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ARFED: Attack-Resistant Federated Averaging Based on Outlier Elimination
Ece Isik-Polat,Gorkem Polat,Altan Kocyigit

• We propose an attack-resistant federated averaging method called ARFED. ARFED does not make any unrealistic
assumptions about data distributions, update similarities of participants or having information about the malicious
participant ratios.

• We conducted comprehensive experiments to evaluate the performance of ARFED on three different datasets under
different attack types, organized/independent attacks, and IID/Non-IID data distributions. We also compared the
performance of ARFED with recently proposed defense algorithms.

• We propose an adaptive attack which is an organized variation of partial knowledge attack in [1]. In this attack type,
participants use their training statistics collaboratively to define a common poisoned model.

• We showed that although recently proposed robust defense algorithms perform well on IID settings, they provide a little
or no defense in Non-IID settings. In contrast, the proposed approach ARFED stabilizes the convergence and protects
the global model from various attacks in any setting.
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A B S T R A C T
In federated learning, each participant trains its local model with its own data and a global model is
formed at a trusted server by aggregating model updates coming from these participants. Since the
server has no effect and visibility on the training procedure of the participants to ensure privacy, the
global model becomes vulnerable to attacks such as data poisoning and model poisoning. Although
many defense algorithms have recently been proposed to address these attacks, they often make
strong assumptions that do not agree with the nature of federated learning, such as assuming Non-IID
datasets. Moreover, they mostly lack comprehensive experimental analyses. In this work, we propose a
defense algorithm called ARFED that does not make any assumptions about data distribution, update
similarity of participants, or the ratio of the malicious participants. ARFED mainly considers the
outlier status of participant updates for each layer of the model architecture based on the distance to
the global model. Hence, the participants that do not have any outlier layer are involved in model
aggregation. We have performed extensive experiments on diverse scenarios and shown that the
proposed approach provides a robust defense against different attacks. To test the defense capability
of the ARFED in different conditions, we considered label flipping, Byzantine, and partial knowledge
attacks for both IID and Non-IID settings in our experimental evaluations. Moreover, we proposed a
new attack, called organized partial knowledge attack, where malicious participants use their training
statistics collaboratively to define a common poisoned model. We have shown that organized partial
knowledge attacks are more effective than independent attacks.

1. Introduction
Digitalization has been reshaping the economy, orga-

nizations, and society [2]. It is driving the extensive use
of artificial intelligence techniques to increase efficiency
and productivity, lower costs, and improve the quality of
products and services in all industries and sectors [3]. Recent
advances in computing and communications technologies,
widespread deployment of smart and connected devices, and
the proliferation of cloud computing enable the collection
and cost-effective storage and processing of massive data
that is essentially the fuel for successful organizations today.
Hence, there has been a great interest in the Internet of
Things (IoT) and Big Data concepts [4]. In this context,
machine learning is one of the primary techniques to extract
non-obvious and useful patterns and actionable insight from
data. Specifically, deep learning offers enormous potential
and has achieved remarkable success [5]. Machine learning
in general, and deep learning in particular, is a computation-
intensive task that processes data usually collected from
many sources and stored in a central location. However, with
big data, collecting, storing, and processing data in a scalable
and efficient manner is a fundamental challenge [6]. Besides,
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the performance and adequacy of a trained model mostly
rely on the availability of sufficiently large data relevant
to the task of interest. Hence, data collected from various
sources such as online transaction systems, IoT devices,
smartphones, and social media are integrated to have a rich
dataset to derive high-quality models. Such data generally
contain sensitive information of which collection and use
may cause violation of regulations such as the General Data
Protection Regulation (GDPR) [7, 8, 9]. Hence, data privacy
turns out to be a fundamental challenge.

Federated Learning (FL) [10] is a distributed approach to
training a machine learning model without requiring training
data to be available in a central place. In FL, participants
with relevant data and processing resources collaborate to
train a machine learning model without revealing their data.
In a typical FL setting, a trusted server communicates with
the participants to jointly train a common model in several
iterations. The server chooses a model architecture, deter-
mines training parameters, and initializes a global model,
which is iteratively improved by performing local training
on participants’ devices. In each iteration, the server sends
the global model to the participants, which use their train-
ing data to improve the model for a while and send the
resulting local models back to the server. Then the server
aggregates received models to have a better global model.
These iterations can be continued until some convergence
criteria are met. FL is a viable approach to overcome data
privacy issues as the participants do not need to disclose their
training data; instead, they only share locally trained model
parameters. Hence, FL is a promising approach to large-scale
application of machine learning in domains where protecting
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user’s privacy is of great concern, such as healthcare [11],
smart city [12], and others widely employing IoT and big
data technologies [13].

FL has some unique characteristics [14]. Training data
may be massively distributed onto a large number of devices
with heterogeneous resources, and the sizes and distributions
of data on different devices may vary considerably. FL aims
to train a single model that can perform well on all partic-
ipants’ data. However, this may not be possible when par-
ticipants have heterogeneous data and processing resources
[15]. Not independent and identically distributed (IID) data
on devices lead to severe issues in FL, and improving the
performance of FL on non-IID data is an active research area
[16]. This statistical heterogeneity affects the convergence
behavior of FL and may lead to biased models toward the
participants having larger training data. The heterogeneity of
storage, computation, and communication resources of par-
ticipants, expensive communication (especially when there
are a massive number of participants), and ensuring privacy
against inference attacks are other core challenges in FL
[17]. The presence of adversaries manipulating their data
or locally trained models exacerbates the problems caused
by the heterogeneity of data and resources [15]. Therefore,
FL is also vulnerable to security attacks as the central server
has no control over the participants’ data and local training
processes. There are several vulnerabilities that an attacker
might exploit to manipulate the learning process, manipulate
the global model, or gain access to participants’ private data
[18]. For instance, an attacker may pretend like an ordinary
participant(s) or the central server or gain control of one or
more participants or the central server to target the learning
process without getting noticed. The attacker’s goal may be
to slow down or impede the convergence of model training,
degrade the trained model’s performance, manipulate the
global model to get wrong inferences under specific cases,
lead to an ineffective global model, or extract participants’
local data from the parameters exchanged during training
rounds. Data poisoning [19] and model poisoning [1] are
two significant security threats that attackers can pose in FL.
In data poisoning attacks, malicious participants manipulate
their training data by adding noise or flipping target labels.
In model poisoning attacks, participants alter their models
before sending them to the server.

Several aggregation approaches and optimization algo-
rithms, mainly variations of the gradient descent algorithm,
have been proposed for model training with FL [14, 20, 21,
22]. Federated Averaging (FedAvg) [10] is one of the most
commonly used FL algorithms. In each iteration, FedAvg
aggregates the locally trained models returned by the par-
ticipants to form the new global model by averaging. Each
parameter of the new global model is set to the weighted
arithmetic mean of the corresponding parameters of the
participants’ models. In this process, weights are determined
according to the number of training examples in the partic-
ipants to give each training example an equal weight on the
global model update. This feature represents a vital vulnera-
bility if there are malicious participants sending arbitrary or

deliberately manipulated model parameters, which are likely
to be very different from the updates received from reliable
participants. Hence, checking the models before aggregation
to identify anomalies and dropping (or lowering the weights
of) the models coming from suspicious participants in the
aggregation could be a promising approach to deal with
poisoning attacks.

In this paper, we propose the Attack-Resistant Federated
Learning (ARFED) algorithm, which is an extended version
of FedAvg. The primary objective of the algorithm is to
defend against poisoning attacks in FL. In ARFED, the
parameters of the models received from the participants
in each iteration are examined using a statistical outlier
detection technique to identify potentially malicious par-
ticipants. Accordingly, such participants are discarded in
the model aggregation step to mitigate poisoning threats.
Many defense methods for poisoning attacks are proposed
in the literature, as summarized in Section 2. These methods
usually require some knowledge about the attacks, such as
malicious participant ratio, examining local datasets, which
may compromise the privacy of participants, assuming IID
data, which is not valid in typical FL settings or introducing
too much computational overhead, which restricts the prac-
tical implementations. Unlike the other defense methods,
ARFED employs a relatively simple malicious participant
identification technique that does not require making unre-
alistic assumptions inconsistent with typical FL settings.

