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ABSTRACT 

In this work we present an Outer-Approximation algorithm to obtain the global 

optimum of a nonconvex Mixed Integer Nonlinear Programming (MINLP) model for the 

scheduling of crude oil movement at the front-end of a petroleum refinery. The model 

relies on a continuous time representation making use of transfer events. The proposed 

technique focuses on effectively solving a Mixed Integer Linear Programming (MILP) 

relaxation of the nonconvex MINLP to obtain a rigorous lower bound on the global 

optimum. Cutting planes derived by spatially decomposing the network are added to the 

MILP relaxation of the original nonconvex MINLP in order to tighten the lower bound 

and reduce the solution times for the MILP relaxation. The solution of this problem is 

used as a heuristic to obtain a feasible solution to the MINLP which serves as an upper 

bound. The lower and upper bounds are made to converge to within a specified tolerance 

in the proposed Outer Approximation algorithm. On applying the proposed technique on 

test examples, significant savings were realized in the computational effort required to 

obtain the globally optimal solutions and to verify their global optimality. 

 

                                            
*Corresponding author. Tel.: +1-412-268-2230; Fax: +1-412-268-7139. Email address: 
grossmann@cmu.edu (I.E. Grossmann) 

 



 2

Keywords: Refinery scheduling; Nonconvex MINLP; Global optimization; Spatial 

decomposition 

1. Introduction 

 

Scheduling and planning of the flow of crude oil is a very important problem in a 

petroleum refinery due to the potential realization of large cost savings and improved 

feeds. Linear programming (LP) models have been historically used in the analysis of 

scheduling and planning problems due to their ease of modeling and solution.  Refinery 

planning problems have been addressed using computational tools such as AspenTech® 

PIMS (Process Industry Modeling System) that are largely based on Successive Linear 

Programming.   However, it is difficult to model refinery operations since they involve 

units operating in both batch and continuous modes along with multiple grades of crude 

oil and products. Furthermore, detailed scheduling models often require a continuous 

time representation and a more general treatment of nonlinear equations, as well as binary 

variables to model discrete decisions which give rise to Mixed Integer Nonlinear 

Programming (MINLP) models. These models impart additional flexibility to the 

problem allowing the modeling of discrete decisions and constraints. 

There are two major approaches for modeling scheduling problems: discrete time 

formulations and continuous time formulations (Mendez et al., 2006). In discrete time 

models, it is relatively easy to model the material balances and the flow constraints. 

However, the number of time intervals required for an accurate representation of the 

system is usually very high, thus the resulting models are large in size and 

computationally challenging. Continuous time models are smaller in comparison and 

allow for a complete utilization of the time domain, although it is difficult to synchronize 

the material balances and time sequencing constraints in such a representation. Lee et al. 

(1996) have proposed a Mixed Integer Linear Programming (MILP) model for short term 

scheduling of crude oil using discrete time intervals. Here, they derive a linear 

approximation of the nonlinear mixing operations by replacing bilinear terms in the mass 

balances by individual component flows. An MILP model has also been developed by 

Shah (1996) for crude oil scheduling where the scheduling time horizon is discretized 

into intervals of equal duration, where the requirement is that the operations must start 
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and end at the boundaries of the intervals. This approach is more restricted as compared 

to that of Lee et al. (1996) since the front end of the refinery is decomposed into two 

parts – downstream and upstream, and the models corresponding to these are solved 

sequentially. A continuous time formulation has been used by Jia et al. (2003) where the 

authors present an MILP model developed by relaxing the nonlinear mixing constraints. 

They also include the possiblity of incorporating the bilinear equations, thus making the 

model an MINLP formulation. A rigorous extension of this model can be found in 

Furman et al. (2006), where the authors use a continuous time event formulation to 

schedule fluid transfer between tanks, and model the problem as an MINLP. In this work, 

the main idea is to allow both inputs and outputs for a tank in a single transfer event. A 

comparison of the discrete and continuous time formulations for scheduling for chemical 

processes can be found in Floudas and Lin (2004).  

In this work, we apply a novel continuous time formulation given by Furman et 

al. (2006) to model the literature test cases given in Lee et al. (1996) for short-term 

scheduling of crude oil at the front-end of a refinery as an MINLP. This scheduling 

problem involves crude oil unloading from a crude supply source to the crude storage 

tanks, transfer of crude from these tanks to the charging tanks, and charging the crude 

distillation units continuously over a time horizon, with crude mixes from the charging 

tanks. We assume that a crude supply plan is in place where we know the crude arrival 

times and the corresponding arrival quantities and compositions.  

The MINLP corresponding to the scheduling problem is nonconvex due to the 

presence of bilinear terms in some of the mass balance constraints, and hence the 

standard methods for solving MINLPs (see Grossmann, 2002) may fail to converge to a 

solution or lead to sub-optimal solutions. Branch and bound based methods have been 

reported in the literature (Sahinidis, 1996; Adjiman et al., 2000) for globally optimizing 

nonconvex models. The Outer Approximation algorithms developed by Duran and 

Grossmann (1986) and by Fletcher and Leyffer (1994) can yield globally optimal 

solutions only if the feasible space and the objective function of the problem are both 

convex. For nonconvex MINLPs, a finitely convergent decomposition algorithm based on 

Outer Approximation has been proposed, for instance, by Kesavan et al. (2004) to solve 

these MINLPs to global optimality. Nonconvexities have also been handled by Bergamini 
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et al. (2005), who have presented a global optimization algorithm for Generalized 

Disjunctive Programming (GDP) problems. A further extension of the basic idea of Outer 

Approximation for the global optimization of deterministic and stochastic nonconvex 

MINLPs can be found in Wei et al. (2005). 

 In this work, we present an Outer-Approximation algorithm to obtain globally 

optimal solutions of the nonconvex MINLPs (with binary integer variables only) arising 

in the scheduling of crude oil movement in a petrochemical refinery, where the objective 

is to minimize the costs involved in the operation and in maintaining the inventory levels 

in the crude tanks. The proposed technique focuses on effectively solving the MILP 

relaxation of the nonconvex MINLP to obtain a tight and rigorous lower bound on the 

solution of the MINLP. Based on a decomposition of the original MINLP model, we 

generate sub-models whose solutions are used to derive valid cutting planes. These cuts 

are added to the MILP relaxation of the original problem in order to tighten the relaxation 

and reduce the computational expense of solving the relaxations. Numerical examples are 

presented to demonstrate that the use of such an algorithm on a class of nonconvex 

MINLPs can result in significant computational savings.  

 This paper is organized as follows. Section 2 presents the problem statement of 

the crude scheduling problem while section 3 provides the nonconvex MINLP model. A 

discussion of the algorithm is given in section 4. Section 5 presents the different 

examples on which the algorithm was applied, and finally, section 6 summarizes some 

conclusions and recommendations for future work. 

 

2. Problem Statement 

 

The front-end of a refinery is a network consisting of supply streams, storage 

tanks, charging tanks and crude distillation units (CDUs) whose structure is shown in Fig. 

1. The supply streams are connected to the storage tanks which are connected to the 

charging tanks, which in turn, are connected to the CDUs. The supply streams, which are 

crude carrying vessels, deliver crude oil to the storage tanks (intermediate tanks), which 

transfer the crude to the charging tanks. Different qualities of crude get blended into 
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various crude mixtures inside the charging tanks, which are then charged directly to the 

distillation units.  

