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A MESHFREE ARBITRARY LAGRANGIAN-EULERIAN METHOD
FOR THE BGK MODEL OF THE BOLTZMANN EQUATION WITH

MOVING BOUNDARIES

S. TIWARI ∗, A. KLAR ∗† AND G. RUSSO ‡

In this paper we present a novel technique for the simulation of moving bound-
aries and moving rigid bodies immersed in a rarefied gas using an Eulerian-Lagrangian
formulation based on least square method. The rarefied gas is simulated by solving
the Bhatnagar-Gross-Krook (BGK) model for the Boltzmann equation of rarefied gas
dynamics. The BGK model is solved by an Arbitrary Lagrangian-Eulerian (ALE)
method, where grid-points/particles are moved with the mean velocity of the gas.
The computational domain for the rarefied gas changes with time due to the motion
of the boundaries. To allow a simpler handling of the interface motion we have used
a meshfree method based on a least-square approximation for the reconstruction pro-
cedures required for the scheme. We have considered a one way, as well as a two-way
coupling of boundaries/rigid bodies and gas flow. The numerical results are compared
with analytical as well as with Direct Simulation Monte Carlo (DSMC) solutions of
the Boltzmann equation. Convergence studies are performed for one-dimensional and
two-dimensional test-cases. Several further test problems and applications illustrate
the versatility of the approach. Abstract.
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method, semi-implicit method, least squares method, gas rigid body interactions

1. Introduction. In recent years moving boundary problems for rarefied gas
dynamics have been extensively investigated in the connection with Micro-Electro-
Mechanical-Systems (MEMS), see [5, 12, 13, 16, 19, 23, 27, 28, 33, 29, 30]. In micro
scale geometries the mean free path is often of the order or larger than the character-
istic length of the geometry, even at standard condition of temperature and pressure,
thus requiring the physical system to be described by kinetic equations. Usually, these
flows have low Mach numbers, therefore, stochastic methods like DSMC are not the
optimal choice, since statistical noise dominates the flow quantities. Moreover, when
one considers moving rigid body, the gas domain will change in time and one has to
encounter unsteady flow problems, so that averages over long runs cannot be taken.
Instead, one has to perform many independent runs in order to get smooth solutions.
Although some attempts have been made to reduce the statistical noise of DSMC
type methods, see, for example, [11], or to adopt efficient solvers for the Boltzmann
equation, such as those based on the Fourier-spectral method (see for example the
review paper [14]), many works rather employ deterministic approaches for simplified
models of the Boltzmann equation, like the Bhatnagar-Gross-Krook (BGK) model,
see [12, 23, 29, 34, 35]. In the above mentioned works either Finite-Difference schemes
or Semi-Lagrangian methods are used to solve the moving boundary problems, see
[12] for an overview of methods used for the BGK equation. Since the rigid body
moves in time, classical interpolation procedures near the rigid body become com-
plicated and possibly inaccurate because of the arbitrary intersection of cells by the
rigid body. Thus, a Cartesian cut cell method has been introduced in [13] to handle
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the moving object in the rarefied gas. A different technique has been used in [10],
where the authors have used ghost point methods in a finite difference framework to
treat moving boundaries. For immersed boundary type approaches applied to kinetic
equations to simulate the fluid-rigid body interactions see [3, 12, 35].

In the present paper we use a deterministic Arbitrary Lagrangian-Eulerian ap-
proach for the BGK model. First and second order versions of the scheme and as-
sociated upwinding procedure are described and numerically tested. This approach,
based on moving grid points, is simple, well suited and very efficient for the treatment
of problems with moving boundaries. While the interior grid points are moved with
the mean velocity of the gas, the moving boundaries are as well approximated by a
discrete set of boundary points moving with the boundaries. This leads to a very
flexible scheme also suited for complicated geometries and flows.

The paper is organised as follows. In section 2 we present the BGK model for the
Boltzmann equation, the Newton-Euler equations for rigid body motions and the Chu
reduction procedure. In section 3 we introduce the numerical scheme for the BGK
model, in particular the spatial and temporal discretization with first and second
order accuracy. Section 4 illustrates various numerical results in one and two space
dimensions including a convergence study in 1D and 2D and comparisons with DSMC
results. Finally, in section 5 some conclusions and an outlook are presented.

2. The BGK model for rarefied gas dynamics. We consider the BGK model
of the Boltzmann equation for rarefied gas dynamics, where the collision term is mod-
eled by a relaxation of the distribution function f(t, x, v) to the Maxwellian equilib-
rium distribution. The evolution equation for the distribution function f(t, x, v) is
given by the following initial boundary value problem

∂f

∂t
+ v · ∇xf =

1

τ
(M − f) (2.1)

with t ≥ 0, x ∈ Ω ⊂ R
dx , (dx = 1, 2, 3), v ∈ R

dv , (dv = 1, 2, 3) and initial condition
f(0, x, v) = f0(x, v). Additionally, suitable boundary conditions are described, see
the next section. Here τ is the relaxation time, which may depend on local density
and temperature, and M is the local Maxwellian given by

M =
ρ

(2πRT )dv/2
exp

( |v − U |2
2RT

)

, (2.2)

where the parameters ρ(x, t) ∈ R, U(x, t) ∈ R
dv , T (x, t) ∈ R are the macroscopic

quantities mass density, mean velocity and temperature, respectively. R is the uni-
versal gas constant divided by the molecular mass of the gas. ρ, U, T are computed
from f as follows. Let the moments of f be defined by

(ρ, ρU,E) =

∫

R3

φ(v)f(t, x, v)dv. (2.3)

where φ(v) =
(

1, v, |v|
2

2

)

denotes the vector of collision invariants. E is the total

energy density which is related to the temperature through the internal energy

e(t, x) =
3

2
RT, ρe = E − 1

2
ρ|U |2. (2.4)

The relaxation time τ = τ(x, t) and the mean free path λ are related according to [9]

τ =
4λ

πC̄
, (2.5)
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where C̄ =
√

8RT/π and the mean free path λ is given by

λ =
kB√

2πρRd2
, (2.6)

where kB is the Boltzmann constant and d is the diameter of the gas molecules.

2.1. Newton-Euler equations for rigid body motion. The motion of a rigid
body S ⊂ R

dx is given by the Newton-Euler equations, compare [34],

M
dV

dt
= F , [I] · dω

dt
+ ω × ([I]·ω) = T , (2.7)

where M is the total mass of the body with center of mass Xc, V is the velocity of the
center of mass Xc and ω is the angular velocity of the rigid body. F is the translation
force, T is the torque and [I] is the moment of inertia. The center of mass of the rigid
body is obtained by

dXc

dt
= V. (2.8)

Finally, the velocity of a point on the surface of the rigid body is given by Uw =
V + ω × (x −Xc), x ∈ ∂S.

The force F and torque T , that the gas exerts on the rigid body, are computed
according to

F =

∫

∂S

(−ϕ · ns)dA, T =

∫

∂S

(x−Xc)× (−ϕ · ns)dA, (2.9)

where ϕ ∈ R
dx×dx is the stress tensor and is given by

ϕ =

∫

R3

(v − Uw)⊗ (v − Uw)f(t, x, v)dv. (2.10)

2.2. Chu-reduction. In one and two physical space dimensions dx = 1, 2 one
might consider mathematically a one or two dimensional velocity space dv = 1, 2,
respectively. However, it is physically correct to consider in these situations still
three velocity dimensions. To resolve the three-dimensional velocity space numerically
requires unnecessary memory and computational time. In these cases, for the BGK
model, the 3D velocity space can be reduced as suggested by Chu [6]. This reduction
yields a considerable savings in memory allocation and computational time. For
example, in a physically one-dimensional situation, in which all variables depend on
x ∈ R and t (slab geometry), the velocity space is reduced from three dimensions
to one dimension defining the following reduced distributions [18]. Considering v =
(v1, v2, v3) ∈ R

3 we define

g1(t, x, v1) =

∫

R2

f(t, x, v1, v2, v3)dv2dv3, g2(t, x, v1) =

∫

R2

(v22+v23)f(t, x, v1, v2, v3)dv2dv3.

