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Abstract

In brain structural segmentation, multi-atlas strategies are increasingly being used over single-atlas 

strategies because of their ability to fit a wider anatomical variability. Patch-based label fusion 

(PBLF) is a type of such multi-atlas approaches that labels each target point as a weighted 

combination of neighboring atlas labels, where atlas points with higher local similarity to the 

target contribute more strongly to label fusion. PBLF can be potentially improved by increasing 

the discriminative capabilities of the local image similarity measurements. We propose a 

framework to compute patch embeddings using neural networks so as to increase discriminative 

abilities of similarity-based weighted voting in PBLF. As particular cases, our framework includes 

embeddings with different complexities, namely, a simple scaling, an affine transformation, and 

non-linear transformations. We compare our method with state-of-the-art alternatives in whole 

hippocampus and hippocampal subfields segmentation experiments using publicly available 

datasets. Results show that even the simplest versions of our method outperform standard PBLF, 

thus evidencing the benefits of discriminative learning. More complex transformation models 

tended to achieve better results than simpler ones, obtaining a considerable increase in average 

Dice score compared to standard PBLF.
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provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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1. Introduction

Segmentation of brain structures from magnetic resonance images (MRI) is an important 

step in many neuroscience applications, including discovery of morphological biomarkers, 

monitoring disease progression or diagnosis. For example, segmentation is widely used as 

basic image quantification step in studies of early brain development (Benkarim et al., 2017) 

and dementia (Chupin et al., 2009; Li et al., 2007).

Multi-atlas segmentation (MAS) is being increasingly used for segmenting brain MRI 

(Sanroma et al., 2016). In MAS, a set of atlas images are first registered to the image to be 

segmented (i.e., target) along with their anatomical labelmaps containing the spatial overlay 

of the anatomical structures. Then, the so-called label fusion process, labels each target point 

using the support of the corresponding atlas labels. Compared to using a single atlas, MAS 

can potentially fit a wider anatomical variability and has higher robustness to registration 

errors. Image intensities are often not sufficient for globally discriminating the different 

structures and therefore, spatial constraints are essential (Colliot et al., 2006). Such spatial 

constraints are usually implemented by restricting the set of feasible labels for each target 

point to the set of labels in neighboring atlas points.

Patch-based label fusion (PBLF) is a popular approach that computes each target label as a 

weighted combination of neighboring atlas labels, where atlas locations with higher local 

image similarity to the to-be-segmented target point have higher weight in the combination 

(Artaechevarria et al., 2009; Coupé et al., 2011; Wang et al., 2013). Here, the similarity 

between local image patches around each target and atlas point is taken as a proxy for the 

local registration accuracy and hence, for anatomical correspondence.

PBLF can potentially be improved by increasing the discriminative capabilities of patch 

similarity measurements. For example, we proposed to learn discriminative patch 

embeddings reflecting the latent anatomical similarity between patches (Sanroma et al., 

2015a). A similar approach was recently proposed using convolutional neural networks 

(CNNs) (Yang et al., 2016). Such learned embeddings are then used in standard PBLF. Other 

supervised approaches for learning optimal fusion rules have been presented. For example, 

in Sanroma et al. (2015b) we proposed a transductive learning approach, and in Benkarim et 

al. (2016) we proposed to integrate discriminative learning into probabilistic label fusion. 

Semi-supervised learning approaches have also been proposed for propagating the 

anatomical labels from atlases to targets (Guo and Zhang, 2012; Koch et al., 2014). Machine 

learning techniques such as support vector machines (SVM) (Cortes and Vapnik, 1995) have 

also been used (Bai et al., 2015; Hao et al., 2013; Sdika, 2015).

In practice, most of these methods learn a different model (i.e., classifier) at each location 

(Bai et al., 2015; Benkarim et al., 2016; Guo and Zhang, 2012; Hao et al., 2013; Koch et al., 
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2014; Sanroma et al., 2015a; 2015b; Sdika, 2015). This serves two purposes: (1) it implicitly 

imposes spatial constraints by restricting the training samples on each model to only 

neighboring atlas locations; and (2) it divides the difficult problem of finding a single global 

model into the problem of finding multiple simpler local models. However, this increases the 

complexity of storage and use of the method due to the high number of local models 

generated, which can easily reach several hundred thousands, even after restricting the 

modeling to only the most challenging regions. Another difficulty when using local models 

is that training images must be in spatial correspondence in order to retrieve the training data 

for each local model. As a result, some methods opt for training the models in a common 

template space (Sanroma et al., 2015a). This implies that the target image must be 

segmented in the template space, incurring in interpolation errors when re-sampling the 

resulting segmentation to the original target space. Moreover, methods that consider pairwise 

relationships (Benkarim et al., 2016; Sanroma et al., 2015a; Yang et al., 2016) need pairwise 

registrations among the training images to evaluate the similarity between the embedded 

patches. This has memory complexity (N2) during training, with N being the number of 

atlases, thus limiting the amount of atlases that can effectively be used for training. A related 

approach uses convolutional neural networks (CNN) for segmenting cardiac images (Yang et 

al., 2016). For an input image, they obtain a stack of output images by applying the learned 

convolutional filters. The number of images in the stack is related to the dimensionality of 

the output embeddings. Thus, memory requirements for label fusion are  (N × d), where N 
is the number of atlases and d the dimensionality of the output embedding. This poses 

serious limitations on the number of atlases at test time (in fact they only use 5 atlases for 

each target image). In brain MRI segmentation, usually more than 10 atlases are used 

(Aljabar et al., 2009; Lotjonen et al., 2010; Sanroma et al., 2014).

To overcome these issues, we propose a method to learn discriminative patch embeddings 

using neural networks,2 with the following contributions:

• By incorporating our method into the regular label fusion process, we focus on 

the problem of learning the model, thus leveraging the capability of the label 

fusion process of restricting the set of possible labels at each point.

• The previous contribution facilitates that we compute a single model per bilateral 

structure (i.e., one model for both left and right parts of each structure). We take 

advantage of stochastic gradient descent (SGD) in order to process the vast 

amounts of data in small mini-batches. Therefore, our method allows for a 

practical storage and use.

• We learn the model in the native space of each training atlas instead of using a 

template. Therefore, models are learned in the same space as they were 

annotated, thus avoiding interpolation artifacts during training. Another 

advantage is that models are orientation-invariant and hence target images can 

directly be segmented in their native space. As consequence of this, the target 

anatomy can directly be quantified from the resulting segmentation, without need 

2The code of the method is available at https://github.com/gsanroma/deeplf.
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to correct for geometric distortions caused by the transformation to the template 

space.