The main contributions of this paper are as follows:
(a) We propose an extension to FedAvg called ARFED

to defend against poisoning attacks. Unlike the other
similar algorithms proposed in the literature, ARFED
does not make unrealistic assumptions about data
distributions or participants’ update similarities. Nor
does it require information about attacks, such as the
malicious participant ratios, in advance. As shown
in Section 3, the computational complexity of the
extension made to FedAvg is lower compared to other
similar defense algorithms.

(b) We evaluated the performance of the vanilla FedAvg,
ARFED, and two similar defense approaches in var-
ious FL scenarios, such as IID data, non-IID data,
and under various kinds of organized and indepen-
dent poisoning attacks, as well as the no-attack case.
The results show that attacks in non-IID cases are
more severe than in IID cases. Moreover, the attacks
committed by an organized group of attackers can be
more detrimental than those implemented by a group
of independent attackers.

(c) The experimental results show that ARFED can mit-
igate the effects of independent and organized at-
tacks in IID and non-IID data cases. It outperforms
the evaluated alternatives, especially in non-IID data
and organized attack scenarios. Moreover, it does not
cause significant performance loss under no-attack
cases where the evaluated alternative defense methods
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cause some performance loss, especially in non-IID
cases. Hence, ARFED can be used to defend against
various kinds of poisoning attacks without worrying
about significant performance degradation under no-
attack cases.

The rest of the paper is organized as follows. The related
work in the literature is reviewed in Section 2. Section 3 de-
scribes the proposed outlier-detection-based malicious par-
ticipant identification technique and delineates the ARFED
algorithm. The details of the experimental design used to
evaluate the performance and compare it with the other
approaches are presented in Section 4. The experimental
results are presented and discussed in Section 5. Section 6
gives concluding remarks and directions for future work.
Finally, the supplementary experimental results are given in
Appendix A.

2. Related Work
Security is a critical issue in FL as it is vulnerable to

several attacks, such as poisoning, backdoor, free-riding,
inference, and eavesdropping [18]. This paper focuses on
poisoning attacks in FL and proposes a defense mechanism
called ARFED. There are two kinds of poisoning attacks:
data poisoning [19] and model poisoning [1]. In data poi-
soning attacks, malicious participants manipulate or modify
data, for instance, by adding noise to the training data or
label flipping [23, 24, 25, 26]. In model poisoning attacks,
participants alter the models sent to the server in each
iteration. Byzantine attack in which malicious participants
send arbitrary updates is one of the prevalent model poi-
soning attacks [1, 23, 24, 27, 28]. Backdoor attacks aim to
affect the global model adversarially on a particular sub-
task, for example, by making the model classify "trucks" as
"planes" by adding small visual artifacts to the training set
[24, 25, 29, 30, 31].

In FL, the central server does not have access to the par-
ticipants’ training data or control over the participants’ train-
ing process. Therefore, aggregation carried out by the server
is the most appropriate step to defend against such security
attacks. Hence, many defense algorithms incorporated into
aggregation rules are proposed to handle these attacks and
prevent performance degradation caused by them [27, 29,
32, 33, 34, 35]. Apart from the defense mechanisms incorpo-
rated into the aggregation process carried out by the central
server, there are also decentralized solutions. With the dis-
tributed ledger technology provided by the blockchain, the
need for a trusted central server can be removed [36]. Using
blockchain technologies in FL can also provide robustness
against adversarial attacks [37]. Although this is one of the
promising approaches to defend against attacks, it is out of
the scope of this paper.

Many studies have shown that the defense mechanisms
proposed in the literature usually make assumptions that do
not hold for practical FL settings [1, 30, 38, 39]. In particular,
Non-IID datasets and organized (coordinated) attacks bring

severe issues to the learning problem and invalidate assump-
tions of previous works. Moreover, defense strategies that
require examining the local datasets and utilizing partial or
complete knowledge of the training process (defense against
backdoor attacks and approaches using data sanitization) are
not appropriate in practical FL settings. Thus, analyzing and
developing these approaches in realistic FL environments is
an important study area.

Attack-robust FL has been a heavily studied topic in
recent years. Yin et al. [35] introduced two different ap-
proaches instead of solely averaging gradients. The first
method was the coordinate-wise median and the second was
the coordinate-wise trimmed mean that excludes the highest
and smallest values with the given percentage. Blanchard et
al. [27] proposed a Byzantine fault-tolerant SGD algorithm
called Krum that combines the majority-based and square-
distance methods. El Mhamdi et al. [28] introduced a method
that combines Krum and trimmed mean, called Bulyan.
These methods presume IID data and the ratio of malicious
participants should be known in each communication round,
which usually does not hold in FL settings.

There are also clustering or similarity metrics based
methods that work under certain conditions and with certain
assumptions. Fung et al. [25] assume that the trusted partici-
pants have a unique distribution and as a result, their gradient
updates vary. Since malicious participants have a common
goal, their gradient updates tend to be more similar. Based
on this assumption, Fung et al. proposed the FoolsGold
algorithm that identifies participants who make similar gra-
dient updates with a method based on cosine similarity and
reduces the learning rates of these participants. Sattler et al.
[24] proposed a method that clusters the participants based
on the pairwise cosine dissimilarities between their updates
and considers the elements of the largest cluster as benign.
Tolpegin et al. [19] presented a method based on identifying
malicious participant clusters with a visualization that is
obtained by applying Principal Component Analysis to the
parameters of the last layer of the participants’ local models.
Unlike Fung et al. [25], Sattler et al. [24] and Tolpegin et
al. [19] worked with benign participants that have similar
updates on IID data.

The data distribution and update similarities of partici-
pants are two essential factors that should be examined in
detail. Most of the recent studies proposed methods for IID
case [24, 27, 28, 35, 19]; however, Non-IID distribution of
participants’ data is one of the key properties of FL and
it was emphasized that existing techniques for Byzantine
tolerant distributed learning do not perform well when data
of participants are Non-IID [10, 29, 30]. Although the pro-
posed method in [25] addresses Non-IID data distribution,
it only covers a very specific case where trusted participants
have unique updates and malicious participants have similar
updates.

Although there have been notable new studies proposing
aggregation methods for distributed learning that ensure the
convergence of the global model, they sacrificed classifi-
cation performance in exchange for convergence, resulting
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in ineffective strategies that are not useful for FL settings
[23, 27, 28, 35].

3. Attack-Resistant Federated Learning
The Attack-Resistant Federated Learning (ARFED) al-

gorithm is based on the Federated Averaging (FedAvg) algo-
rithm [10], which is one of the most widely used aggregation
algorithms in FL [40]. In FedAvg, a server initializes a global
parametric model such as a multi-layer neural network which
the participants collectively train in several rounds. In each
round, the server sends the current global model to the
participants, which apply the gradient descent algorithm to
train the current global model using their locally available
data for several epochs and then send the resulting local
models back to the server. The server aggregates the par-
ticipants’ locally trained models by calculating the weighted
averages of corresponding parameters in the local models
and updates the global model accordingly. The weights are
determined according to the number of training examples in
the participants.
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Figure 1: The layer-wise distances of a randomly selected
trusted participant (top row) and a randomly selected ma-
licious participant (bottom row) to the global model under
label flipping attack on the MNIST dataset. The points refer
to the distances of the participants to the same layer of the
global model in corresponding rounds. The shaded regions
indicate the upper and lower bounds determined for each round
according to the 𝐼𝑄𝑅 outlier identification technique.

