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Abstract
The celebrated expectation-maximization (EM) algorithm is one of the most widely used
optimization methods in statistics. In recent years it has been realized that EM algorithm is a
special case of the more general minorization-maximization (MM) principle. Both algorithms
creates a surrogate function in the first (E or M) step that is maximized in the second M step. This
two step process always drives the objective function uphill and is iterated until the parameters
converge. The two algorithms differ in the way the surrogate function is constructed. The
expectation step of the EM algorithm relies on calculating conditional expectations, while the
minorization step of the MM algorithm builds on crafty use of inequalities. For many problems,
EM and MM derivations yield the same algorithm. This expository note walks through the
construction of both algorithms for estimating the parameters of the Dirichlet-Multinomial
distribution. This particular case is of interest because EM and MM derivations lead to two
different algorithms with completely distinct operating characteristics. The EM algorithm
converges fast but involves solving a nontrivial maximization problem in the M step. In contrast
the MM updates are extremely simple but converge slowly. An EM-MM hybrid algorithm is
derived which shows faster convergence than the MM algorithm in certain parameter regimes. The
local convergence rates of the three algorithms are studied theoretically from the unifying MM
point of view and also compared on numerical examples.
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1. Introduction
Numerical optimization methods have been intensively used by statisticians due to the
popularity of the maximum likelihood estimation. A powerful weapon among them is the
celebrated expectation-maximization (EM) algorithm (Dempster et al., 1977). The E step in
the EM algorithm creates a Q function which is then minimized in the M step. In many
problems the surrogate Q function is much simpler than the log-likelihood and thus the M
step can be solved analytically. These two steps iterate until the parameters converge. In
recent years, it has been realized that the EM algorithm is a special case of the more general
minorization-maximization (MM) principle (de Leeuw, 1994; Heiser, 1995; Lange et al.,
2000; Wu and Lange, 2010). The first M step of an MM algorithm creates a minorizing
function that is optimized in the second M step. The Q function in the EM algorithm is a
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specific example of minorizing functions. Same as the EM algorithm, this two-step process
always drives the objective function uphill. The key difference between the two algorithms
is the construction of surrogate functions. The minorization step in the MM algorithm hinges
upon recognizing and manipulating inequalities, while EM algorithm relies on calculating
conditional expectations. Advantages enjoyed by both algorithms are their numerical
stability, natural adaption to parameter constraints, and scalability to high dimensions. An
open question has been raised whether any MM algorithm can be recast as an EM algorithm
(Meng, 2000). For instance, the MM algorithms for fitting Bradley-Terry models (Hunter,
2004) have recently been shown to be equivalent to EM algorithms with appropriately
chosen latent variables (Caron and Doucet, 2010). However, in these worked out examples,
the construction of missing data framework turns out non-intuitive and irrelevant to the
statistical model that generates the data. Taking the MM point of view frees the derivation
from the dependence on a missing data framework. For instance, the recent article (Wu and
Lange, 2010) demonstrates the potential of the MM algorithm in random graph models,
discriminant analysis and image restoration problems where there is no apparent missing
data structure.

This expository paper walks through the construction of both EM and MM algorithms for
the maximum likelihood estimation of the Dirichlet-Multinomial distribution. For this
particular problem they produce two completely different algorithms. The Q function in the
EM algorithm is fraught with special functions (digamma and trigamma) and the M step
resists analytical solutions and has to resort to iterative, multivariate Newton’s method. In
contrast, the surrogate function of the MM algorithm is much simpler and yields trivial
updates in the M step. Re-inspecting the M step of EM algorithm from the MM perspective
leads to an EM-MM hybrid algorithm which partially resolves the difficulty in the M step of
the EM algorithm. Similar hybrid algorithm is utilized in fitting mixture of Plackett-Luce
models for ranking data (Gromley and Murphy, 2008). The local convergence rates of the
MM and hybrid algorithms are studied theoretically and demonstrated on numerical
experiments. There is no clear winner in the sense that one converges faster than the others
in all parameter regimes.