• We learn the embeddings using patch relationships within the same image, 

leading to an attractive  (N) storage complexity at training (with N the number 

of atlases), compared to more costly approaches (Benkarim et al., 2016; Sanroma 

et al., 2015a; Yang et al., 2016) that require pairwise atlas registrations in this 

phase.

• Our method embeds the image patches independently rather than the whole 

images. Therefore, we can generate output embeddings of arbitrary 

dimensionality without compromising the number of atlases that can reasonably 

be handled (memory requirement at segmentation time is  (N)).

We apply our method to segment the whole hippocampus and the hippocampal subfields 

(see Section 4), a structure targeted by many studies on psychiatric and neurological 

disorders (Chupin et al., 2009; Li et al., 2007). Accurate segmentation methods are required 

in order to quantify the subtle morphological changes undergone by these structures, 

especially in the early stages of the disease (Frisoni et al., 2010; West et al., 2004).

In the next section, we introduce multi-atlas segmentation and how it can be improved by 

using embedding techniques, before describing our method in Section 3.

2. Multi-atlas segmentation

Let us denote X̂ the target image to be segmented and Xi, i = 1, …, N a set of atlas images 

along with their corresponding labelmaps Yi containing the anatomical information. Multi-

atlas segmentation (MAS) aims at estimating the segmentation on the target image using the 

atlas images and their labelmaps.

This is implemented by (1) registering the atlas images to the target and (2) computing each 

target label as a combination of locally corresponding atlas labels, the so-called label fusion.

Weighted voting is a popular label fusion approach that computes the target label as a 

weighted combination of atlas labels (Artaechevarria et al., 2009; Coupé et al., 2011; Wang 

et al., 2013). More formally, the label ŷp for a given target point p ∈ Ω in the image domain 

Ω, is computed as:

y p = arg max
l ∑

iq
ωiqδ yiq = l (1)

where yiq is the label in ith atlas at point q ∈ p in the spatial neighborhood of p ∈ Ω, ωiq is 

the weight denoting the importance of yiq in determining the target label, and δ is 

Kronecker’s delta (i.e., δ[ a = b] is 1 if a = b, 0 otherwise).

One of the earliest label fusion approaches, known as majority voting (Heckemann et al., 

2006; Rohlfing et al., 2004) assigns each target label the atlas label occurring most 

frequently, which is equivalent to using a constant weight, i.e., ωiq = c, ∀i, q. This simple 
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strategy already achieves substantial improvement over single-atlas segmentation. Other 

techniques such as STAPLE estimate the weights using rater statistics (Warfield et al., 2004).

Global weighted voting strategies, assign the same weight globally to all atlas points, i.e., 

ωiq = αi, ∀q ∈ Ω (Artaechevarria et al., 2009). However, local weighted voting strategies 

(Artaechevarria et al., 2009; Coupé et al., 2011; Wang et al., 2013) have ended up 

dominating over global weighting, due to their greater flexibility to adapt to unevenly 

distributed registration errors.

2.1. Patch-based label fusion

A crucial step here is how to estimate the weights ωiq denoting the importance of the ith 

atlas label at location q. Patch-based label fusion (PBLF) is a popular approach that uses 

patch similarity. A widely adopted patch similarity measure is the exponential of the 

negative sum of squared differences (SSD) (Coupé et al., 2011; Giraud et al., 2015; Sanroma 

et al., 2015a):

ωiq = exp −β‖xp − xiq‖2 (2)

where x̂p and xiq are the local target and atlas intensity patches, respectively, around voxels p 
∈ Ω (in the target image X̂) and q ∈ p (in the spatial neighborhood of p in the registered 

atlas image X̃
i); and β ∈ ℝ+ is a scaling parameter controlling the smoothness of the 

similarity function. Other similarity measures can also be used such as the inverted SSD [||xp̂ 

− xiq ||2]−β, with β ∈ ℝ+ a gain parameter (Artaechevarria et al., 2009; Wang et al., 2013). 

The motivation is that the higher the local similarity between atlas and target images, the 

lower the registration error and therefore the more reliable is the anatomical correspondence.

Sparse regression (Olshausen and Field, 1996) was also used to compute patch similarity 

with the idea of minimizing the amount of atlases contributing to the fusion of each target 

point (Tong et al., 2013; Wu et al., 2015; Zhang et al., 2012). Sparse regression, originally 

used in compressed sensing for representing a signal using a minimal number of base 

signals, turned out to be successful in PBLF. Further approaches have extended PBLF by 

having into account pair-wise correlations between atlas patches (Wang et al., 2013), using 

multi-resolution strategies (Wu et al., 2015), implementing local fusion in probabilistic 

approaches (Asman and Landman, 2013; Cardoso et al., 2013) and incorporating an efficient 

PatchMatch search strategy (Barnes et al., 2009) to search for the most similar patches 

(Giraud et al., 2015).

2.2. Embedding

PBLF can potentially benefit from increasing the discriminative capabilities of patch 

similarity measurements. Some methods learn an embedding function f (x) that transforms 

the original image patch to a space emphasizing the features related to anatomical variations 

(Sanroma et al., 2015a; Yang et al., 2016). Such space is defined so that the Euclidean 

distance between the transformed patches || f (x̂p) − f (xiq)||2 is a more reliable indicator of 

anatomical similarity.
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Embedding approaches aim at finding a new representation of the data z = f (x) that 

preserves some desirable properties, with z ∈ IRd usually of lower dimensionality than the 

input data x ∈ IRD (d < D). For example, Laplacian Eigenmaps (LE) (Belkin and Niyogi, 

2003) tries to find an embedding that preserves the local structure of the data

arg minzi
∑
i j

‖zi − z j‖
2Ai j (3)

where Aij encodes the adjacency (or similarity) between two data points (e.g., using the 

exponential of the negative SSD). The idea is that points that are close in the original feature 

space must lie also close in the embedded space. In LE, the embedding is only defined for 

the training samples, but linearized versions have also been presented such as Locality 

Preserving Projections (LPP) (He and Niyogi, 2004), defining the embeddings as a linear 

transformation on the input space z = W⊤x. Similar approaches include Local Linear 

Embeddings (LLE) (Roweis and Saul, 2000) and its linearized version, Neighborhood 

Preserving Embeddings (NPE) (He et al., 2005).