(2.11)
Multiplying (2.1) by 1 and v22 + v22 and integrating with respect to (v2, v3) ∈ R

2, we
obtain the following system of two equations

∂g1
∂t

+ v
∂g1
∂x

=
1

τ
(G1 − g1),

∂g2
∂t

+ v
∂g2
∂x

=
1

τ
(G2 − g2), (2.12)
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where we denoted v1 by v, and

G1 =

∫

R2

Mdv2dv3 =
ρ√
2RT

exp

(

− (v − U)2

2RT

)

, G2 =

∫

R2

(v22+v23)Mdv2dv3 = (2RT )G1.

(2.13)
Assuming the initial condition is a local equilibrium, the initial distributions are
defined via the parameters (ρ0, U0, T0) ∈ R

3 and are given as

g1(0, x, v) =
ρ0√
2RT0

exp

(

− (v − U0)
2

2RT0

)

, g2(0, x, v) = (2RT0)g1(0, x, v).(2.14)

The macroscopic quantities are given through the reduced distributions as

ρ =

∫

R

g1dv, ρU =

∫

R

vg1dv, 3ρRT =

∫

R

(v − U)2g1dv +

∫

R

g2dv. (2.15)

Similarly, in two spatial dimensions x ∈ R
2, the reduction from a three dimen-

sional to a two dimensional velocity space is obtained by multiplying the BGK model
(2.1) by 1 and v23 and integrating wrt dv3 over R. The reduced equations are two-
dimensional versions of (2.12) with v = (v1, v2) ∈ R

2, but the reduced Maxwellians
G1 and G2 are given as

G1 =
ρ

2RT
exp

(

−|v − U |2
2RT

)

, G2 = (RT )G1 (2.16)

with U = (U1, U2) ∈ R
2. The distribution functions are

g1(t, x, v1, v2) =

∫

R

f(t, x, v1, v2, v3)dv3, g2(t, x, v1, v2) =

∫

R

v23f(t, x, v1, v2, v3)dv3.

3. Numerical schemes. We solve the original equation (2.1) and the reduced
system of equations (2.12) by the ALE method described below. We use a time
splitting, where the advection step is solved explicitly and the relaxation part is solved
implicitly. Using a discrete velocity approximation of the distribution function (see
Section 3.3) the information is stored on grid points in physical space moving with
the mean velocity U of the gas. The spatial derivatives of the distribution function
at an arbitrary particle position are approximated using values at the point-cloud
surrounding the particle and a weighted least squares method.

In the following. we present first and second order schemes in time as well as in
space.

3.1. ALE formulation. We consider original and reduced model.

3.1.1. ALE formulation for the original model. We rewrite the equations
(2.1) in Lagrangian form as

dx

dt
= U (3.1)

df

dt
= −(v − U) · ∇xf +

1

τ
(M − f) (3.2)

where d/dt = ∂/∂t+U ·∇x. The first equation describes motion with the macroscopic
mean velocity U of the gas determined by (2.15). The second equation includes the
remaining advection with the difference between microscopic and macroscopic velocity.

4



3.1.2. ALE for reduced model. In this case the equations (2.11) are reformu-
lated in Lagrangian form as

dx

dt
= U (3.3)

dg1
dt

= −(v − U) · ∇xg1 +
1

τ
(G1 − g1) (3.4)

dg2
dt

= −(v − U) · ∇xg2 +
1

τ
(G2 − g2). (3.5)

3.2. Time discretization.

3.2.1. First order time splitting scheme for the original model. Time is
discretized as tn = n∆t, n = 0, 1, · · · , Nt. We denote the numerical approximation of
f at tn by fn = f(tn, x, v). We use a time splitting scheme for equation (3.2), where
the advection term is solved explicitly and the collision term is solved implicitly. In
the first step of the splitting scheme we obtain the intermediate distribution f̃n by
solving

f̃n = fn −∆t(v − Un) · ∇xf
n. (3.6)

In the second step we obtain the new distribution by solving

fn+1 = f̃n +
∆t

τ
(Mn+1 − fn+1) (3.7)

and the new positions of the grids are updated by

xn+1 = xn +∆tUn. (3.8)

In the first step, we have to approximate the spatial derivatives of f at every grid
point. This is described in the following section.

Following [17, 18, 37] we obtain fn+1 in the second step by first determining the
parameters ρn+1, Un+1 and T n+1 for Mn+1. Multiplying (3.7) by 1, v and (v − U)2

and integrating over velocity space, we get

ρn+1 =

∫

R

f̃ndv, (ρU)n+1 =

∫

R

vf̃ndv, 3ρRT n+1 =

∫

R3

|v − U |2f̃ndv (3.9)

where we have used the conservation of mass, momentum and energy of the original
BGK model.

Now, the parameters ρn+1, Un+1 and T n+1 of Mn+1 are given in terms of f̃ from
(3.9) . Hence the implicit step (3.7) can be explicitly solved as

fn+1 =
τ f̃n +∆tMn+1

τ +∆t
. (3.10)

3.2.2. Second order splitting scheme for the original model (ARS(2,2,2)).
For the second order splitting scheme we use the stiffly accurate ARS(2,2,2) scheme,
[4], and compare the results with a slightly simpler scheme ARS(2,2,1). The Butcher
tabueau of both schemes are reported below, in the usual form expressed in Table 3.1

For equation (3.1-3.2) this leads to

5



c A

b⊺

c̃ Ã

b̃⊺

Table 3.1: Classical form of the double Butcher tableau of an IMEX scheme: matrix
A and vectors b and c are relative to the implicit scheme, while Ã, b̃, c̃ denote the RK
coefficients of the implicit scheme.

0 0 0 0
β 0 β 0
1 0 1− β β

0 1− β β

0 0 0 0
β β 0 0
1 β − 1 2− β 0

β − 1 2− β 0

0 0 0 0
1/2 0 1/2 0
1 0 0 1

0 0 1

0 0 0 0
1/2 1/2 0 0
1 0 1 0

0 1 0

Table 3.2: Tableau of ARS(2,2,2) scheme (left) and of ARS(2,2,1) scheme (right).
β = 1− 1/

√
2.

Step 1:

xn+ 1

2 = xn + β∆tUn. (3.11)

f̃n+ 1

2 = fn − β∆t(v − Un) · ∇xf
n. (3.12)

The intermediate distributions fn+ 1

2 are then obtained by solving

fn+ 1

2 = f̃n+ 1

2 + β
∆t

τ
(Mn+ 1

2 − fn+ 1

2 )

or

fn+ 1

2 =
τ f̃n+ 1

2 + β∆tMn+ 1

2

τ + β∆t
. (3.13)

Step 2:

xn+1 = xn +∆t((β − 1)Un + (2− β)Un+ 1

2 ). (3.14)

f̃n+1 = fn − (2 − β)∆t(v − Un+ 1

2 ) · ∇xf
n+ 1

2 (3.15)

−(β − 1)∆t(v − Un) · ∇xf
n

+(1− β)
∆t

τ
(Mn+ 1

2 − fn+ 1

2 ).

