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Abstract
In recent simulation studies, a hierarchical Variational Bayesian (VB) method, which can be seen as
a generalisation of the traditional Minimum-Norm Estimate (MNE), was introduced for
reconstructing distributed MEG sources. Here, we studied how nonlinearities in the estimation
process and hyperparameter selection affect the inverse solutions, the feasibility of a full Bayesian
treatment of the hyperparameters, and multimodality of the true posterior, in an empirical dataset
wherein a male subject was presented with pure tone and checkerboard reversal stimuli, alone and
in combination. An MRI-based cortical surface model was employed. Our results show, with a
comparison to the basic MNE, that the hierarchical VB approach yields robust and physiologically
plausible estimates of distributed sources underlying MEG measurements, in a rather automated
fashion.
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Introduction
Magnetoencephalography (MEG) measures neural activity with temporal resolution of
milliseconds, but the inverse problem of localising the source currents generating the observed
extracranial magnetic fields has no unique solution (for a detailed exposition of MEG, see,
e.g., Hämäläinen et al., 1993). Reasonable estimates of the currents can be obtained, however,
if suitable constraints on the sources are applied. Estimation methods can be divided into
roughly two categories, first of which tries to explain the measurements with a small number
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of equivalent current dipoles whereas the second assumes a distribution of such dipoles
throughout the brain, and imposes some minimum-norm or maximal smoothness constraints
on the current distribution (for a review of most common inverse methods, see, e.g., Baillet et
al., 2001).

The assumptions about the distributions of the currents in the distributed source models are
naturally interpreted in a Bayesian (Bernardo and Smith, 2000) way as a priori probabilities
implied by the model when no data are yet observed. The prior is accompanied by a likelihood
function or observation model describing how different source configurations give rise to
observed fields. The likelihood is operationally constructed by (1) solving the forward
problem, which consists of assuming a conductor model for the head and numerically solving
the Maxwell’s equations dictating how currents in a conductor generate electromagnetic fields
(see, e.g., Mosher et al., 1999), and (2) specifying a distribution for the measurement noise
(e.g., a multivariate Gaussian). After obtaining a set of MEG data, the likelihood and the prior
are combined via Bayes’ rule to obtain the posterior probability distribution of the currents
given the data, which can be used to make statistical inferences about the parameters of interest,
in this case the source currents generated by neural activity. In general, the posterior is
proportional to the product of the prior and the likelihood, and the constant of proportionality
ensures that posterior probabilities sum up to unity. This important constant is termed the
evidence or marginal likelihood of a model, and it equals the probability of the data when
integrated (summed) over all parameter values. It can be used as a criterion for Bayesian model
selection by choosing the model which has the largest marginal likelihood.

Here we examine the hierarchical generalisation of the minimum-norm estimate (MNE)
(Hämäläinen and Ilmoniemi, 1984; Dale and Sereno, 1993) introduced by Sato et al. (2004).
The hierarchical method assumes a priori individual precisions (inverse variances) for the
currents, and imposes a further Gamma-distribution hyperprior for the prior precisions. This
prior is essentially similar to the Automatic Relevance Determination (ARD) prior used for
input selection for neural networks (Neal, 1996). It allows a small number of the currents to
take large values and explain a larger proportion of the data, while suppressing the others by
setting them close to zero. In the original approach of Sato et al. (2004), a Variational Bayesian
(VB) approximation was developed for posterior inference (for a review of VB-methods, see,
e.g., Ghahramani and Beal, 2001). Usually, computing posterior summary quantities of
interest, such as the posterior expectation, requires evaluation of multidimensional integrals
which are not analytically tractable; the evidence itself is often such an intractable integral.
The most common variational approach assumes some sets of variables to be independent (in
this case the currents and their precisions), and maximises iteratively a free energy function,
or equivalently minimises the Kullback-Leibler divergence (KL-divergence) from the
factorised trial distribution to the true posterior. The output of the algorithm is an analytical
(tractable) approximate for the true posterior distribution, and a lower bound for the evidence.

In Nummenmaa et al. (2006), we developed an alternative inference scheme for the ARD-prior
model based on Markov chain Monte Carlo methods (MCMC) and compared the results to
those obtained with the VB-approach. In the MCMC scheme, the posterior is represented by
a large set of numerical samples obtained from a Markov chain with the posterior distribution
as its stationary distribution (see, e.g., Robert and Casella, 2004). In the previous work, we
raised the question related to the hyperprior selection for the precision parameters
(Nummenmaa et al., 2006). The standard choice of a noninformative hyperprior leads to the
marginal likelihood becoming unbounded, and consequently the posterior becoming improper
(unnormalisable). We also briefly considered the possibility of estimating these parameters
from the data and thus performing a full Bayesian estimation of the model, and demonstrated
the multimodality of the true posterior.
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The purpose of this article is to elucidate the practical importance of these rather theoretical
considerations by using a simple empirical dataset consisting of MEG signals evoked by simple
auditory, visual, and audiovisual stimuli. We demonstrate that for the ARD-model, the utility
of using the marginal likelihood (or free energy) for model selection is in fact fairly limited
and that the hyperparameters must be set by hand to some values which can potentially have
a significant effect on the solutions. However, with fixed hyperparameters and fixed
reconstruction grid size, the free energy can in principle be used to estimate the posterior mass
proportions of different modes, which correspond in this case to “possible solutions to the
inverse problem”. We also compare the hierarchical method to basic MNE with respect to
thresholding of the estimates. As the results are rather similar for both the MCMC and the VB
estimation schemes, but the latter is computationally less intensive than the former, we will
adopt the variational framework in this study. To the best of our knowledge this is the first
article in which real MEG data is analysed with the hierarchical method.