However, these approaches are unsupervised, so they cannot guarantee that the computed 

embeddings represent better the anatomical similarity than the original data. To solve this 

problem, we must leverage the anatomical label yi at each patch xi to enforce the 

embeddings to be anatomically representative. Following the idea of the previous 

approaches, Marginal Fisher Analysis (MFA) (Yan et al., 2007) still preserves the local 

structure of the data but adds discriminative information via a properly defined adjacency. 

The optimized function is:

arg min
W

∑i j ‖W⊤xi − W⊤xi‖
2Ai j

∑i j ‖W⊤xi − W⊤x j‖
2Bi j

(4)

where

Ai j =
[l]1 if xi and x j are neighbors and yi = y j

0 otherwise
Bi j =

[l]1 if xi and x j are neighbors and yi ≠ y j

0 otherwise

(5)

Here, the idea is to use the two adjacency matrices A and B denoting the same-class and 

different-class neighborhoods, respectively, to bring same-class neighbors close together and 

push different-class neighbors far apart. It is important to note that we refer to neighbors in 

the feature space, as opposed to the concept of spatial neighborhood used in the previous 

section. By definition, PBLF always deals with spatially neighboring patches. However, we 

want to enforce spatially close patches with the same label to be also close in the feature 
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space (i.e., appearance similarity). Another embedding approach following a similar idea is 

Discriminative Neighborhood Embeddings (DNE) (Zhang et al., 2006).

We recently proposed a discriminative label fusion approach that extended the idea of MFA 

by using non-binary adjacency matrices in order to emphasize the contribution of the most 

similar patches without using a hard threshold (Sanroma et al., 2015a).

3. Method

We present a new method to learn non-linear patch embeddings z = f (x) using neural 

networks. The pipeline of the method is shown in Fig. 1. In the training phase, patches are 

sampled from atlas images near the boundary of the structures (yellow square in Fig. 1(a)). 

Note that training images are in their native space (i.e., not registered to any template). A 

training sample is composed of a central patch and neighboring voting patches at both sides 

of the boundary. Neighboring patches are sampled within the same image, thus obviating the 

need for pairwise registration during training. This is based on the assumption that the 

relationships between neighboring patches within the same image are similar to those 

between different images during testing, which is reasonable given that images are registered 

during testing. To validate this assumption, we tried both sampling strategies (i.e., within the 

same image and between (training) target and registered (training) atlases), and did not find 

statistical performance improvements by the second strategy despite the considerable 

increase in training complexity. We process the vast amounts of data in smaller subsets, 

called mini-batches, via SGD. A mini-batch of samples is put through the neural network to 

obtain patch embeddings (green squares in Fig. 1(a)). The loss of a mini-batch reflects the 

accuracy of labeling the central patch using the neighboring patches. The gradient of the loss 

is used to update the embedding parameters so as to improve the label fusion accuracy. In 
the testing phase, image patches are obtained around the to-be-labeled target point and the 

neighboring points in the registered atlases (top panel in Fig. 1(b)). Embedded patches are 

obtained by applying the neural network to the original patches (bottom right panel in Fig. 

1(b)). The target label is obtained via similarity-weighted voting using the embedded 

patches (bottom left panel in Fig. 1(b)). By integrating our method into standard PBLF, the 

important issue of enforcing spatial constraints is handled by the weighted voting procedure. 

Moreover, by computing the embeddings at patch level (rather than the image level) our 

method scales linearly with the number of atlases at test time.

In the following, we describe all the steps in the training phase of our method, namely, the 

learning of the model (Section 3.1), the initialization of parameters (Section 3.2) and the 

sampling of patches (Section 3.3). The testing phase, consisting in standard PBLF with the 

embedded patches, will not be further discussed beyond what has been mentioned above.

3.1. Model

Each sample in our training set is composed of a pair of target patch and ground-truth label, 

denoted as (xî, ŷi), i = 1, …, m (with m the size of the mini-batch), along with their 

corresponding set of voting patches and labels, denoted as {(xij, yij)}, j = 1, …, n (with n the 

number of voting patches), casting the votes on the target label. In Section 3.3 we will 

describe the procedure used to retrieve such training samples.
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We define the notion of similarity between two embedded patches using the softmax 

operator as follows:

P yi = yi j ∣ f =
exp −‖ f xi − f xi j ‖2

∑k exp −‖ f xi − f xik ‖2 ≡ Pi j . (6)

In PBLF, this measure can be interpreted as the probability of patches x̂i and xij having the 

same label, given the embedding f, when using the similarity measure defined in Eq. (2). 

Note that the scaling parameter related to the smoothness of the weights (β in Eq. (2)) is 

here implicit in the embedding f. Non-local weighted voting label fusion (Coupé et al., 

2011) proposes to heuristically set it to β = 1/min (|| x̂i − xij ||2). As we will see in next 

section, scaling is relevant for the initialization of the network since it affects the behavior of 

the softmax.

Our goal is to optimize the label fusion accuracy of PBLF, i.e., we want to maximize the 

sum of probabilities of the same-class patches. Let us define i = {j| ŷi = yij} as the indices 

of the same-class patches in the set of voting patches. Further, we denote the activation 

between patches xî and xij as:

ai j = − ‖ f xi − f xi j ‖2 . (7)

Using the expression of Eq. (6), the sum of probabilities for the same-class patches can be 

defined as:

Ji = ∑
j ∈ 𝒞i

Pi j =
∑ j ∈ 𝒞i

exp ai j

∑k exp (aik) . (8)

This measure provides a likelihood of correct label fusion through similarity weighted 

voting (Eq. (1)). In the ideal case (Ji ≃ 1), the sum of similarities of different-class samples 

will be negligible compared to correct class ones (and in the worst case Ji ≃ 0).

We want to maximize the expected likelihood of correct labeling over a training set of 

patches. We adopt the common strategy of minimizing the average of the negative log-

likelihood across the training samples. This corresponds to the following energy:

E = 1
m ∑

i
− log (Ji)

= 1
m ∑

i
− log ∑

j ∈ 𝒞i

exp ai j + log ∑
k

exp (aik) .

