and count the number of binary variables (nbs) and constraints (ncs) in the
MINLP model corresponding to this sub-structure .

(c) Calculate the ratio : (nbs + ncs)/(nb + nc) and check if it is less than 0.9. If

this condition fails, the original structure has to be split differently into
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sub-structures such that (nbs + ncs)/(nb + nc) for the largest sub-structure
is below 0.9.

5. Examples

The effectiveness of the proposed algorithm in solving scheduling problems is
demonstrated using three examples for which the data is obtained from Lee et al. (1996).
The units of some of the parameters are not specified in order to be consistent with the
previous literature data. All examples were formulated using GAMS (Brooke et al., 1998)
and solved on Intel 3.2 GHz Linux machine with 1024 MB memory. GAMS/CPLEX 9.0
was used for solving the MILP problems, while GAMS/CONOPT 3.0 and
GAMS/BARON 7.2.5 were used for local optimization and global optimization,
respectively, of the NLP problems. For comparison with the proposed algorithm, we also
used GAMS/DICOPT and GAMS/BARON 7.2.5 for solving the MINLP models. Locally
optimal solutions to the MINLP models are obtained using DICOPT (1 iteration for the
relaxed NLP + 2 major iterations are performed) and compared against the solutions
obtained from the proposed algorithm. Hence, the computational expense of solving the
examples using DICOPT is not included in the total computational time taken by the
algorithm. It is to be noted that when BARON (Sahinidis, 1996) was used to solve the
NLP model (P-NLP), an optimality tolerance of 1% was used. The algorithm was
terminated at the end of the first iteration for all the examples, since the relaxation gap
between the lower and upper bound was sufficiently small within an acceptable tolerance
for the global optimum. However, the iterations of the proposed Outer-Approximation
algorithm may be continued to further reduce the gap between the lower and upper
bounds. The problem sizes for all three examples is given in Table 4 and the various
computational results are given in Tables 5a — 5d. The number of transfer events was
arbitrarily chosen to be 3 for all the units in all the examples, as the algorithm was able to

find good solutions when the horizon was divided into 3 transfer events.

Example 1 The first example is a network consisting of 3 supply streams, 3 storage tanks,
3 charging tanks and 2 distillation units, whose structure is shown in Fig. 1. The crude oil
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in this example contains one key component and all the other components are combined

into a bulk component, thus effectively making the given crude a two component system.

The crude movement has to be scheduled over a time horizon of 12 hours. The relevant

numerical data to carry out the optimization for this example is given in Table 1.

Table 1. Data for example 1

Scheduling Horizon (H) 12 hours
Number of crude supply 3
streams
Crude Supply Arrival time Incoming Fraction of key
Stream (7,") volume of crude component
IN1 1 50 0.01
IN2 5 50 0.085
IN3 9 50 0.06
Number of Storage Tanks 3
Storage ) o Initial fraction of
Tank Capacity Initial Oil Inventory Kkey component (min — max)
ST1 100 20 0.02 (0.01-10.03)
ST2 100 20 0.05 (0.04 — 0.06)
ST3 100 20 0.08 (0.07 - 0.09)

Number of Charging Tanks

Charging ) L Initial fraction of
Capacity Initial Oil Inventory )
Tank key component (min — max)
CT1 100 30 0.03 (0.025 - 0.035)
CT2 100 50 0.05 (0.045 - 0.065)
CT3 100 30 0.08 (0.075 - 0.085)
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Number of CDUs : 2
Waiting cost for supply streams (Csea): 5
Unloading cost for supply streams (Cunload): 10
Tank inventory costs(Cinvy) : storage tanks, 0.04; charging tanks, 0.08
Changeover cost for charged oil switch (Cset): 50
Demand of mixed oils by CDUs : oil mix 1 50
oil mix2 50
oilmix3 50

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound, 40

On applying the proposed algorithm to this example we obtain an optimal
objective value of 282.19. The optimal crude schedule is shown in Fig. 6. The inventory
profiles of the tanks are not given for this example and for the subsequent numerical
examples since the model includes only the times when the crude transfers begin and end
and there is no explicit information in the model pertaining to the start and end times of

flow from a tank.