When there is no attack and the global model converges,
the latest local models received from the participants are
unlikely to be far from the global model. In contrast, if there
are malicious participants, their models drift apart from the
trusted ones and the global model [23]. Hence, outlier identi-
fication can be a promising approach to defend against model
poisoning and data poisoning attacks by identifying and
filtering out potentially malicious participants. To illustrate
the situation and gain insight into the malicious participant
detection problem, we carried out an experiment using the
experimental setup introduced in Section 4. In this experi-
ment, a set of trusted and malicious participants collaborate
to train a three-layer neural network on the MNIST dataset.
In order to quantify how far the local models are from the

global model, we considered the differences between the pa-
rameters of the global model at the beginning of a round and
the corresponding parameters of local models at the end of
that round. We used Euclidean distances between the global
and the local model parameters to facilitate comparisons and
outlier detection. Furthermore, to improve granularity, we
calculated distances for each layer separately. To this end,
each layer having 𝐾 parameters (i.e., weights and biases)
is represented by a point in 𝐾-dimensional space, and the
Euclidean distances between the points corresponding to
the global model’s layer and the participants’ models are
computed for each layer. We considered the distribution of
distances for each participant for each layer and used Inter
Quartile Range (𝐼𝑄𝑅) method to identify outliers. IQR is
a measure of the spread of data and defined as the 25𝑡ℎ
percentile (i.e., 𝑄1, the first quartile) and 75𝑡ℎ percentile
(i.e., 𝑄3, the third quartile) of the data. That is, 𝐼𝑄𝑅 =
𝑄3 − 𝑄1. According to the 𝐼𝑄𝑅 technique, values less
than 𝑄1 − 1.5 × 𝐼𝑄𝑅 (i.e., the lower limit) or greater than
𝑄3+1.5×𝐼𝑄𝑅 (i.e., the upper limit) are considered outliers.
Figure 1 shows the layer-wise distances of randomly selected
trusted and malicious participants’ models distances to the
global model in successive federated learning rounds of
the experiment. The shaded regions in the plots indicate
[𝑄1−1.5×𝐼𝑄𝑅,𝑄3+1.5×𝐼𝑄𝑅] range for non-outlier values
through rounds. As seen from the plots, for this illustrative
case, the selected trusted participant’s distances to the global
model almost always remain within the non-outlier range
for all layers. On the other hand, the selected malicious
participant’s distances to the global models are almost al-
ways outliers. Inspired by this experiment, we incorporated
the IQR-based outlier identification technique to eliminate
model updates from potentially malicious participants in the
aggregation step of FedAvg.

The pseudocodes of the procedures carried by an ARFED
server and ARFED participants are presented in Algo-
rithm 1. Each participant executes the ParticipantUpdate
procedure (Lines 01-05), which is invoked by the server,
and the server executes the ServerUpdate procedure (Lines
06-29). The notation used in this algorithm is introduced in
Table 1. For the sake of simplicity, we presumed that the
algorithm is run for a predefined number of rounds, all par-
ticipants are involved in all training rounds, and participants
employ batch gradient descent using a predefined learning
rate in their local training process. However, this algorithm
can easily be extended to realize other practices, such as
repeating the process until convergence criteria are met,
involving a subset of participants in each round, employing
mini-batch gradient descent in local training, and learning
rate scheduling.

ARFED is essentially an extension to FedAvg to train
a parametric machine learning model such as a multi-layer
neural network using the Gradient Descent algorithm. In
ARFED, a server trains a randomly initialized global model
(Line 07) in 𝑇 rounds by collaborating with 𝑃 participants
(Lines 08-26). In each round 𝑡, participants receive the pre-
vious round’s global model represented by parameters W𝑡−1
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Algorithm 1 ARFED.
1: procedure PARTICIPANTUPDATE(𝑝,W)
2: for 𝑒 = 1, 2, ..., 𝐸 do
3: W ← W − 𝜂 1

𝑛𝑝

∑𝑛𝑝
𝑖=1∇W(𝑥𝑝,𝑖, 𝑦𝑝,𝑖,W)

4: end for
5: return W
6: procedure SERVERUPDATE
7: W0 ← initial weights(random)
8: for 𝑡 = 1, 2, ..., 𝑇 do
9: for 𝑝 = 1, 2, ..., 𝑃 do

10: W𝑡
𝑝 ← PARTICIPANTUPDATE(𝑝,W𝑡−1)

11: end for
12: 𝑟𝑡 ← {𝑝|𝑝 = 1, ..., 𝑃 }
13: for 𝑙 = 1, 2, ..., 𝐿 do
14: 𝑑𝑡𝑙 = {}
15: for 𝑝 = 1, 2, ..., 𝑃 do
16: 𝑑𝑡𝑝,𝑙 ← ‖𝑓𝑙𝑎𝑡𝑡𝑒𝑛(W𝑡−1[𝑙]) − W𝑡

𝑝[𝑙]‖2
17: 𝑑𝑡𝑙 ← 𝑑𝑡𝑙 + [𝑑𝑡𝑝,𝑙] ⊳ append to the list
18: end for
19: 𝑚𝑖𝑛_𝑑𝑡𝑙 = 𝑄1(𝑑𝑡𝑙 ) − 1.5 × 𝐼𝑄𝑅(𝑑𝑡𝑙 )
20: 𝑚𝑎𝑥_𝑑𝑡𝑙 = 𝑄3(𝑑𝑡𝑙 ) + 1.5 × 𝐼𝑄𝑅(𝑑𝑡𝑙 )
21: for each 𝑝 in 𝑟𝑡 do
22: if 𝑑𝑡𝑝,𝑙 < 𝑚𝑖𝑛_𝑑𝑡𝑙 or 𝑑𝑡𝑝,𝑙 > 𝑚𝑎𝑥_𝑑𝑡𝑙 then
23: 𝑟𝑡 ← 𝑟𝑡 − {𝑝} ⊳ remove from the set
24: end if
25: end for
26: end for
27: W𝑡 ← 1

∑

𝑝∈𝑟𝑡 𝑛𝑝

∑

𝑝∈𝑟𝑟 𝑛𝑝 × W𝑡
𝑝

28: end for
29: return 𝑊 𝑡

from the server (Lines 09-11). Then they apply the gradient
descent algorithm to improve the model using their locally
available training data for 𝐸 epochs according to a server-
defined loss function (𝑥, 𝑦,W) (Lines 02-04). They finally
return the resulting local model to the server (Line 05). The
participant update in ARFED is essentially the same as the
participant update of the vanilla FedAvg. Like FedAvg, the
server initializes a global model (Line 07) and trains the
model for 𝑇 rounds (Lines 08-28) by involving participants
and returns the resulting model (Line 29). The main dif-
ference between FedAvg and ARFED is in the aggregation
process. In FedAvg, the local models (𝑊 𝑡

𝑝 ) received from the
participants are aggregated to update the global model by
computing weighted averages for each parameter (like Line
27, but including all participants). However, in ARFED, only
the models received from participants deemed reliable (i.e.,
the participants in the reliable participant set 𝑟𝑡) in that round
are included in the model aggregation step (Line 27). In the
beginning, all participants are assumed to be reliable (Line
12), so 𝑟𝑡 includes all participants. In order to identify the
potentially malicious participants, for each layer 𝑙, a list of
distances 𝑑𝑡𝑙 between the received participant models and
the global model is computed (Lines 15-18). Accordingly,
a lower distance threshold 𝑚𝑖𝑛_𝑑𝑡𝑙 and an upper distance

Table 1
Notation Table.
𝑃 Number of participants
𝑝 Participant 𝑝, 𝑝 ∈ {1, ..., 𝑃 }
𝑛𝑝 Number of training examples in partici-

pant 𝑝
𝑥𝑝,𝑖 Features of 𝑖𝑡ℎ training example in par-

ticipant 𝑝
𝑦𝑝,𝑖 Label of 𝑖𝑡ℎ training example in partici-

pant 𝑝
𝑇 Number of training rounds
𝑡 Federated learning round 𝑡, 𝑡 ∈ {1, ..., 𝑇 }
𝐿 Number of layers in the global model
𝑙 Layer 𝑙 in the global model, 𝑙 ∈ {1, ..., 𝐿}
𝐾𝑙 Number of parameters (weights and bi-

ases) in layer 𝑙
W𝑡 Weights of the global model at round 𝑡
W𝑡[𝑙] Weights of the 𝑙𝑡ℎ layer of the global

model at round 𝑡
W𝑡

𝑝 Weights of the local model in participant
𝑝 at round 𝑡

W𝑡
𝑝[𝑙] Weights of the 𝑙𝑡ℎ layer of the local model

in participant 𝑝 at round 𝑡
(𝑥, 𝑦,W) Loss function for a training example 𝑥

with label 𝑦 on a model with weights W
∇W(𝑥, 𝑦,W) Gradient of the loss function with respect

to weights W
𝐸 Number of local iterations (epochs) in

each round
𝑒 Local training iteration 𝑒, 𝑒 ∈ {1, ..., 𝐸}
𝜂 Learning rate
𝑤=flatten(W) flatten a tensor W to a vector 𝑤
‖𝑤‖2 𝓁2-norm of a vector
𝑄𝑞(𝑑) 𝑞𝑡ℎ quartile of values in list 𝑑 for 𝑞 ∈