(9)
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The gradient of this energy with respect to the activations of each patch has the following 

expression:

δE
δai j

=
[l] −

exp ai j
∑k ∈ 𝒞i

exp (aik) +
exp ai j

∑k exp (aik) if yi = yi j

exp ai j
∑k exp (aik) if yi ≠ yi j

= − Pi j′ + Pi j

(10)

where Pij is the softmax defined in Eq. (6) and Pi j′  is a restricted softmax which only 

considers the samples within the same class. This is,

Pi j′ =
[l]

exp ai j
∑k ∈ 𝒞i

exp (aik) if yi = yi j

0 if yi ≠ yi j

(11)

As we can see in Eq. (10), the gradient of our objective function leads to a very simple 

expression δE
δai j

= Pi j − Pi j′ . Let us interpret this expression to have an idea of the behavior of 

the optimization. In the case of activations aij of same-class samples, the value of the 

gradient will be always negative (since Pi j′ ≥ Pi j, ∀ i, j) which means that the optimization 

will try to increase their value with a strength proportional to the magnitude of the gradient. 

This is, the worse the configuration of activations is (i.e., the higher the activations of the 

different-class patches), the higher the magnitude of the (negative) gradient for same-class 

activations (because Pi j′ ≫ Pi j) and, as consequence, the optimization will try to correct the 

situation with a higher strength. Conversely, the gradient of different-class activations will 

always be positive, which means that the optimization will try to decrease their value. The 

larger the softmax Pij of a different-class activation, the stronger the optimization will try to 

decrease its value. Finally, in the ideal case that all same-class activations are significantly 

higher than the different-class ones, we have that Pi j′ ≃ Pi j. Then, it follows that the gradient 

δE
δai j

≃ 0 for all same-class activations aij, thus corresponding to an optimum of the objective 

function. For different-class activations, the gradient will also be 0 because, by definition of 

the ideal situation, their softmax will be also close to zero. That is, the system will push to 

the correct solution (optimum) with a strength proportional to how far it is from it.
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We indirectly optimize activations through the embeddings of the patches. Remember that aij 

= −|| f (x̂i) − f (xij)||2, so increasing an activation aij implies increasing the similarity of two 

embeddings f (x̂i) and f (xij). Now, these embeddings are defined as

f (x; θ) = WLhL − 1 + bL (12)

hL − l = σ WL − lhL − l − 1 + bL − l , l = 1, …, L − 1 (13)

h0 = x (14)

The final embedding f (x; θ) in Eq. (12) in the output layer consists of a linear combination 

of the last hidden layer, hL−1, where θ are the parameters of the network and L is the number 

of layers. The hidden layers hL−l in Eq. (13) are defined as a linear combination of the 

previous hidden layer hL−l−1 followed by a non-linearity σ(·) such as the sigmoid, the 

hyperbolic tangent or the rectifier linear unit (ReLU). The first hidden layer h0 corresponds 

to the input patches (x), as denoted in Eq. (14). Note that for L = 1 this corresponds to a 

linear model. The parameters θ = {W1, …, WL, b1, …, bL}, consisting of the linear 

transformation matrices (W) and biases (b) of each layer, are the actual variables optimized 

through gradient descent (by means of the aforementioned activations).

Regularization: Some methods have shown that promoting the sparsity of the similarity-

based weights leads to better label fusion results (Guo and Zhang, 2012; Tong et al., 2013; 

Wu et al., 2015; Zhang et al., 2012). This is, many atlas patches xij are encouraged to have 

weights ωij ≃ 0. One widely adopted strategy is to minimize the L1-norm of the resulting 

similarity-based weights ω. Since we are dealing with probability distributions, we adopt 

here the well-known strategy of penalizing the KL-divergence of the set of weights with 

respect to the binomial distribution with a small probability ρ = 0.05 (Ranzato et al., 2007), 

as follows:

E = 1
m ∑

i
− log (Ji) − λ∑

j
ρ log P j + (1 − ρ) log 1 − P j (15)

where P j = 1
m ∑i exp ai j  is the average jth activation value over a mini-batch. The first term 

in this expression enforces high label fusion accuracy and the second term enforces the 

sparsity of the similarity-based weights.

Optimization: We optimize the objective function via SGD by partitioning the full training 

set into small mini-batches. The optimization is carried out for a certain number of epochs, 
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where one epoch corresponds to the processing of the whole dataset over mini-batches. SGD 

is a convenient strategy to account for the vast amount of data involved in training similar 

models (the number of samples involved in a moderately-sized structure can easily scale-up 

to several thousands). In Section 3.3, we will explain how to sample the mini-batches from 

the training images.

3.2. Initialization

For optimization, we use the common strategy of initializing the biases to zero, b = 0 and the 

transformation matrices W randomly. Random initialization is important to break the 

symmetry and avoid all the units behaving the same way (Bengio, 2012). Moreover, when 

initializing the hidden layers, we have to be careful that the output distribution of the linear 

transformation Wlhl−1 + bl does not fall into the saturated regime of the non-linearity σ(·), 

so that the gradients can flow through the network. In the case of the hyperbolic tangent, this 

is accomplished by initializing each element W i j
l φ/ din, where φ is the standard Gaussian 

distribution and din is the input dimensionality of the layer (Glorot and Bengio, 2010). For 

the sigmoid, this is W i j
l 4 × φ/ din (Glorot and Bengio, 2010) and for ReLUs W i j

l φ/ din/2

(He et al., 2015).

The output of the network consists of a softmax fed by a linear transformation (Eqs. (6) and 

(12), respectively). The behavior of the softmax is heavily influenced by the implicit scale of 

the embeddings, i.e., a high scale will saturate the softmax producing sparse outputs and a 

low scale will produce uniform outputs. In order to begin the optimization with a reasonable 

scale, we randomly initialize the transformation matrix in the output layer WL as described 

above and then adjust the scale as follows: WL ← β̂ ⊙ WL, where ⊙ denotes the element-

wise multiplication and β̂ is an optimal scale parameter. The importance of learning the 

proper scale parameter has also been studied in the context of belief propagation in weighted 

graphs (Zhu et al., 2003). Here, we learn the optimal scale β̂ for the output layer of the 

randomly initialized network by minimizing the negative log-likelihood over a large batch of 

training samples:

arg max
β

1
m′ ∑i

− log
∑ j ∈ 𝒞i

exp βai j

∑k exp βaik
(16)

where aij are the activations obtained through Eq. (7) with the randomly initialized network 

and m′(> m) is the batch size used for scale estimation. This procedure is similar to the 

network training described before but only optimizing one scalar β̂ over a single batch.