Materials and methods
The audiovisual dataset

We employed the same audiovisual dataset that has been also analysed by Auranen et al.
(2006) using a different inverse method. The data consist of MEG fields evoked by auditory
tones and visual checkerboards presented separately (A,V) or simultaneously (AV). The MEG
raw data was acquired at 600 Hz sampling frequency with Neuromag Vectorview device,
downsampled to 150 Hz, high-pass filtered (cutoff 1 Hz) to remove slow drifts and notch
filtered to remove 50 Hz noise. The frequency of the binaural auditory tones was 800 Hz, their
duration 80 ms, with 5 ms linear rise/fall. The visual stimuli were square shaped black-white
checkerboards located at the center of the visual field with equal duration to the auditory tones.
The task was to passively listen the tones and fixate on the center of the screen. The inter-
stimulus interval was 4 s, and for each stimulus category we averaged ∼ 150 trials (trials with
concurrent EOG signal exceeding 150µV were excluded).

In order to facilitate the comparison of the results with those of Auranen et al. (2006), we first
used the multi-pair approximation (Plis et al., 2005; Jun et al., 2005) to obtain the full
spatiotemporal noise covariance matrix. Since the present model assumes that the noise
covariance does not depend on time, we then estimated the noise covariance matrix as the mean
of the noise covariance matrices at different timepoints. The spatiotemporal noise covariance
matrix was estimated from over 1500 data fragments randomly selected from the off-stimulus
periods. The averaged MEG evoked fields are illustrated in Figure 1.

The ARD-prior model
We employed a cortical constraint in constructing the space of possible sources (Dale and
Sereno, 1993). White-gray matter boundary surface was segmented from the subject’s
structural MRI using FreeSurfer software (Dale et al., 1999; Fischl et al., 1999), and the
orientations of the current dipoles were assumed to be perpendicular to this surface. As the
number of vertices in the FreeSurfer surface is rather high (∼ 150000), a decimated set of
vertices is commonly used in inverse computations. For the model description, let us define
the following:

M = Number of MEG sensors

T = Number of timepoints in the averaged MEG evoked field time series

N = Number of vertices in the decimated cortical surface

G = M × N-dimensional gain matrix

ΣG = Fixed part of the M × M-dimensional inverse noise covariance matrix
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ℳ = Collective notation for all implicit modeling assumptions and parameters

B(t) = M × 1-dimensional vector of averaged MEG evoked fields at time t

B1:T = The set of all B(t)’s

β = A common scale parameter in the inverse noise covariance and the current prior

J(t) = N × 1-dimensional vector of distributed currents at time t

J1:T = The set of all J(t)’s

α = (α1, …, αN) = N × 1-dimensional vector of prior precisions

A = diag(α)

α0, γ0 = mean and degrees-of-freedom parameters of the gamma-distribution prior for the
αi’s

The variables above the dashed line are assumed to be fixed from the point of view of estimating
the hierarchical model. The symbol ℳ is introduced to remind of several more or less arbitrary
modeling assumptions, such as using the cortical constraint (G), Gaussian noise (ΣG), choosing
a specific time window and sampling frequency of the evoked response (T) and using only
gradiometer MEG channels (M). In the following model description, all of the variables above
the dashed line along with other implicit modeling assumptions are embedded into this
important symbol ℳ.

The hierarchical model comprises of the following blocks:

1. Observation model (likelihood). The statistical model gives the probability of
obtaining a set of observations due to a particular realisation of noise, assuming that
we know the underlying current configuration. The model stems from the linear
relationship between the amplitudes of the currents and the measured fields:

(1)

where the gain matrix G is computed by using one-layer boundary element model
(see, e.g., Hämäläinen et al., 1993). The measurement noise N(t) is assumed to be
independent of time and to have a Gaussian distribution with zero mean and inverse
covariance βΣG:

(2)

The fixed part of the inverse noise covariance matrix, ΣG, is estimated from the raw
MEG data during the preprocessing stage, whereas β is an unknown scale parameter
to be estimated within the VB-algorithm. Since the noise is assumed to be independent
of time, the likelihood of parameters at all timepoints is obtained by multiplying the
likelihoods associated with the single timepoint measurements. We will denote these
functions respectively by

(3)

2. Prior for J(t). The hierarchical prior assumes that current amplitude at cortical location
i at time t has a Gaussian distribution with zero mean and precision βαi:
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(4)

The parameter β has been incorporated to the prior also in order to facilitate the VB-
estimation. The prior precisions are assumed to be time-independent, and hence the
prior for J1:T is the product of the priors for J(t) at different time points; these are
respectively denoted as

(5)

3. Prior for β. The precision scale parameter β is assumed to have the “noninformative”
prior

(6)

The improper prior does not lead to improper posterior for this parameter, an argument
which is not proved here but made intuitively plausible since the posterior of β is
directly influenced by the observed data (noise).

4. Prior for α. The ARD-prior (Neal, 1996) is imposed on the αi’s; this prior is called a
hyper-prior, as it is a prior for the parameters of the prior:

(7)

with the Gamma-distribution parameterised as

(8)

and Γ(·) being the Euler Gamma function.

