
Exact exponential-time algorithms for finding bicliques

Daniel Binkele-Raiblea, Henning Fernaua, Serge Gaspersb, Mathieu Liedloffc,∗

aUniversität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany
bCMM, Universidad de Chile, Av. Blanco Encalada 2120, Santiago de Chile

cLIFO, Université d’Orléans, 45067 Orléans Cedex 2, France

Abstract

Due to a large number of applications, bicliques of graphs have been widely considered in
the literature. This paper focuses on non-induced bicliques. Given a graph G = (V,E)
on n vertices, a pair (X,Y), with X,Y ⊆ V , X ∩ Y = ∅, is a non-induced biclique if
{x, y} ∈ E for any x ∈ X and y ∈ Y . The NP-complete problem of finding a non-induced
(k1, k2)-biclique asks to decide whether G contains a non-induced biclique (X,Y) such
that |X| = k1 and |Y | = k2. In this paper, we design a polynomial-space O(1.6914n)-
time algorithm for this problem. It is based on an algorithm for bipartite graphs that
runs in time O(1.30052n). In deriving this algorithm, we also exhibit a relation to the
spare allocation problem known from memory chip fabrication.

Key words: exact exponential-time algorithms, NP-hard problem, complete bipartite
subgraphs

1. Introduction

Throughout the paper all graphs G = (V,E) are undirected and simple. An induced
biclique of G is a complete bipartite induced subgraph of G. A non-induced biclique
is a complete bipartite (not necessarily induced) subgraph of G. Equivalently, the pair
(X,Y) of disjoint vertex subsets X ⊆ V and Y ⊆ V is a non-induced biclique of G if
{x, y} ∈ E for all x ∈ X and y ∈ Y . If, additionally, X and Y are independent sets, then
(X,Y) is an induced biclique of G. Notice that, if G is a bipartite graph, then every
non-induced biclique of G is also an induced one. Let the pair (X,Y) be an induced or
non-induced biclique of G. Then we call it a (k1, k2) biclique if |X| = k1 and |Y | = k2.
Its cardinality is |X|+ |Y |.

The literature dealing with bicliques is rich and diverse. There are applications of
bicliques (induced or non-induced on general or bipartite graphs) in various different areas
such as data mining, automata and language theory, artificial intelligence and biology;
see for example [1]. Therefore, bicliques and algorithmic problems about bicliques have
been studied extensively.

∗Corresponding author
Email addresses: raible@informatik.uni-trier.de (Daniel Binkele-Raible),

fernau@uni-trier.de (Henning Fernau), sgaspers@dim.uchile.cl (Serge Gaspers),
liedloff@univ-orleans.fr (Mathieu Liedloff)

Preprint submitted to Elsevier August 24, 2010

Known results. Already in [8], the complexity of finding certain bicliques has been
considered. For example, deciding whether a bipartite graph has a (k, k) biclique, also
known as a balanced biclique of size (at least) k, is NP-complete ([GT24] in [8]). A
maximum cardinality induced biclique can be computed in polynomial time on bipartite
graphs [3], whereas this problem is NP-complete for general graphs [15]. A related
problem that asks to compute a non-induced biclique with a maximum number of edges
is also known to be NP-hard [14]. Studies on the approximability of these problems are
presented in [11].

The above-mentioned NP-completeness of the balanced biclique problem on bipartite
graphs implies the NP-completeness of the following three problems about the existence
of induced and non-induced bicliques, respectively.

Induced (k1,k2) Biclique
Input: An undirected graph G, positive integers k1 and k2.
Question: Does G have an induced (k1, k2) biclique?

Non-Induced (k1,k2) Biclique
Input: An undirected graph G, positive integers k1 and k2.
Question: Does G have a non-induced (k1, k2) biclique?

Bipartite (k1,k2) Biclique
Input: An undirected bipartite graph G, positive integers k1 and k2.
Question: Does G have a (k1, k2) biclique?

Observe that any biclique in a bipartite graph as defined in the last problem definition
is induced.