3.3. Sampling

We need a procedure to sample the mini-batches that will be used for optimization with 

SGD. Following the idea of importance sampling (Rubinstein and Kroese, 2011), we sample 

patches from regions near the boundaries of the structures, since these are the most critical 

for PBLF. We denote the training images and ground-truth labelmaps as Xi and Yi, i = 1, …, 
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N, respectively. We sample the target patch and label (x̂ip, ŷip) uniformly at random across 

images and with a probability negatively correlated with the distance to the boundary across 

locations. That is, i ~  (1, …, N), and position p ~ [ 1 − B (p)/ε]+, where B (p) denotes the 

distance from p to the boundary, ε denotes the maximum distance to the boundary and [·]+ is 

an operator that truncates the negatives to zero. For each target patch and label pair (x̂ip, 

ŷip), we sample a set of voting patches and labels {(xiq, yiq)} from neighboring locations q 
∈ p within the same image as (x̂ip, ŷip). This avoids the need of using pairwise 

registrations during training, which simplifies the training procedure and considerably 

improves the memory requirements. We randomly sample n neighboring patches by trying to 

create a balanced set when possible, i.e., n
2  samples with yiq = ŷip and n

2  samples with yiq ≠ 

ŷip. Each mini-batch is composed of m target patches and labels with their corresponding n 
voting patches and labels.

4. Experiments and results

We perform several experiments applying the proposed method for segmenting the whole 

hippocampus and the hippocampal subfields. We compare the proposed method with the 

following state-of-the-art PBLF techniques: majority voting (MV) (Heckemann et al., 2006; 

Rohlfing et al., 2004), local weighted voting (LWV) (Artaechevarria et al., 2009), non-local 

weighted voting (NLWV) (Coupé et al., 2011) and Joint label fusion (JOINT) (Wang et al., 

2013). It is worth mentioning that NLWV is considered the baseline since it is equivalent to 

our method but using original image patches instead of embeddings.

We include the following versions of our method to evaluate the contribution of each part:

• SCALE: this version does not use any embedding and is equivalent to baseline 

NLWV but using a global optimal scaling β estimated through Eq. (16). This 

provides the performance that can be obtained by optimizing only one global 

scale parameter.

• AFFINE: this is a simplified version of the proposed method without any hidden 

layer (i.e., L = 1), illustrating the improvement of using the proposed 

embeddings consisting of an affine transformation (Eq. (12)).

• NL1: this a full version of our method with one hidden layer (i.e., L = 2), 

demonstrating the benefits obtained by using a non-linear model with an extra 

layer, compared to the AFFINE version.

• NL2: this another full version with two hidden layers (i.e., L = 3), representing 

the improvement of adding yet another hidden layer.

We used our own implementation of LWV and NLWV, where LWV consists of a restricted 

version of NLWV enforcing one-to-one correspondence when retrieving the atlas voting 

labels. We used the same base implementation for JOINT, which is similar to LWV and 

NLWV except for the label fusion part that considers pair-wise atlas patch correlations. Our 

proposed method also uses the same base implementation for testing, except that patches are 

transformed with the learnt embeddings before label fusion. In this way, we make sure that 
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performance differences of the methods are due to the label fusion strategy and not due to 

implementation-specific details.

For JOINT, we set the exponent of the similarity (β in Wang et al., 2013) to the best value in 

the set β = [ 0.005, 0.05, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0], which were β = 3.0 and β = 0.05 for 

whole hippocampus and hippocampal subfield datasets, respectively. As for the 

regularization in the JOINT similarity matrix (α in Wang et al., 2013), we set it to the 

recommended value α = 0.1 after making sure that the maximum similarities had similar 

scales as in the original paper (between 1 and 4). For segmentation, we set the patch radius 

to 3 voxels and the search radius for the voting atlas labels to 1 voxel, which achieved good 

results for all the methods. Patches were normalized to zero mean and unit standard 

deviation for all the methods, except for JOINT that uses zero mean and unit L2-norm. All 

images were non-rigidly registered to the MNI152 template (Fonov et al., 2009) with ANTs 

(Avants et al., 2008) using a symmetric diffeomorphism (SyN) and pairwise registrations 

were obtained by concatenating the deformations through the template. All methods used the 

same target images and registered atlases as inputs. The following pre-processing steps were 

applied: (1) de-noising (Manjon et al., 2010), (2) N4 bias correction (Tustison et al., 2010), 

(3) histogram matching (Nyul and Udupa, 1999). We do all the processing (including 

segmentation) in the native target space, thus avoiding as much as possible interpolation 

effects.

All images were divided into an atlas-set (i.e., training) and a target-set (i.e., test). To make 

sure both sets were well distributed, we computed the pair-wise similarity between all the 

images in a region-of-interest (ROI) around the to-be-segmented structure and selected the 

atlas-set so as to be well spread across the manifold. For all the methods, we segment the 

target-set using the atlas-set.

For training the proposed method, 10 instances of each model were independently trained 

for each structure with hyper-parameters selected uniformly at random among a range of 

values. We divided the training set into training and validation sets and the best model was 

used for segmenting the target-set according to the performance on the validation set. We 

used the following range of values for sparse regularization, λ = [0, 0.0002, 0.002, 0.02]. 

The same number of units were used in each layer, which was selected among the values 

100, 200, 500. As non-linearities, we used hyperbolic tangent, sigmoid and ReLUs. The size 

of the mini-batch and number of voting patches were set to m = 50 and n = 50, respectively, 

(we did not find that this value affected the results for a fairly wide range of values). The 

size of the batch for the estimation of the optimal scale parameter in Eq. (16) was set to m′ 
= 1000. The radius of the neighborhood p for sampling voting patches for training was set 

to 4 voxels. We used Adam (Kingma and Ba, 2014) variant of SGD with a learning rate of 

0.0003. Batch normalization was used in all the model instances containing non-linearities 

(Ioffe and Szegedy, 2015). The training was stopped when no further improvement in the 

validation set was obtained, which usually occurred before 3 epochs. In the Section 4.3, we 

report the frequencies of the selected hyper-parameters.

Sanroma et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Whole hippocampus

Data used in this experiment were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://www.adni.loni.usc.edu).3 We used a subset of 135 T1 MR 

images with ground-truth hippocampal segmentations according to the harmonized protocol 

by the EADC-ADNI effort4 (Boccardi et al., 2015). The size of the images is 197 × 233 × 

189 with a resolution of 1 mm isotropic. The distribution of subjects according to their 

clinical status is the following: N = 44 normal control, N = 46 mild cognitive impairment 

and N = 45 Alzheimer’s disease; and the distribution according to age is: N = 40 between 60 

– 70 yrs., N = 55 between 70 – 80 yrs. and N = 40 with more than 80 yrs. We selected 35 

images as atlases and 100 images as targets.