The new distributions are obtained by solving

fn+1 = f̃n+1 + β
∆t

τ
(Mn+1 − fn+1).

or

fn+1 =
τ f̃n+1 + β∆tMn+1

τ + β∆t
. (3.16)
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with β = 1− 1/
√
2. We note that the implicit computations of Mn+ 1

2 and of Mn

are similar to the implicit computation of Mn+1 in the first order scheme as described
above.

3.2.3. Partial second order time splitting scheme for the original model
ARS(2,2,1)). For later use we also describe a simplified scheme with an explicit sec-
ond order solution of the advection equation and an implicit first order solution of the
collision term. For the second order scheme we use a two step Runge-Kutta scheme.
For equation (3.1-3.2) the scheme is given by
Step 1:

xn+ 1

2 = xn +
∆t

2
Un. (3.17)

f̃n+ 1

2 = fn − ∆t

2
(v − Un) · ∇xf

n. (3.18)

The intermediate distributions fn+ 1

2 are then obtained by solving

fn+ 1

2 = f̃n+ 1

2 +
1

2

∆t

τ
(Mn+ 1

2 − fn+ 1

2 )

i.e.

fn+ 1

2 =
2τ f̃n+ 1

2 +∆tMn+ 1

2

2τ +∆t
. (3.19)

Step 2:

xn+1 = xn +∆tUn+ 1

2 . (3.20)

f̃n+1 = fn −∆t(v − Un+ 1

2 ) · ∇xf
n+ 1

2 . (3.21)

The new distributions are obtained by solving

fn+1 = f̃n+1 +
∆t

τ
(Mn+1 − fn+1). (3.22)

or

fn+1 =
τ f̃n+1 +∆tMn+1

τ +∆t
. (3.23)

Remark 1. Note that this scheme is not the Midpoint rule, which is A-stable,

but not L-stable. It is not second order, but it is L-stable, therefore it can be adopted

with arbitrarily small values of the relaxation time τ . However, the scheme is simpler

and less costly than the ARS scheme and in the examples considered here, we obtain

numerically second order of convergence.

3.2.4. Time splitting scheme for the reduced model. We use again a time
splitting scheme. For the first order scheme with one-dimensional physical space
x ∈ R, we proceed as follows. In the first step we obtain the intermediate distributions
g̃n1 and g̃n2 by solving for v ∈ R and U ∈ R

g̃n1 = gn1 −∆t(v − Un)∂xg
n
1 g̃n2 = gn2 −∆t(v − Un)∂xg

n
2 .

7



In the second step we obtain the new distributions by solving

gn+1
1 = g̃n1 +

∆t

τ
(Gn+1

1 − gn+1
1 ) (3.24)

gn+1
2 = g̃n2 +

∆t

τ
(Gn+1

2 − gn+1
2 ) (3.25)

and the new positions of the grids are updated by

xn+1 = xn +∆tUn. (3.26)

For the second step we have to determine first the parameters ρn+1, Un+1 and
T n+1 for Gn+1

1 and Gn+1
2 . Multiplying (3.24) by 1 and v and integrating with respect

to v over R we get

ρn+1 =

∫

R

g̃n1 dv, (ρU)n+1 =

∫

R

vg̃n1 dv, (3.27)

where we have used the conservation of mass and momentum of the original BGK
model. In order to compute T n+1 we note that the following identity is valid

∫

R

(v − U)2(G1 − g1)dv +

∫

R

(G2 − g2)dv = 0. (3.28)

Multiplying the equation (3.24) by (v − U)2 and integrate with respect to v over
R we get
∫

R

(v − U)2gn+1
1 dv =

∫

R

(v − U)2g̃n1 dv +
∆t

τ

∫

R

(v − U)2(Gn+1
1 − gn+1

1 )dv. (3.29)

Next, integrate both sides of 3.25) with respect to v over R we get
∫

R

gn+1
2 dv =

∫

R

g̃n2 dv +
∆t

τ

∫

R

(Gn+1
2 − gn+1

2 )dv. (3.30)

Adding (3.29) and (3.30) and making use of the identity (3.28) we get

3ρn+1RT n+1 =

∫

R

(v − U)2g̃n1 dv +

∫

R

g̃n2 dv. (3.31)

Now, the parameters ρn+1, Un+1 and T n+1 of Gn+1
1 and Gn+1

2 are given in terms
of g̃n1 and g̃n2 from (3.27) and (3.31). Hence the implicit steps (3.24) and (3.25) can
be rewritten as

gn+1
1 =

τ g̃n1 +∆tGn+1
1

τ +∆t
(3.32)

gn+1
2 =

τ g̃n2 +∆tGn+1
2

τ +∆t
. (3.33)

The second order time splitting for the reduced model follows the lines of the
second order splitting procedure for the original model.

3.3. Velocity discretization. For the sake of simplicity we consider a one-
dimensional velocity domain. Consider Nv + 1 velocity grid points and a uniform
velocity grid of size ∆v = 2vmax/Nv We assume that the distribution function is
negligible for |v| > vmax and discretize [−vmax, vmax]. That means for each velocity
direction we have the discretization points vj = −vmax+(j− 1)∆v, j = 1, . . . , Nv +1.
Note that the performance of the method could be improved by using a grid adapted
to the mean velocity U , see, for example, [12].
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3.4. Spatial discretization. We discuss the spatial discretization and upwind-
ing procedures for first and second order schemes.

3.4.1. Approximation of spatial derivatives. In the above numerical schemes
an approximation of the spatial derivatives of g1 and g2 is required. In this subsec-
tion, we describe a least squares approximation of the derivatives on the moving point
cloud based on so called generalized finite differences, see [21, 26] and references there
in. A stabilizing procedure using upwinding and a WENO type discretization for the
higher order schemes will be described in the following.

For the sake of simplicity we consider a one-dimensional spatial domain Ω. We
first approximate the boundary of the domain by a set of discrete points called bound-
ary particles. In the second step we approximate the interior of the computational
domain using another set of interior points or interior particles. The sum of bound-
ary and interior points gives the total number of points. We note that the boundary
conditions are applied on the boundary points. The boundary points move together
with the boundaries. The initial generation of grid points can be regular as well as ar-
bitrary. When the points move they can form a cluster or can scatter away from each
other. In these cases, either some grid points have to be removed or new grid points
have to be added. We will describe this particle management in the next subsection.