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic of the front-end of a refinery 

 

For scheduling the flow of crude oil in the above network, the following 

information is given: 

(a) The maximum and minimum inventory levels for a tank (capacity limitations); (b) the 

initial total and component inventories in a tank; (c) upper and lower bounds on the 

fraction of key components in the crude inside a tank (crude quality limitations); (d) 

times of arrival of crude oil in the supply streams; (e) amount of crude arriving in the 

supply streams; (f) fractions of various components in the supply streams; (g) demand of 

crude-mix to be charged from a charging tank; (h) bounds on the flowrates of the streams 

in the network; (i) time horizon for scheduling; (j) cost coefficients for calculating the 

various costs involved. 

The problem is then to determine the optimum values of the following items in 

the system in order to minimize the total operating cost of the network: (i) the total and 

component inventory levels in the tanks at various instances of time; (ii) the total and 

component flow volumes from one unit to another in a certain time interval; (iii) start and 

end times of the flows in each stream present in the network.  

Finally, the following operating constraints must hold in the network: 

Crude 
Supply 
Streams Storage

Tanks
Charging 
Tanks

Crude 
Distillation 
Units
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1. Simultaneous inputs into and outputs from a tank cannot be allowed. This is done 

to allow settling of the crude mix in a tank. 

2. Each distillation unit may be charged by at most one charging tank over a period 

of time. This is another operational norm followed in in many refineries. 

3. Each charging tank may charge at most one distillation unit at a point of time. 

4. Each charging tank has to discharge a specified amount of crude-mix to the 

various distillation units within the given time horizon. 

5. All the distillation units have to be operated continuously throughout the entire 

time horizon. 

 

3. Model 

We model the optimization of the network as a nonconvex MINLP problem. 

Certain assumptions are made prior to modeling the system: 

1. Perfect mixing takes place in each tank. 

2. Negligible change in specific gravities on mixing. 

3. The crude flows into and from a tank need not be continuous. 

4. Changeover times for CDU charging are neglected. 

The mathematical model for the scheduling problem has largely been taken from 

Furman et al. (2006) and it mainly involves mass balances, sequencing constraints, 

allocation constraints, and crude supply and demand constraints. This is a continuous 

time model for scheduling for which a number of transfer events are postulated for the 

transfer of material between units in the network over a given time horizon, as shown in 

Fig. 2. Note that as opposed to most scheduling models (see Mendez et al., 2006), the 

times here involve timings of transfer between pairs of units. 

 

 

 

 

 

 

Fig. 2 Timing for transfer from unit ‘a’ to unit ‘b’ in event ‘t’ 
Time 

Unit b
Unit a

1
abtT 2

abtTt
= start time of transfer1

abtT

= end time of transfer2
abtT
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When fluid transfers take place between tanks a and b, these are assumed to take 

place over the same transfer event t, and for which precedence constraints are imposed 

for the start and end times that are unknown. The number of transfer events needed to 

characterize the time horizon for each stream is not known as in other continuous time 

models, and is chosen arbitrarily before the optimization. A higher number of transfer 

events leads to a better representation of the schedule, although it increases the size of the 

model. The novelty in the model lies in the fact that  inputs and outputs are allowed to 

occur in a single transfer event. However, simultaneous input and output is not allowed 

for any tank in the same transfer event and therefore all input flows must finish before an 

output flow starts for any tank in any transfer event. This kind of formulation reduces the 

number of binary variables required in the model. The optimization model consists of 

constraints for the crude tanks, for the distillation units, and for the supply streams: 

 

Tank Constraints 

(i) Constraints for flow transfers 

TtBbAawVV babt
U
ab

tot
abt ∈∀∈∀∈∀≤ ,,      (1) 

TtBbCcwVV bbct
U
bc

tot
bct ∈∀∈∀∈∀≤ ,,      (2) 

These constraints force the total flow in a stream ( tot
abtV ) from a source tank a to 

any destination tank b in a particular transfer event t to zero if the binary 

variable, wabt, which pertains to the existence of flow in that stream in transfer 

event t, takes a value of zero. Note that the first subscript denotes the source 

from where the flow is taking place, while the second subscript denotes the 

destination to where the flow is going. The third and final subscript denotes 

the transfer event when the particular flow occurs. The binary variable wabt 

represents the existence of flow between source a and tank b in transfer event 

t. The same is true for binary variable wbct which takes on a value of 1 or 0, 

respectively, depending on whether or not there is flow between tank b and a 

destination unit c in transfer event t. The first subscript in the binary variable 

w, stands for the source of the flow, while the second subscript denotes the 

destination of the flow. The third and final subscript stands for the transfer 

event in which the flow is taking place.  
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(ii) Duration constraints 

TtBbCcVwHFTTF

TtBbAaVwHFTTF

b
tot

bctbct
U
bcbctbct

U
bc

b
tot

abtabt
U
ababtabt

U
ab

∈∀∈∀∈∀≥−+−

∈∀∈∀∈∀≥−+−

,,)1()(

,,)1()(
12

12

   (3) 

For a flow between source a and tank b, the timing variables 1
abtT  and 2

abtT  

correspond to the start and end times of flow in a stream from a to b in 

transfer event t. The timing variables 1
bctT  and 2

bctT  are similarly defined for a 

flow between tank b and a destination c in transfer event t. H is the overall 

time horizon of operation. These constraints are relaxed and the timing 

variables can take on any value if there is no flow in a certain transfer event. 

The above is expressed through big-M constraints that state that, if there is a 

flow in a stream in the network in transfer event t, the product of the upper 

bound on the flowrate of the crude stream with the duration of flow in the 

transfer event gives an upper bound on the total flow volume in that transfer 

event.  

TtSsCcVwHFTTF

TtSsAaVwHFTTF

s
tot

sctsct
L

scsctsct
L

sc

s
tot

astast
L

asastast
L

as

∈∀∈∀∈∀≤−−−

∈∀∈∀∈∀≤−−−

,,)1()(

,,)1()(
12

12

   (4a) 

TtGgCcVTTF g
tot
gctgctgct

L
gc ∈∀∈∀∈∀≤− ,,)( 12     (4b) 

 Similarly, as given in eq (4a) and eq (4b), if there is a flow in transfer 

event t into or from a tank, the lower bound on the volume of a flow is 

obtained by multiplying the fluid flowrate lower bound with the duration of 

flow. We should note that for the charging tanks, the start and end times have 

to coincide if there is no flow in a particular time  event (eq (11b)). This 

enforces the continuity of operation of the CDUs under the condition that only 

one charging tank can charge a CDU in a certain transfer event. 

(iii) Simple sequencing constraints 

A flow into or from a tank b in transfer event t has to take place before the 

same flow in event t+1. Equations (5) – (10) correspond to this necessary 

condition. 

TtTtBbAawHTT babtabttab <∈∀∈∀∈∀−−≥+ ,,,)1(21
1,    (5) 

TtTtBbAaTT babttab <∈∀∈∀∈∀≥+ ,,,11
1,    (6) 
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TtTtBbAaTT babttab <∈∀∈∀∈∀≥+ ,,,22
1,    (7) 

TtTtBbCcwHTT bbctbcttbc <∈∀∈∀∈∀−−≥+ ,,,)1(21
1,    (8) 

TtTtBbCcTT bbcttbc <∈∀∈∀∈∀≥+ ,,,11
1,    (9) 

TtTtBbCcTT bbcttbc <∈∀∈∀∈∀≥+ ,,,22
1,    (10) 

If no flow exists between a and b in transfer event t (i.e. abtw = 0) then the big-

M inequality (5) is relaxed. Similarly, if there is no flow from b to c in the 

transfer event t (i.e. bctw = 0) then the big-M inequality (8) is relaxed. 