Fig. 2 shows an example image with overlaid ground-truth segmentations of left and right 

hippocampi.

The first set of experiments compares different choices in the label fusion pipeline including 

similarity metrics, patch normalization and Softmax scaling. The goal of these experiments 

is to motivate the choices by the proposed method and to provide insight on the crucial 

aspects affecting label fusion performance. The second set of experiments compares the 

proposed methods to the state-of- the-art.

4.1.1. The effects of similarity metric, patch normalization and softmax scaling
—Here, we compare several factors influencing the label fusion performance. The first 

obvious candidate is the similarity metric used to compute the weights. As similarity 

metrics, we compare (1) the negative SSD (negSSD) between a target patch x̂i and the jth 

atlas patch in the library xij, ai j = − ‖xi − xi j‖2
2 (the proposed one), and (2) the locally 

normalized cross-correlation (LNCC), ai j =
xi

‖xi‖2
·

xi j
‖xi j‖2

. We also tried the cosine similarity, 

ai j =
xixi j

‖xi‖2‖xi j‖2
, but got similar results to LNCC, so we do not include the results here.

The type of normalization applied to the patches also has important effects regarding the 

invariance properties of the similarity. This is especially important for the negSSD metric, 

which is not normalized (we did not find any effect in normalizing the patches for LNCC 

similarity, since LNCC is already normalized). We evaluate three strategies for normalizing 

the patches x before negSSD, namely, (1) no normalization (negSSD-none), where the 

original patches are used to compute the similarity, (2) zero mean and unit standard 

deviation (negSSD-zscore, the one used by our method) x̃ = (x − μx)/σx, where μx and σx are 

the mean and standard deviation of patch x, respectively, and (3) unit L2-norm (negSSD-L2) 

x̃ = x/||x||2.

3The ADNI was launched in 2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.org.
4http://www.hippocampal-protocol.net/SOPs/index.php
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Finally, we evaluate the effect of the scaling of the similarity on the behavior of the Softmax. 

Although scaling is the simplest way of modifying the Softmax operator, it will already 

provide an intuitive understanding of its influence. We compare three different scaling 

strategies, namely, (1) no scaling, wi j = e
ai j

∑k e
aik

, where the weights wij are obtained directly 

by applying the Softmax to the similarities aij, (2) inverse of the minimum distance (or 

maximum similarity) (Coupé et al., 2011), wi j = e
ai j/h

∑k e
aik /h , where h = maxk aik is the 

maximum similarity (or minimum distance) (this version is equivalent to the baseline 

NLWV), and (3) proposed scale, wi j = e
βai j

∑k e
βaik

, where β̂ is the optimal scale as in Eq. (16) 

(this version is equivalent to the proposed SCALE version of our method).

Table 1, shows the mean and standard deviation in Dice scores (DS) obtained by the 

different choices using the baseline NLWV method.

As we can see, for a given scaling strategy, there are no significant differences between 

using LNCC and negSSD metrics. The only exception is negSSD with no scaling (negSSD-

none), which turns out to be scaled properly for the Softmax, as shown by the good results 

when no scaling factor is used (‘No scaling’ column). Note that the negSSD-none results are 

highly dependent on the particular configuration (intensity range, patch size, …) and would 

not generalize to a change in these parameters. Furthermore, we note that there are 

performance differences depending on the scaling strategy, with the proposed scaling 

strategy obtaining the best results.

4.1.2. Methods comparison—Before comparing the methods, we assess the effect of the 

number of atlases on the segmentation performance. To that end we segmented the 100 

target subjects with baseline NLWV using an increasing number of atlases (ranked 

according to the normalized correlation in an ROI around the hippocampus). Average Dice 

scores (DS) using the best 5 and 15 atlases are 83.82 ±(2.59) and 84.58 ±(2.38), respectively, 

thus stressing the importance of the scalability of the method w.r.t. the number of atlases. We 

found a slight decrease in performance when using 35 atlases, therefore we used 15 atlases 

in the rest of the experiments in the ADNI dataset.

In Fig. 3, we show a boxplot with the distribution of DS across the target population for each 

method. As we can see, all versions of the proposed method performed better than the 

baseline NLWV. Such improvements are related to the learning of different discriminative 

transformations. In order to better appreciate performance differences, in Table 2 we show 

the mean and standard deviation in DS.

As we can see, the performance improves as model complexity increases up to NL1, where 

the performance stabilizes in a > 2% improvement with respect to the baseline NLWV. 

Supervised learning of a SCALE parameter leads to an improvement of ~0.75% w.r.t. 
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NLWV. Further optimizing an AFFINE transformation leads to extra ~0.8% improvement 

w.r.t SCALE. Adding an extra layer with a non-linearity (i.e., NL1) improves an extra 

~0.25%. Finally, adding an extra layer (i.e., NL2) does not involve any noticeable 

improvement w.r.t. NL1 in this dataset. JOINT achieves a slightly better performance than 

our SCALE version and is outperformed by our NL1 and NL2 versions.

Besides measuring the accuracy of the methods via the Dice score, we are also interested in 

their bias. In order to measure the bias, Fig. 4 shows the average signed distances by each 

method across the population. Each point on the surface shows the average signed distance 

between the ground-truth and estimated surfaces, where blue denotes that the method tends 

to shrink the structure and red denotes that the method tends to expand it.

As we can see, all the methods tend to under-segment the frontal part of the hippocampus 

and tend to over-segment along the sides from head to tail. This is especially evident in the 

worst performing methods. Also, the proposed method shows consistently lower bias 

towards shrinkage of the frontal part for both left and right hippocampi, especially the NL1 

and NL2 versions.

4.2. Hippocampal subfields

We also assessed the performance of the proposed method in hippocampal subfield 

segmentation experiments using the Bernasconi’s dataset (Kulaga-Yoskovitz et al., 2015). 

This dataset consists of high-resolution T1- and T2-weighted MRI from 25 healthy subjects 

(31 ±7 yrs, 13 females) obtained with a 3 T MRI system. We use the T1-w images in the 

experiments (3D-MPRAGE), which are of size 336 × 384 × 240 and resolution 0.6 mm 

isotropic. The dataset contains ground-truth annotations of the hippocampal substructures, 

which divide the hippocampal formation into three subregions: subicular complex 

(Subiculum), merged Cornu Ammonis 1, 2 and 3 (CA1-3) subfields, and CA4-dentate gyrus 

(CA4-DG).