Let xi ∈ Ω, i = 1, . . . , Nx, where Nx is the total number of grid points with
initial average spacing ∆x. Let f(x) be a scalar function and fi its discrete values
in xi. Our main task is to approximate the spatial derivatives of fi at an arbitrary
position xi from its neighboring particles. We call xi a central point. We sort the
neighboring points into different catagories, left, right and central neighbor. Note that
the point xi is itself its neighbor in all sets of neighboring particles. We restrict to
neighboring points within a radius h in such a way that we have at least a minimum
number of neighbors. h is usually chosen in relation to ∆x, compare [31]. For a
first order approximation one can choose smaller values of h than for a higher order
approximation. In order to guarantee a better accuracy we associate a weight function
depending on the distance of the central point and its neighbors. Let P (x) = xk, k =
1, . . . ,m be the set of m neighbor points of x = xi inside the radius h. There are
several choices of weight functions [25]. We choose a Gaussian weight function [31, 32]

w(xk − x;h) =

{

exp
(

−α (xk−x)2

h2

)

,

0, else,

with α a user defined positive constant. In our computation, we have chosen α = 6.
In order to approximate the derivatives we consider a second order Taylor expan-

sion of f(xk) around x

f(xk) = f(x) + (xk − x) · ∂xf(x) + (xk − x)T ∂xxf(x)(xk − x) + ek, (3.34)

for k = 1, . . . ,m, where ek is the error in the Taylor’s expansion. The unknown

a = [∂f∂x (x),
∂2f
∂x2 (x)]

T is now computed by minimizing the error ek for k = 1, . . . ,m.
The system of equations can be re-written in vector form as

e = b−Da, (3.35)

where e = [e1, . . . , em]T , b = [f1 − f(x), . . . , fm − f(x)]T and

D =







dx1
1
2dx

2
1

...
...

dxm
1
2dx

2
m






(3.36)
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xi

hh

PL(xi) PR(xi)

Fig. 3.1: Central, left and right neighbor points.

with dxk = xk − x.
Imposing e = 0 in (3.35) results in an overdetermined linear stems of algebraic

equations, which in general has no solution. The unknown a is therefore obtained
from the weighted least squares method by minimizing the quadratic form

J =

m
∑

k=1

wke
2
k = (Da− b)TW (Da− b), (3.37)

where W = diag(w1, . . . , wm). The minimization of J formally yields

a = (DTWD)−1(DTW )b. (3.38)

3.4.2. First order upwind scheme. We describe the procedure for simplicity
only for one-dimensional physical space. We compute the partial derivatives of g1 and
g2 in the following way. If v − U > 0, we compute the derivatives at xi from the set
of left neighbors PL(xi) lying within the radius h. Similarly, for v − U < 0 we use
the set of right neighbors PR(xi) lying within the radius h. Then we use the Taylor
expansion (3.34) to first order and compute the derivatives in the corresponding set
of neighboring points.

3.4.3. Second order WENO-type procedure. When we apply a second or-
der Taylor expansion, the scheme becomes unstable if the solution develops discontinu-
ities. In this case we use the WENO idea in order to obtain higher order derivatives.
We refer to [1, 2, 38] for similar approaches for SPH-type particle methods. For
the sake of simplicity, we consider the one dimensional case to present our simplified
WENO procedure. Let PL(xi), PR(xi) and PC(xi) be the sets of left, right and central
neighbor points, see Fig. 3.1. Note that PC(xi) = PL(xi) ∪ PR(xi).

Considering the Taylor expansions (3.34) and applying the least squares method,
we obtain the derivatives

fxL, fxxL, fxR, fxxR, fxC , fxxC

using left, central and right neighbors, respectively. The desired first order derivative
is obtained by the weighted sum

fx = ωLfxL + ωCfxC + ωRfxR, (3.39)

where the weights are defined by

ωk =
βk

βL + βC + βR
, k = L,C,R (3.40)
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with

βk =
Ck

(fx
2
k∆x2 + fxx

2
k∆x4 + ǫ)2

, k = L,C,R (3.41)

where ǫ = 10−6 and ∆x is the initial spacing of particles. This is combined with the
following choice of the coefficients Ck depending on the sign of v − U . If v − U > 0
the values are

CL = 0.5, CC = 0.5, CR = 0

and otherwise

CL = 0, CC = 0.5, CR = 0.5.

In 2D we proceed in an analogous way. Here the derivatives fx and fy are required.
They are obtained by determining the sets of points in the left (L) and right (R) half
plane for the determination of fx and the sets in the top (T) and bottom (B) half
plane for the determination of fy, see Fig. 3.2.

h
L Rxi

h

T

B

xi

Fig. 3.2: Subdivision of the neighbors of a given point into subsets, used for the
computation of the polynomials adopted in the WENO reconstuction in 2D.

To compute the corresponding weights wk, k = L,C,R and wk, k = B,C, T re-
spectively, we use the coefficients

βk =
Ck

(fx
2
k∆x2 + fy

2
k∆x2 + fxx

2
k∆x4 + fxy

2
k∆x4 + fyy

2
k∆x4 + ǫ)2

. (3.42)

3.5. Management of grid points. A very important aspect of the proposed
ALE meshfree method is the grid management. It consists of three parts, which are
presented in the following subsection, see [20, 15] for more details.
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3.5.1. Initialization of grid points. The main parameter is the average dis-
tance between the particles ∆x which is approximately βh, where β < 1. First of all
we initialize the boundary points by establishing grid points on the boundaries at a
distance ∆x. To initialize the interior grid points the algorithm starts with the bound-
ary particles. Then, a first layer inside the domain is constructed. Starting from this
layer one proceeds as before until the domain is filled with points having a minimal
distance βh and a maximal distance h. The initial grid points are not distributed on
a regular lattice. Moreover, since the grid points move, they may cluster or scatter in
time. In these cases, a proper quality of the distribution of the grid points has to be
guaranteed with the help of mechanisms to add and remove points, see below.

3.5.2. Neighbor search. Searching neighboring grid points at an arbitrary po-
sition is the most important and time consuming part of the meshfree method. After
the initialization, grid points are numbered from 1 to N with positions xi. The fun-
damental operation to be done on the point cloud is to find for all points at xi the
neighbors inside a ball B(xi, h) with given radius h. To this purpose a voxel data
structure containing the computational domain is constructed. The voxels form a
regular grid of squares with side length h. Three types of lists are established. The
first one contains the voxels of all points. This is of complexity O(N). The second
list is obtained from the first list by sorting with respect to the voxel indices. This is
of complexity O(N logN). Finally, for each of the points xi, all points inside the ball
B(xi, h) have to be determined. This is done by testing all points in the voxel and
its 8 neighboring voxels for being inside the ball using lists 1 and 2. Since each voxel
contains O(1) points, this operation is of constant effort. Hence the total complexity
of a neighborhood search for every point is O(N logN). Finally, the neighborhood
information is saved in the third list.

3.5.3. Adding and removing points. Determining whether the point-cloud
is sufficiently uniform or not and correcting it is more complicated. To determine
whether points have to be added, one considers the Voronoi cells [36] of each point
xi, i.e. the set of all points closer to xi than to any other point. We note that the
existing voxel (or octree) structure can be used to construct local, partially overlap-
ping, Voronoi diagrams. If the point cloud is not too deformed, such an approach
successfully identifies regions with an insufficient number of grid particles in O(N)
time, since the number of points considered locally is of order O(1). Once these re-
gions are identified, new points are inserted. After the insertion of new grid points
we use the moving least squares interpolation for the approximation of the particle
distribution function. Particles which are too clustered are removed by merging pairs
of close by points into a single one, see [20, 15] for more details. By an iterative ap-
plication, also large clusters can be thinned out. The two closest points can be found
in O(N) time by looping over all points and for each point finding its closest neighbor
by checking all points in its circular neighborhood. With the same procedure, one can
find all points closer than a given distance. If two particles, that are closer than this
distance, are detected, both are removed and replaced by a new particle inserted at
the center of mass of the two particles under consideration. The distribution function
is interpolated from the neighboring grid points with the help of the moving least
squares method.

4. Numerical results. We consider a variety of numerical test cases ranging
from smooth and non-smooth 1D and 2D solutions of the BGK equation to 1D and
2D moving boundaries with one-way and two-way coupling of moving objects and gas
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flow.