The joint prior of the α is obtained again by multiplying the independent priors for
the individual αi’s. We denote this by

(9)

5. Prior for α0, γ0. The next step would be to continue the hierarchy and specify a prior
for the parameters of the hyperprior. At this stage we do not specify the prior, but
denote it generically as

(10)

Collecting the pieces of the model introduced in the previous section, the “probability of
all” (with fixed α0, γ0) becomes

(11)
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The joint posterior of the unknown quantities can be formally obtained as

(12)

which is just “probability of all” divided by the marginal probability that the data B1:T comes
from this model, given the values of α0, γ0 and the set of other assumptions ℳ:

(13)

This term is the evidence for model ℳ and it tells how probably the data comes from this
model. The integrations involved in computing the evidence are not tractable, and hence a
Variational Bayesian method is developed in (Sato et al., 2004) to perform approximate
posterior inference. In the variational approach, the posterior is assumed to factorise in two
parts, QJ,β(J1:T, β) and Qα(α). Then, the Q-distributions which maximise the free energy
functional

(14)

are searched, where KL(·‖·) is the asymmetric KL-divergence from the first argument
distribution to the second. In practice, The VB-algorithm operates by iteratively estimating the
parameters of the approximate factor distributions until the free energy converges (to a local
or global maximum). This procedure is visually described in Figure 2, explicit equations can
be found in (Sato et al., 2004; Nummenmaa et al., 2006).

The VB-method yields an analytical approximate for the posterior distribution (12), and a lower
bound for the (logarithm of the) evidence (13).

The ARD-prior has the effect that it enables some of the sources to obtain a small prior precision
(large variance), and hence large current amplitudes, while suppressing the others. In this
manner, the data is explained mostly by few relevant sources, and the resulting hierarchical
estimates are more focal than the rather diffuse traditional MNE-estimates. However, the
hierarchical framework includes the MNE-model, which is obtained by the limit γ0 → ∞, when
all of the prior precisions are constrained to be essentially equal (see also, Figure 3 (B)).

Some commentary on the modeling assumptions: 1) Only the distribution of noise is assumed
to be time-independent. The inverse method could be rather straightforwardly mapped to
frequency domain, where the background activity would then form a part of the “signal”, even
though here we consider only (phase-locked) evoked responses. In the frequency domain,
analogously to the statistical independence of consecutive timepoints, we would assume (as a
first approximation) the uncertainty in the estimated spectrum to be independent of frequency,
if locations of several frequency components should be simultaneously estimated. 2) The
currents are assumed to be independent only a priori. This does not mean that the currents
could not be correlated a posteriori, that is, the estimated posterior source covariance can (and
will) in general be nondiagonal. 3) Even though the assumptions of a priori independent
(implying also uncorrelated) sources, stationary noise distribution, and a data-driven
characterisation of the source covariance resemble seemingly those of beamformer techniques,
the hierarchical approach is a distributed source estimation method. That is, all currents (and
other parameters) are estimated simultaneously, rather than resorting to some spatial filter
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methodology and projecting the data to each source point separately. 4) A spatial prior could
be implemented (Sato et al., 2004), but it causes drastic computational costs, which were
relieved in the original approach by first estimating the model with nonspatial prior, finding
the current peaks and restricting the source space for the spatial model to the vicinity of these.
For simulated data this process can be well justified, but with empirical data the usefulness of
such approach is not so clear (see the following section). 5) The parameter β is included to the
prior of the currents also because it enables estimation of the joint variational posterior of
J1:T and β. In practice, if we would estimate the inverse noise covariance ΣG wrong by a factor
of 1/2, the parameter β would take value ∼ 2 to compensate, and the prior precisions α would
then in turn adapt to this.

Nonstatistical thresholding
Why then to go beyond the basic MNE to more complex models and estimation methods, if it
brings also some challenges in interpretation of the results and increases the computational
load? We will point out one virtue of the hierarchical approach, related to the nonstatistical
thresholding, before embarking a more detailed analysis of the ARD-based inverse estimates.

In nonstatistical thresholding some values are set to zero before rendering the results on a (say)
segmented cortical surface. The attribute “nonstatistical” is included to differentiate this from
(statistical) thresholding of fMRI activity maps, for instance. Thresholding is sometimes simply
motivated by practical considerations, as the cortical curvature information would be
impossible to display simultaneously with current value at all vertices. More often, the small
current values are omitted for the sake of better visualisation of the “real activations”. If the
thresholding is meant to demolish only “insignificant current ripples”, it would be rather natural
to assume that the displayed “real activity” explains also a significant proportion of the
observed data. Taking the basic MNE for example, the matter is not so clear. In the MNE-
model, assuming the prior variances to be equal and fixed in all source locations results in the
corresponding current values being drastically shrunken towards each other. Hence, all source
locations tend to explain roughly equal proportions of the data. On the other hand, taking the
hierarchical approach and letting few prior deviations to take large values, we increase the
amount of data explained by these source locations, while setting the others close to zero
yielding in a sense more “robust” estimates. Because small currents can (and usually will) give
rise to large fields, when they suitably sum up, this effect pertains also with the hierarchical
approach, but to a considerably smaller degree. We demonstrate this in the Results section,
where we forward-computed the MNE’s and the hierarchical estimates with different
thresholds. The Root-Mean-Square-Error (RMSE) is used to quantify the data fit, and is defined
as

(15)

where Bf(t)’s are the forward computed (predicted) fields, and the mean is hence taken over
all timepoints and sensors.

Even though we consider here only the basic MNE, the thresholding problem touches all
distributed inverse methods in which the prior variance is assumed to be rather constant across
the cortex, and also their somehow “standardised” versions such as dSPM (Dale et al., 2000)
and sLORETA (Pascual-Marqui, 2002). Due to space limitations, a more complete analysis of
the thresholding problem must be left for further studies. In this paper, the threshold is set
somewhat arbitrarily either to display only X most relevant source locations or to include
sources which are above some percentage of the largest source amplitude.
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Difficulties with the marginal likelihood and model selection
Unfortunately, as is discussed in (Nummenmaa et al., 2006), for this model the conditional
posterior distribution becomes improper (and is independent of the value of α0) with the choice
γ0 = 0:

(16)

This is due to the fact that the case γ0 = 0 corresponds to the “noninformative” hyperprior

(17)

which is an improper distribution, meaning that its integral over the domain of the random
variable is not finite. Improper priors are often used, but in this case it leads also to improper
posterior and hence to Eq. (16) (see, Nummenmaa et al., 2006;Gelman, 2006;Gelman et al.,
2003, pp. 136, 390). Thus, the the type II maximum likelihood (ML-II) (Berger, 1985) procedure
can not be applied to estimate the value of γ0, as the evidence P(B1:T|α0,γ0, ℳ) is apparently
maximised by setting γ0 = 0, leading to the improper case. Whenever using improper priors,
there are always potential problems in using the evidence (Bayes factor) for model selection,
even if all posteriors would be proper (for a related discussion, see, Bernardo and Smith,
2000, pp. 421–424).