There is a trivial O∗(3n) algorithm for finding and also for enumerating all induced
and non-induced (k1, k2) bicliques of a graph, respectively.1 It considers all partitions of
the vertex set into X, Y and V \ (X ∪ Y) and verifies for each whether (X,Y) fulfills all
conditions.

Our results. For enumerating all non-induced (k1, k2) bicliques, note that there is no
hope in obtaining a faster algorithm than the above-described O∗(3n) algorithm, as a
complete graph on n vertices has Θ∗(3n) non-induced (bn/3c, bn/3c) bicliques. For solv-
ing the Non-Induced (k1,k2) Biclique problem, however, we give a polynomial-space
O(1.6914n) time algorithm, based on a polynomial-space O(1.30052n) time algorithm for
Bipartite (k1,k2) Biclique. That algorithm in turn employs a relation to a specific
application, namely to Spare Allocation, which is inspired by memory chip fabrication.
This relation may be interesting on its own.

Observe that there is also anO∗(3n/3) = O(1.4423n) time algorithm to solve Induced
(k1,k2) Biclique. This algorithm is based on enumerating all maximal induced bicliques
of the graph with a polynomial delay algorithm [5] and on the fact that an n-vertex graph
has O∗(3n/3) maximal induced bicliques [10].

In this note we improve on algorithms presented in [6], where the following results were
presented: (1) a polynomial-space O(1.8899n) time algorithm and (2) an exponential-
space O(1.8458n) time algorithm for solving the Non-Induced (k1,k2) Biclique prob-
lem. Our new results make use of connections to a problem called Constraint Bipartite

1Throughout the paper we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some polynomial p(n).

2

Vertex Cover for which a sophisticated branching algorithm was described in [2, 7] that
has been analyzed from the viewpoint of parameterized complexity.

2. Finding bicliques in bipartite graphs

As we will exhibit, the Bipartite (k1,k2) Biclique problem is closely related to
the following problem that comes up (with certain variants till today) in the fabrication
process of memory elements.

An instance of Spare Allocation (SAP) is given by a n1 × n2 binary matrix A
representing an erroneous chip with A[r, c] = 1 if and only if the chip is faulty at position
[r, c], and the parameter(s), positive integers k1 and k2. The task is: Is there a recon-
figuration strategy that repairs all faults and uses at most k1 spare rows and at most k2
spare columns?

With reconfiguration strategy, we mean a prescription which rows and columns from
A have to be replaced by spares. Kuo and Fuchs [12] provide a fundamental study of
that problem. A review on the according literature is given in [2]. Put concisely, the
“most widely used approach to reconfigurable VLSI” uses spare rows and columns to
tolerate failures in rectangular arrays of identical computational elements, which may be
as simple as memory cells or as complex as processor units. If a faulty cell is detected,
the entire row or column is replaced by a spare one.

The following graph-theoretic problem can easily be seen to be equivalent to the
previous problem via the adjacency matrix of a bipartite graph:

An instance of Constraint Bipartite Vertex Cover (CBVC) is given by a bipar-
tite graph G = (V1, V2, E), and the parameter(s), positive integers k1 and k2. The task
is: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ Vi| ≤ ki for i = 1, 2?

It is known [7] that CBVC admits a quadratic problem kernel and a search tree
algorithm with running time 1.3999knO(1), where k = k1 + k2.

Let us call a valid solution of a CBVC instance a (k1, k2) vertex cover.
Parameterized duality is usually defined by reparameterizing, say a vertex-selection

problem on graphs, by considering n − k instead of k as the parameter, where n is
the number of vertices in the graph and k is the solution size. For example, thanks
to Gallai’s identity, the parameterized dual of Vertex Cover is Independent Set.
For vertex-selection problems on bipartite graphs, where we face two parameters k1, k2
corresponding to the number of vertices in each part of the vertex bipartition (V1, V2)
that are in the solution, it is natural to consider the reparameterization given by (n1 −
k1, n2 − k2), where ni = |Vi|, as the dual parameterization. Considering k = k1 + k2 and
n = n1 + n2, one can see that this definition corresponds to the widely used notion of
parameterized duality for one-parametric problems.