4.1. Example 1: The 1D-BGK model with smooth solution. For the
convergence study we consider the BGKmodel (3.3-3.5) with 1D space and 3D velocity
space for short time, compare [22]. The computational domain is Ω = [−1, 1]. The
initial distribution is given by

f(0, x, v) =
ρ0

(2πRT0)3/2
exp

(

−|v − U0|2
2RT0

)

with non-dimensional variables and with R = 1. Then we choose ρ0 = 1, T0 = 1 and

U0 = (U
(x)
0 , 0, 0), where

U
(x)
0 =

1

σ

(

exp(
(

−(σx− 1)2
)

− 2 exp
(

−(σx + 3)2
))

, σ = 10.

The convergence study is performed up to time t = 0.04, where the solution is still
smooth. We consider a fixed relaxation time τ = 10−5.

In Table 4.1 the L1 and L2 errors of the temperature determined from the numeri-
cal solutions of the first order scheme are shown. Table 4.2 shows the convergence rate
for the ARS(2,2,2) scheme from section 3.2.2. The ARS(2,2,1) scheme from section
3.2.3 gives very similar results. Moreover, for larger relaxation time τ = 0.1 and 1 the
convergence rates for the ARS(2,2,1) scheme are shown in Tables 4.3 and 4.4. The
scheme still produces second order convergence, as well as the ARS(2,2,2) scheme.
The reference solution is the solution obtained from a grid with Nx = 2/∆x = 801,
where 799 points are interior points and 2 are grid points. For the convergence study
we used the grid size ∆x = 0.35 · h. In order to compute the errors, we have gen-
erated a mesh with 100 points and approximated the fluid quantities on this mesh
with the help of MLS interpolation from the surrounding grid points. For the velocity
discretization we use a uniform grid with Nv = 20 and the finite velocity interval
[−vmax, vmax] with vmax = 10. The time step is always chosen such that the CFL
condition

∆t = C∆x/vmax

with C = 0.5 is fulfilled for all grid sizes. Noting that the CFL condition for the ALE
scheme with a fixed velocity grid is

max
x,v

|v − U |∆t

h
< CFL,

the above simplified condition essentially means that the difference |v − U | does not
exceed 2vmax, which is fulfilled for all examples. Note that in principle one could
have a much better stability condition and use larger time steps, if, as suggested in
subsection 3.3, the velocity grid is centered in U .

We observe that all schemes have the expected order of convergence.

In Figure 4.1 we have plotted density, mean velocity and temperature for Nx =
160 grid points obtained from both schemes at time t = 0.04 together with the refer-
ence solution. In all figures the improved approximation quality of the ARS schemes
can be clearly observed.
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∆t h Nx L1-error Order L2 error Order
4 · 10−3 0.28 26 2.50 · 10−2 −− 3.02 · 10−2 −−
2 · 10−3 0.14 51 1.58 · 10−2 0.66 1.91 · 10−2 0.66
1 · 10−3 0.07 101 9.02 · 10−3 0.80 1.10 · 10−3 0.78
5 · 10−4 0.035 201 4.39 · 10−3 1.04 5.40 · 10−3 1.03

2.5 · 10−4 0.0175 401 1.56 · 10−3 1.49 1.93 · 10−3 1.48

Table 4.1: Example 1: 1-D smooth solution. Convergence of temperature for τ = 10−5

at time t = 0.04 from the first order scheme.

∆t h Nx L1-error Order L2 error Order
4 · 10−3 0.28 26 2.24 · 10−2 −− 2.90 · 10−2 −−
2 · 10−3 0.14 51 1.05 · 10−2 1.09 1.32 · 10−2 1.14
1 · 10−3 0.07 101 3.29 · 10−3 1.68 3.89 · 10−3 1.76
5 · 10−4 0.035 201 6.38 · 10−4 2.37 7.60 · 10−4 2.35

2.5 · 10−4 0.0175 401 1.57 · 10−4 2.03 1.51 · 10−4 2.33

Table 4.2: Example 1: 1-D smooth solution. Convergence of temperature for τ = 10−5

at time t = 0.04 for the ARS(2,2,2) scheme.
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Fig. 4.1: Example 1: 1-D smooth solution. Comparison of density, mean velocity and
temperature computed from the reference solution and from the solutions obtained
from the first order, ARS schemes for Nx = 100 initial grid points and Nv = 30 at
time Tfinal = 0.04.

4.2. Example 2: The 1D-BGK model for a Riemann problem. We con-
sider a Riemann problem similar to Sod’s shock tube problem [24] to validate the
numerical schemes for discontinuous solutions. On the one hand, we compare the
first and second order numerical solutions of equations (3.3-3.5) with a very small
value of the relaxation time τ to the hydrodynamic limit solution, i.e. the solution of
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∆t h Nx L1-error Order L2 error Order
4 · 10−3 0.28 26 1.68 · 10−2 −− 2.13 · 10−2 −−
2 · 10−3 0.14 51 7.36 · 10−3 1.19 8.96 · 10−3 1.25
1 · 10−3 0.07 101 2.41 · 10−3 1.61 2.78 · 10−3 1.69
5 · 10−4 0.035 201 5.10 · 10−4 2.23 5.82 · 10−4 2.26

2.5 · 10−4 0.0175 401 9.93 · 10−5 2.36 1.21 · 10−4 2.27

Table 4.3: Example 1: 1-D smooth solution. Convergence of temperature for τ = 0.1
at time t = 0.04 for the ARS(2,2,1) scheme.

∆t h Nx L1-error Order L2 error Order
4 · 10−3 0.28 26 1.65 · 10−2 −− 2.08 · 10−2 −−
2 · 10−3 0.14 51 7.24 · 10−3 1.19 8.79 · 10−3 1.24
1 · 10−3 0.07 101 2.41 · 10−3 1.59 2.78 · 10−3 1.66
5 · 10−4 0.035 201 5.27 · 10−4 2.20 5.98 · 10−4 2.22

2.5 · 10−4 0.0175 401 1.06 · 10−4 2.32 1.25 · 10−4 2.26

Table 4.4: Example 1: 1-D smooth solution. Convergence of temperature for τ = 1
at time t = 0.04 for the ARS(2,2,1) scheme.

the Euler equations. On the other hand, the numerical solutions of the BGK equation
for larger values of τ are considered and compared to other numerical results and to
DSMC solutions.

We consider the computational domain [0, 1]. The initial condition is a Maxwellian
distribution with the initial parameters

ρl = 10−3, U
(x)
l = 0, Tl = 273 for 0 ≤ x < 0.5

ρr = 0.125× 10−3, U (x)
r = 0, Tr = 273 for 0.5 ≤ x ≤ 1.

Diffuse reflection boundary conditions are applied and SI units with the gas constant
R = 208 are chosen. The initial values of λ and τ on the left half of the domain
are computed according to equations (2.6) and (2.5). We obtain λ = 1.110 × 10−4

and τ = 3.69 × 10−7, respectively. The values on the right half of the domain are 8
times larger. During the time evolution we consider variable relaxation times given
by equations (2.5).

We use a uniform velocity grid with Nv = 30. We have chosen the time step ∆t =
5 · 10−4 which leads again to a CFL condition with constant 0.5. The computation is
performed up to t = 0.0008. Initially Nx = 400 grid points are generated uniformly
with spacing ∆x = 1/Nx. The radius h fulfills again ∆x = 0.3·h. In Figure 4.2 we have
plotted the numerical solutions obtained by first and second order schemes together
with the analytical solutions of the compressible Euler equations. The improved
accuracy of the second order scheme is clearly observed.