Essentially, it means that if there is no flow in a stream in a transfer event t, 

then the values taken by the variables pertaining to the start and end times of 

flow in transfer event t are meaningless and do not affect the flow times in the 

next transfer event when there is flow. 

(iv) Input and output restraints for the entire horizon 

A set of constraints have to enforce the condition that any inputs or outputs of 

the current transfer event t must occur after the inputs and outputs of the 

preceding transfer event. The inclusion of these time constraints, which are 

expressed as big-M constraints, enforces the material balances to be calculated 

properly across all tanks in the same transfer event.  

TtTtBbccCccwHTT

TtTtBbCcAawHTT

TtTtBbCcAawHTT

TtTtBbaaAaawHTT

btbctbctbc

bbabtabttbc

bbbctbcttab

bbtabtatab

<∈∀∈∀≠∈∀−−≥

<∈∀∈∀∈∀∈∀−−≥

<∈∀∈∀∈∀∈∀−−≥

<∈∀∈∀≠∈∀−−≥

+

+

+

+

,,,',',)1(

,,,,)1(

,,,,)1(

,,,',',)1(

'
2

'
1

1,

21
1,

21
1,

'
2
'

1
1,

  (11) 

Also since all inputs into a tank b are required to finish before any output 

starts from that tank b in any transfer event, we need the following constraint: 

TtBbCcAawHTwHT bbbctbctabtabt ∈∀∈∀∈∀∈∀−+≤−− ,,,)1()1( 12   (12) 

This helps in upholding material balances in the transfer event t and prevents 

the situation where output could occur before any input into a tank.  

(v) Mass balances 

BbTtVIVI
bb Cc

tot
bct

tot
bt

Aa

tot
abt

tot
tb ∈∀∈∀+=+ ∑∑

∈∈
− ,1,     (13) 

BbII totinit
b

tot
b ∈∀= −

0        (14) 
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BbTtJjVIVI
bb Cc

jbctjbt
Aa

jabttjb ∈∀∈∀∈∀+=+ ∑∑
∈∈

− ,,1,    (15) 

BbJjII init
jbjb ∈∀∈∀= ,0        (16) 

BbTtAaVV b
Jj

jabt
tot

abt ∈∀∈∀∈∀=∑
∈

,,      (17) 

BbTtCcVV b
Jj

jbct
tot

bct ∈∀∈∀∈∀=∑
∈

,,      (18) 

For each tank b ∈ B in the network, we have an overall inventory balance (eq 

(13)), individual inventory balances (eq (15)) for each component j ∈ J and 

the total flow balances (eq (17) and eq (18)). The inventory balances imply 

that the inventory in tank b at the end of a transfer event t is equal to the 

inventory at the end of transfer event t-1 plus the volume flow into the tank 

from any input source a in transfer event t, minus the flow to any output 

destination c in the transfer event t. The representation of a crude tank is 

shown in Fig. 3. 

 

 

   

  

  Fig. 3 Crude tank representation 

 The variables tot
btI and jbtI  correspond to the total inventory and individual 

component inventory in a tank b at the end of transfer event t, respectively. 

The volume flow balances imply that the total flow into or out from a tank  

equals the sum of the individual component flows. tot
abtV  stands for the total 

volume flow from any source a to tank b in transfer event t, while tot
bctV  

represents the flow from tank b to a destination c to which this tank is 

connected. jabtV  and jbctV  are the respective component flows.  

(vi) Component balances 

On assuming perfect mixing in a tank, the fraction of a component j in the 

output flow from a tank should be equal to the fraction of that component 

b ∈ B
a ∈ Ab

c ∈ Cb

Source DestinationCrude tank
tot

abtV tot
bctV
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present inside the tank. This constraint is formulated as follows, with bilinear 

terms, which give rise to the nonconvexity of the model: 

BbCcTtJjVVIVVI b
tot

bct
Aa

jabttjbjbct
Aa

tot
abt

tot
tb

bb

∈∀∈∀∈∀∈∀⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ ∑∑

∈
−

∈
− ,,,1,1,   (19)  

(vii) Inventory bounds 

The following constraint must hold in order to ensure that the total inventory 

in any transfer event does not exceed the upper bound of the inventory since 

both inputs and outputs can occur in the same transfer event. 

TtBbIVI U
b

Aa

tot
abt

tot
tb

b

∈∀∈∀≤+ ∑
∈

− ,1,       (20) 

The sum ( ∑
∈

− +
bAa

tot
abt

tot
tb VI 1,  ) is the total inventory in a tank b in transfer event t 

before any output flow starts to occur from the tank in the same transfer event. 

(viii) Bounds on components fractions inside a tank 

The fraction of a component in the crude inside any tank should lie between 

given bounds. This is enforced by the following constraints: 

 TtBbJjIfIIf tot
bt

U
jbjbt

tot
bt

L
jb ∈∀∈∀∈∀≤≤ ,,     (21) 

TtCcBbJjVfVVf b
tot

bct
U
jbjbct

tot
bct

L
jb ∈∀∈∀∈∀∈∀≤≤ ,,,    (22) 

L
jbf  and U

jbf  stand for the lower and upper bounds, respectively, of the fraction 

of a component j inside a tank b. 

(ix) Crude-mix demand constraints 

 Each charging tank g ∈ G must charge a specified amount of crude-mix 

over the entire scheduling horizon. This volume of crude-mix is distributed to 

the different CDUs in the network.  

GgDMV g
Dd t

tot
gdt

g

∈∀=∑ ∑
∈

     (23) 

(x) Bound strengthening cuts (optional) 

 The following constraints may be added to the model in an attempt to 

tighten the relaxation of the MINLP model so as to accelerate the convergence 

to find the optimal solution. These are derived using a reformulation and 
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linearization technique given in Sherali and Alameddine (1992). In this we 

take eq (19) and expand it to get the following equation: 

 

BbCcTtJjVVVIVVVI b
Aa

tot
bctjabt

tot
bcttjb

Aa
jbct

tot
abtjbct

tot
tb

bb

∈∀∈∀∈∀∈∀+=+ ∑∑
∈

−
∈

− ,,,1,1,  

                   (24) 

Each bilinear term present in the above equation is considered and a 

summation is carried out over j ∈ J for each of these bilinear terms, which 

results in the following set of equations,   

BbCcTtAaVVVV

BbCcTtVIVI

BbCcTtAaVVVV

BbCcTtVIVI

bb
tot

bct
tot

abt
tot

bct
Jj

jabt

b
tot

bct
tot

tb
tot

bct
Jj

tot
tjb

bb
tot

bct
tot

abtjbct
Jj

tot
abt

b
tot

bct
tot

tbjbct
Jj

tot
tb

∈∀∈∀∈∀∈∀=

∈∀∈∀∈∀=

∈∀∈∀∈∀∈∀=

∈∀∈∀∈∀=

∑

∑

∑

∑

∈

−
∈

−

∈

−
∈

−

,,,

,,

,,,

,,

1,1,

1,1,

   (24a) 

 

Distillation Units 

Each distillation unit d ∈ D is modeled with the following set of constraints: 

(i) Allocation constraints 

The conditions that each distillation unit can be charged by at most one 

charging tank in a transfer event and at most one CDU can be charged 

by a single charging tank in a transfer event are enforced by eq (25) 

and eq (26) respectively.  