{1, 2, 3, 4}
𝐼𝑄𝑅 Inter Quartile Range of values in list 𝑑;

𝐼𝑄𝑅(𝑑) = 𝑄3(𝑑) −𝑄1(𝑑)
𝑟𝑡 Set of participants marked as reliable at

round 𝑡
𝑑𝑡
𝑝,𝑙 Distance between the global model’s 𝑙𝑡ℎ

layer and participant 𝑝’s 𝑙𝑡ℎ layer in round
𝑡

𝑑𝑡
𝑙 List of distances between the global

model’s 𝑙𝑡ℎ layer and all participants 𝑙𝑡ℎ
layers in round 𝑡

𝑚𝑖𝑛_𝑑𝑡
𝑙 Lower distance threshold for layer 𝑙 in

round 𝑡 to mark a participant reliable
𝑚𝑎𝑥_𝑑𝑡

𝑙 Upper distance threshold for layer 𝑙 in
round 𝑡 to mark a participant reliable

threshold 𝑚𝑎𝑥_𝑑𝑡𝑙 are determined by computing 𝑄1, 𝑄2,
and 𝐼𝑄𝑅 of distance values in 𝑑𝑡𝑙 (Lines 19-20). Then, if a
participant 𝑝 is an outlier in a layer 𝑙 (i.e., its distance 𝑑𝑡𝑝,𝑙 is
less than the lower distance threshold 𝑚𝑖𝑛_𝑑𝑡𝑙 or greater than
the upper distance threshold 𝑚𝑎𝑥_𝑑𝑡𝑙 it is considered mali-
cious and removed from the reliable participant set 𝑟𝑡 (Lines
21-25). Hence, if a participant is identified as potentially
malicious according to at least one layer, it is identified as not
reliable. After evaluating all layers, the federated averaging
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is applied to the local models of the participants deemed
reliable (i.e., the participants in 𝑟𝑡) (Line 27).

Defense strategies such as trimmed mean and coordinate-
wise median rely on including a model’s parameters par-
tially. Each parameter within the model is evaluated indi-
vidually; some participants’ updates are included, and the
rest are discarded in the aggregation step for each parameter.
Hence, a different group of participants can potentially
contribute to each parameter. The primary motivation of
the proposed all-or-nothing approach is that each participant
is evaluated in a holistic approach. Parameters of a neural
network are highly dependent on each other; therefore, inde-
pendently evaluating each parameter may lead to misleading
inferences. If any layer of a model update is an outlier, it is a
sign of a malicious participant; therefore, it is not reasonable
to include that participant in the aggregation step. In the
proposed approach, for a participant’s model to be included
in the calculation of global model aggregation, each layer
must fall within the safe interval calculated for that layer,
i.e., a consensus should be ensured among all layers of
the local model. Interestingly, experiments show that the
ratio of unreliable participants determined in the proposed
approach is very close to actual malicious participant ratios
(see Figures 16 and 15 in the Appendix A).
Lemma 1. For an 𝐿-layer neural network with 𝐾 param-
eters (weights and biases) in each layer collectively trained
by 𝑃 participants, the time complexity of reliable participant
identification in ARFED is (𝐿 ⋅ 𝑃 ⋅ (𝐾 + 𝑙𝑜𝑔𝑃 )).

Proof. The server computes the differences and 𝓁2-norms
of 𝐾-dimensional vectors for each layer with 𝐾 parameters,
(𝐾). As there are 𝐿 layers in the models received from 𝑃
participants, the distance calculation is (𝐿 ⋅ 𝑃 ⋅ 𝐾). For
each layer, the server sorts the distances of 𝑃 participants
to find 𝑄1, 𝑄3, and 𝐼𝑄𝑅, determining lower and upper
thresholds, which is (𝑃 ⋅ log𝑃 ). As there are 𝐿 layers, the
threshold determination is (𝐿 ⋅𝑃 ⋅ log𝑃 ). Finally, for each
layer, the distances of 𝑃 participants are checked if they are
outliers or not, which is (𝑃 ). As there are 𝐿 layers, the
outlier detection is (𝐿⋅𝑃 ). As a result, the algorithm’s time
complexity can be found as(𝐿⋅𝑃 ⋅𝐾+𝐿⋅𝑃 ⋅log𝑃+𝐿⋅𝑃 ) →
(𝐿 ⋅ 𝑃 ⋅ (𝐾 + log𝑃 + 1)) → (𝐿 ⋅ 𝑃 ⋅ (𝐾 + log𝑃 )).

The computational complexity is an essential factor in
the practical use of an algorithm. Lemma 1 states that the
time complexity of reliable participant identification (i.e.,
the extension made to FedAvg) in ARFED is (𝐿 ⋅ 𝑃 ⋅
(𝐾 + 𝑙𝑜𝑔𝑃 )). Hence it is much more efficient than that of
Krum and its variant Bulyan, which are quadratic, (𝐾 ⋅𝑃 2).
ARFED is slightly more efficient than the coordinate-wise
median and trimmed mean as they require sorting for all
individual parameters (ARFED only makes sorting as many
as the number of layers).

4. Experimental Design
The dimensions of the experimental designs are the

datasets, the data distribution of the participants, attack
types, attacker types, and baseline method selection.

4.1. Datasets
We conducted experiments on MNIST [41], CIFAR10

[42], and Fashion-MNIST [43] datasets which are widely
used by researchers to evaluate FL approaches [19, 23, 24,
27, 28, 29, 35]. MNIST dataset contains 28×28 grayscale im-
ages with 50,000 training images and 10,000 testing images.
CIFAR10 dataset contains 32×32 color images with 50,000
training images and 10,000 testing images, and Fashion-
MNIST contains 28×28 grayscale images with 60,000 train-
ing images and 10,000 testing images.

There are 100 participants in all experiments. There
are two model architectures for MNIST, and only one ar-
chitecture for CIFAR10 and Fashion-MNIST. The details
of the model architectures, and the hyperparameters are
given in Appendix A.1. For CIFAR10 experiments, data
augmentation techniques such as horizontal flipping and
random cropping, and training strategies like learning rate
scheduling and gradient clipping were applied to enhance
the model performance.
4.2. Data Distributions

One of the dimensions of our experiments is the data
distribution of the participants, which can be either IID or
Non-IID. For IID cases, training datasets are distributed
to the participants randomly and uniformly, i.e., each par-
ticipant has each class equally. On the other hand, in the
Non-IID case, each participant has examples of only two
randomly selected classes for MNIST and Fashion-MNIST
and examples of only five randomly selected classes for
CIFAR10.
4.3. Attack and Attacker Types

Another dimension is attack types. Three attack types
are examined: label flipping attacks, Byzantine attacks, and
adaptive partial knowledge attacks. In label flipping attacks,
malicious nodes flip their ground truth labels with a target
class label. In Byzantine attacks, malicious participants send
random weight updates from a standard normal distribution
with zero mean and unit standard deviation. In adaptive
attacks, malicious participants use statistics of local models’
parameter to manipulate sending weights.

Lastly, attacker types are investigated. Independent at-
tackers are malicious participants incapable of coordinating
with each other, acting individually, and sending random
updates to the server. Organized or coordinated attackers
are malicious participants that carry out the attack in an
organized or coordinated manner and send similar updates
to the server. For example, in independent label flipping
attacks, malicious participants flip their ground truth labels
with an arbitrary target label, e.g., if there are two malicious
participants with label 7 in their data sets, one flips 7 to 1,
while the other flips to 4. On the other hand, in organized
label flipping attacks, the malicious participants flip ground
truth labels with consistent target labels, e.g., all malicious
participants that have 7 in their datasets flip the label as 1.

In order to increase the success of the attacks and reduce
the likelihood of malicious participants being caught, the
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Table 2
Replaced classes for organized label flipping attack.

MNIST Fashion-MNIST CIFAR10
Original Replaced Original Replaced Original Replaced

0 9 T-shirt/Top Shirt Plane Bird
1 7 Trouser Dress Car Truck
2 5 Pullover Coat Bird Plane
3 8 Dress Trouser Cat Dog
4 6 Coat Pullover Deer Horse
5 2 Sandal Sneaker Dog Cat
6 4 Shirt T-shirt/Top Frog Ship
7 1 Sneaker Ankle Boot Horse Deer
8 3 Bag Sandal Ship Frog
9 0 Ankle Boot Sneaker Truck Car

replaced classes were chosen as semantically similar as
possible. The replaced classes in the organized setting for
each data set are presented in Table 2.