As a road map to the remainder of the paper, Section 2 lays out the problem being studied
and introduces a classical data set for numerical illustrations. EM and MM algorithms are
derived in Section 3 and 4 respectively. The difficulty in maximizing the Q function in the
EM algorithm can be partially remedied if we take the MM point of view. This connection is
explored in Section 5 and leads to an EM-MM hybrid algorithm. Local convergence
properties of the three algorithms are studied in Section 6. The operating characteristics (run
time, convergence rates, and final objective values) of the three algorithms are compared
numerically under various parameter settings in Section 7. Finally we conclude with some
other options for solving this problem.

2. Problem Setup and a Running Example
Multivariate count data frequently arise in genetics (Lange, 2002; Tvedebrink, 2010; Ionita-
Laza and Laird, 2010), toxicology (Hines and Lawless, 1993), protein homology detection
(Sjölander et al., 1996), word burstiness modeling (Madsen et al., 2005), and language
modeling (MacKay and Bauman Peto, 1994). When multivariate count data exhibit over-
dispersion, the Dirichlet-Multinomial distribution is preferred over the familiar multinomial
distribution. In the Dirichlet-Multinomial sampling, the multinomial parameter p = (p1,…,
pd) is modeled as a Dirichlet distribution with parameter α = (α1,…, αd), where αj > 0.
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Accordingly, given a multivariate count vector x = (x1,…, xd) with batch size , the
probability mass function under a Dirichlet-Multinomial model is

(1)

(2)

where  and  denotes the rising factorial. The last equality is due
to the fact Γ(a + k)/Γ(a) = (a)k. An alternative parametrization uses

(3)

in terms of the proportion vector π = (π1,…, πd) and the over-dispersion parameter θ. For
the sake of brevity, we stick to parametrization (2) in this article. The derivation and most
conclusions equally apply to both parameterizations. Given independent data points x1,…,
xn, the log-likelihood is

(4)

and the maximum likelihood estimation seeks the maximizer of (4). Most current
applications utilize the Newton’s method for finding the MLE (Lange, 2002; Tvedebrink,
2010; Ionita-Laza and Laird, 2010), which may be numerically instable because the
objective function (4) is non-concave. The alternative Fisher’s scoring algorithm replaces
the observed information matrix in Newton’s method by expected information matrix and
yields an ascent algorithm. However, the calculation of expected information matrix for
Dirichlet-Multinomial model is expensive due to numerous evaluations of beta-binomial tail
probabilities (Paul et al., 2005). Recently Zhou and Lange (2010) devise the MM algorithm
for a whole class of multivariate discrete distributions which include the Dirichlet-
Multinomial as a special case. Compared to the Newton’s method, the MM algorithm is
numerically stable, easy to implement and scalable to high-dimensional data. In this article,
we take up the alternative EM approach for maximizing the log-likelihood (4) and contrast it
to the MM algorithm in respect to algorithmic design, per iteration computation cost, and
local convergence rate.

As a numerical example we consider the classical data on the mice that are exposed to
various mutagens (Haseman and Soares, 1976). Environmental scientists are interested in
investigating the mutagenicity of a compound or irradiation in vivo in mice. Male mice are
treated with the suspect mutagen and then paired to one or more female mice. Seventeen
days after the initial exposure to a male, females are killed and their uteri are examined for
the presence of living and dead embryos (implants). In the first data set of Haseman and
Soares (1976), denoted by HS76-1 in following, there are n = 524 females with the total
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number of implants per female mi varying from 1 to 20. Counts of dead and survived
implants are recorded for each female. Figure 2 displays the histogram of the 524
proportions of dead implants. The variability in the proportions is prominent and the
traditional binomial distribution is inappropriate for such over-dispersion count data. Fitting
the beta-binomial distribution (d = 2) to the HS76-1 data set gives the MLE α̂ = (1.23,
12.46) with log-likelihood −777.79. The density of the beta distribution with parameter α̂ is
imposed on the histogram in Figure 2 and demonstrates a good fit. The classical binomial fit
gives a log-likelihood −842.61. The likelihood ratio test of the over-dispersion parameter
H0 : θ = (α1 + α2)−1 = 0 vs H1 : θ > 0 yields a p-value essentially 0, corroborating the
appropriateness of beta-binomial model.