TtDdw
dGg

gdt ∈∀∈∀≤∑
∈

,1      (25) 

TtGgw
gDd

gdt ∈∀∈∀≤∑
∈

,1      (26) 

(ii) Continuous operation constraint 

Each crude distillation unit (CDU) must be operated continuously and 

the total time of operation of each CDU must be equal to the time 

horizon H (eq (27)). Because of the continuity required in the duration 

of operation, and the requirement that only one charging tank can 
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charge a CDU over a period of time, for a CDU which is charged in 

transfer event t, the next charge (in transfer event t+1) will start at the 

ending time of the current transfer event t. This is enforced by eq (28) 

and eq (29). 

DdHTT
t Gg

gdtgdt
d

∈∀=−∑ ∑
∈

][ 12      (27) 

TtTtDdggGggwHTT ddtgdtgtgd <∈∀∈∀≠∈∀−−≥+ ,,,',',)1( '
2
'

1
1,  (28) 

TtTtDdggGggwHTT ddtgdtgtgd <∈∀∈∀≠∈∀−+≤+ ,,,',',)1( '
2
'

1
1,  (29) 

 

Supply Streams 

 The supply streams have to follow certain mass balance and timing constraints: 

(i) Timing Constraints 

TtSsPpwHTT

TtSsPpwHTT

ppstpst
end
p

ppstpst
start

p

∈∀∈∀∈∀−−≥

∈∀∈∀∈∀−+≤

,,)1(

,,)1(
2

1

  (30) 

These constraints state that all the flows from a supply stream p to 

storage tank s in any transfer event must start after a particular time 

( start
pT )  and end before a certain time ( end

pT ). It is to be noted that 

the flow from a supply stream can be split such that one or more 

storage tanks are simultaneously fed by a single supply stream. 

Also, two or more suppply streams can feed the same storage tank 

at the same time. 

 

(ii) Overall mass balances 

The total amount of crude oil arriving in a supply stream p (given 

by supply
pV ), must be completely transferred to the storage tanks 

over the set of all transfer events in the horizon. 

PpVV p
Tt Ss

tot
pst

p

∈∀=∑∑
∈ ∈

supply      (31) 

(iii) Component balances 
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The component flow from a supply stream p to a tank s (storage 

tank) in a transfer event t is equal to the product of the total flow 

from that supply stream to the tank and the fraction of the 

component in the supply stream which is known. 

 TtPpSsJjVfV p
tot
pstjpjpst ∈∀∈∀∈∀∈∀= ,,,supply   (32) 

 supply
jpf  is the fraction of component j in the supply stream p. 

 

 

Variable bounds 

All the continuous variables must lie between specified bounds and the 

discrete variables can be either 0 or 1.  

}1,0{,

,,0

,,0

,,0

,,0

,,0

,,0

,,,0

,,,0

,

,,0

2

1

2

1

∈

∈∀≤≤

∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀≤≤

∈∀∈∀∈∀∈∀≤≤
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Objective function 

 The objective function used in this work is similar to the one used in Lee et al. 

(1996).  
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where ∑ −
p

arrival
p

start
p TTCsea )(  is a waiting cost for a supply stream while the term 

∑ −
p

start
p

end
p TTCunload )(  represents the unloading cost of crude for a supply stream. The 

total inventory maintenance cost of all the tanks in the system is given by the 
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written in this way, since the model allows for both input into and output from a tank in 

the same transfer event, although they cannot be simultaneous. The last term 
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gdt
d

−∑ ∑∑
∈ ∈

 corresponds to the setup cost of charging the ‘ND’ CDUs with 

different crude-mixes.  

Equations (1) – (23), (25) – (34) comprise the MINLP model (P) which is to be 

optimized.  

 

4. Solution Strategy 

 Large scale MINLPs such as problem (P) require specialized solution algorithms. 

We propose a specialized Outer-Approximation algorithm for solving the nonconvex 

model (P) to global optimality within a specified tolerance. In the proposed technique, we 

generate lower and upper bounds on the global optimum of (P) over a search region by 

solving separate models, which are then converged in the proposed algorithm.  

 

4.1  Lower Bounding problem 

 A rigorous lower bound on the global optimum of problem (P) can be obtained by 

solving an MILP relaxation of the original nonconvex MINLP model (P). This relaxation 

can be constructed by replacing the nonlinear equation (19) with eq (35) and using 
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convex envelopes (see McCormick, 1976) (eqs (36) – (39)) for the bilinear terms 

appearing in eq (19), as given by the constraints below,  
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The relaxed MILP problem (R) consists of eqs (1) – (18), (20) – (23), (25) – (39). 

The MILP relaxation (R) is often very large in size and requires significant computational 

effort to solve. To reduce the computational effort in solving this problem, we add cutting 

planes to model (R) which are derived using a technique, similar to that given in 

Karuppiah and Grossmann (2006). The description of the derivation of these cutting 

planes follows. The network is split into separate decoupled structures, as shown in Fig. 

3, following the concept of spatial decomposition (e.g. see Jackson and Grossmann, 

2003). Here the network is split into two decoupled sub-structures, although more sub-
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tructures are possible. The sub-structure to the left of the dotted line in Fig. 3, which is 

called D1 while the sub-structure on the right is termed D2. Physically, such a split can 

be interpreted as cutting the pipelines between some of the units in the network. 

 

 

 

 

 

 

 

 

 

Fig. 3 Spatial decomposition of network structure 

 We then duplicate the variables pertaining to the flow existence (binary 

variables), total flow, component flows, and start and end times of flow for all the 

connections in the network that have been split. We end up with two sets of duplicate 

variables { } tNnMmwTTjVV mmntmntmntjmnt
tot
mnt ∀∈∀∈∀∀ ,,,,),(, 11,21,111,  and 

{ } tNnMmwTTjVV mmntmntmntjmnt
tot
mnt ∀∈∀∈∀∀ ,,,,),(, 22,22,122, , one set for each decomposed problem, and 

replace the variables { } tNnMmwTTjVV mmntmntmntjmnt
tot
mnt ∀∈∀∈∀∀ ,,,,),(, 21  with these newly 

created variables in model (P). The subscript m stands for the source of the pipeline that 

has been split, while the subscript n stands for the destination of a pipe that has been split. 

The variables { } tNnMmwTTjVV mmntmntmntjmnt
tot
mnt ∀∈∀∈∀∀ ,,,,),(, 21  are said to be the linking 

variables since they link the different sub-structures. The remaining variables in model 

(P) are called non-linking variables since they are separate for both sub-structures D1 and 

D2. Due to the introduction of the duplicate variables, the equations involving the split 

pipelines get duplicated and are written in terms of the variables 

{ } tNnMmwTTjVV mmntmntmntjmnt
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mnt ∀∈∀∈∀∀ ,,,,),(, 11,21,111,  (equations corresponding to D1) and 
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model, they are related by the following equality constraints which are added to model 

(P): 

 TtNnMmVV m
tot

mnt
tot

mnt ∈∀∈∀∈∀=− ,,02,1,      (40) 

TtNnMmJjVV mjmntjmnt ∈∀∈∀∈∀∈∀=− ,,,021     (41) 

TtNnMmTT mmntmnt ∈∀∈∀∈∀=− ,,02,11,1      (42) 

TtNnMmTT mmntmnt ∈∀∈∀∈∀=− ,,02,21,2      (43) 

TtNnMmww mmntmnt ∈∀∈∀∈∀=− ,,021      (44) 

Equations (40) – (44) are then dualized, that is, they are multiplied by the Lagrange 

multipliers 21 ,),(, T
mnt

T
mnt

VC
jmnt

Vtot
mnt j λλλλ ∀  and w

mntλ   tNnMm m ∀∈∀∈∀ ,, , respectively, and 

transferred to the objective function. This yields a Lagrangean relaxation of the original 

problem, which is denoted by (LRP), and is decomposable into smaller sub-problems 

corresponding to D1 and D2, which are easier to solve. 