As already stated, we use this example also to consider the solutions of the BGK
model for larger values of τ and compare them with those of the full Boltzmann
equation. As before we use relaxation times τ according to equation (2.5). The density
ratio between left and right part of the domain is again ρl/ρr = 8, and we consider
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Fig. 4.2: Example 2: 1D shock tube. Comparison of the exact solutions of the Euler
equations and the numerical solutions of the BGK problem with τ = 3.69 × 10−7

initially for a shock tube problem with initial Nx = 400 grid points and Nv = 30.

two more rarefied cases with ρl = 10−6, ρl = 10−4, respectively, with corresponding
values of the initial relaxation times τl = 3.69 × 10−4, 3.69 × 10−6 determined from
(2.5). In the following figures 4.3 to 4.4 we have plotted the density, velocity and
pressure obtained from the Boltzmann equation and the BGK model at the final time
0.0008 . For the Boltzmann equation we consider a hard sphere monatomic gas. The
solutions of the Boltzmann equation are obtained from a DSMC simulation averaging
20 independent runs. One observes in Fig. 4.3 and Fig. 4.4 that the solutions of the
BGK model coincide with those of the Boltzmann equation for both values of the
relaxation time τ . Note that for the larger value of τ , see Fig. 4.3, we have used a
number of velocity grid points equal to Nv = 200 to avoid oscillating solutions of the
BGK model.∗

Furthermore, we compare the solutions of the BGK model obtained from the
ALE method presented here with a higher order semi-Lagrangian (SL) scheme, see
[7, 8]. We consider the initial densities ρl = 10−4. In Fig. 4.5 we have compared
the densities obtained from ALE and SL scheme for different spatial resolutions. The
solutions match perfectly well for a larger number of spatial grid points like Nx = 400,
see Fig. 4.5 on the right. We use this solution as the reference solution and compare
it to the ALE and SL solutions for coarser grids. One observes that for Nx = 50
and Nx = 100 the solutions obtained from the ALE method deviates slightly from
the reference solution, whereas the higher order SL solutions are still very near to the
reference solution.

4.3. Example 3: Moving piston with prescribed velocity. This problem
has been considered in [12, 23] in a larger domain. We consider the one-dimensional
domain Ω = [0, 20]. Initially the piston is positioned at x = 2. We consider a total

∗This behaviour is typical for problems with large Knudsen number: the interaction among among
gas particles is weaker and a greater resolution in velocity is needed to resolve the distribution in
phase space and avoid spurious oscillations.
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Fig. 4.3: Example 2: 1D shock tube. Comparison of the solutions obtained from the
Boltzmann equation with DSMC and the BGK model with Nv = 200 for ρl = 10−6

and the corresponding initial relaxation times τl = 3.69× 10−4.
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Fig. 4.4: Example 2: 1D shock tube. Comparison of the solutions obtained from the
Boltzmann equation with DSMC and the BGK model with Nv = 30 for ρl = 10−4

and the corresponding initial relaxation times 3.69× 10−6.

number Nx = 300 grid points in physical space and Nv = 20 grid points in velocity
space. The left boundary moves with velocity

up = 0.25 ∗ sin(t).

Again we use non-dimensional variables with R = 1. The initial velocity is U0 = 0,
the density ρ0 = 0.001 and the temperature T0 = 1. The minimum and maximum of
the velocity are vmin = −10 and vmax = 10. The initial distribution is the Maxwellian
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Fig. 4.5: Example 2: 1D shock tube. Comparison of the solutions obtained from the
semi-Lagrange scheme and the ALE method with Nx = 50 (left), Nx = 100 (middle)
and Nx = 400 (right) for the BGK model with Nv = 30 for ρl = 10−4 and the
corresponding initial relaxation times τl = 3.69× 10−6.

with the above initial macroscopic quantities. Initially particles are generated in the
interval [2, 20]. We have considered a fixed value of τ = 1.83 · 10−2, a final time
tfinal = 4 and a time step ∆t = 0.001. As in the previous section we compare the
solutions obtained by the numerical method for the BGK equations to the solution
obtained from a DSMC simulations of the full Boltzmann equation with a moving
geometry, see [28]. For the DSMC method we use ∆x = 20/900 = 2.22 · 10−2. In
order to obtain a smooth solution for the DSMC simulations we have performed 50
independent runs.

Figure 4.6 to Figure 4.10 show the results for different times. When the piston
starts to move in time, two situations occur: when the velocity is positive, the grid
points are approaching each other. In this case one has to remove the grids points
which are too close. We replace two grid points by a new one and locate it in the
center between the two. When the velocity is negative new grid points have to be
added. In both cases the distribution functions have to be updated in the additional
grid points. This is done with the help of a least squares interpolation.

4.4. Example 4: Movement of a plate with pressure differences. We
consider a computational domain as described in Figure 4.11 with L = 1 and l = 0.1.
Initially, the center of mass of the plate is located at Xc = 0. The gas and the
plate are at rest. This problem has been studied in [12, 34]. We reconsider it as
benchmark problem since an analytical expression is available for the equilibrium
state. Using SI units, the initial temperature is T0 = 270, gas constant R = 208
and the initial pressures P0 are the same on both sides of the plate and are equal
to 0.0386. The initial density ρ0 is obtained from the equation of state. The initial
Knudsen number is 0.08 based on the characteristic length 2L and the relaxation
time is fixed as τ = 5.398 · 10−4. There are four boundary points, two are at the
boundary of the domain and two are at the left and right end of the plate. The
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Fig. 4.6: Example 3: Moving piston. Comparison of ALE and DSMC methods at
time t = 1.
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Fig. 4.7: Example 3: Moving piston. Comparison of ALE and DSMC methods at
time t = 2.

0 5 10 15 20
X

0.9

1

1.1

1.2

1.3

 

10-3

First order
RK2-ARS
Boltzmann DSMC
Piston

0 5 10 15 20
X

0.9

0.95

1

1.05

1.1

1.15

1.2

T

First order
RK2-ARS
Boltzmann DSMC
Piston

0 5 10 15 20
X

-0.2

-0.1

0

0.1

0.2

U

First order
RK2-ARS
Boltzmann DSMC
Piston

Fig. 4.8: Example 3: Moving piston. Comparison of ALE and DSMC methods at
time t = 3.

interior grid points are initialized with the spacing ∆x = 2.2/200 on the left and
right of the plate. No grid points are initialized on the plate. The neighbor radius
is given by ∆x = 0.35h and the constant time step ∆t = 2 · 10−6 is considered. We
prescribe a higher temperature Tw = 330 on the right side of plate and on the right
boundary of the computational domain. On the left boundary of the plate and on the
left boundary of the computational domain the temperature is fixed to T0. Due to
the high temperature on the right wall, the pressure on the right hand side starts to
increase and the plate starts to move to the left hand side. The density of the plate is
10 times larger than the density of the gas. This means, the mass of the plate is equal
to M = 3.4366 · 10−5. The motion of the plate is computed from the Newton-Euler
equations, where only a translational force is computed for the one dimensional case.
Since the plate has two opposite normals ±1, from equations (2.9) and (2.10) the total
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Fig. 4.9: Example 3: Moving piston. Comparison of ALE and DSMC methods at
time t = 4.
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Fig. 4.10: Example 3: Moving piston. Zoom of the data obtained from ALE and
DSMC methods at time t = 4.

force is given as the difference of pressure

F = (ϕleft − ϕright)A, (4.1)

where A is the area of the plate and ϕ =
∫

R
(v−U)2g1dv. The plate starts oscillating

and finally reaches the equilibrium position [12]

xequi = L
(T0 − Tw)

(T0 + Tw)
= −0.1. (4.2)

We have compared the dynamics of the plate obtained from the ALE method
with first and second order ARS schemes with a Boltzmann solution using the DSMC
method. We observe that the oscillation of the plate obtained from both methods
match. The simulations are performed up to the final time t = 0.6 and the piston
already reached the equilibrium at this time, see Figure 4.12. At the final time the
simulated equilibrium position obtained from the first order method is −9.639 · 10−3

and one given by the second order method is −9.963 ·10−3 compared to the analytical
solution which gives a value of −0.1, see (4.2). This yields an error of 3.7% and 0.37%,
respectively.