The performances of the EM, MM and a hybrid algorithm on this data set will be compared
in Section 6. Although we use a d = 2 data set as the running example for ease of illustration
and visualization, all our derivations and convergence rate results are for general d and
numerical experiments are carried out for d as high as 50 in Section 7. We begin with the
EM algorithm for maximizing (4).

3. EM Algorithm
Derivation of EM algorithm hinges upon a missing data structure. Let f (θ) be the log-
likelihood of the observed data with parameter vector θ. In the E step, a surrogate function
Q(θ∣θ(t)) is calculated as the conditional expectation of the complete data log-likelihood
given current parameter iterate θ(t). The well-known calculations (Baum et al., 1970;
Dempster et al., 1977) demonstrate that the Q function satisfies the fundamental inequality

(5)

Maximizing the surrogate Q(θ∣θ(t)) with respect to θ generates the next iterate θ(t+1) which
obviously drives the log-likelihood of the observed data uphill.

The admixture representation (1) of the Dirichlet-Multinomial distribution naturally implies
an EM algorithm. We consider pi, i = 1,…, n, as the missing data and denote the joint

density of complete data by . Then the Q function is

where the expectation is with respect to the conditional distribution

i.e., independent Dirichlet(xi + α(t)). Therefore

with
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Here Ψ(z) = Γ′(z)/Γ(z) is the digamma function and the exponential family differential
identity is used to calculate the expectation E[ln Pj] under a Dirichlet distribution. Therefore

(6)

Throughout the paper we use c(t) to collect constants that are irrelevant to the optimization
and it may vary in different equations. Maximizing Q(α∣α(t)) is not trivial since αj are
intertwined in the ln Γ (|α|) term. The Newton’s method has to be utilized for the M step.
The first two derivatives of Q(α∣α(t)) are

where ψ (z) = Ψ′(z) is the trigamma function. Newton’s method iterates according to

where the subscript m indicates its iteration number. Several issues arise here. First, in each
iteration the Hessian matrix d2 Q(α∣α(t)) has to be computed and a linear system needs to be
solved. Second, since the Q function is non-concave (note ln Γ is convex), the Newton’s
method may not generate an ascent algorithm. Even when its Hessian is negative definite
locally, a line search strategy may be necessary to prevent over-shooting. Lastly the
Newton’s updates may violate the parameter constraints αj > 0. At this point it is realized
that the EM principle has not reduced the difficulty of the original optimization problem and
the Newton’s or Fisher’s scoring method could be used directly on the observed data log-
likelihood (4). However there is a remedy. Before that we first explore the MM solution.
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4. MM Algorithm
Like EM, the MM algorithm is a general principle for creating optimization algorithms. The
survey papers (Lange et al., 2000; Hunter and Lange, 2004) and textbook treatment (Lange,
2010) serve as an excellent introduction. The derivation in this section also appears in (Zhou
and Lange, 2010) as a special case. Let f(θ) be the objective function, not necessarily a
loglikelihood, whose maximum we seek. An MM algorithm involves minorizing f(θ) at
current iterate θ(t) by a surrogate function g(θ ∣ θ(t)) that satisfies two properties

In other words, the surface θ ↦ g(θ ∣ θ(t)) lies below the surface θ ↦ f(θ) and is tangent to
it at the current iteration θ = θ(t). The construction of the minorizing function g(θ ∣ θ(t))
constitutes the first M of the MM algorithm. The second M of the MM algorithm maximizes
the surrogate g(θ ∣ θ(t)) rather than f(θ) directly. If θ (t+1) denotes the maximum of g(θ ∣ θ(t))
with respect to its left argument, then θ(t+1) increases f(θ). It follows directly from the
inequalities

This ascent property is the source of the MM algorithm’s numerical stability and remains
valid if we merely increase g(θ ∣ θ(t)) rather than maximize it.