 The model (LRP) is decomposed into two smaller sub-problems (LD1) and (LD2) 

such that model (LD1) includes equations and variables pertaining to structure D1, while 

model (LD2) includes equations and variables corresponding to the structure D2. The 

bounds of all the non-linking variables in both the sub-problems are the same as in the 

original full space problem (P). For the case of the duplicate variables, their bounds are 

the same as the bounds of the corresponding linking variables in the original problem. 

The two models (LD1) and (LD2) are as follows: 
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 The MILP relaxations of models (LD1) and (LD2), termed (LD1-R) and (LD2-R), 

respectively, are constructed by replacing the nonlinear terms in these models by convex 

envelopes. Models (LD1-R) and (LD2-R) are solved to obtain solutions *
1z and *

2z , 

respectively. Using these solutions, the following valid linear cuts are generated in the 

full space of the original problem, which are given by eqs (45) and (46). 
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 Theoretical properties of such cuts are given in Karuppiah and Grossmann (2006). 

Namely, the cuts are valid when added to the original problem, and the inclusion of the 

cuts into the relaxation (R) produces a lower bound at least as strong as the lower bound 

obtained from Lagrangean decompsotion and the one obtained by solving (R) without 

any cuts. The Lagrange multipliers used in these cuts can be updated using a procedure 

given in the appendix, and additional cuts can be derived as described above. This 

procedure of updating the multiplers and adding cuts can be performed any number of 
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times. It is important to note that the performance of these cuts in reducing the solution 

time of the relaxation strongly depends on the values of the Lagrange multipliers. The 

cuts (eqs (45) and/or (46)) are then added to (R) which is the MILP relaxation of model 

(P) to get a modified MILP model (RP). On solving (RP), we obtain a valid lower bound 

on the solution of (P).  

 

4.2 Upper Bounding Sub-problem 

 We fix the binary variables in problem (P) to the values obtained from the 

solution of (RP), and obtain a nonconvex NLP model (P-NLP) which is solved to global 

optimality with any standard method. This then yields an upper bound on the solution of 

(P). The optimal values of the variables obtained from the solution of (RP) are then used 

as a starting point for the NLP solver. In case the model (P-NLP) is found to be infeasible 

for these integer values, we use as a heuristic to obtain alternate sub-optimal integer 

solutions by solving (RP) for an specified amount of time, and select the best found 

integer solution.  

 

4.3 Outer Approximation Algorithm  

The proposed Outer Approximation algorithm is shown in flowchart form in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Proposed Outer Approximation algorithm 
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The algorithm is along the lines of the techniques proposed by Duran and Grossmann 

(1986), Kesavan et al. (2004), and Wei et al. (2005) and is outlined as follows: 

a. Preprocessing The bounds of the variables in the model are determined by physical 

inspection of the network structure and using the numerical data given for the tanks, 

supply streams and the distillation units. Also, in this step, the original nonconvex 

MINLP may be locally optimized to obtain an initial overall upper bound (OUB) for the 

objective function.  

b. Bound Contraction (Optional) The bounds of variables appearing in the nonconvex 

terms maybe contracted by solving a set of LPs using a procedure given in Zamora and 

Grossmann (1999), or the range reduction techniques in Tawarmalani and Sahinidis 

(2002). 

c. Lower Bound Generation Generate a valid lower bound for the solution of the 

nonconvex MINLP following the technique outlined in section 4.1. 

d. Upper Bound Generation Generate an upper bound using the method given in section 

4.2 and update the OUB if the current upper bound is found to be better than the existing 

OUB. 

e. Integer Cuts Using the integer solution obtained from solving (RP), add an integer cut 

to model (RP) to exclude this particular combination of binary variables. It is important 

to note that if the model (P-NLP) is not globally optimized in step d, adding these integer 

cuts to the relaxation in the next iteration could potentially cut off the global optimum. 

f. Termination Iterate between solving models (RP) and (P-NLP) till the lower bound 

exceeds the upper bound or the relaxation gap between the lower and upper bounds is 

less than a specified tolerance. Convergence to the global optimum is not guaranteed if a 

local NLP solver is used in step d above. 

  

Remarks 

(i) In a more traditional Lagrangean decomposition approach, the network is 

usually decomposed such that all the units present in it are separated. On 

solving the sub-models corresponding to every unit in the network, we obtain 

very weak cuts. To avoid this problem, we decompose the network into only 
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two or three sub-structures. It is found heuristically that decomposing the 

network into unbalanced sub-structures and using cuts derived from the 

smaller sub-structures leads to a better performance of the algorithm. 

(ii) There are multiple ways to split the network and generate sub-structures and 

corresponding cutting planes. For example, the structure shown in Fig. 1 can 

also be split into two sub-structures D3 and D4 as shown below in Fig. 5. Also 

the original network structure can be split into more than two sub-structures. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5 Alternate decomposition scheme for network in Fig. 1 

  

(iii) A proposed heuristic rule on how to split the original structure is as follows: 

(a) Count the number of binary variables (nb) and constraints (nc) in the 

original MINLP model (P) pertaining to the optimization of the whole 

network structure. 

(b) Pick the largest sub-structure resulting from the proposed split scheme 

and count the number of binary variables (nbs) and constraints (ncs) in the 

MINLP model corresponding to this sub-structure . 

(c) Calculate the ratio : (nbs + ncs)/(nb + nc) and check if it is less than 0.9. If  

this condition fails, the original structure has to be split differently into 
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sub-structures such that (nbs + ncs)/(nb + nc) for the largest sub-structure 

is below 0.9. 

 

5. Examples 

  

 The effectiveness of the proposed algorithm in solving scheduling problems is 

demonstrated using three examples for which the data is obtained from Lee et al. (1996). 

The units of some of the parameters are not specified in order to be consistent with the 

previous literature data. All examples were formulated using GAMS (Brooke et al., 1998)  

and solved on Intel 3.2 GHz Linux machine with 1024 MB memory. GAMS/CPLEX 9.0 

was used for solving the MILP problems, while GAMS/CONOPT 3.0 and 

GAMS/BARON 7.2.5 were used for local optimization and global optimization, 

respectively, of the NLP problems. For comparison with the proposed algorithm, we also 

used GAMS/DICOPT and GAMS/BARON 7.2.5 for solving the MINLP models. Locally 

optimal solutions to the MINLP models are obtained using DICOPT (1 iteration for the 

relaxed NLP + 2 major iterations are performed) and compared against the solutions 

obtained from the proposed algorithm. Hence, the computational expense of solving the 

examples using DICOPT is not included in the total computational time taken by the 

algorithm. It is to be noted that when BARON (Sahinidis, 1996) was used to solve the 

NLP model (P-NLP), an optimality tolerance of 1% was used. The algorithm was 

terminated at the end of the first iteration for all the examples, since the relaxation gap 

between the lower and upper bound was sufficiently small within an acceptable tolerance 

for the global optimum. However, the iterations of the proposed Outer-Approximation 

algorithm may be continued to further reduce the gap between the lower and upper 

bounds. The problem sizes for all three examples is given in Table 4 and the various 

computational results are given in Tables 5a – 5d. The number of transfer events was 

arbitrarily chosen to be 3 for all the units in all the examples, as the algorithm was able to 

find good solutions when the horizon was divided into 3 transfer events. 