In principle, we might pursue also the full Bayesian treatment by imposing a further prior
P0(α0, γ0|ℳ). Then, the marginal posterior of α0, γ0 is proportional to the evidence (marginal
likelihood) and the hyperprior (see also Eq. (13)):

(18)

(19)

Thus, if we chose the prior to be rather flat with respect to γ0, the posterior of these parameters
would still become unbounded at γ0 = 0. It follows then, that we should make such a rather
informative prior for γ0, which goes sufficiently fast to zero as γ0 goes to zero to render the
posterior bounded. This is illustrated in Figure 3 (A).

We could then superficially take into account the uncertainty about these parameters by
MCMC-sampling (Nummenmaa et al., 2006), but in the case of a relatively flat prior, the
sampler would just bang at the smallest admitted value of γ0. With fixed γ0, it is possible to
estimate α0 from the data, but as the solutions are more sensitive to γ0, it is probably not so
beneficial taking into account the increased computational burden (Nummenmaa et al.,
2006).

The ARD-model studied in this paper stems also from a well-known scale mixture
representation of the Student t-distribution (Gelman et al., 2003; Geweke, 1993). Namely, with
fixed γ0 and α0, marginalising the αi’s from the prior yields an independent Student t-
distribution prior for the distributed current amplitude at each source location with zero mean

(exists when γ0 > 1/2), degrees of freedom 2γ0, and variance  (exists when γ0 > 1),
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with the t-distribution parameterised as in (Gelman et al., 2003). The conditions for the
existence of the prior mean and variance derive directly from the definition of the Student t-
distribution, and provide an alternative view on how the prior becomes less restricting and
well-behaving as γ0 → 0.

In conclusion, we have to assign some values for α0 and γ0 by hand in practice. What this means
will be explained in the following section. Before moving to the quest of suitable values for
the hyperparameters, we will elaborate the issue of model selection based on the free energy
a bit further.

It is often stated in the VB-literature, that whatever model selection and hyperparameter
optimisation can be done by simply maximising the free energy which lower-bounds the log-
marginal likelihood. For simple enough applications and models this probably is the case. For
the model under study, the nature of the inverse problem brings in more challenges.
Incidentally, while the evidence becomes infinite when γ0 → 0, the free energy remains finite
(see, Appendix of Nummenmaa et al., 2006):

(20)

This is due to the asymmetry of the KL-divergence, and the fact that the variational posterior
is always a proper distribution. By running the VB-algorithm with several different values of
γ0, it can be seen that the free energy (quite naturally) increases with decreasing γ0, suggesting
consistently to choose the noninformative case γ0 = 0, α0 = undefined. It is now important to
emphasise, that by looking only at the variational posterior (always proper) and the free energy
(always finite) one would conclude that γ0 = 0, α0 = undefined, is the correct “Bayesian choice”
for the hyperparameter values. Of course, when the evidence is infinite, all lower bounds are
equally good or bad, as the whole construction becomes ill defined.

As another example, let us consider the problem of deciding how sparse or dense reconstruction
grid to use. As can be verified from (Nummenmaa et al., 2006, Appendix A), the free energy
is an explicit function of the number of vertices in the source space (=dimension of the current
amplitude vector), which we have called N. We could embark the free energy maximisation,
and choose the value of N which gives the maximum:

(21)

where N is the set of natural numbers and ℳ* emphasises that we use now a different set of
fixed modeling assumptions. As will be seen in Results section, the maximisation suggests to
use a very sparse grid, leading to visually intolerable inverse estimates. The solution to this
“paradox” contains at least three parts.

Firstly, computation of the model evidence embodies the principle of Occam’s Razor. That is,
due to the integrations over model parameters, models with more parameters tend to have
smaller evidence. Adding more reconstruction points means adding more current amplitude
parameters, and if the data fits are roughly equal in all cases, one should then use as small N
as possible.

Secondly, because of the inverse problem, the observed MEG data does not really supply much
information about how dense reconstruction grid to use. Very good data fits can be achieved
with a very modest (∼ 1000) number of source points. Only by using an extremely small value
of N (∼ 100), when the number of source points is smaller than the number of independent
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MEG measurements, there could be a situation in which the MEG data would not be properly
explained due to the limited number of source points.

Thirdly, making N smaller affects the validity of the set of our fixed assumptions ℳ*. For
example, for small enough N, the cortical orientation constraint is surely not valid anymore.
That implies that our forward model is not adequate, which is not taken into account in any
way when computing the free energy, even though the additional discretisation error could be
compensated by modifying the likelihood (see, Kaipio and Somersalo, 2005, pp. 181–183).

Once again, we could impose a somewhat informative prior on N, which would reflect the fact
that we must have a rather dense grid in order to use the rigid cortical constraint. In addition,
we should include the effects of increased discretisation errors in the forward model with more
sparse grids. As the process of storing thousands of forward matrices and respective inverse
estimates is probably too heavy for practical studies, one is most likely to express the
aforementioned prior information by arbitrarily choosing a reconstruction grid size which is
known to produce sensible results, without any reference to marginal likelihoods or free
energies.