The fundamental inequality (5) in the EM algorithm shows that the Q function produced in
the E step constitutes a minorizing function of the log-likelihood up to an additive constant.
This fact readily qualifies EM algorithm as a special case of the MM algorithm. The MM
perspective is more general as it frees algorithm derivation from the missing data straitjacket
and invites wider applications. Wu and Lange (2010) briefly summarize the history of the
MM algorithm and showcase its flexibility in some problems in which the EM derivation is
hard to carry out.

To construct an MM algorithm for maximizing the Dirichlet-Multinomial log-likelihood
function (4), the strategy is to minorize term by term. We first simplify the two sums

and

where
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are counts. Applying the Jensen’s inequality to the ln(αj + k) terms

(7)

and the supporting hyperplane inequality to the −ln(|α| + k) terms

(8)

yields the surrogate function

Figure 2 depicts the two minorization inequalities (7) and (8) with α(t) = 2 and k = 1. In both
minorizations, the equality holds at α = α(t). Finding the α that maximizes g(α ∣ α(t)) is
trivial and leads to the multiplicative MM updates

(9)

which are substantially simpler than their EM counterparts. It is noteworthy that the

parameter constraints αj > 0 are always satisfied whenever . Besides offering a
completely different algorithm from EM, MM principle also suggests a remedy for the
troublesome M step in the EM algorithm.

5. An EM-MM Hybrid Algorithm
Due to the fact that the ln Γ(x) function is convex, we can resort to the supporting
hyperplane inequality to separate the parameters in the ln Γ(|α|) term in the Q function (6)

(10)
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In this new minorizing function (10), the parameters αj are separated and only need to be
optimized independently. Equating the partial derivatives with respect to αj to 0 gives the
function to solve for αj

In view of the recurrence relation Ψ(y + 1) = Ψ (y) + 1/y, this is equivalent to

It is interesting to note that the two sums on the right hand side were used in the MM
updates (9) in a completely different way. Here we can find the root of Ψ(αj) = a by
Newton’s iterates

Since ln Γ is convex, the trigamma function ψ is positive and the Newton’s method is
guaranteed to converge to the right root. The Newton’s method applied to individual αj is
substantially simpler than the multivariate Newton’s method in the original EM algorithm,
which involves computing and inverting Hessian matrix in each iteration. As we will see in
the next section, the price it pays is more iterations.

6. Convergence Rates
The EM, MM, and hybrid algorithms constructed so far enjoy the same ascent property, yet
with distinct per iteration computational cost. A formal comparison entails a close study of
their local convergence rates, which roughly measure how fast they converge near the
optimal point. Figure 3 displays the iterates of the three algorithms for the HS76-1 data set
with two different starting points. When starting from a blind guess α(0) = (1, 1), the EM
algorithm converges quickly within 20 iterations, while the other two lag behind. The hybrid
algorithm outruns MM initially but is caught up when close to the optimal point. When
starting from the method of moment estimate α(0) = (0.4711, 4.8072), EM behaves similarly
while the MM algorithm narrowly edges out the hybrid algorithm.

Because all three algorithms can be deemed as special cases of the MM principle, their
convergence properties can be studied under a unified framework. Consider an MM map
M(θ) for maximizing the objective function f(θ) via the surrogate function g(θ∣θ(t)). When
close to the optimal point θ∞,

where dM(θ∞) is the differential of the mapping M at the optimal point θ∞ of f(θ). Figure 4
displays the distance of the algorithmic iterates to the MLE for the HS76-1 example on the
logarithmic scale and shows the linear convergence behavior when close to θ∞. Therefore
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the local convergence rate of the sequence θ(t+1) = M(θ(t)) is defined as the spectral radius of
dM(θ∞). The familiar calculations (McLachlan and Krishnan, 2008; Lange, 2010)
demonstrate that

(11)

In other words, the local convergence rate is determined by how well the surrogate function
g approximates the log-likelihood surface f near the optimal point θ∞. In EM literature,
dM(θ∞) is called the rate matrix (Meng and Rubin, 1991). A smaller rate means that the
surrogate function g(θ∣θ∞) hugs f(θ) tighter around θ∞ and thus implies faster convergence.