 

Example 1 The first example is a network consisting of 3 supply streams, 3 storage tanks, 

3 charging tanks and 2 distillation units, whose structure is shown in Fig. 1. The crude oil 
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in this example contains one key component and all the other components are combined 

into a bulk component, thus effectively making the given crude a two component system. 

The crude movement has to be scheduled over a time horizon of 12 hours. The relevant 

numerical data to carry out the optimization for this example is given in Table 1. 

 

Table 1. Data for example 1 

Scheduling Horizon (H) 12 hours 

Number of crude supply 

streams 
3 

Crude Supply 

Stream 

Arrival time 

( arr
pT ) 

Incoming 

volume of crude

Fraction of key 

component 

IN1 1 50 0.01 

IN2 5 50 0.085 

IN3 9 50 0.06 

 

 

Number of Storage Tanks 3 

Storage 

Tank 
Capacity Initial Oil Inventory 

Initial fraction of  

key component (min – max) 

ST1 100 20 0.02 (0.01 – 0.03) 

ST2 100 20 0.05 (0.04 – 0.06) 

ST3 100 20 0.08 (0.07 – 0.09) 

 

 

Number of Charging Tanks 3 

Charging 

Tank 
Capacity Initial Oil Inventory 

Initial fraction of  

key component (min – max) 

CT1 100 30 0.03 (0.025 – 0.035) 

CT2 100 50 0.05 (0.045 – 0.065) 

CT3 100 30 0.08 (0.075 – 0.085) 
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Number of CDUs : 2 

Waiting cost for supply streams (Csea): 5 

Unloading cost for supply streams (Cunload): 10 

Tank inventory costs(Cinvb) : storage tanks, 0.04; charging tanks, 0.08 

Changeover cost for charged oil switch (Cset): 50 

Demand of mixed oils by CDUs : oil mix 1    50  

       oil mix 2    50  

       oil mix 3    50  

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound, 40   

 

 On applying the proposed algorithm to this example we obtain an optimal 

objective value of 282.19. The optimal crude schedule is shown in Fig. 6. The inventory 

profiles of the tanks are not given for this example and for the subsequent numerical 

examples since the model includes only the times when the crude transfers begin and end 

and there is no explicit information in the model pertaining to the start and end times of 

flow from a tank. 

Crude supply to storage tanks

0 1 2 3 4 5 6 7 8 9 10 11 12

time (hrs) -->

ST2

ST1

ST3

IN1

IN3

IN3IN2

IN1

12.

37.55021

29

(Storage tank 3)

(Storage tank 2)

(Storage tank 1)
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Crude transfers between storage and charging tanks

0 1 2 3 4 5 6 7 8 9 10 11 12

time (hrs) -->

CT2

CT1

CT3 12.57.

9.11

10.89

16

ST2

ST3

ST2

ST1

ST2
(Charging tank 3)

(Charging tank 1)

(Charging tank 2)

 

Charging schedule for distillation units

0 1 2 3 4 5 6 7 8 9 10 11 12

time (hrs) -->

CT1

DU2

DU1
CT1CT2

CT2 CT3

49.73 50

30 0.27 20

Distillation 
unit 2

Distillation 
unit 1

 
Fig. 6 Gantt chart of the schedule for example 1 
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Example 2 The second example is very similar in structure to the first example and it also 

has 3 supply streams, 3 storage tanks, 3 charging tanks and 2 distillation units. The 

network structure is shown in Fig. 7. Here we have two key components in the crude oil 

instead of only one as in example 1. The crude in this example is hence a three 

component fluid with these key components along with the remaining bulk component. 

This makes the model size larger for this example. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Network structure for example 2 

 The scheduling has to be done for a time horizon of 10 hours. Table 2 provides 

the necessary data for the optimization and the optimal solution is given in Fig. 8. 

 

 

Table 2. Data for example 2 

Scheduling Horizon (H) 10 hours 

Number of crude supply 

streams 
3 

Crude Supply 

Stream 

Arrival time 

( arr
pT ) 

Incoming volume 

of crude 

Fraction of 

key 

component 1 

Fraction of 

key 

component 2 

IN1 1 100 0.01 0.04 

IN2 4 100 0.03 0.02 

IN3 7 100 0.05 0.01 

Crude 
Supply 
Streams

Storage
Tanks

Charging 
Tanks

Crude 
Distillation 
Units
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Number of Storage Tanks 3 

Storage 

Tank 
Capacity 

Initial Oil 

Inventory 

Initial fraction of key 

component 1  

Initial fraction of key 

component 2  

ST1 100 20 0.01  0.04 

ST2 100 50 0.03 0.02 

ST3 100 70 0.05 0.01 

 

Number of Charging Tanks 3 

Charging 

Tank 
Capacity 

Initial Oil 

Inventory 

Initial fraction of key 

component 1  

(min – max) 

Initial fraction of key 

component 2  

(min – max) 

CT1 100 30 0.0167 (0.01 – 0.02) 0.0333 (0.03 – 0.038) 

CT2 100 50 0.03 (0.025 – 0.035) 0.023 (0.018 – 0.027) 

CT3 100 30 0.0433 (0.04 – 0.048) 0.0133 (0.01 – 0.018) 

 

Number of CDUs : 3 

Waiting cost for supply streams (Csea): 5 

Unloading cost for supply streams (Cunload): 8 

Tank inventory costs (Cinvb): storage tanks, 0.05; charging tanks, 0.08 

Changeover cost for charged oil switch (Cset):  30 

Demand of mixed oils by CDUs : oil mix 1    100  

       oil mix 2    100  

       oil mix 3    100  

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound,  40   
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Crude supply to storage tanks

0 1 2 3 4 5 6 7 8 9 10

time (hrs) -->

ST2

ST1

ST3
IN3

IN2

IN1

100

100

100

(Storage tank 3)

(Storage tank 2)

(Storage tank 1)

 
  

 

Crude transfers between storage and charging tanks

0 1 2 3 4 5 6 7 8 9 10

time (hrs) -->

CT2 
 

CT1 
 

CT3 

 

10.76

35.1

4.09 65.91

20

ST2

ST3

ST1

ST1

ST2

35.1

34.8
ST3

ST2
(Charging tank 3) 

 

(Charging tank 2)

 

(Charging tank 1)
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Charging schedule for distillation units

Distillation
unit 1

Distillation
unit 2

0 1 2 3 4 5 6 7 8 9 10

time (hrs) -->

CT1

DU2

DU1
CT1CT2

CT2 CT3

50 100

17.61 50 82.39

 
Fig. 8 Optimal solution for example 2 

 

Example 3 The final example is an industrial size problem with 3 supply streams, 6 

storage tanks, 4 charging tanks and 3 distillation units. The crude oil has to be scheduled 

over a time horizon of 15 hours. The crude oil in this system involves a single key 

component as in example 1 and other components combined into a bulk component. The 

network structure is shown in Fig. 9. 
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Fig. 9 Network structure for example 3 

 The relevant numerical data for this example is given in Table 3 while the optimal 

schedule is shown in Fig. 10. 