Fig. 5 shows an example T1-w MR image with overlaid ground-truth segmentations of the 

mentioned hippocampal substructures. We divided the 25 images into 13 atlases and 12 

targets. As in the previous experiments, selection was carried out so as to ensure that atlases 

were well spread in the manifold.

First, we assessed the segmentation performance w.r.t. the number of atlases. Table 3 shows 

the results using 3 vs. 13 (i.e., all the available) atlases when segmenting the 3 (bilateral) 

substructures. Compared to ADNI experiments, here we used less atlases in the restricted 

case due to the significantly larger size of the images.

As we can see, a larger set of atlases lead to average DS increases of 3 – 4%, which supports 

the importance of methods that are scalable w.r.t. the number of atlases. Fig. 6 shows 

boxplots with the distribution of DS for all the methods in the 3 hippocampal substructures, 

namely, CA1-3, Subiculum, and CA4-DG. The different versions of the proposed method 

tend to have higher DS than the baseline NLWV. In general the more complex versions of 

the proposed method achieve higher average DS, with NL2 barely obtaining any noticeable 
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increase over NL1. In order to better appreciate the differences, in Table 4 we show the 

mean and standard deviation of DS across the target subjects.

In CA1-3, our proposed NL1 obtains the highest average DS, approximately ~1% higher 

than the baseline NLWV. In the Subiculum, NL1 and NL2 achieve the highest average DS, 

which is > 1% higher than the baseline NLWV. In CA4-DG, JOINT label fusion obtains the 

highest DS, followed by our NL1 and NL2 versions. As in ADNI, the average DS of NL2 is 

close to that of NL1. Although the proposed methods obtained the highest average Dice 

scores in most of the sub-structures, we did not find statistically significant differences 

between any methods.

4.3. Hyper-parameter selection

Ten instances of each model were independently trained for each structure with the values of 

the hyper-parameters selected uniformly at random among a range of values. The best 

performing models in the validation set were used in the above segmentation experiments. 

Fig. 7 shows histograms of hyper-parameter values used by the best performing models as 

well as the number of epochs required for obtaining the best performance. The shown hyper-

parameters are: number of units in each layer, type of non-linearity and strength of sparsity 

regularization (λ in Eq. (15)). The horizontal and vertical axes correspond to the hyper-

parameter value and the number of models that ended up having such value, respectively. 

The total number of models for most of the parameters was (1 + 3) × 3 = 12, that is, 1 model 

for ADNI +3 models for Bernasconi, which equals 4 models ×3 variants, namely, AFFINE, 

NL1 and NL2. The type of non-linearity parameter only applies to NL1 and NL2 variants, 

hence 8 models.

As we can see, the best performance is obtained in all cases before 3 epochs. Even though 

we continued training for longer, the performance on the validation set did not improve any 

further. In some cases, the best performance was obtained even before the 1st epoch, that is, 

even before the model had seen all the training data once. This is possibly because the 

inherent redundancy in the data sampled near the same region and the ability of the sampling 

procedure to retrieve all relevant data before all data was sampled. Regarding the number of 

units, we see a slight preference for using 200 units, which corresponds to the number of 

units used both in the hidden layers (when applicable) and in the output layer, which relates 

to the dimensionality of the output embedding. We did not use different numbers of units at 

each layer as we did not fore-see great performance differences at the cost of considerably 

enlarging the hyper-parameter space. The experiments show a stark evidence for the 

preference of ReLU non-linearities over the rest, since these were used by all the best 

performing models. Finally, the histograms show conflicting evidence for the benefits of 

explicit sparse regularization, since there are two peaks corresponding to no sparsity (i.e., λ 
= 0) and strongest sparsity (i.e., λ = 0.02).

5. Discussion

Results show that the scaling of the similarities used in the Softmax has higher impact on 

performance than the similarity metric. We argue that one of the reasons for the success of 

our method lies in the ability of the proposed affine and non-linear transformations to jointly 
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influence the Softmax and the similarity metric in more nuanced ways than a simple scaling. 

Due to the similar performance of LNCC and negSSD, we conclude that a more important 

factor than their performance for integrating them in our method is the form of the resulting 

gradients when optimizing affine and non-linear patch embeddings through gradient descent.

Results also show that the number of atlases has an important effect on the multi-atlas 

segmentation performance. In particular, we found that using ~15 atlases led to reasonable 

results in both datasets. This is a limiting factor for methods computing the embedding on 

whole images before segmentation (Yang et al., 2016), since their memory requirements are 

of the order  (N × d), where N is the number of atlases and d is the dimensionality of the 

output embedding.

Results show that methods incorporating appearance information perform better than 

methods only using label information (i.e., MV). This is in line with previous studies that 

showed that appearance information is a powerful proxy for driving anatomical 

correspondence (Aljabar et al., 2009; Artaechevarria et al., 2009; Coupé et al., 2011; 

Sanroma et al., 2014). Another interesting observation is that PBLF methods enforcing one-

to-one correspondence in the search of candidate atlas patches (i.e., LWV) underperform 

compared to the others not enforcing such constraint, which is also in line with other 

experimental findings (Coupé et al., 2011; Rousseau et al., 2011). Regarding the proposed 

method, results show a clear improvement in the more complex versions of our method 

compared to the simpler ones, thus suggesting that hierarchical models containing non-

linearities are suitable for computing embeddings for PBLF. The simplest version of our 

method estimating an optimal SCALE parameter for computing the patch similarity, 

obtained average DS increases of ~1% compared to using the (unsupervised) heuristic by 

NLWV (Coupé et al., 2011) in the presented experiments. The advantage of learning a 

discriminative AFFINE transformation is evidenced by an increase in average DS of > 0.5% 

w.r.t. to the SCALE version. Compared to SCALE, the AFFINE version features a full linear 

transformation and also implements the SGD strategy over mini-batches instead of using a 

single (larger) batch. NL1 is the simplest full-fledged version of our proposed method 

featuring a hierarchy of linear and non-linear transformations and SGD optimization. The 

increase in average DS achieved by NL1 compared to AFFINE range between ~0.1% and 

~0.3%. Finally, we did not observe a consistent increase in NL2 by adding an extra layer on 

top of NL1. This suggests that, the capacity of NL1 is sufficient to capture the discriminative 

patterns characterizing the studied anatomical structures in the available databases. The 

reported improvements were statistically significant in the ADNI dataset. In the Bernasconi 

dataset, although the proposed method tended to achieve the highest Dice scores, no 

statistically significant differences were obtained by any method.