In our case, the Q function of the EM algorithm by construction dominates the minorizing
function (10) of the hybrid algorithm. This implies the faster convergence of the EM
algorithm than the hybrid algorithm as observed in Figure 3. However, there is no
dominance relations between them and the MM surrogate function. Figure 5 displays the
log-likelihood surface of the HS76-1 data set and the minorizing functions of the three
algorithms at the parameter point (α1, α2) = (0.5, 5). All three minorizing functions lie
below the log-likelihood surface while touching it at (0.5,5). It is clear that the Q function of
the EM algorithm approximates the log-likelihood function better than the minorizing
function of the hybrid algorithm over the whole region. The MM minorizing function
intersects with the other two besides the point (0.5, 5).

Given a data set, the local convergence rates of the three algorithms can be calculated. Let
α∞ be the MLE and define constants

and three polynomials

(12)

All roots of these polynomials are real and especially the smallest roots give the information
about the local convergence rates of the algorithms. Formally we have the following result.
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Proposition 6.1
The MM, hybrid, and EM algorithms have linear rates of convergence 1 − λMM, 1 − λhybrid,
and 1 − λEM, respectively, where λ are the smallest roots of the corresponding polynomials.

The proof of Proposition 6.1 utilizes (11) straightforwardly and is relegated to the Appendix.
For the HS76-1 data, the local convergence rates of EM, MM, and hybrid algorithms are
0.9893, 0.9915, and 0.9946 respectively, corroborating what we observe in Figure 4. It also
illustrates the point that local convergence rate only captures the convergence behavior close
to the optimal point. In the left panel of Figure 3, all algorithms are started far away from the
optimal point and the hybrid algorithm converges faster than the MM algorithm initially
even though it has a slower local convergence rate.

The convergence rates are data dependent and vary with data sets even when they are
generated from the same distribution. Approximate convergence rates at any MLE α∞ can
be obtained by replacing sjk appearing in (12) by their expected values

, where Xi = (Xi1, …, Xid) is a Dirichlet-Multinomial random vector
with parameter α∞ and batch size mi. For the beta-binomial distribution (d = 2), the relevant
polynomials (12) are quadratic and the smallest roots can be readily computed. Figure 6
displays the approximate convergence rates of the hybrid and MM algorithms over the
parameter region [0.3, 5] × [0.3, 5] for data sets with fixed batch sizes m = 5, 10, or 20. The
number of observations n cancels in the formula (12) and does not play a role in this setting.
The convergence rate of the EM algorithm is not displayed here since it has little practical
use. Both algorithms claim their own territory of faster convergence. Neither of them
dominates the other in all three settings of m. At m = 5, the MM algorithm enjoys faster
convergence over the whole region while the reverse is true at m = 20. The m = 10 case
represents a compromise between the two. Both convergence rates improve with increasing
batch size m. The convergence is fast for both when α1 and α2 are small and slow when
their magnitude is large. At fixed |α| = α1 + α2, the convergence is slow when αj differ
dramatically. For general d > 2, it is hard to obtain explicit expressions for these rates but the
approximate rates can be easily computed and similar observations are made.