 

Table 3. Data for example 3 

Scheduling Horizon (H) 15 hours 

Number of crude supply 

streams 
3 

Crude Supply 

Stream 

Arrival Time 

( arr
pT ) 

Incoming 

Volume of 

crude 

Fraction of key 

component 

IN1 1 60 0.03 

IN2 6 60 0.05 

IN3 11 60 0.065 

 

Number of Storage Tanks 6 

Storage 

Tank 
Capacity Initial Inventory

Initial fraction of  

key component (min – max) 

ST1 10 – 90 60 0.031 (0.025 – 0.038) 

ST2 10 – 110 10 0.03 (0.02 – 0.04) 

Crude 
Supply 
Streams

Storage
Tanks

Charging 
Tanks

Crude 
Distillation 
Units
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ST3 10 – 110 50 0.05 (0.04 – 0.06) 

ST4 10 – 110 40 0.065 (0.06 – 0.07) 

ST5 10 – 90 30 0.075 (0.07 – 0.08) 

ST6 10 – 90 60 0.075 (0.07 – 0.08) 

 

Number of Charging Tanks 4 

Charging 

Tank 
Capacity Initial Inventory

Initial Fraction of  

key component (min – max) 

CT1 80 5 0.0317 (0.03 – 0.035) 

CT2 80 30 0.0483 (0.043 – 0.05) 

CT3 80 30 0.0633 (0.06 – 0.065) 

CT4 80 30 0.075 (0.071 – 0.08) 

 

Number of CDUs : 3 

Waiting cost for supply streams (Csea): 5 

Unloading cost for supply streams (Cunload): 7 

Tank inventory costs (Cinvb): storage tanks, 0.05; charging tanks, 0.06 

Changeover cost for charged oil switch (Cset):  30 

Demand of mixed oils by CDUs : oil mix 1    60  

       oil mix 2    60  

       oil mix 3    60  

       oil mix 4    60  

Bounds on flowrates in the streams: Lower Bound, 1; Upper Bound, 40   
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Crude supply to storage tanks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (hrs) -->

ST1

ST2

ST3

ST4

ST5

ST6

IN1

IN3

IN2

IN1

60

60

555

(Storage tank 6)

(Storage tank 5)

(Storage tank 4)

(Storage tank 3)

(Storage tank 2)

(Storage tank 1)

 

Crude transfers between storage and charging tanks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (hrs) -->

CT3

CT2

CT4

CT1

ST6

ST5

ST4

ST3

ST2

ST1
50

10

20

30

30

5

(Charging tank 4)

(Charging tank 3)

(Charging tank 2)
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Charging schedule for distillation units

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (hrs) -->

DU2

DU1

DU3
CT4CT3CT4

CT2CT3

CT1CT2

303030

3030

6030

Distillation 
unit 3

Distillation 
unit 2

Distillation 
unit 1

 
Fig. 10 Optimal schedule for example 3 

  On solving the problem to optimality using the proposed algorithm, we get a 

solution of 383.69, which is globally optimal within a tolerance of 1 %. 

 

Computational results 

 The model sizes for the different examples are shown in Table 4. The new 

formulation is quite efficient for these crude oil scheduling problems and we obtain good 

solutions to the scheduling problem at the very first iteration of the proposed algorithm as 

seen in Table 5a. The algorithm finds the optima and proves their global optimality in 

tractable computational times. The addition of cutting planes to the MILP relaxation (R) 

as described in the algorithm decreases the number of nodes in the branch and bound tree 

for solving the MILP relaxation, and hence the solution time for solving the MILP. This 

is evident from Table 5b. The cuts added to the relaxation (R) tighten the lower bound at 

the root node of the branch and bound tree for the MILP, which contributes to reducing 

the number of nodes in the tree to about one third for solving the MILP.   

 For all the examples, the network structure is split into D1 and D2 (Fig. 2) and 

also into D3 and D4 (Fig. 3). The information about the sub-structures (D1, D2, D3 and 
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D4) for example 2 and example 3 can be obtained from the authors. Initially a set of 

Lagrange multipliers was chosen to generate cuts (see Table 5c for multiplier 

information), and they are updated once more to generate more cuts, which are added to a 

pool of cuts. The column under the heading zL in this table gives the value of the lower 

bound on the global optimum of (P) obtained by conventional Lagrangean decomposition 

using the initially chosen set of Lagrange multipliers. We can see from Table 5b that they 

are weaker than the lower bound obtained by solving the MILP relaxation (R) to 

optimality. From this pool of cuts that is generated, the weaker cuts derived from the 

smaller sub-structures, are chosen to be added to model (R) for all the numerical 

examples in the paper and model (R) is then solved. The solution of (R) is used to fix the 

binary variables in model (P), and we solve the resulting NLP model to global optimality 

using BARON to get a solution. Here, we should note that BARON cannot solve the 

original MINLP problems (P) to global optimality even after 10 hours of CPU time.   

 At the end, we also tested the effectiveness of adding the proposed cuts to the 

MINLP model (P) corresponding to all examples. It is found that BARON performs 

better when trying to solve the MINLP model (P) with these cuts added to it, than it does 

in absence of these cuts. It can be seen from Table 5d that the lower and upper bounds 

found by BARON at the end of 10 hours of computation, are closer to each other in the 

presence of these cuts, although the relaxation gap is still rather substantial.  

 

Table 4. Model sizes for examples 1 – 3 

Original MINLP model (P) 

Example Number of 

Binary 

Variables 

Number of 

Continuous 

Variables 

Number of 

Constraints 

1 48 300 946 

2 42 330 994 

3 57 381 1167 
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Table 5a. Numerical results for test examples 1 – 3  

Example 

Lower bound 

[obtained by solving 

relaxation (RP) ] 

(zRP) 

Upper bound  

[on solving         

(P-NLP) using 

BARON ] 

  (zP-NLP) 

Relaxation 

gap (%) 

Total time 

taken for one 

iteration† of 

algorithm 

(CPUsecs) 

Local optimum 

(using 

DICOPT) 

1 281.14 282.19 0.37 827.7 291.93 

2 351.32 359.48 2.27 6913.9 361.63 

3 383.69 383.69 0 8928.6 383.69 

 
 

 

 

Table 5b. Comparison of relaxations with and without cuts 

Solving MILP model (R) 
Solving MILP model (RP) 

(including proposed cuts) 

Example 
Solution 

(zR) 

LP 

relaxation 

at root 

node 

No. of 

nodes 

Time 

taken to 

solve (R) 

(CPUsecs) 

Solution 

(zRP) 

LP 

relaxation 

at root 

node 

No. of 

nodes 

Time 

taken to 

solve (RP) 

(CPUsecs) 

1 281.14 -55.24 940800 1953.3 281.14 68.45 334300 758.8 

2 351.32 113.35 931700 14481.7 351.32 133.80 310600 5873.2 

3 383.69 147.24 3029600 15874.8 383.69 189.19 1258100 8025.9 

 

 

 

                                            
† Total time includes time for generating a pool of cuts, updating Lagrange multipliers, solving the 
relaxation (RP) using CPLEX and solving (P-NLP) using BARON 
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Table 5c. Lagrange multiplier information 