The bipartite complement of a bipartite graph G = (V1, V2, E) is the bipartite graph
GC = (V1, V2, E

C), where EC contains all edges between V1-vertices and V2-vertices that
are not contained in E.

The following lemma formalizes that Spare Allocation can be solved in ck1+k2nO(1)

time if and only if the parameterized dual of Bipartite (k1,k2) Biclique can be solved
in ck1+k2nO(1) time.

Lemma 1. The Spare Allocation problem is polynomially equivalent to the parame-
terized dual of Bipartite (k1,k2) Biclique.

3

Proof. As noticed above, we can consider a CBVC instance to start with, that is, a
bipartite graph G = (V1, V2, E), together with parameters k1, k2. The parameterized
dual asks to find an independent set I1 ∪ I2 in G with Ii ⊆ Vi and |Ii| ≥ k′i = |Vi| − ki.
Now, C1 ∪ C2 is a (k1, k2) vertex cover of G if and only if (V1 \ C1) ∪ (V2 \ C2) is an
independent set in G with |V1| − k1 vertices in V1 and |V2| − k2 vertices in V2 if and only
if (V1 \C1)∪ (V2 \C2) is a (|V1|−k1, |V2|−k2) biclique of the bipartite complement of G.

�

Clearly, the “trivial barrier” for moderately exponential-time algorithms for CBVC is
O∗(2n/2) rather than O∗(2n), since it is enough to consider all subsets of the smaller set
of V1 and V2. Our result is the first exact algorithm for Constraint Bipartite Vertex
Cover that breaks the trivial Θ∗(2n/2)-barrier.

Theorem 2. Constraint Bipartite Vertex Cover and Bipartite (k1,k2) Biclique
can be solved in time O(1.30052n), using polynomial space.

Proof. Let G = (V1, V2, E) be an instance for Bipartite (k1,k2) Biclique. Let n1 =
|V1|, n2 = |V2|, and α := 0.2189. We will consider two algorithmic possibilities depending
on k1 + k2.

1. First, suppose k1 + k2 ≥ αn. According to Lemma 1 the problem of finding a
(k1, k2) biclique is equivalent to finding a (k′1, k

′
2) vertex cover in the bipartite

complement with k′1 = n1−k1 and k′2 = n2−k2. The algorithm in [7] solves CBVC
in time O(1.3999k

′
1+k

′
2) = O(1.3999n−(k1+k2)). As k1 + k2 ≥ αn the running time

is O(1.3999(1−α)n) = O(1.30052n).

2. Now, suppose k1 + k2 < αn. Depending on the values of k1, k2, n1, and n2, the
algorithm either enumerates all subsets V ′1 ⊆ V1 of size k1 and checks whether
|
⋂
v∈V ′

1
N(v)| ≥ k2 holds, or it enumerates all subsets V ′2 ⊆ V2 of size k2 and checks

whether |
⋂
v∈V ′

2
N(v)| ≥ k1 holds. If this is the case we clearly have found a (k1, k2)

biclique. This step can be done in time O∗
(

min
{(

n1

k1

)
;
(
n2

k2

)})
. By Vandermonde’s

identity, we have that for any x, y, z ∈ N,
(
x+y
z

)
=
∑z
i=0

(
x
i

)(
y
z−i
)
. In particular,(

n
k

)
=
(
n1+n2

k1+k2

)
≥
(
n1

k1

)
·
(
n2

k2

)
. Thus, min

{(
n1

k1

)
;
(
n2

k2

)}
≤
√(

n
k

)
and the running time

of this step is upper bounded by O∗
((

n/2
αn/2

))
= O(1.30052n).

This shows that Bipartite (k1,k2) Biclique can be solved in O∗(1.30052n) time. By
Lemma 1, Constraint Bipartite Vertex Cover can also be solved in O∗(1.30052n)
time. �

Corollary 3. Non-Induced (k1,k2) Biclique can be solved in time O(1.6914n), using
polynomial space.