Similarly, malicious participants send different random
weights for independent Byzantine attacks while they send
the same random weights in the organized setting. The
details of independent and organized adaptive partial knowl-
edge attacks are given in Section 4.4
4.4. Adaptive Partial Knowledge Attack

In the original partial knowledge attack in [1], the ma-
licious participants train their local models with their local
data. Then, for each parameter, mean, 𝜇𝑤, and standard de-
viation, 𝜎𝑤, are estimated among the malicious participants’
parameters. Later, each malicious participant determines the
update changing direction, 𝑠𝑤, for each parameter by looking
at the global model they have received at the beginning of the
FL round (if 𝑤𝑡+1

𝑚 >= 𝑤𝑡 → 𝑠𝑤 = 1, else 𝑠𝑤 = −1).
If 𝑠𝑤 = −1, each malicious participant replaces the pa-

rameter with a number uniformly sampled from the interval
[𝜇𝑤 + 3𝜎𝑤, 𝜇𝑤 + 4𝜎𝑤]. If 𝑠𝑤 = 1, the malicious participant
replaces the parameter with a number uniformly sampled
from the interval [𝜇𝑤−4𝜎𝑤, 𝜇𝑤−3𝜎𝑤]. We show the results
of the original version of this attack under the independent
experimental setting (See Table 8 and Table 9).

In our experimental setting, the malicious participants
send the same parameters to the server in the “Organized
Byzantine” attacks. Based on this idea, we adopted the attack
in [1] for the "Organized" version. For this time, to decide the
direction of change (𝑠𝑤), the parameter of the global model is
compared with the mean parameter, 𝜇𝑤, for once instead of
comparing separately for each participant’s parameter. Then,
the same (𝑠𝑤) is used for each participant. If 𝑠𝑤 = −1, the
malicious participants replace the parameters with the same
number sampled from the interval [𝜇𝑤 + 3𝜎𝑤, 𝜇𝑤 + 4𝜎𝑤].If 𝑠𝑤 = 1, the malicious participants replace the parameter
with the same number sampled from the interval [𝜇𝑤 −
4𝜎𝑤, 𝜇𝑤 − 3𝜎𝑤].
4.5. Baseline Method Selection

Fang et al. [1] have shown that trimmed mean and
coordinate-wise median are more robust to attacks than
Krum and its variant Bulyan. Unlike the coordinate-wise
median, trimmed mean requires the knowledge of malicious
participant ratio, which does not meet the nature of a realistic

FL setting, Yet, both coordinate-wise median (will be re-
ferred to as CwMedian in the rest of the article) and trimmed
mean (will be referred to as TrimmedMean in the rest of
the article) are agnostic to update similarity of participants
unlike [24, 25, 19], and they are outlier based methods as the
proposed method ARFED; therefore, they are chosen as the
baseline methods in our performance evaluations.

5. Experimental Results & Discussion
Attacks usually compromise convergence as well as the

performance of the models and cause oscillations in test
set accuracies; therefore, reporting only the score of the
last communication round can be misleading because the
peak point or lowest point of this oscillation may occur
randomly. Thus, the minimum and the maximum accuracies
achieved on the test set in the last ten rounds are reported
in tables to show the severity of the oscillations created by
attacks. In all experiments, NoDefense refers to the vanilla
FedAvg, CwMedian refers to the coordinate-wise median
and TrimmedMean refers to the trimmed mean.

The tables show the results of all datasets, while the fig-
ures show only the MNIST-2NN experiments in this section.
The corresponding figures of other datasets and architectures
can be found in the ??. Moreover, additional information
about box plot factor comparison is presented in A.4.
5.1. No Attack

A robust defense strategy should not cause any notice-
able performance loss when there is no attack in the FL
system. Figure 2 and Table 3 show the results of experiments
when all participants are trusted (when there is no attack on
any participant). Incorporating TrimmedMean and CwMe-
dian strategies into FedAvg does not cause any performance
degradation in the IID setting. Although the performance of
the CwMedian strategy is slightly worse in Fashion-MNIST
and CIFAR10, it can be tolerable in an FL setting. On the
other hand, when local datasets are Non-IID, the CwMedian
strategy causes significant performance degradation, which
points to the questionability of the method. When the mali-
cious participant ratio is zero, in other words, when there
is no attack in the system, no participants are discarded
from the aggregation step; therefore, TrimmedMean gives
the same result as NoDefense.
5.2. Label Flipping Attacks

Table 4 and Table 5 show that as the ratio of malicious
participants increases, vanilla FedAvg cannot avoid perfor-
mance degradation, which requires that a defense mecha-
nism should be incorporated. As indicated by Figure 3 when
malicious participants are organized, degradation becomes
more severe and oscillation increases. The most performance
degradation occurs when attacks are organized in Non-IID
setting.

For IID cases of MNIST-2NN, MNIST-CNN, and Fashion-
MNIST, ARFED achieves a slightly higher accuracy score
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Figure 2: Accuracy curves of different strategies when all
participants are trusted.

most of the time, but differences between ARFED, CwMe-
dian, and trimmed mean are not significant. When compar-
ing with all-trusted performance, all strategies can tolerate
the negative effects of the label flipping attack. For IID
cases of CIFAR10 experiments, ARFED achieves noticeably
better performance than the others.

When the data of participants is Non-IID, CwMedian
strategy performed worse than even the vanilla FedAvg.
Although trimmed mean achieves better performance than
CwMedian and can remove the performance loss, it can
be said that ARFED outperforms both of them and gives
the highest accuracy scores among all these methods. In
other words, ARFED successfully defends against malicious

Table 3
Accuracies on test sets when all participants are trusted (i.e.,
𝑚 = 0%). The worst results are bold.

MNIST-2NN MNIST-CNN Fashion-MNIST CIFAR10
IID min max min max min max min max

NoDefense 97.7 97.7 98.9 98.9 90.4 90.5 78.9 79.0
TrimmedMean1 97.7 97.7 98.9 98.9 90.4 90.5 78.9 79.0

CwMedian 97.6 97.6 98.9 98.9 90.1 90.2 76.7 76.8
ARFED 97.6 97.6 98.9 98.9 90.4 90.5 78.4 78.4

Non-IID min max min max min max min max
NoDefense 96.4 96.6 98.8 98.8 86.8 87.4 77.5 77.6

TrimmedMean1 96.4 96.6 98.8 98.8 86.8 87.4 77.5 77.6
CwMedian 80.7 85.3 96.9 97.1 79.1 80.0 64.3 64.6
ARFED 96.2 96.4 98.7 98.8 82.4 84.3 77.8 77.9

1 The same results as NoDefense

Table 4
Accuracies under label flipping attacks at different attacker
ratios in IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 92.9 97.6 72.4 97.3 97.0 97.2 91.3 97.1

MNIST CwMedian 97.4 97.4 97.2 97.3 97.4 97.5 97.0 97.1
2NN TrimmedMean 97.5 97.5 96.9 97.0 97.5 97.5 97.1 97.1

ARFED 97.6 97.7 97.4 97.5 97.6 97.6 97.4 97.5

NoDefense 94.2 99.0 75.4 99.0 97.8 99.0 96.2 98.9
MNIST CwMedian 98.9 98.9 98.8 98.8 98.9 98.9 98.9 98.9
CNN TrimmedMean 98.9 98.9 98.8 98.9 99.0 99.0 98.9 99.0

ARFED 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9

NoDefense 87.8 89.3 68.6 88.9 89.2 89.5 83.7 89.0
Fashion CwMedian 89.8 89.9 88.6 88.7 89.6 89.7 89.2 89.3
MNIST TrimmedMean 90.0 90.1 88.8 88.9 89.9 90.0 89.0 89.2

ARFED 90.5 90.7 90.3 90.4 90.2 90.3 90.2 90.3

NoDefense 72.7 72.7 65.8 65.9 72.8 72.8 69.7 69.8
CIFAR10 CwMedian 75.6 75.7 73.3 73.4 73.8 73.8 73.5 73.6

TrimmedMean 75.6 75.7 73.3 73.4 73.8 73.8 73.5 73.6
ARFED 76.2 76.2 77.0 77.2 77.7 77.8 75.6 75.7

participants and gets an accuracy score very close to when all
participants are trusted. The performance of accuracy curves
for MNIST-2NN can be examined in Figure 3 and for other
datasets in Appendix A.3.
5.3. Byzantine Attacks

In the literature, it has been shown that Byzantine attacks
are more effective than data poisoning attacks [1, 24, 29].
Our experiments, which have shown that there is dramatic
performance degradation under Byzantine attacks, are in
line with the previous studies. In addition, the performance
degradation caused by organized attackers is more severe
than independent attackers.