7. Numerical Experiments
We stress that the sheer number of iterations until convergence is not the sole determinant of
algorithm speed. Computational complexity per iteration also comes into play. The iterations
within iteration feature of the EM and hybrid algorithms may compromise their fast
convergence in ceratin parameter regimes. To demonstrate the tradeoff between number of
iterations and speed of each iteration, we compare the performance of MM, EM, and hybrid
algorithms under various parameter values. Figure 7 displays the boxplots of the timing,
number of iterations, and final objective values from the three algorithms on 100
multivariate count data sets simulated with parameter values α = (0.1, 1) (row 1), α = (0.2,
2) (row 2), α1 = ⋯ = α50 = 0.5 (row 3) and α1 = ⋯ = α50 = 5 (row 4) respectively. The
sample size is fixed at n = 100 and the batch size at m = 20. The trio of algorithms are run
on the same data set in each simulation replicate. Convergence is declared when the relative
change in objective values is less than 10−6. Apparently there is no winner that can dominate
others across all scenarios. The EM algorithm always enjoys the fastest convergence.
However its speed is compromised by the extra computation cost per iteration. Convergence
rates of MM and hybrid algorithms vary over parameter regime as we already see in Section
6. For high dimensional problems (d = 50), the simplicity of MM updates overcomes its
slower convergence, making it the fastest one under the two tested parameter settings (rows
3 and 4).
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8. Conclusions
Multiple solutions to the same problem have proven illuminating in many areas of
mathematics. In this article we devise and compare the EM and MM algorithms for
estimating the parameters of Dirichlet-Multinomial distribution. This exercise vividly
contrasts the different approaches utilized by EM and MM algorithms for constructing the
surrogate functions. In this example, taking the MM perspective remedies the difficulty
encountered in the EM algorithm and yields a new algorithm that enjoys faster convergence
over certain parameter regimes. This interplay between the two algorithms illustrates the
delicacy of algorithmic development in computational statistics.

We have omitted the discussion of two other popular optimization methods, the Newton
method and the Fisher’s scoring method. The paramount advantage of these two methods is
their fast convergence. However they require evaluating and inverting an information matrix
at each iteration. For Dirichlet-Multinomial distribution, the information matrices are easy to
invert and therefore not a big concern. Even so, the Newton’s method may still suffer from
instability and violation of parameter constraints. Scoring method remedies the instability by
using the expected information matrix, which is negative definite and guarantees an ascent
direction. Parameter constraint violation is still pertinent. More severely, calculation of the
expected information matrix involves evaluating numerous beta-binomial tail probabilities
(Paul et al., 2005). On large scale problems, this is simply infeasible. However there is still
room to combine Newton’s method and EM or MM algorithms. For example, the recent
work (Zhou et al., 2011) presents a new quasi-Newton scheme that achieves one to three
orders of magnitude acceleration of many EM and MM algorithms. Many practitioners tend
to prefer one particular optimization method over the others. In practice, some of the best
algorithms are hybrids.
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Appendix

Proof of Proposition 6.1
The Hessian of the log-likelihood function (4) at the optimal point α∞ is

The MM minorizing function has curvature

while the curvature of the minorizing function for the hybrid algorithm is
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Lastly the EM Q function has curvature

The characteristic polynomial of [d2 gMM(α∞∣α∞)]−1 d2 f (α∞) is

Here, . Similarly, the characteristic polynomial for the hybrid
algorithm is

and the characteristic polynomial for the EM algorithm is
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Figure 1.
Histogram of the 524 proportions in the Haseman and Soares data with a Beta(1.23,12.46)
density imposed.

Zhou and Zhang Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Graphs of minorization in equalities (7) and (8).
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Figure 3.
Algorithmic iterates for the HS76-1 data set. Left: Start from a blind guess α(0) = (1, 1).
Right: Start from the method of moment estimate α(0) = (0.4711, 4.8072).
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Figure 4.
Distance of algorithmic iterates to the final solution ∥θ(t) − θ∞∥2 for the HS76-1 data set.

Zhou and Zhang Page 17

Comput Stat Data Anal. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Log-likelihood surface and the minorizing functions of EM, MM, and the EM-MM hybrid
algorithms at point (0.5,5) for the HS76-1 data set.
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Figure 6.
Approximate convergence rates of the MM and hybrid algorithms for fitting the beta-
binomial distribution (d = 2) when all data points have the same batch size m. Top: m = 5;
Middle: m = 10; Bottom: m = 20.
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Figure 7.
Comparison of algorithmic timing, convergence rates, and final objective values under
different parameter values. Row 1: α = (0.1, 1); Row 2: α = (0.2, 2); Row 3: α1 = ⋯ = α50 =
0.5; Row 4: α1 = ⋯ = α50 = 5. The sample size is n = 200. The batch size is m = 20. There
are 100 replicates in each scenario. Convergence criterion is 10−6.
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