Hyperprior elicitation
The parameters of the prior for the αi’s define how large and similar these prior precisions are
assumed to be throughout the brain; this naturally induces a respective constraint on the current
amplitudes themselves. As mentioned earlier, the ARD mechanism comes through the
hyperprior, as it provides the sources which are most “relevant” for explaining the data with
small prior precisions (large standard deviations), while suppressing the irrelevant by setting
their prior precisions to rather large values.

The parameter α0 is the prior mean value of the αi’s, whereas the degrees of freedom parameter
γ0 describes how diffusely they are distributed around their mean α0. The γ0 quantifies in a
sense how informative prior we are imposing on the αi’s. By setting γ0to a very large value
(∼ 1000), we effectively constrain all the αi’s to value α0 which results in the MNE-solution
for the J(t)(recall that the MNE-model assumes the prior current variance to be the exactly the
same throughout the brain). Choosing a very small value for γ0 on the other hand, lets the αi
vary a lot, corresponding to being uninformative about their distribution. Of course, the
completely uninformative and improper case γ0 = 0 does not practically constrain the prior
precisions at all. Gamma-distribution hyperpriors resulting from different choices of the
hyperparameters along with αi’s sampled from these are illustrated in Figure 3 (B).

How should one choose the value for these parameters? As discussed in Nummenmaa et al.
(2006), the estimates are not very sensitive for the value of α0 as long as it is sufficiently large
to keep the overall values of the currents small enough. As a smaller value of γ0 corresponds
to a more uninformative prior and larger evidence, we might consider setting γ0 to a very small
(but nonzero) value. This could be done, but our previous experience with the model shows,
that the convergence of the estimation algorithms (both MCMC and VB) slows down as the
posterior of the αi’s become more diffuse. This is due to the inverse problem which causes all
distributed source models to have a tendency to lean on the prior. For the same reasons, even
though not explicitly demonstrated in this article, the multimodality of the posterior is also
likely to increase when using a more diffuse hyperprior. In conclusion we suggest to set α0 to
some reasonably large value, such as α0 = 10 and γ0 to a rather small value for which the
estimation algorithm still shows robust convergence.

Nummenmaa et al. Page 10

Neuroimage. Author manuscript; available in PMC 2009 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Multimodality of the posterior
As demonstrated by Nummenmaa et al. (2006), the true posterior distribution is multimodal,
each of the modes corresponding to a more or less likely solution to the MEG source
reconstruction problem. This is manifested in the VB (or MCMC) algorithm getting trapped
in different regions of the parameter space depending on the starting point. This is of practical
importance because the variational posterior is always unimodal, and hence does not represent
the whole uncertainty about the currents, which can lead to overinterpretation of the results.

While for this model the free energy is not so useful for hyperparameter optimisation, with
fixed hyperparameter values it can be used to estimate how much posterior probability mass
is contained in the vicinity of different posterior modes through the following formula (see,
Appendix A for a more detailed explanation):

(22)

In the above equation wk is the probability mass proportion of the k:th of the K modes, and ℱ
(Qk) is the free energy value obtained for the corresponding variational posterior Qk. For this
approximate formula to be valid, the posterior modes must be nonoverlapping, the variational
posterior must resemble the true posterior locally accurately enough, and we must be able to
find all modes containing a significant proportion of the posterior mass.

Because the present model is of rather high complexity, let us look at this issue through a toy
example of minimising the KL-divergence from a single Gaussian to a (obviously multimodal)
mixture of two Gaussians (recall that this is equivalent to maximising the free energy). As all
distributions are normalised, the free energy equals just the negative of the KL-divergence. We
may numerically minimise the KL-divergence by standard optimisation techniques, and
starting from different parameter values we end up with a different “variational” unimodal
Gaussian approximate for the true distribution. We used three degrees of overlap between the
two components of the mixture. The true mass proportions were 0.35 and 0.65 in all cases.
Resulting distributions and the numerical estimates for the mass proportions are shown in
Figure 3 (C) and Table 1.

For this simple example, it is easy to see whether the aforementioned conditions hold or not.
In real world applications, the situation is far from trivial. Also, the differences in the mass
proportions tend to be huge for high dimensional distributions, as we will see in the Results
section. The hyperparameter selection also has an effect on the free energy, which tends to
exacerbate the problem for this particular model. All in all, it is important to bear in mind the
issues raised by multimodality, especially when one gets a particularly pleasing inverse
estimate by the αi = α0-initialisation of the VB-algorithm.

Results
Thresholding: hierarchical estimate vs. basic MNE

Here we demonstrate the thresholding problem with the A data. We set γ0 = 10 to obtain a
genuine hierarchical estimate, and γ0 = 1000 to yield an effective MNE. The parameter α0 was
set to 10 for both of the cases. We computed the “relevance”, or the VB-estimated prior standard
deviation of each source, and computed the data fit RMSE (see, Eq. (15)) of the thresholded
solutions with 1 – 8000 “most relevant sources” included to the estimate. The results are shown
in Figure 4.
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From the RMSE plot we see that with the hierarchical method, the error decreases rapidly for
the three most relevant sources, which are allowed to take large values by the ARD mechanism.
After that the data fits become steadily better (RMSE decreases) by including smaller sources.
For the MNE, each source point contributes in roughly equal proportion to the data fit, leading
to a smooth, more linear trend in the RMSE curve. In fact, it takes 268 most relevant MNE
sources to get a equal RMSE value to that obtained by the 3 most relevant sources in the
hierarchical solution. Note also the very different scales of the hierarchical and the MNE
solutions; in the latter the relevances differ only in the third decimal place. Furthermore, we
see that for the hierarchical method, the RMSE curve always lies below that of MNE – the
difference will only become narrower when most of the sources are included to the
“thresholded” estimates (which part of the RMSE graph is not plotted here).