When the data distributions of the participants are Non-
IID, the performance scores get worse compared to IID cases
and Non-IID attacks with organized attackers are the most
harmful case for the performance. Again, as the number of
malicious participants increases, the performance degrada-
tion increases, too.

For IID cases, all defense strategies are able to tolerate
the negative effects of Byzantine attacks as if there has been
no malicious participant (Table 6 and Figure 4). For Non-
IID cases, the CwMedian is able to prevent performance
degradation up to a degree; however, it can not eliminate
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Table 5
Accuracies under label flipping attacks at different attacker
ratios in Non-IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 92.4 95.8 83.8 88.3 93.7 95.3 89.3 94.0

MNIST CwMedian 75.1 83.8 67.7 75.0 80.8 83.3 67.8 75.9
2NN TrimmedMean 94.6 95.5 79.9 87.7 95.1 95.4 80.9 89.7

ARFED 96.1 96.3 95.6 96.1 96.0 96.3 95.5 96.1

NoDefense 95.5 98.0 83.4 91.6 97.0 98.3 95.3 96.6
MNIST CwMedian 96.4 96.7 91.4 93.1 95.4 95.9 93.5 94.2
CNN TrimmedMean 98.5 98.6 97.3 97.6 98.6 98.6 97.2 97.6

ARFED 98.6 98.7 98.5 98.6 98.7 98.8 98.6 98.7

NoDefense 83.0 85.7 73.7 79.2 84.3 86.7 81.5 84.6
Fashion CwMedian 79.9 80.6 76.0 76.7 78.7 79.6 77.4 78.5
MNIST TrimmedMean 86.7 87.5 82.7 83.4 85.8 86.7 83.8 84.3

ARFED 87.7 88.8 84.2 87.6 87.5 88.5 85.1 87.6

NoDefense 75.2 75.3 70.8 70.9 74.4 74.4 70.2 70.3
CIFAR10 CwMedian 55.0 55.9 54.5 54.9 56.7 57.2 52.0 52.7

TrimmedMean 76.0 76.0 72.6 72.7 75.4 75.4 74.0 74.1
ARFED 78.0 78.1 76.8 76.9 77.3 77.4 76.2 76.3

Table 6
Accuracies under Byzantine attacks at different attacker ratios
in IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 57.0 68.9 31.9 43.9 86.0 90.7 76.2 86.1

MNIST CwMedian 97.2 97.2 97.3 97.4 97.2 97.3 97.3 97.3
2NN TrimmedMean 97.4 97.5 97.4 97.5 97.5 97.5 97.4 97.4

ARFED 97.5 97.5 97.5 97.6 97.5 97.5 97.5 97.6

NoDefense 54.1 79.3 10.0 17.0 91.9 95.0 70.8 87.2
MNIST CwMedian 98.9 98.9 98.9 98.9 98.9 98.9 98.8 98.8
CNN TrimmedMean 99.0 99.0 98.9 99.0 98.9 99.0 98.9 98.9

ARFED 98.9 98.9 98.8 98.8 98.9 99.0 98.8 98.8

NoDefense 15.3 48.2 9.80 21.1 65.0 79.2 36.8 60.2
Fashion CwMedian 89.9 90.1 90.1 90.2 90.0 90.2 90.0 90.1
MNIST TrimmedMean 90.2 90.3 90.2 90.3 90.4 90.4 90.2 90.3

ARFED 90.2 90.3 90.4 90.5 90.2 90.3 90.3 90.4

NoDefense 8.7 12.2 8.3 11.3 8.9 13.2 8.9 11.1
CIFAR10 CwMedian 75.7 75.8 75.0 75.0 77.6 77.7 75.1 75.1

TrimmedMean 78.8 78.9 75.6 75.7 76.8 76.9 77.0 77.1
ARFED 77.8 77.9 77.4 77.5 77.1 77.2 77.3 77.3

the performance degradation caused by attacks as well as
ARFED and trimmed mean. ARFED gets better scores than
CwMedian for all data sets. As Figure 4 and Table 7 shows
CwMedian can catch the ARFED for only Non-IID experi-
ments of MNIST-CNN.
5.4. Partial Knowledge Attack

In line with previous experiments on other attack types,
Table 8 and Table 9 show that Non-IID attacks are more
severe than IID attacks. Moreover, as the ratio of malicious
participants increases, the performance degrades more and
when malicious participants are organized, the degradation
becomes more severe for both IID and Non-IID cases.

For IID cases, all strategies can reverse the performance
degradation caused by the partial knowledge attack but
ARFED can achieve the highest score in all cases. The
difference between ARFED and other defense strategies
becomes more visible for Fashion-MNIST and CIFAR10.
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Figure 3: Accuracy curves of different strategies for MNIST-
2NN under label flipping attacks at different attacker ratios.

When the data of participants are Non-IID and the attack-
ers are independent, CwMedian achieves worse accuracy
scores than the vanilla FedAvg while trimmed mean can tol-
erate the performance loss caused by the partial knowledge
attack. Still, ARFED gets the highest scores among all of
them. Moreover, When the data of participants are Non-IID
and the attackers are organized, CwMedian can provide a
slight improvement and TrimmedMean can get rid of the the
performance loss up to a point. ARFED successfully defends
against the attack and achieves accuracy scores very close
to when all participants are trusted. The performance of
accuracy curves for MNIST-2NN can be examined in Figure
5.
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Table 7
Accuracies under Byzantine attacks at different attacker ratios
in Non-IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 26.1 36.0 14.9 26.6 45.6 61.6 16.5 34.1

MNIST CwMedian 85.6 89.5 90.3 92.7 83.4 88.8 89.3 90.9
2NN TrimmedMean 95.8 96.1 95.4 95.6 95.9 96.1 94.8 95.0

ARFED 96.1 96.2 95.9 96.1 96.1 96.2 95.9 96.1

NoDefense 15.6 33.5 9.00 15.7 46.1 72.4 17.4 40.2
MNIST CwMedian 97.4 97.5 97.6 97.7 97.0 97.2 96.8 97.1
CNN TrimmedMean 98.8 98.8 98.6 98.7 98.8 98.8 98.5 98.6

ARFED 98.7 98.8 98.6 98.7 98.7 98.8 98.6 98.7

NoDefense 5.70 23.6 8.60 18.0 19.7 39.6 10.0 22.2
Fashion CwMedian 79.4 80.8 78.4 79.6 79.7 80.8 77.7 78.3
MNIST TrimmedMean 84.9 86.2 85.9 86.6 84.2 86.0 83.2 84.3

ARFED 82.3 85.6 85.3 86.5 80.8 83.8 84.5 86.3

NoDefense 8.9 11.4 8.2 11.5 7.9 10.3 8.7 13.4
CIFAR10 CwMedian 57.7 59.0 71.8 72.0 62.0 62.3 58.0 61.2

TrimmedMean 76.4 76.5 76.3 76.4 76.6 76.6 75.5 75.6
ARFED 77.6 77.6 77.5 77.6 75.2 75.3 77.2 77.2

Table 8
Accuracies under partial knowledge attacks at different at-
tacker ratios in IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 59.0 87.1 11.2 12.6 95.2 95.4 94.6 94.8

MNIST CwMedian 96.1 96.2 94.1 94.4 96.9 97.0 96.6 96.6
2NN TrimmedMean 95.1 95.2 88.3 94.7 96.7 96.8 95.9 96.0

ARFED 97.4 97.5 97.5 97.5 97.4 97.5 97.5 97.5

NoDefense 98.1 98.2 86.9 90.7 97.9 98.0 97.3 97.4
MNIST CwMedian 98.4 98.4 96.7 96.8 98.8 98.9 98.7 98.7
CNN TrimmedMean 97.6 97.7 96.5 97.7 98.5 98.5 98.1 98.1