Strategies such as ensembling (Giraud et al., 2015) and/or corrective learning (Wang et al., 

2011) may be applied to further improve the segmentation performance. We consider these 

strategies as post-processing steps complementary to the main aim of the paper centered in 

the merits of label fusion, involving, the patch representations, similarity metrics and the 

weights optimization.
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Regarding the hyper-parameter values, we found clear evidence of the superiority of ReLUs 

over the rest of non-linearities. Moreover, we did not find strong evidence supporting the 

benefits of explicit sparse regularization in the similarity-based weights. Several works have 

shown the benefits of inducing sparsity in PBLF (Guo and Zhang, 2012; Tong et al., 2013; 

Wu et al., 2015; Zhang et al., 2012). We found that the similarity weights obtained with our 

embeddings without explicit sparse regularization were already sparser than the ones 

obtained using the original patches. Therefore, it is possible that the explicit sparsity did not 

add significantly to it. Moreover, recent works suggest that explicit regularization may not 

play a central role in the generalization abilities of neural networks (Zhang et al., 2016) (as 

opposed to other machine learning techniques). It is suggested that the neural network 

architectures already exert some form of regularization even though it is not explicit in the 

optimization. Also, contrarily to other machine learning techniques, increasing the capacity 

of neural nets (i.e., by increasing the number of units) does not usually lead to greater 

overfitting (i.e., poor generalization). In summary, the roles of regularization and model 

capacity in the generalization abilities of neural networks are a topic of open research 

(Zhang et al., 2016).

Regarding the computational complexity of the training procedure, we did not find 

significant advantages of using GPU compared to CPU. This might be due to the relatively 

equivalent training and sampling times in our method. This contrasts with more complex 

architectures with a higher number of parameters (such as some modern CNNs), where 

computational requirements for training are comparatively larger than the ones required for 

sampling. All our models were trained in less than a day in a machine with multiple cores, 

so that multiple model instances (i.e., 10) with randomly sampled hyper-parameters could be 

trained in parallel. Each instance is composed of 2 processes running in parallel: while one 

trains the model, the other segments the validation images with the latest available model 

(for obtaining the validation performance). We run each process in 2 of the cores of an AMD 

Opteron Abu Dhabi 6378 processor. Our code uses Theano and can be found at https://

github.com/gsanroma/deeplf.

6. Conclusions

We have presented a method for learning discriminative image patch embeddings for 

optimal PBLF. We applied it to the segmentation of brain structures such as the 

hippocampus and hippocampal substructures. We used neural networks optimized via 

stochastic gradient descent (SGD) to learn a single model per bilateral structure. We 

analyzed the effectiveness of SGD in minimizing the desired objective function. We learned 

optimal patch embeddings using neighboring patches sampled within the same image. 

Segmentation results using a varying number of atlases highlighted the importance of the 

scalability of the methods w.r.t. the number of atlases. We showed the improvements by the 

proposed framework at different complexity levels. We did not find the choice of similarity 

metric to significantly affect the label fusion performance. On the other hand, a simple 

scaling of the similarities according to the proposed SCALE method already improves the 

segmentation performance compared to using an heuristic (unsupervised) strategy. 

Optimizing a full affine transformation via SGD further improved the segmentation 

performance and, adding an extra layer with a non-linearity increased the performance even 
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further compared to the affine model. Finally, we did not find consistent improvements by 

adding extra layers to the model, which suggests that a depth-1 model has the right capacity 

for PBLF in these particular datasets. We showed that the performance of the method is 

stable across a range of values for most hyperparameters except for the type of non-linearity, 

where ReLUs were consistently picked over the rest. We did not obtain convincing evidence 

that regularization improved performance and connected this finding with recent discussions 

on the links between model capacity, regularization and generalization abilities in neural 

networks.
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Fig. 1. 
Pipeline of the method for the training and testing phases. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.)

Sanroma et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A sample image from ADNI after pre-processing with ground-truth hippocampal labels 

overlaid.
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Fig. 3. 
Boxplots of DS in hippocampus segmentation in the ADNI dataset. The dashed vertical line 

separates the competing methods and the proposed ones.
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Fig. 4. 
Spatial distribution of the average signed distance between estimated and ground-truth 

surfaces across the population. Average signed distances for each method are mapped onto a 

template hippocampal surface. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.)
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Fig. 5. 
A sample image from Bernasconi’s dataset after pre-processing with ground-truth 

hippocampal subfields overlaid.
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Fig. 6. 
Boxplots of DS in hippocampal subfield segmentation in Bernasconi’s dataset. The dashed 

vertical lines separate the competing methods and the proposed ones.
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Fig. 7. 
(a) Histogram with the number of epochs needed by the best performing models to obtain 

the top performance. (b)–(d) Histograms with the hyper-parameter values used by the best 

performing models.
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Table 1

Mean (std) of DS by using different similarity metrics, patch normalization strategies and Softmax scalings. 

Star (★) denotes significantly better than the same metric with the scaling strategy at the left. Circle (∘) denotes 

significantly different than the LNCC metric with the same scaling strategy (Wilcoxon signed-rank test). One 

marker denotes p < .05; two markers, p < .005.

Whole hippocampus (DS)

No scaling NLWV (Coupé et al., 2011) Proposed SCALE (Eq. (16))

LNCC 81.49(± 2.80) 84.43(± 2.41)★★ 85.39(± 2.15)★★

negSSD-none 84.60(± 2.42)∘∘ 84.25(± 2.60) 84.49(± 2.41)

negSSD-zscore 81.63(± 2.33) 84.58(± 2.38)★★ 85.36(± 2.15)★

negSSD-L2 80.76(± 2.29) 83.74(± 2.54)★★ 85.16(± 2.29)★★
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Table 3

Mean (std) DS by baseline NLWV in different subfields using different numbers of atlases.

Number of atlases

3 atlases 13 atlases

CA1-3 84.02(± 1.63) 86.99(± 1.30)

Subiculum 80.47(± 2.51) 83.39(± 2.18)

CA4-DG 74.98(± 2.02) 79.26(± 2.10)
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