Model selection effects
We studied the effects of grid size and hyperprior selection by assuming three conditions: 1)
a very sparse grid with noninformative hyperprior, 2) a realistic grid with a somewhat
informative hyperprior, and 3) a realistic grid with an extremely restrictive hyperprior. In all
cases the hyperparameter α0 = 10, and the VB-algorithms were initialised by setting αi = α0
for all i. The analysis was carried out for the A data only. The results are shown in Figure 5
and Table 2.

Whereas the data fits are rather similar for all cases (both visually and RMSE values, using the
nonthresholded estimates), the model with sparse grid (smallest N) yields a free energy value
which is an order of magnitude larger than for those with the dense, more realistic grid. Taking
exponentials would then show overwhelming evidence in favour of this particular solution,
which is visually not too convincing. This effect is mostly due to the automatic Occam’s razor,
as is explained in Materials and methods section, but the analysis does not take into account
the fact that we should have a prior for N as well, excluding unrealistically sparse grids.
Furthermore, with the realistic grid cases, smaller γ0 gives a larger free energy, yielding also
visually the most plausible, robust estimate of active locations without requiring careful
thresholding. The case γ0 = 1000, N = 8000 is in fact essentially an MNE, as mentioned before,
showing again the characteristic, diffuse activation pattern associated with it. From the
histogram of VB-estimated expected prior precision, we see that it resembles the hyperprior
itself in large proportions (see, Figure 3 (B)), illustrating the relevancy of the hyperprior
selection rather clearly.

To reveal the effects of the hyperparameter selection on the solution in more detail, we assumed
five distinct values for the parameter γ0: 0.1, 1, 5, 10, and 100. The grid size was 8000, and
VB-algorithm was initialised by using the value of α0, which was set to 10. For this part the
threshold was set to include the sources for which the estimated prior standard deviation
exceeds 5% of the maximal value. The results are shown in Figure 6.

The results show that there is a clear “regularising” effect arising from the hyperprior selection.
Lower values of γ0 do not constrain the prior precisions significantly, and the solutions display
more variability in the estimated relevances. These solutions also have the largest free energies
and smallest RMSE values, as previously explained, and shown in the right lower corner of
Figure 6. The value γ0 = 100 produces already a rather MNE-like solution (note again the
different scale in the MNE-plot of VB-estimated prior deviation vector). For γ0 = 10 the visual
sources end up in being estimated large and the auditory small, leading to the latter remaining
subthreshold. The value of γ0 which produces the most plausible solution falls between the
extremal ones. As the RMSE error decreases and the free energy increases with decreasing
γ0, one should perhaps look for a predictive, cross-validation type of criteria for selecting
optimal γ0 for a more quantitative analysis.
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Nonlinearity of the VB-algorithm
To study the nonlinearity of the estimation method in more detail, we computed the inverse
estimates for all stimulus types A, V, and AV, with the same hyperprior γ0 = 10, α0 = 10. Since
the stimuli are such that drastic audiovisual interaction effects are not to be expected, the MEG
evoked fields add roughly linearly: A+V≍AV (see, Figure 1). In contrast to the MNE, the
hierarchical inverse estimation is a nonlinear process, and this equality is not necessarily
preserved amongst the corresponding source estimates. For all cases the VB-algorithm was
initialised by setting αi = α0 for all i.

From Figure 7 we see that the selected hyperprior is suitable for recovering plausible source
locations and amplitude timecourses for the A and V stimuli. For the audiovisual case AV, the
hyperprior is too restrictive, as the auditory sources are estimated to have very small prior
standard deviations, and the threshold must be rather delicately set to recover these sources.
The auditory part of the solution resembles more of a minimum-norm estimate, as the
hyperprior does not allow sufficiently many sources to acquire large prior standard deviations.
This behaviour illustrates the nonlinearity of the hierarchical estimation procedure, in that for
the solutions A+V≠AV. In order to remedy the situation for the AV case, one should then relax
the hyperprior and perform the VB-estimation once again.

Multimodality effects
To demonstrate the multimodality effects, we continue with the AV case, and loosen the
hyperprior by setting γ0 = 5, α0 = 10. We performed 40 VB-runs with random starting points;
the αi’s were drawn from their prior Gamma(10, 5) (see also, Figure 3). We note that in the
case of two VB-runs ending up in the same mode, their mass proportions should be summed
up when comparing different modes (see, Figure 3 (C) and Table 1), but in this particular case
one mode practically contains all the posterior probability mass, so this is neglected in the
analysis. The results are shown in Figure 8.

Again, it appears that most of the solutions yield roughly similar data fits, but one of the
solutions has by far the largest posterior mass proportion associated with it (largest free energy).
When comparing visually the “best data fit” and “maximal free energy” solutions, it is not
actually easy to say which one is more likely to be “the true solution”, based on our prior
knowledge of activations elicited by the type of stimuli that were used. The reason for this is
that the free energy (and the evidence) depend on γ0; the solution which has the highest free
energy fits best to the hyperprior with γ0 = 5. This, on the other hand, is selected completely
ad hoc, by first trying γ0 = 10 and finding it too restrictive (see, previous section). What perhaps
most faithfully represents the “solution” to the inverse problem, is the cluster of all modes into
which the VB-algorithm converges. This is shown in the second row of Figure 8. From the
clustered modes we see, interestingly, that some solutions also include a more posterior source
for the left hemisphere, which is absent in both “minimal RMSE” and “maximal ℱ” solutions.
Of course we can compute also a “Bayesian model average” of the modes in the spirit of
Trujillo-Barreto et al. (2004) by weighting different modes by their evidence/free energy, but
because one mode in this case contains nearly all of the posterior mass, it would be the only
one contributing something to the average.