ARFED 98.9 99.0 98.9 98.9 98.9 99.0 98.9 98.9

NoDefense 84.4 84.8 73.1 74.7 88.8 89.1 84.7 85.0
Fashion CwMedian 88.9 89.0 85.9 86.0 89.7 89.8 89.2 89.3
MNIST TrimmedMean 88.0 88.2 84.4 84.7 89.7 89.9 88.8 89.0

ARFED 90.4 90.5 90.1 90.2 90.2 90.3 90.3 90.4

NoDefense 68.3 68.4 50.4 50.5 74.1 74.1 66.2 66.3
CIFAR10 CwMedian 72.6 72.6 65.7 65.8 73.8 73.9 71.7 71.8

TrimmedMean 71.2 71.3 62.4 62.5 74.0 74.1 70.3 70.4
ARFED 78.2 78.3 76.9 77.0 77.4 77.4 78.5 78.5

6. Conclusion
This study proposes ARFED, an assumption-free attack-

resistant federated averaging algorithm based on outlier
elimination, and conducts comprehensive experiments in
various FL settings. These experiments reveal that Byzantine
attacks and partial knowledge attacks are dramatically more
severe than label flipping attacks. Moreover, attacks in the
Non-IID cases are more effective than IID cases and orga-
nized attackers can severely compromise the performance of
the main model more compared to independent attackers.

Although CwMedian, TrimmedMean, and ARFED tol-
erate performance loss in the presence of attacks in IID
cases, the CwMedian performs poorly in Non-IID cases;
it may even perform worse than the vanilla FedAvg. For
Non-IID cases, ARFED shows better performance recov-
ery than CwMedian in all attack types. Moreover, ARFED
outperforms TrimmedMean in label flipping attacks and
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Figure 4: Accuracy curves of different strategies for MNIST-
2NN under Byzantine attacks at different attacker ratios.

partial knowledge attacks, but they get similar results in
Byzantine attacks. The likely reason for this is that the
parameter updates sent by malicious participants are extreme
and lie in the distribution’s tails for Byzantine attacks. In this
way, TrimmedMean can detect poisoned parameter updates
more easily. On the other hand, in label flipping attacks and
partial knowledge attacks, changes in parameter updates are
more likely to be moderate; therefore, the TrimmedMean
cannot provide the same performance. Moreover, it is also
worth keeping in mind that TrimmedMean needs informa-
tion about the malicious participant ratio in the system, while
ARFED does not make such an assumption.
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Table 9
Accuracies under partial knowledge attacks at different at-
tacker ratios in Non-IID settings. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 50.9 60.7 13.2 16.9 87.5 92.3 85.2 90.7

MNIST CwMedian 62.6 67.2 21.1 35.2 78.4 84.6 63.3 78.8
2NN TrimmedMean 77.1 81.5 32.0 38.0 94.1 94.7 91.0 91.8

ARFED 96.1 96.3 95.9 96.2 96.1 96.3 95.9 96.2

NoDefense 51.8 58.8 16.5 24.7 97.6 97.9 91.2 97.1
MNIST CwMedian 80.4 87.9 38.1 39.1 96.5 96.8 95.6 96.0
CNN TrimmedMean 88.0 88.7 27.0 43.6 98.3 98.4 97.3 97.6

ARFED 98.8 98.9 98.7 98.8 98.8 99.0 98.6 98.7

NoDefense 42.0 51.4 9.3 21.9 79.3 83.5 75.5 80.6
Fashion CwMedian 53.6 54.6 26.8 28.0 74.8 75.8 66.4 68.0
MNIST TrimmedMean 54.4 58.0 38.6 51.3 81.6 83.5 79.8 81.2

ARFED 82.0 82.8 85.6 87.5 79.6 84.5 86.0 87.3

NoDefense 52.7 52.9 30.9 31.7 72.0 72.0 65.5 65.6
CIFAR10 CwMedian 53.0 53.3 38.6 38.8 61.7 62.1 45.8 46.3

TrimmedMean 68.4 68.5 46.7 46.8 72.5 72.6 66.0 66.0
ARFED 77.8 77.8 77.3 77.3 77.8 77.9 76.4 76.5

We put forward experimental evidence to show that
ARFED removes performance loss even under organized
attacks and in Non-IID cases. There are many attack-robust
aggregation methods and mechanisms for FL in the liter-
ature, but they mainly focused on ensuring convergence
under some assumptions such as data distribution, knowl-
edge of malicious participant ratio, and update similarity
of participants. Our work highlights the shortfall in current
theoretical convergence guaranteed methods and presents a
broader research goal to create aggregation mechanisms that
work in harmony with Non-IID data, which is one of the key
properties of FL.

Our method is mainly based on outlier elimination which
may tolerate up to a certain number of malicious participants
in the system. As the ratio of attackers increases in the FL
setting, they will have a high impact on the distribution of
distances. Distance distributions also depend on some other
parameters, such as the severity of the Non-IID data and
coordination of attackers; therefore, to what extent ARFED
can handle malicious participants is beyond the scope of this
study and reserved as future work.

Moreover, ARFED allows a participant to be included
aggregation step of the FL round if the participant is reliable
at all layers with 𝑎𝑛𝑑(∧) operation. The effect of losing
participants on different layers will be examined for the more
complex model architectures as future work.

Besides, MNIST, Fashion-MNIST, and CIFAR10 datasets
were used in this study because they are widely used in
federated learning and defense mechanism studies similar
to the one we propose. However, the performance of our
proposed method could be evaluated on different datasets in
the future.

A. Appendix
A.1. Model Architectures

The model architectures used for each datasets are shown
in Table 10 (MNIST-2NN [10]), Table 11 (MNIST-CNN
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Figure 5: Accuracy curves of different strategies for MNIST-
2NN under partial knowledge attacks at different attacker
ratios.

[10]), Table 13 (CIFAR10 [19]) and Table 12 (Fashion-
MNIST). All activation functions for all models are ReLU.

The FL setting parameters used for each dataset are
shown in Table 14. Learning rate scheduling and clipping
were not applied to MNIST and Fashion-MNIST, therefore
related parameters are set as N/A (Not Applicable).
A.2. Machine Configuration and Used Platforms

Tesla P100-PCIE-16GB, Tesla V100-SXM2-16GB, and
NVIDIA A100-SXM-80GB were used for the experiments.
According to the used data sets, the average running time of
an experiment on the A100 machine is as follows: 1 hour
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Table 10
Model architecture of MNIST-2NN.

Layer Size
Fully Connected (784, 200)
Fully Connected (200, 200)
Fully Connected (200, 10)

Table 11
Model architecture of MNIST-CNN.

Layer Size
Conv 32@5×5

Max Pooling 2×2
Conv 64@5×5

Max Pooling 2×2
Fully Connected (1024, 512)
Fully Connected (512, 10)

Table 12
Model architecture of Fashion-MNIST.

Layer Size
Conv 32@5×5, pad=2

Max Pooling 2×2
Conv 64@5×5, pad=2

Max Pooling 2×2
Fully Connected (3136, 500)
Fully Connected (500, 10)

Table 13
Model architecture of CIFAR10.

Layer Size
Conv 32@3×3, pad=1
Conv 32@3×3, pad=1

Max Pooling 2×2
Conv 64@3×3, pad=1
Conv 64@3×3, pad=1

Max Pooling 2×2
Conv 128@3×3, pad=1
Conv 128@3×3, pad=1

Max Pooling 2×2
Fully Connected (2048, 128)
Fully Connected (128, 10)

for MNIST-2NN, 1.4 hours for MNIST-CNN, 3.3 hours for
FASHION-MNIST, and 7.6 hours for CIFAR.

Due to the versatility of the experimental settings, us-
ing an off-the-shelf platform did not provide the necessary
flexibility; therefore, we chose to code ourselves. All imple-
mented methods and designed experiments can be seen via
https://github.com/eceisik/ARFED. The required packages
for the environment setup are also listed here.
A.3. Experiments

In order to evaluate the performance of ARFED, ex-
tensive experiments covering different scenarios such as
whether the attackers are organized, different types of at-
tacks, the effect of the data distribution, and malicious
participant ratio have been carried out on different datasets
with different model architectures.