4.5. Example 5: The 2D-BGK model with smooth solution. For the con-
vergence study we consider the BGK model with two-dimensional space and velocity
domain for short time for a situation extending the one in section 4.1 to 2-D. The
computational domain is Ω = [−1, 1] × [−1, 1]. The initial distribution is again the
Maxwellian distribution and is given by

f(0, x, v) =
ρ0

(2πRT0)3/2
exp

(

− (v − U0)
2

2RT0

)
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Fig. 4.11: Example 4: Movement of a plate. Schematic view of a piston separating
two subdomains with different temperature.
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Fig. 4.12: Example 4: Movement of a plate. Comparison of position and velocity vs
time of piston obtained from ALE and DSMC method

with ρ0 = 1, T0 = 1, R = 1 and U0 = (U
(x)
0 , U

(y)
0 , 0) with

U
(x)
0 =

1

σ

(

exp(
(

−(σ
√

(x− 0.2)2 + y2 − 1)2
)

− 2 exp
(

−(σ
√

(x + 0.2)2 + y2 − 1)2
))

U
(y)
0 =

1

σ

(

exp(
(

−(σ
√

x2 + (y − 0.2)2 − 1)2
)

− 2 exp
(

−(σ
√

x2 + (y + 0.2)2 − 1)2
))

,

where σ = 10. We have chosen again τ = 10−5. Far field boundary conditions are
applied on the boundaries with initial density, temperature and zero mean velocities.
In order to perform the convergence study the time integration is carried out up to
time t = 0.0208, where the solution is still smooth. Different numbers of grid points
are considered depending on the size of h. The initial grid spacing is ∆x = 0.4 h.
The reference solution is the solution obtained from a grid with h = 0.013, which
corresponds to an initial number of grid points equal to 148996. For the reference
solution we use a time step equal to ∆t = 2.6 · 10−5, which corresponds to a CFL
condition with constant 0.5. We refer to subsection 4.1 for a discussion of the CFL
condition used here. This CFL number is also used for all other grid-sizes.

The convergence rate is determined by interpolating the temperature on 100 grid
points along y = 0 for all grid sizes. In Figure 4.13 we have plotted the tempera-
ture obtained from the first order scheme and the ARS(2,2,1) scheme. Again, the
ARS(2,2,2) scheme gives equivalent results. We note that we gain some computation
time by using the ARS(2,2,1) scheme due to the additional function evaluations in
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Fig. 4.13: Example 5: 2D smooth solution. Temperature at t = 0.0208 along y = 0
for different h obtained from the first order (left) and second order (right) schemes.

∆t h Nx L1-error Order L2 error Order
4.16 · 10−4 0.208 676 5.57 · 10−2 −− 2.10 · 10−2 −−
2.08 · 10−4 0.104 2500 1.01 · 10−2 0.64 1.30 · 10−2 0.69
1.04 · 10−4 0.052 9604 5.18 · 10−3 0.97 6.62 · 10−3 0.98
5.20 · 10−5 0.026 37636 1.93 · 10−3 1.43 2.47 · 10−3 1.42

Table 4.5: Example 5: 2D smooth solution. Convergence of temperature at time
t = 0.0208 from the first order scheme.

the ARS(2,2,2) scheme.

In Tables 4.5 and 4.6 we have presented the corresponding errors and the rate of
convergence. It can be observed that the rates of convergence are as expected for the
corresponding schemes.

4.6. Example 6: Moving 2D shuttle with prescribed velocity. This exam-
ple is an extension of Example 5 to two space dimensions. We use a 2D velocity space.
We have taken this problem from the paper by Frangi et al. [16], where the authors
have studied the biaxial accelerometer produced by STMicroelectronics with a surface
micro-machining process. The authors have analysed the problem by considering a
two-dimensional simplification. In Figure 4.14 we have sketched the computational
domain in details. The shuttle lies initially in the middle of the domain. In the rest
of the domain a gas flow is taking place. The shuttle oscillates with the velocity
v = v0 cos(2πνt), where ν is the frequency. We use SI units in the following. We
set v0 = 1. The parameters mentioned in Figure 4.14 are L1 = 19.2 · 10−6, d1 =
4.2 · 10−6, d2 = 2.6 · 10−6, d3 = 5 · 10−6, d4 = 3.9 · 10−6, d5 = 18.8 · 10−6. We
have changed the parameter ν in [16] and have chosen ν = 40 · 4400 Hz such that the
maximum amplitude of the oscillations of the shuttle is half of the distance d2 and
the shuttle is not touching the boundaries of the domain. The initial pressure of the
gas is equal to 0.125 bar, which corresponds to an initial density ρ0 = 0.2. These
parameters give a relaxation time τ = 1.73× 10−9 which is fixed for all times.

The initial distribution f0 of the gas is the Maxwellian with zero mean velocity,
initial temperature T0 = 293 and initial density ρ0. A diffuse reflection boundary
condition with wall temperature T0 is applied on the solid lines and a far field boundary
condition f0 is applied on the dotted lines. We note that in the present investigation
the time dependent motion of the shuttle is resolved, while in [16] the authors solve
stationary equations with assigned non zero velocity on the boundary.
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∆t h Nx L1-error Order L2 error Order
4.16 · 10−4 0.208 676 1.48 · 10−2 −− 1.89 · 10−2 −−
2.08 · 10−4 0.104 2500 5.71 · 10−3 1.38 7.56 · 10−3 1.33
1.04 · 10−4 0.052 9604 1.15 · 10−3 2.31 1.60 · 10−3 2.34
5.20 · 10−5 0.026 37636 2.49 · 10−4 2.21 3.33 · 10−4 2.27

Table 4.6: Example 5: 2D smooth solution. Convergence of temperature at time
t = 0.0208 from the ARS(2,2,1) scheme.
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d4
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Fig. 4.14: Example 6: 2D shuttle. Geometry setup for moving 2D shuttle.

In Figure 4.15 we have plotted the velocity vector fields as well as x- and y-
components of the velocity at times t = 1.2·10−6. Notice that the period of oscillations
here is T ≈ 5.61 · 10−6. The total number of grid points is approximately 7000 which
gives h = 2.5∆x = 4 · 10−7. The first order Euler scheme is used for the time
integration with the time step ∆t = 1.5 · 10−10.

4.6.1. Convergence study. In Figure 4.16 we have plotted the normal stress
tensor on the top wall of the shuttle at time t = 1.2 · 10−6. As a reference solution
we consider the one obtained at the finest resolution with h = 1.2 · 10−7, which
corresponds to approximately 111000 grid points including boundary points. The
finest time step is chosen as 8 · 10−11. The results of the convergence study are
presented in Table 4.7.

Table 4.7 shows the results for the first order scheme in time and space. In order
to estimate the error, we have generated a fixed number N = 100 of points in equal
distance at the upper boundary of the shuttle.