Crude supply to storage tanks

12.

sT3 vy
(Storage tank 3)

ST2 21 50 375

il T . "
(Storage tank 2)
29

ST1 —a

(Storage tank 1) IN1T
0 1 2 3 4 5 6 7 8 9 10 11 12
time (hrs) -->
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Crude transfers between storage and charging tanks

7.
e 5
T.
(Charging tank 3)| ST3
16
CT2 —a
ST2
(Charging tank 2)
9.11
-
sT2
(Charging tank 1) 10.89
ST
0 1 2 3 4 5 6 7 8 9 10 11 12
time (hrs) -->
Charging schedule for distillation units
DU2 49.73 = 50
cT2 - cT3
DU1 30 2 20
cT CcT2 cT1
1 2 3 4 5 6 8 9 10 11 12
time (hrs) -->

Fig. 6 Gantt chart of the schedule for example 1

Distillation
unit 2

Distillation
unit 1
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Example 2 The second example is very similar in structure to the first example and it also
has 3 supply streams, 3 storage tanks, 3 charging tanks and 2 distillation units. The
network structure is shown in Fig. 7. Here we have two key components in the crude oil
instead of only one as in example 1. The crude in this example is hence a three
component fluid with these key components along with the remaining bulk component.
This makes the model size larger for this example.

Crude C_ruc_ie _
Supply Storage Charging DIS_tIIIatlon
Streams Tanks Tanks Units

—

110

-

Fig. 7 Network structure for example 2

The scheduling has to be done for a time horizon of 10 hours. Table 2 provides

the necessary data for the optimization and the optimal solution is given in Fig. 8.

Table 2. Data for example 2

Scheduling Horizon (H) 10 hours
Number of crude supply 3
streams
o ] Fraction of Fraction of
Crude Supply | Arrivaltime | |ncoming volume
. key key
Stream (1) of crude
component 1 component 2
IN1 1 100 0.01 0.04
IN2 4 100 0.03 0.02
IN3 7 100 0.05 0.01
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Number of Storage Tanks

Storage ) Initial Oil Initial fraction of key | Initial fraction of key
Capacity
Tank Inventory component 1 component 2
ST1 100 20 0.01 0.04
ST2 100 50 0.03 0.02
ST3 100 70 0.05 0.01
Number of Charging Tanks 3
) o Initial fraction of key | Initial fraction of key
Charging ) Initial Oil
Capacity component 1 component 2
Tank Inventory _ )
(min — max) (min — max)
CT1 100 30 0.0167 (0.01-0.02) | 0.0333 (0.03 —0.038)
CT2 100 50 0.03 (0.025-0.035) | 0.023 (0.018 —0.027)
CT3 100 30 0.0433 (0.04 — 0.048) | 0.0133(0.01-0.018)

Number of CDUs: 3
Waiting cost for supply streams (Csea): 5

Unloading cost for supply streams (Cunload): 8

Tank inventory costs (Cinv,): storage tanks, 0.05; charging tanks, 0.08

Changeover cost for charged oil switch (Cser): 30
Demand of mixed oils by CDUs : oil mix 1 100
oilmix2 100
oil mix3 100

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound, 40
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ST3
(Storage tank 3)

ST2
(Storage tank 2)

ST1
(Storage tank 1)

Crude supply to storage tanks

100
IN2
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IN1

time (hrs) -->

Crude transfers between storage and charging tanks

CT3
(Charging tank 3

CT2
(Charging tank 2)

CT1
(Charging tank 1)

35.1

35.1
sT3

10.76
sT2
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ST1

65.91
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Charging schedule for distillation units

DU2 50 - 100 Distillation
cT2 - o3 unit 2

DU1 17.61 50 82.39 Distillation
cT1 cT2 cT1 unit 1

0 1 2 3 4 5 6 7 8 9 10

time (hrs) -->

Fig. 8 Optimal solution for example 2

Example 3 The final example is an industrial size problem with 3 supply streams, 6
storage tanks, 4 charging tanks and 3 distillation units. The crude oil has to be scheduled
over a time horizon of 15 hours. The crude oil in this system involves a single key
component as in example 1 and other components combined into a bulk component. The

network structure is shown in Fig. 9.
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Fig. 9 Network structure for example 3
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The relevant numerical data for this example is given in Table 3 while the optimal

schedule is shown in Fig. 10.