Summary and discussion
We have recapitulated a few theoretical modeling issues regarding the hierarchical approach
introduced in (Sato et al., 2004), and demonstrated how these issues influence practical analysis
of empirical MEG data. First, we studied the problem of thresholding the estimates, and showed
that the hierarchical method “predicts” the data with a couple of sources equally well as the
classical MNE with a couple of hundred sources. Second, we demonstrated that the free energy
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is somewhat sensitive to the selection of the reconstruction grid and the hyperparameter γ0,
and that it is not thus feasible to set up these aspects of the model in a fully Bayesian way.
Third, we varied the parameter γ0 and demonstrated the regularising effect of this hyperprior
shape parameter. Fourth, we studied the nonlinearity of the estimation process by comparing
source estimates for the MEG responses to unisensory auditory, unisensory visual, and
audiovisual stimuli, by using the same hyperprior. Fifth, we studied the multimodality of the
posterior, and pointed out the possible influence of the ad hoc hyperprior selection on the
posterior mass proportions as estimated from the free energy values.

The first two issues can be dealt with rather lightly. One could try several grid sizes and values
of γ0, and choose those which produce best results. In a study with many subjects, the same
grid sizes and hyperparameter values should probably be used for all subjects to diminish the
bias caused by tweaking the hyperparameter values until a hypothesis-supporting inverse
estimate falls out of the analysis for each individual. Of course, different conditions may require
different hyperprior settings. In practice one might set γ0 to as low a value as possible, with
the algorithm still showing robust convergence. Even though not explicitly demonstrated in
this paper, the mul-timodality is likely to increase when the hyperparameter γ0 is moved to
lower, more uninformative direction. This is intuitively plausible, as the posterior distribution
of the prior precisions, which dictates how similar the currents are throughout the brain,
becomes increasingly diffuse giving space for more different solution configurations.

The question of γ0’s exact role as a regularisation parameter is nontrivial, however. Changing
γ0 is not directly related for instance to the L-curve method used with linear inverse
regularisation (Hansen, 1992). The L-curve method, incidentally, corresponds to letting γ0 →
∞, so that the algorithm operates in the linear inverse mode, and changing α0 (which constraints
the overall magnitude of the currents) to obtain a value which compromises over the ℓ2 norm
of the solution versus the data fit residual. The parameter γ0 controls how much the current
precisions (and consequently currents themselves) can vary around α0, that is the shape of the
hyperprior. With simulated data, one might rather safely set γ0 to a small value, because there
is a true solution, consistent with the forward model, arising from the few simulated sources.
The real data, on the other hand, can contain sources of variability not best explained by few
local sources, such as background activity and effects of signal preprocessing (filtering),
necessitating a more informative hyperprior to obtain robust results. As a smaller value of γ0
corresponds to both better data fit and larger free energy (evidence), one should perhaps look
for a cross-validation type predictive measures if a more quantitative method for selecting this
parameter is desired.

The issue of multimodality calls also some attention. Since the central aim of Bayesian analysis
is to represent uncertainty about the quantities under investigation, we might argue that
choosing one of the solutions, even the one with overwhelming evidence/free energy, is
overfitting (this is so because the free energies depend on our very uncertain choice of γ0).
Instead, one should perhaps seek for several modes at first, and try to cluster these in order to
display all the potentially activated sites. A group analysis of some sort might then reveal some
of the solutions to be more abundant in the population, based on which one might then leave
out the rest of the candidate solutions from the final analysis. Also, to help dealing with multiple
solutions, combining fMRI data with MEG stands out as an obvious candidate. One might
think of at least three immediate ways to utilise spatial fMRI information: fMRI weighting
(Sato et al., 2004), initialising the VB-algorithm according to the fMRI data, or choosing the
solution which best matches the fMRI activation pattern; this is a topic currently under
investigation.

Only one parameter γ0 must be manually set (apart from the “reconstruction grid/forward
model” selection); if it is possible to add some computational cost, the parameter α0 could be
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estimated from the data. It means that the hierarchical method is not much more difficult to
apply than the MNE – the basic MNE is recovered from the hierarchical model in the limit
γ0 → ∞. After setting α0 and γ0, the whole MEG evoked field timeseries can be plugged into
the model, and the estimates will come out without any manual user intervention. In conclusion,
we have shown that with proper understanding of the virtues and limitations of the hierarchical
approach, it offers effective and robust estimates of empirical MEG data in a rather automated
fashion.
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Appendix A. Free energy and probability mass proportions
Here we briefly explain how the free energies of unimodal variational posteriors relate to
probability mass proportions of a multimodal target distribution. Let us suppose that we have
a normalised distribution P(x), such that it is a mixture of K nonoverlapping normalised
distributions Pk(x), k = 1, …, K:

(23)

where the wk’s are the probability mass proportions of the mixture components satisfying

(24)

The property that the distributions do not overlap is defined in this informal treatment as
existence of K disjoint sets ℐk, k = 1, …, K such that their union spans the whole domain of
the random variable x, and

(25)

Now suppose that we have a unimodal variational distribution Qk(x), which for practical
purposes vanishes outside ℐk. Then because of Eq. (25), the free energy is

(26)

(27)

where we have formally included the normalising constant of P, ZP = 1 to keep the notation
similar to the case where the normalising constant is not known.
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If the variational posterior Qk is of sufficiently similar functional form to Pk, the KL-divergence
of Qk and Pk will get close to zero during the optimisation of the free energy, in which
circumstances we get

(28)

(29)

(30)

To sum up, the probability mass proportions can be computed directly from the free energy
values with reasonable precision assuming three conditions:

1. Modes of the target distribution are not significantly overlapping.

2. Variational distribution resembles the target distribution locally accurately enough.

3. We can find all the modes of the target distribution containing a significant proportion
of the total probability mass.