Proof. Given a graph G = (V,E), construct a bipartite graph G′ = (V, V ′, E′) with
U ′ = {v′ | v ∈ U} for U ⊆ V and {u, v′} ∈ E′ iff {u, v} ∈ E. Observe that (X,Y) is
a non-induced (k1, k2) biclique in G if and only if (X,Y ′) is a bipartite (k1, k2) biclique
in G′. Now apply the preceding theorem to obtain a running time of O(1.300522n) =
O(1.6914n). �

4

3. Conclusions

We already mentioned that CBVC, the parameterized dual of Non-induced (k1,k2)
Biclique, is in FPT. It is a natural question to ask whether Non-induced (k1,k2)
Biclique is in FPT as well. The proof of Kuo and Fuchs [12] (showing the NP-hardness
of CBVC) is not parameter-preserving and hence does not answer this question. The only
thing that can be (relatively easily) seen is membership in W[1]. As already mentioned
in [4, 9, 13], this poses an interesting open problem in parameterized complexity, even
when restricted to bipartite graphs as in our sketched application and even when k1 = k2.
We finally mention that the experiments with an implementation of CBVC described in
[2] show that the approach described in this paper might be feasible for many practical
situations.

References

[1] J. Amilhastre, M.-C. Vilarem, and P. Janssen. Complexity of minimum biclique cover and minimum
biclique decomposition for bipartite domino-free graphs. Discrete Applied Mathematics, 86:125–144,
1998.

[2] G. Bai and H. Fernau. Constraint bipartite vertex cover: Simpler exact algorithms and implemen-
tations. In F. P. Preparata, X. Wu, and J. Yin, editors, Frontiers in Algorithmics FAW, volume
5059 of LNCS, pages 67–78. Springer, 2008.

[3] M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. Tayur. On bipartite and multipartite
clique problems. Journal of Algorithms, 41:388–403, 2001.

[4] E. Demaine, G. Z. Gutin, D. Marx, and U. Stege. 07281 Open problems. In Structure Theory
and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, number 07281 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2007. IBFI.

[5] V. M. Dias, C. M. de Figueiredo, and J. L. Szwarcfiter. Generating bicliques of a graph in lexico-
graphic order. Theoretical Computer Science, 337(1-3):240–248, 2005.

[6] H. Fernau, S. Gaspers, D. Kratsch, M. Liedloff, and D. Raible. Exact exponential-time algorithms
for finding bicliques in a graph. In S. Cafieri, A. Mucherino, G. Nannicini, F. Tarissan, and L. Liberti,
editors, Cologne-Twente Workshop on Graphs and Combinatorial Optimization CTW, pages 205–
209, 2009.

[7] H. Fernau and R. Niedermeier. An efficient exact algorithm for constraint bipartite vertex cover.
Journal of Algorithms, 38(2):374–410, 2001.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[9] S. Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. PhD thesis, De-
partment of Informatics, University of Bergen, 2008.

[10] S. Gaspers, D. Kratsch, and M. Liedloff. On independent sets and bicliques in graphs. In
H. Broersma, T. Erlebach, T. Friedetzky, and D. Paulusma, editors, Graph-Theoretic Concepts
in Computer Science WG, volume 5344 of LNCS, pages 171–182, 2008.

[11] D. Hochbaum. Approximating clique and biclique problems. Journal of Algorithms, 29:174–200,
1998.

[12] S.-Y. Kuo and W. K. Fuchs. Efficient spare allocation for reconfigurable arrays. IEEE Design and
Test, 4:24–31, Feb. 1987.

[13] D. Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD thesis, Depart-
ment of Informatics, University of Bergen, 2009.

[14] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics,
131:651–654, 2003.

[15] M. Yannakakis. Node and edge-deletion NP-complete problems. In Proc. 10th Annual ACM Sym-
posium on Theory of Computing STOC, pages 253–264, 1978.

5