Table 3. Data for example 3

Scheduling Horizon (H) 15 hours
Number of crude supply 3
streams
. . Incomin
Crude Supply Arrival Time : Fraction of key
) Volume of
Stream (r;") component
crude
IN1 1 60 0.03
IN2 6 60 0.05
IN3 11 60 0.065
Number of Storage Tanks 6

Storage ) o Initial fraction of
Capacity Initial Inventory )
Tank key component (min — max)
ST1 10-90 60 0.031 (0.025 - 0.038)
ST2 10-110 10 0.03 (0.02 - 0.04)
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ST3 10-110 50 0.05 (0.04 — 0.06)
ST4 10 - 110 40 0.065 (0.06 — 0.07)
ST5 10-90 30 0.075 (0.07 — 0.08)
ST6 10-90 60 0.075 (0.07 - 0.08)

Number of Charging Tanks

Charging ] . Initial Fraction of
Capacity Initial Inventory )
Tank key component (min — max)
CT1 80 5 0.0317 (0.03 - 0.035)
CT2 80 30 0.0483 (0.043 - 0.05)
CT3 80 30 0.0633 (0.06 — 0.065)
CT4 80 30 0.075 (0.071 - 0.08)
Number of CDUs: 3

Waiting cost for supply streams (Csea): 5

Unloading cost for supply streams (Cunload): 7

Tank inventory costs (Cinv,): storage tanks, 0.05; charging tanks, 0.06

Changeover cost for charged oil switch (Cser): 30

Demand of mixed oils by CDUs : oil mix 1

oil mix 2
oil mix 3

oil mix 4

60
60
60
60

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound, 40
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ST6
(Storage tank 6)

ST5
(Storage tank 5)
ST4
(Storage tank 4)

ST3
(Storage tank 3)

ST2
(Storage tank 2)

ST1
(Storage tank 1)

CT4
(Charging tank 4)

CT3
(Charging tank 3)

CT2
(Charging tank 2)

CT1
(Charging tank 1)

Crude supply to storage tanks
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IN1

o

1 2 3 4 5 6 7 8 9 10 1" 12 13 14
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Crude transfers between storage and charging tanks
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ST4
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ST3
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Charging schedule for distillation units

30 30 o 30 Distillation

bus3 cT4 cT3 cT4 unit 3
DU2 30 - 30 Distillation

cT3 cT2 unit 2
30 60 Distillation

DU1 & unit 1

cT2 cT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (hrs) -->

Fig. 10 Optimal schedule for example 3
On solving the problem to optimality using the proposed algorithm, we get a

solution of 383.69, which is globally optimal within a tolerance of 1 %.

Computational results

The model sizes for the different examples are shown in Table 4. The new
formulation is quite efficient for these crude oil scheduling problems and we obtain good
solutions to the scheduling problem at the very first iteration of the proposed algorithm as
seen in Table 5a. The algorithm finds the optima and proves their global optimality in
tractable computational times. The addition of cutting planes to the MILP relaxation (R)
as described in the algorithm decreases the number of nodes in the branch and bound tree
for solving the MILP relaxation, and hence the solution time for solving the MILP. This
is evident from Table 5b. The cuts added to the relaxation (R) tighten the lower bound at
the root node of the branch and bound tree for the MILP, which contributes to reducing
the number of nodes in the tree to about one third for solving the MILP.

For all the examples, the network structure is split into D1 and D2 (Fig. 2) and
also into D3 and D4 (Fig. 3). The information about the sub-structures (D1, D2, D3 and
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D4) for example 2 and example 3 can be obtained from the authors. Initially a set of
Lagrange multipliers was chosen to generate cuts (see Table 5c for multiplier
information), and they are updated once more to generate more cuts, which are added to a
pool of cuts. The column under the heading z* in this table gives the value of the lower
bound on the global optimum of (P) obtained by conventional Lagrangean decomposition
using the initially chosen set of Lagrange multipliers. We can see from Table 5b that they
are weaker than the lower bound obtained by solving the MILP relaxation (R) to
optimality. From this pool of cuts that is generated, the weaker cuts derived from the
smaller sub-structures, are chosen to be added to model (R) for all the numerical
examples in the paper and model (R) is then solved. The solution of (R) is used to fix the
binary variables in model (P), and we solve the resulting NLP model to global optimality
using BARON to get a solution. Here, we should note that BARON cannot solve the
original MINLP problems (P) to global optimality even after 10 hours of CPU time.

At the end, we also tested the effectiveness of adding the proposed cuts to the
MINLP model (P) corresponding to all examples. It is found that BARON performs
better when trying to solve the MINLP model (P) with these cuts added to it, than it does
in absence of these cuts. It can be seen from Table 5d that the lower and upper bounds
found by BARON at the end of 10 hours of computation, are closer to each other in the

presence of these cuts, although the relaxation gap is still rather substantial.