On these points we have interpolated the stress tensors from different resolutions
including the reference solutions and then computed the errors. In Table 4.7 the L1

and L2 errors of the normal stress tensor ϕyy are presented. The errors in the table
show the first order convergence of the scheme.

Table 4.8 shows the results for the ARS(2,2,1) scheme. We observe an improve-
ment compared to the first order scheme, but we obtain in this situation a rate of
convergence still below 2, which is expected due to the non-smooth geometry.
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Fig. 4.15: Example 6: 2D shuttle. First row: x- and y- velocity components at time
t = 1.2 · 10−6. Second row: velocity fields at time t = 1.2 · 10−6.
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Fig. 4.16: Example 6: 2D shuttle. The normal stress tensor on the top wall of the
shuttle at t = 1.2 · 10−6 for different cell sizes. Left: First order in space and time.
Right: Second order in space and time.

4.7. Example 7: Transport of rigid particles. The main aim of the following
tests is to demonstrate the ability of the scheme to simulate arbitrary shapes of rigid
body motion immersed in a rarefied gas. We consider again two dimensional physical
and velocity space. In the previous 2-D test case a one-way coupling of rigid body
motion and gas was investigated. In the present example we consider a two-way
coupling, where the gas is also influencing the motion of the rigid body. Using SI
units, we consider the computational domain Ω = [0, 2 · 10−6] × [0, 3 · 10−6]. The
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∆t h L1-error Order
64 · 10−11 1.92 · 10−6 4.85 · 10−3 −−
32 · 10−11 9.6 · 10−7 3.27 · 10−3 0.57
16 · 10−11 4.8 · 10−7 1.54 · 10−3 1.08
8 · 10−11 2.4 · 10−7 7.04 · 10−4 1.13

Table 4.7: Example 6: 2D shuttle. Convergence of the normal stress tensor φ on the
top wall of the shuttle at time t = 1.2 · 10−6 from the first order scheme in space and
time.

∆t h L1-error Order
96 · 10−11 1.92 · 10−6 2.73 · 10−3 −−
48 · 10−11 9.6 · 10−7 2.22 · 10−3 0.30
24 · 10−11 4.8 · 10−7 1.09 · 10−3 1.03
12 · 10−11 2.4 · 10−7 3.55 · 10−4 1.62

Table 4.8: Example 6: 2D shuttle. Convergence of the normal stress tensor φ on the
top wall of the shuttle at time t = 1.2 · 10−6 from the ARS(2,2,1) scheme.

initial density is ρ0 = 1, the initial temperature T0 = 270 and the initial mean velocity
U0 = (0, 0). These parameters yield the initial relaxation time τ = 3.71 × 10−10

which is fixed for all times. On the top we prescribe a Maxwellian with parameters
ρ = ρ0, T = 290, U = U0. On the bottom boundary we use a diffuse reflection
boundary condition with wall temperature Tw = T0, Uw = U0.

On the left and right wall we apply far field boundary conditions, that means, we
prescribe a Maxwellian with initial parameters ρ0, T0, U0. On the rigid body we apply
a diffuse reflection boundary condition with temperature T (t, x) and velocity U(t, x).
We consider circular as well as chiral particles. For the following simulations we use
the first order scheme in space and time.

4.7.1. Transportation of a circular particle. First we consider a circular
particle of radius 0.1 · 10−6 and initial center of mass (1.0 · 10−6, 2.5 · 10−6). The grid
points are generated equidistantly with h = 2.5∆x = 5.25 ·10−8 which gives an initial
number of grid points equal to 7273. The time step is ∆t = 1 · 10−11.

In Figures 4.17 and 4.18 we have plotted the positions of the circular particle
together with velocity fields and temperature fields, respectively, at times 1 · 10−7, 3 ·
10−7 and 4.5 · 10−7.

4.7.2. Transportation of a chiral particle. In this example, we consider a
chiral particle with initial center of mass (1.0 · 10−6, 2.3 · 10−6). We have used a
relatively fine grid with h = 6.25 · 10−8, which gives 9528 particles and a time step
∆t = 1 · 10−11. The boundary conditions are the same as in the case of the circular
particle in the previous subsection.

In Figures 4.19 and 4.20 we have plotted the positions of the chiral particle to-
gether with velocity fields and temperature fields, respectively, at times 1·10−7, 3·10−7

and 4.5 · 10−7.

4.8. Multiple rigid particles in a driven cavity. We consider a square cavity
[0, L]× [0, L] with L = 1 ·10−6. The initial parameters of the Maxwellian are the same
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Fig. 4.17: Example 7: Circular particles. Particle positions and velocity field at
t = 1 · 10−7, t = 3 · 10−7 and t = 4.5 · 10−7.

Fig. 4.18: Example 7: Circular particles. Particle positions and temperature field at
t = 1 · 10−7, t = 3 · 10−7 and t = 4.5 · 10−7.

Fig. 4.19: Example 7: Chiral particles. Particle positions and velocity field at t =
1 · 10−7, t = 3 · 10−7 and t = 4.5 · 10−7

as in the previous test case. Diffuse reflection boundary conditions with temperature
T0 are applied on all boundaries as well as on the rigid particles. At the top wall we
prescribe a non-zero velocity in x-direction given by

U
(x)
0 = 10

(

2x

L

)2
(

2−
(

2x

L

)2
)

.

This leads to a maximum velocity equal to 10 at the center of the wall. The y-
component of the top wall velocity is zero. The velocities on all other walls and on
the rigid particles are zero. We have generated 4 rigid particles of radius 0.075L with
initial position as in Figure 4.21, first panel. The numerical particles are generated
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Fig. 4.20: Example 7: Chiral particles. Particle positions and temperature field at
t = 1 · 10−7, t = 3 · 10−7 and t = 4.5 · 10−7.
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Fig. 4.21: Example 8: Multiple particles in a driven cavity. Particle positions and
velocity field. First row: t = 0 and t = 1.5 · 10−7. Second row t = 3 · 10−7 and
t = 6 · 10−7.

according to the parameter h = 5.25 · 10−8 which gives, initially, a total number of
2313 particles. The time step is chosen as ∆t = 1 · 10−11.

5. Conclusion and Outlook. In this paper, we have presented an Arbitrary
Lagrangian-Eulerian method for the simulation of the BGK equation with moving
boundaries. Besides the ALE approach, the method is based on first and second
order least squares approximations. Several numerical tests are performed in order to
validate the method, both in one and two space dimensions. Moreover, we compared
the results with those obtained by DSMC solution of the Boltzmann equation and by
a higher order conservative semi-Lagrangian scheme.

In particular, in 1D we consider the case of a moving plate immersed in a rarefied
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gas. In a first test we assume that the motion of the plate is prescribed (one way
coupling), while in a second test the motion of the plate is computed from Newton’s
equations (two way coupling). In two space dimensions we considered several test
problems. A first test case investigates a situation where the motion of the object is
prescribed (one -way coupling). We consider the motion of a shuttle in a 2D model of
a Micro Electro Mechanical System, see [16]. Moreover, we considered some tests with
rigid bodies/mesoscopic particles of arbitrary shape immersed in a gas and driven by
either thermophoresis or driven cavity flow (two way coupling).

In future work the scheme will be extended to the case of gas-mixtures [18] and to
three space dimensions. Moreover, larger collections of mesoscopic particles dispersed
in a rarefied gas will be considered, thus providing a quantitative tool that can be
used to validate homogenised macroscopic models of suspensions.
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