Table 14
FL setting parameters used in experiments.
Parameters MNIST-2NN MNIST-CNN Fashion-MNIST CIFAR10
number of participant (n) 100 100 100 100
communication round (t) 200 200 200 500
number of label in each 2 2 2 5participant in IID setting
number of label in each 10 10 10 10participant in Non-IID setting
batch size 32 32 25 100
number of epoch 10 10 10 10
momentum 0.9 0.9 0.9 0.9
learning rate 0.01 0.01 0.002 0.0015
minimum learning rate (min_lr) N/A N/A N/A 0.000010
lr scheduler factor N/A N/A N/A 0.2
best threshold N/A N/A N/A 0.0001
clipping threshold N/A N/A N/A 10

The experimental results of
• the label flipping attacks are summarized for IID

setting in Table 4 and for Non-IID setting in Table 5
• the Byzantine attacks for IID setting in Table 6 and for

Non-IID setting in Table 7 and
• the partial knowledge attacks for IID setting in Table 8

and for Non-IID setting in Table 9
for each data set under Section 5. Due to the space limita-

tion and to improve the readability of this study, the figures
of the experiments of MNIST CNN, Fashion-MNIST, and
CIFAR10 are presented here.

The figures reveal that the experiments run for different
datasets and model architectures are in line with previous
findings and are valid for all data sets. For example, the
performance loss in Byzantine attacks is greatest, and par-
tial knowledge attacks cause more performance degradation
than label flipping attacks. When the data distributions of the
participants are Non-IID, the performance degrades more
compared to IID cases. As the ratio of malicious participants
increases, performance degrades more. Organized attackers
cause more performance degradation. The worst accuracy
score is recorded when the attackers are organized and the
data distribution of the participants is Non-IID.

ARFED could eliminate the harmful effects of all attack
types for both IID and non-IID cases and achieve accuracy
scores close to when all collaborators are trusted cases (no
attack case). On the other hand, CwMedian is not able to
handle the attacks in the Non-IID setting. CwMedian could
tolerate the performance degradation in only IID cases. For
non-IID cases, it could show only a slight improvement
or worsen the performance degradation. ARFED generally
performs better than TrimmedMean in label flipping attacks
and partial knowledge attacks, but they get similar scores
in Byzantine attacks. However, it is worth remembering
that TrimmedMean requires information of the malicious
collaborator ratio in the system, while ARFED does not
make such an assumption.
A.3.1. MNIST CNN Experiments

• Figure 6 presents the results of the experiments carried
out for label flipping attack
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• Figure 7 present the results of the experiments carried
out for byzantine attack and

• Figure 8 present the results of the experiments carried
out for adaptive partial knowledge attack

on MNIST dataset with CNN model architecture.
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Figure 6: Accuracy curves of different strategies for MNIST
CNN under label flipping attacks at different attacker ratios.
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Figure 7: Accuracy curves of different strategies for MNIST
CNN under Byzantine attacks at different attacker ratios.

A.3.2. Fashion-MNIST Experiments
• Figure 9 presents the results of the experiments carried

out for label flipping attack
• Figure 10 present the results of the experiments car-

ried out for byzantine attack and
• Figure 11 present the results of the experiments car-

ried out for adaptive partial knowledge attack
on Fashion-MNIST.
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Figure 8: Accuracy curves of different strategies for MNIST
CNN under adaptive partial knowledge attacks at different
attacker ratios.

A.3.3. CIFAR10 Experiments
• Figure 12 presents the results of the experiments car-

ried out for label flipping attack
• Figure 13 present the results of the experiments car-

ried out for byzantine attack and
• Figure 14 present the results of the experiments car-

ried out for adaptive partial knowledge attack
on CIFAR10.
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Figure 9: Accuracy curves of different strategies for Fashion-
MNIST under label flipping attacks at different attacker ratios.

A.3.4. Number of Reliable and Outlier Participants for
CIFAR10 Experiments

The working mechanism of ARFED decides which par-
ticipant is eligible to be included in the aggregation step
based on whether the parameters sent by the participant for
each layer of the model architecture are in the safe interval.
This all-or-nothing approach of ARFED may raise concerns
that too many participants may be discarded from the ag-
gregation step, and too much valuable information may be
lost through the layers. The model architecture used for the
CIFAR10 dataset has more layers than the architectures that
are used for other datasets. For this reason, the risk of losing
too many participants brought by the algorithm’s 𝑎𝑛𝑑(∧)
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Figure 10: Accuracy curves of different strategies for Fashion-
MNIST under Byzantine attacks at different attacker ratios.

operation is expected to be best observed in the CIFAR10
set.

Figure 15 illustrates the number of participants marked
as reliable and included aggregation step versus the number
of participants marked as outliers and discarded from ag-
gregation in label flipping attacks with different scenarios.
Figure 16 illustrates the number of participants marked as
reliable and included aggregation step versus the number
of participants marked as outliers and discarded from ag-
gregation in Byzantine attacks with different scenarios. The
number of discarded participants is in line with the malicious
participant ratio.
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Figure 11: Accuracy curves of different strategies for Fashion-
MNIST under adaptive partial knowledge attacks at different
attacker ratios.

A.4. Box Plot Factor Comparison
Different factor values were tested to show the perfor-

mance impact of how strict the algorithm is in labeling a
participant as reliable. For this reason, different factor values
were applied when determining the lower distance threshold
(𝑚𝑖𝑛_𝑑𝑡𝑙 ) and upper distance threshold (𝑚𝑎𝑥_𝑑𝑡𝑙 ) in Lines 19-
20 of the Algorithm 1.

Table 15 and Figure 17 present the results of the partial
knowledge attack scenarios when the participants’ data are
IID. Table 16 and Figure 18 show the results of the partial
knowledge attack scenarios when the participants’ data are
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Figure 12: Accuracy curves of different strategies for CIFAR10
under label flipping attacks at different attacker ratios.

non-IID. These graphs show no significant difference be-
tween different factor values, i.e., 0, 1, 1.5, and 2, especially
in the IID setting. However, in the non-IID setting, although
f=0 achieves performance like others, the accuracy graph
has oscillations that can signal a convergence problem. One
possible reason might be that the data was non-IID, and
the algorithm could not obtain a good enough sample space
by eliminating too many participants from the main model
aggregation step.
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Figure 13: Accuracy curves of different strategies for CIFAR10
under Byzantine attacks at different attacker ratios.

Table 15
Accuracy scores obtained on test set under partial knowledge
attacks with different malicious participant ratios in the IID
setting. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 60.4 87.6 11.3 12.8 96.4 96.5 94.8 95.0
CwMedian 97.4 97.5 94.7 94.8 98.2 98.2 97.5 97.5

TrimmedMean 96.4 96.5 89.0 94.9 98.3 98.3 97.1 97.1
ARFED f1.5 99.0 99.0 98.9 98.9 99.0 99.0 98.9 98.9
ARFED f0 98.7 98.7 98.8 98.8 98.7 98.7 98.8 98.8
ARFED f1 98.9 99.0 98.9 98.9 98.9 99.0 98.9 98.9
ARFED f2 99.0 99.0 98.9 98.9 99.0 99.0 98.9 98.9
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Figure 14: Accuracy curves of different strategies for CIFAR10
under adaptive partial knowledge attacks at different attacker
ratios.

Table 16
Accuracy scores obtained on test set under partial knowledge
attacks with different malicious participant ratios in the Non-
IID setting. The best results are bold.

Organized Independent
m=10% m=20% m=10% m=20%

min max min max min max min max
NoDefense 51.1 60.4 13.2 16.7 88.5 92.9 85.6 91.0
CwMedian 62.8 67.0 21.8 35.6 78.4 84.8 63.6 79.6

TrimmedMean 77.2 81.9 31.6 38.4 94.8 95.4 91.5 92.7
ARFED f1.5 97.1 97.2 96.8 96.9 97.1 97.2 96.8 96.9
ARFED f0 96.4 97.2 96.2 97.3 96.4 97.2 96.2 97.3
ARFED f1 97.0 97.1 96.6 96.9 97.0 97.1 96.6 96.9
ARFED f2 97.1 97.2 96.8 96.9 97.1 97.2 96.8 96.9
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Figure 15: Number of participants marked as reliable and
outlier in CIFAR10 label flipping attacks.
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Figure 16: Number of participants marked as reliable and
outlier in CIFAR10 Byzantine attacks.
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Figure 17: Box plot factor comparison on accuracy for IID
cases
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Figure 18: Box plot factor comparison on accuracy for non-IID
cases
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