Table 4. Model sizes for examples 1 -3

Original MINLP model (P)

Example | Number of Number of
) . Number of
Binary Continuous .
. i Constraints
Variables Variables
1 48 300 946
2 42 330 994
3 57 381 1167

35



Table 5a. Numerical results for test examples 1 — 3

Upper bound Total time
Lower bound ) ken f )
_ ) [on solving ) takenforone | | pcal optimum
[obtained by solving ) Relaxation . ion' of )
Example _ (P-NLP) using Iteration’ 0 (using
relaxation (RP) ] gap (%) lqorith
. BARON ] algorithm DICOPT)
")
) (CPUsecs)
1 281.14 282.19 0.37 827.7 291.93
2 351.32 359.48 2.27 6913.9 361.63
3 383.69 383.69 0 8928.6 383.69

Table 5b. Comparison of relaxations with and without cuts

Solving MILP model (R)

Solving MILP model (RP)

(including proposed cuts)

Examp|e LP Time LP Time
Solution | relaxation No. of taken to Solution relaxation No. of taken to
5] at root nodes solve (R) " at root nodes | solve (RP)
node (CPUsecs) node (CPUsecs)
1 281.14 -55.24 940800 1953.3 281.14 68.45 334300 758.8
2 351.32 113.35 931700 14481.7 351.32 133.80 310600 5873.2
3 383.69 147.24 3029600 15874.8 383.69 189.19 1258100 8025.9

" Total time includes time for generating a pool of cuts, updating Lagrange multipliers, solving the
relaxation (RP) using CPLEX and solving (P-NLP) using BARON
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Table 5c. Lagrange multiplier information

. Initial values of Lagrange multipliers
Decomposition v . . .
Example H = z zi =z, +z, a
scheme /1% ﬂjmnf ﬁ*;lnz ﬁ*;iz ﬁ%nz

D1 and D2 0 0 0 0 0 282.225 201.335 0.4
1

D3 and D4 001 | 001 | 001 | 0.01 | 0.01 | 282225 202.324 0.4

D1 and D2 0 0 0 0 0 357.892 276.582 0.4
2

D3 and D4 001 | 001 | 001 | 0.01 | 0.01 | 358.892 279.99 0.4

D1 and D2 0 0 0 0 0 393.157 344.267 0.4
3

D3 and D4 0 0 0 0 0 393.157 348.214 0.5

Table 5d. Effect of cuts on the performance of BARON in optimizing (P)*

Optimizing (P) using BARON Optimizing (P) using BARON
Example (without cuts) (with cuts)
Upper Bound (UB) Lower Bound (LB) Upper Bound (UB) Lower Bound (LB)
1 282.19 32.62 282.19 75.31
2 361.63 185.75 361.63 194.98
3 383.69 214.07 383.69 233.30

6. Conclusions

In this work, we have developed improved techniques for global optimization of
scheduling the flow of crude oil at the front-end of a refinery. A continuous time model
based on transfer events is used to represent the scheduling problem and this model is a
nonconvex MINLP model which has multiple local optima. In order to obtain provably
globally optimal solutions to the problem, we propose a specialized Outer-Approximation

algorithm. In this, we generate lower and upper bounds on the global optimum which are

* BARON was run for a total time of 10 CPUhours
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converged to a specified tolerance. A rigorous lower bound on the global optimum is

obtained by solving a MILP relaxation of the original problem. To reduce the

computational effort required in solving this MILP relaxation, cutting planes derived

from a spatial decomposition of the network are added to the MILP model. The solution

of the MILP is used in a heuristic to obtain a feasible solution to the MINLP, which

serves as an upper bound. The application of the proposed algorithm on different

examples helps in significantly reducing the computational effort involved in solving

such problems.
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Nomenclature

Indices

(ox

w'osgx‘—'oo_o

—+

Sets

tanks input source

crude tank

tank output destination
distillation unit

charging tank

component

node in the network
source unit of split pipline
destination unit of split pipeline
supply stream

storage tank

transfer event

Set of tanks input sources
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Ay Set of inputs to a tank b

A Set of inputs to storage tank s

B Set of tanks

Bp:  Set of tanks belonging to sub-structure D1

Bp2  Set of tanks belonging to sub-structure D2

C Set of tank output destinations

Co Set of outputs from a tank b

Cs Set of outputs from storage tank s

Cy Set of outputs from charging tank g

D Set of distillation units

Dp:  Set of distillation units present in structure D1

Dp,  Set of distillation units present in structure D2

Dy Set of distillation units that can be charged by charging tank g
G(B) Set of charging tanks