In the mixture of Gaussians toy example of the Materials and methods section, all the above
conditions can be satisfied with large precision, in which case the mass proportions are
numerically exactly given by the above relationship. In more complex applications, it is
generally very hard to show that the three conditions hold, but if one is to trust the variational
method in the first place they are in a sense already assumed to be valid.
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Figure 1.
For each stimulus type A, V, and AV, the timeseries of the two planar gradiometers (red and
blue) are depicted on the sensor grid (viewed from the top, nose pointing up). For three sensor
locations (a), (b), and (c), a closer view is also provided to facilitate comparisons between the
three conditions. A sensor location with a dotted line indicates a noisy channel excluded from
the analysis.
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Figure 2.
After an initial guess for the parameters α, the algorithm proceeds by estimating the currents
by an MNE with the prior precisions α, and then computing the (prior/noise) scale parameter
β. Given the currents J(t) and the scale parameter β, the prior precisions α are re-estimated and
so on, until convergence. The free energy increases with every step by construction. The dashed
arrow indicates several VB-steps being performed.
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Figure 3.
(A) A schematic illustration of the marginal posterior for γ0 with three different priors for it.
As the marginal likelihood (evidence) has a singularity at γ0 = 0, the prior must be rather sharp
to render the posterior regular, but then the prior and posterior are essentially equal. (B) Samples
from the Gamma-distribution hyperprior plotted on the cortical surface, showing that it controls
how similar the currents are assumed to be throughout the brain. The distributions have been
scaled for better visualisation of the shape. Note also the different colourscales in the different
cortical plots. (C) Results of KL-divergence minimisation when the target is multimodal, and
the approximate unimodal, which leads to two local KL-minima. When the modes of the target
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begin to overlap, the KL-minima also overlap, leading to errors in mass proportion estimation.
When the target modes overlap significantly, there is essentially only one KL-minimum.
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Figure 4.
The left upper plot shows the timeseries of all gradiometer measurements. The right upper plot
shows how the RMSE behaves for the MNE and the hierarchical method (see text). The left
black cross shows the value of the RMSE obtained by using three largest sources of the
hierarchical method, and the right black cross the number of the MNE-sources needed to obtain
the same value of RMSE. The middle and lowest row show the corresponding thresholded
estimates and the forward computed (predicted) measurements.
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Figure 5.
The upper row shows the raw vectors of the VB-estimated expected prior standard deviations,
a large standard deviation indicating high “relevance” of the corresponding cortical location.
The black horizontal dashed line indicates the threshold used in the cortical plots shown in the
second and third rows. The fourth row shows the corresponding VB-estimated prior precision
vectors as histograms, demonstrating the resemblance to the shape of the hyperprior. The
bottom row displays the predicted measurements calculated using the VB-estimated expected
currents versus the actual MEG measurements as a scatterplot. The black line shows the
theoretical case of a “perfect fit”.
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Figure 6.
The five upmost rows display the VB-estimates of the prior standard deviations both as a raw
vector and a cortical plot, obtained by using different values of γ0. The colourbar shows the
range of plotted values (see text). The lowest row shows the free energies and RMSE values
corresponding to different (logarithmic) values of γ0.
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Figure 7.
The first row displays from left to right the raw VB-estimated expected prior standard
deviations (with the applied threshold), the locations of the active sites on the cortical surface,
and the timecourses of the sources for the A data case. The colours of the amplitude timecourses
correspond to those of the cortical locations. The middle row shows the same information for
the V case. The bottom row displays the VB-estimated expected prior standard deviations as
a raw vector with the used threshold for the AV condition. The black crosses indicate that the
y-axis has been truncated to make the small auditory sources visible. In the left is the same
information plotted on the brain, showing again the smallness of the auditory sources, due to
the restrictive hyperprior, in comparison with the largest visual source.
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Figure 8.
The left upper corner subfigure shows the posterior mass proportions estimated from the free
energy for the 40 randomly initialised VB-runs. The right upper corner displays the
corresponding data fit errors. Red asterisk denotes the VB-run index with minimal data fit
RMSE, blue asterisk the one with maximal free energy. The second row shows all the sites on
the cortical surface which exceed the threshold, when applied to the multitude of candidate
solutions, which are shown as raw vectors in the rightmost subfigure. The third row shows the
active cortical locations and their timecourses with corresponding colours, for the solution with
maximal free energy. The fourth row displays the same information for the solution with
minimal data fit RMSE.
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Table 1

Probability mass proportions in the toy example. For the nonoverlapping case, numerically exact probability
mass proportions are recovered. When the mixture components begin to overlap, the “variational” distributions
overlap as well, and the estimated mass proportions are not correct anymore. If the mixture components overlap
significantly, the minima are degenerate, and the posterior mass is equally split between the two.

CASE Nonoverlapping Overlapping #1 Overlapping #2
KL-min#1 0.3500 0.3334 0.5000
KL-min#2 0.6500 0.6666 0.5000
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Table 2

The free energy and RMSE values for the three different model selection conditions. The RMSE values are rather
similar, but for the sparsest grid the free energy value is an order of magnitude larger than those with the realistic
grid.

CASEγ0 = 0.01, N = 1000γ0 = 10, N = 8000γ0 = 1000, N = 8000
ℱ −2.3123 × 104 −2.0946 × 105 −7.1469 × 105

RMSE 4.6291 3.9666 4.2734
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