Initial values of Lagrange multipliers 
Example  

Decomposition 

scheme Vtot
mntλ  VC

jmntλ  1T
mntλ  2T

mntλ  w
mntλ  

zU *
2

*
1 zzz L +=  α 

D1 and D2 0 0 0 0 0 282.225 201.335 0.4 
1 

D3 and D4 0.01 0.01 0.01 0.01 0.01 282.225 202.324 0.4 

D1 and D2 0 0 0 0 0 357.892 276.582 0.4 
2 

D3 and D4 0.01 0.01 0.01 0.01 0.01 358.892 279.99 0.4 

D1 and D2 0 0 0 0 0 393.157 344.267 0.4 
3 

D3 and D4 0 0 0 0 0 393.157 348.214 0.5 

 

Table 5d. Effect of cuts on the performance of BARON in optimizing (P)‡ 

Optimizing (P) using BARON  

 (without cuts) 

Optimizing (P) using BARON  

(with cuts) Example 

Upper Bound (UB) Lower Bound (LB) Upper Bound (UB) Lower Bound (LB) 

1 282.19 32.62 282.19 75.31 

2 361.63 185.75 361.63 194.98 

3 383.69 214.07 383.69 233.30 

 

6. Conclusions 

 

 In this work, we have developed improved techniques for global optimization of 

scheduling the flow of crude oil at the front-end of a refinery. A continuous time model 

based on transfer events is used to represent the scheduling problem and this model is a 

nonconvex MINLP model which has multiple local optima. In order to obtain provably 

globally optimal solutions to the problem, we propose a specialized Outer-Approximation 

algorithm. In this, we generate lower and upper bounds on the global optimum which are 

                                            
‡ BARON was run for a total time of 10 CPUhours 
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converged to a specified tolerance. A rigorous lower bound on the global optimum is 

obtained by solving a MILP relaxation of the original problem. To reduce the 

computational effort required in solving this MILP relaxation, cutting planes derived 

from a spatial decomposition of the network are added to the MILP model. The solution 

of the MILP is used in a heuristic to obtain a feasible solution to the MINLP, which 

serves as an upper bound. The application of the proposed algorithm on different 

examples helps in significantly reducing the computational effort involved in solving 

such problems.  

 

Acknowledgments 

 The authors gratefully acknowledge financial support from the National Science 

Foundation under Grant CTS-0521769 and from ExxonMobil Research and Engineering. 

 

Nomenclature 

 

Indices 

a  tanks input source 

b crude tank 

c  tank output destination 

d distillation unit 

g charging tank 

j component 

k node in the network 

m source unit of split pipline 

n destination unit of split pipeline 

p supply stream 

s storage tank 

t transfer event 

 

Sets 

A  Set of tanks input sources 
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Ab Set of inputs to a tank b  

As Set of inputs to storage tank s  

B Set of tanks 

BD1 Set of tanks belonging to sub-structure D1 

BD2 Set of tanks belonging to sub-structure D2 

C  Set of tank output destinations 

Cb Set of outputs from a tank b  

Cs Set of outputs from storage tank s  

Cg Set of outputs from charging tank g  

D Set of distillation units 

DD1 Set of distillation units present in structure D1 

DD2 Set of distillation units present in structure D2 

Dg Set of distillation units that can be charged by charging tank g 

G(B) Set of charging tanks 

Gd Set of charging tanks that charge distillation unit d 

J Set of components 

K Set of nodes in the network 

M Set of source units of the split pipelines 

Nm Set of destination units of split pipelines with source m 

P Set of supply streams 

PD1 Set of supply streams present in sub-structure D1 

PD2 Set of supply streams present in sub-structure D2 

S(B) Set of storage tanks 

Sp Set of storage tanks connected to supply stream p 

T Set of transfer events 

 

Parameters 

Cinvb  Inventory maintenance cost for tank b 

Csea   Waiting cost for supply streams 

Cset  Changeover cost for charged oil switch 

Cunload Unloading cost for supply streams 
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U
abF   Upper bound on flowrate from a to b 

L
abF   Lower bound on flowrate from a to b 

L
jbf   Lower bound on fraction of component j inside tank b 

U
jbf   Upper bound on fraction of component j inside tank b 

supply
jpf   Fraction of component j in supply stream p 

H  Time horizon for scheduling 
totinit

bI −   Initial total inventory of tank b 

init
jbI   Initial inventory of component j in tank b 

L
bI   Lower bound on total inventory in a tank b 

U
bI   Upper bound on total inventory in a tank b 

ND  Number of distillation units in the network 

NDD1  Number of distillation units in sub-structure D1 

NDD2  Number of distillation units in sub-structure D2 

NE   Number of transfer events 
arrival
pT   Arrival time of crude in supply stream p 

L
abV   Lower bound on flow from a to b 
L

bcV   Lower bound on flow from b to c 
U

abV   Upper bound on flow from a to b 

U
bcV   Upper bound on flow from b to c 

supply
pV   Total volume of crude oil arriving in supply stream p 

Vtot
mntλ   Lagrange multiplier 
VC
jmntλ   Lagrange multiplier 

1T
mntλ   Lagrange multiplier 

2T
mntλ   Lagrange multiplier 
w
mntλ   Lagrange multiplier 
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Continuous Variables 
tot
btI  Total inventory of tank b at the end of transfer event t 

jbtI  Inventory of component j in tank b at the end of transfer event t 

1
abtT  Starting time of a transfer from a to b in transfer event t 

1
bctT  Starting time of a transfer from b to c in transfer event t 

2
abtT  Ending time of a transfer from a to b in transfer event t 

2
bctT  Ending time of a transfer from b to c in transfer event t 

start
pT  Initial starting time of crude transfer from supply stream p  

end
pT  Overall ending time of crude transfer from supply stream p  

tot
abtV  Total flow from a to b in transfer event t 

tot
bctV  Total flow from b to c in transfer event t 

tot
jabtV  Flow of component j from a from b in transfer event t 

tot
jbctV  Flow of component j from b from c in transfer event t 

 

Binary variables 

abtw  Equal to 1 if there is a flow from a to b in transfer event t else 0 

bctw  Equal to 1 if there is a flow from b to c in transfer event t else 0 
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Appendix : Updating Lagrange multipliers 

 Fisher (1981) proposed a sub-gradient method to update Lagrange multipliers, to 

be used in solving a Lagrangean relaxation of the original problem, starting from an 

initial arbitrary value of the multipliers. This technique is tailored to suit our problem in 

order to obtain updated values of Lagrange multipliers starting with random initial 

values. The generated Lagrange multipliers are then used to derive cuts to be added to the 

relaxation. For solving the models (LD1-R) and (LD2-R) resulting from a decomposition 

of the network structure into sub-structures D1 and D2, we succesively generate the 

multipliers as follows: 
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where tsk is a scalar step size and ( ) ( ) ( ) ( ) ( )
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*2*2,2*2,1*2*2, ,,,,  are the optimal values of the duplicate 

variables, at the kth iteration, obtained from the solution of the sub-problems (LD1-R) 

and (LD2-R), respectively.  The following formula is used to calculate the values of tsk at 

every iteration k: 
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where kα  is a scalar chosen between 0 and 2, )( kLz λ  is the sum of the obejctives of the 

sub-models (LD1-R) and (LD2-R), when the multipliers are set to kλ , and zU is the value 

of the best found feasible solution to (R). The parameter values used for updating the 

multipliers in the numerical examples in the paper is given in Table 5c. The multiplier 

update was carried out only once in this work. The updating scheme remains the same if 

the network is decomposed into sub-structures D3 and D4 and the sub-models pertaining 

to those are to be solved. 
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