Gy Set of charging tanks that charge distillation unit d
J Set of components

K Set of nodes in the network

M Set of source units of the split pipelines

Nn  Set of destination units of split pipelines with source m
P Set of supply streams

Po:  Set of supply streams present in sub-structure D1
Pp2  Set of supply streams present in sub-structure D2
S(B) Set of storage tanks

Sp Set of storage tanks connected to supply stream p
T Set of transfer events

Parameters

Cinvy Inventory maintenance cost for tank b
Csea Waiting cost for supply streams

Cset Changeover cost for charged oil switch
Cunload Unloading cost for supply streams
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F. Upper bound on flowrate from a to b

Fl Lower bound on flowrate from a to b

fjf, Lower bound on fraction of component ; inside tank b

ij Upper bound on fraction of component ; inside tank &
I . -

Vi Fraction of component ;j in supply stream p

H Time horizon for scheduling

I Initial total inventory of tank »

15 Initial inventory of component j in tank »

I} Lower bound on total inventory in a tank 5

I Upper bound on total inventory in a tank »

ND Number of distillation units in the network

NDp; Number of distillation units in sub-structure D1

NDp; Number of distillation units in sub-structure D2

NE Number of transfer events

Tl Arrival time of crude in supply stream p

vE Lower bound on flow froma to b

vk Lower bound on flow from 5 to ¢

vy Upper bound on flow froma to b

vy Upper bound on flow from 4 to ¢

V;”p”'y Total volume of crude oil arriving in supply stream p

Atot Lagrange multiplier

Aot Lagrange multiplier

At Lagrange multiplier

are, Lagrange multiplier

yu Lagrange multiplier



Continuous Variables

1,y Total inventory of tank b at the end of transfer event ¢

1,,  Inventory of component; in tank b at the end of transfer event ¢
T. ~ Starting time of a transfer from a to 4 in transfer event ¢
T,  Starting time of a transfer from b to ¢ in transfer event ¢
T2, Ending time of a transfer from a to b in transfer event ¢

77, Ending time of a transfer from 4 to ¢ in transfer event ¢
T°*" Initial starting time of crude transfer from supply stream p
7"  Overall ending time of crude transfer from supply stream p

vt Total flow from a to & in transfer event ¢

abt

Vo Total flow from b to ¢ in transfer event ¢

Vi  Flow of component j from a from 4 in transfer event ¢

Vi, Flow of component j from b from c in transfer event ¢

Binary variables

w Equal to 1 if there is a flow from a to b in transfer event ¢ else O

abt

w,, Equal to 1 if there is a flow from b4 to c in transfer event ¢ else 0
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Appendix : Updating Lagrange multipliers

Fisher (1981) proposed a sub-gradient method to update Lagrange multipliers, to
be used in solving a Lagrangean relaxation of the original problem, starting from an
initial arbitrary value of the multipliers. This technique is tailored to suit our problem in
order to obtain updated values of Lagrange multipliers starting with random initial
values. The generated Lagrange multipliers are then used to derive cuts to be added to the
relaxation. For solving the models (LD1-R) and (LD2-R) resulting from a decomposition
of the network structure into sub-structures D1 and D2, we succesively generate the

multipliers as follows:

] R [ A o N IR A
o e o R A
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X i P N {(wim, )*k ~(w2,, )k} VYmeM,YneN, VieT

where 5" is a scalar step size and {(V””'l)*k,(r/.l )*k v, (13 )*k’(TZ,l)*k’(Wl )k} and

mnt Jjmnt mnt mnt mnt

{(V;ﬁgz)*k,(V/in,)*k Vj,(T,,l;nZ,)*k,(T,fﬁ)*k,(w,im)*k} are the optimal values of the duplicate

variables, at the kth iteration, obtained from the solution of the sub-problems (LD1-R)
and (LD2-R), respectively. The following formula is used to calculate the values of #s* at
every iteration :

k o'V - (1)

vy (& —(Vﬁiff)*k};[(lﬁnm)*k—(%m)*k}[(T,i‘it)*k -l ) - b —(wsm,)*kﬂ

meM neN,, t

s

where «* is a scalar chosen between 0 and 2, z*(4*) is the sum of the obejctives of the

sub-models (LD1-R) and (LD2-R), when the multipliers are set to 4*, and z" is the value
of the best found feasible solution to (R). The parameter values used for updating the
multipliers in the numerical examples in the paper is given in Table 5c. The multiplier
update was carried out only once in this work. The updating scheme remains the same if
the network is decomposed into sub-structures D3 and D4 and the sub-models pertaining

to those are to be solved.
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