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Abstract
Surface-based brain imaging analysis offers the advantages of preserving the topology of cortical
activation, increasing statistical power of group-level statistics, estimating cortical thickness, and
visualizing with ease the pattern of activation across the whole cortex. SUMA is an open source
suite of programs for performing surface-based analysis and visualization. It was designed since
its inception to allow for a fine control over the mapping between volume and surface domains,
and for very fast and simultaneous display of multiple surface models and corresponding
multitudes of datasets, all while maintaining a direct two-way link to volumetric data from which
surface models and data originated. SUMA provides tools for performing spatial operations such
as controlled smoothing, clustering, and interactive ROI drawing on folded surfaces in 3D, in
addition to the various level-1 and level-2 FMRI statistics including FDR and FWE correction for
multiple comparisons. In our contribution to this commemorative issue of Neuroimage we touch
on the importance of surface-based analysis and provide a historic backdrop that motivated the
creation of SUMA. We also highlight features that are particular to SUMA, notably the
standardization procedure of meshes to greatly facilitate group-level analyses, and the ability to
control SUMA’s graphical interface from external programs making it possible to handle large
collections of data with relative ease.
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Introduction
SUMA (an abbreviation of SUrface MApping) is a freely available, open-source suite of
software programs for processing and visualizing neuroimaging data defined over 2-
manifold surface models in 3-space.

Triangulated cortical surface models are created from segmentations of MRI volumes and
can approximate the cortical sheet at the grey matter-CSF boundary, the grey matter to white
matter boundary, or intermediate layers. Such models can be created by a variety of software
packages and easily imported into SUMA. Surface models can also be created that represent
the brain hull, the surface of the skull, or implanted ECOG electrode arrays. Data mapped
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onto these surface models can be functional MRI activation maps, anatomical attributes such
as labels, cortical thickness, or electrical or magnetic recordings of brain activity. Univariate
data processing tools for level-1 and level-2 analyses are the same as those used for voxel
data - all AFNI’s (Cox, 1996) voxelwise programs can handle surface-based data, while
spatial operations such as smoothing, clustering, and regions-of-interest drawing have their
own implementation in SUMA. The visualization part of SUMA allows for very fast and
simultaneous display of multiple surface models and corresponding multitudes of datasets,
all while maintaining a direct two-way link to volumetric data from which surface models
and data originated.

In this retrospective article, we touch briefly on the motivation for the use of surface models
and the circumstances prompting the creation of SUMA a little less than 10 years ago, and
expand on a few aspects of data analysis and presentation that are particular to SUMA. To
keep the tedium of software descriptions to a minimum, we include links to downloadable
self-executing interactive demonstrations of some features described herein.

Why Surfaces?
The cortical surface is a highly convoluted sheet comprised of gyri and deeply buried sulci
that make it difficult to appreciate its topographic organization. Mapping such data onto
cortical surface models is the natural way to view organizations such as retinotopy,
somatotopy, and tonotopy. More recently, cortical resting-state FMRI correlation patterns
were used to define functional areas (Cohen et al., 2008). Anatomists who sought to
understand the cortical layout by studying nonhuman primates first appreciated the value of
cortical surface models. In the early days, brain contours of each slice were outlined
manually with flexible wires which were then painstaking strengthened, or with pencil and
tracing paper (Van Essen and Maunsell, 1980) - tasks reserved for the most patient and
meticulously organized among us. Fortunately, computational approaches arrived to make
this process simpler. The group of Van Essen, long a pioneer of the use of surface models,
produced software known as SureFit/CARET to create cortical surface models from MRI
data (Van Essen et al., 2001). About the same time, Anders Dale, Martin Sereno, Bruce
Fischl (Dale et al., 1999) and colleagues produced the FreeSurfer software
(http://surfer.nmr.mgh.harvard.edu), which also created high-quality surfaces from MRI
data. A multitude of surface creation software followed; famous among them are
BrainVoyager (http://www.brainvoyager.com), BrainVisa (http://brainvisa.info), and
mrVista (http://white.stanford.edu/software).

Although surface-based analysis is restricted to the cortex, it offers advantages with imaging
data: 1- The preservation, enhancement, and visualization of topological detail in FMRI
volumes. Neighboring voxels in the volume are not necessarily sampling the signal of
neighboring regions of the cortex. This often leads to a spatial aliasing of the FMRI signal,
that gets more pronounced when one isotropically smoothes the data in the volume. By
mapping data from the volume domain onto the surface domain, one can then smooth along
the surface, thereby preserving and enhancing topological detail present in the brain. An
example of this would be the analysis of retinotopic data, where isotropic smoothing in the
volume can destroy the fine topology of the activation pattern. 2- Increase in statistical
power. Multiple studies have shown increases in statistical power when group statistics
(level-2) are carried out on the cortical surface compared to the volume-domain (Anticevic
et al., 2008; Fischl et al., 1999b). This appears to be the case whether or not nonlinear
warping is utilized (Argall et al., 2006). The increase in power is likely due to improved
smoothing and domain matching across subjects. In other words, the data at each node in the
surface comes from gray matter voxels (assuming proper alignment between surfaces and
volumes and neglecting partial volume effects), even if nonlinear warping is not used. The
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same is not true of affine registered volumes. Proper domain matching is important,
especially when comparing data from groups with consistent differences in the anatomy, e.g.
young vs. old subjects. Without proper alignment and relevant tissue matching, the same
voxel in volume template space from a young subject group will likely reflect different brain
tissue than in the elderly group, potentially leading to artificial differences in FMRI
measures between the two groups. 3- Cortical thickness. Using two surfaces modeling the
inner and outer layers of gray matter, cortical thickness estimates can readily be obtained
and compared across subjects. 4- Beautiful renditions of cortex and data.

To be sure, all these advantages can be achieved in volume-based approaches, but at a
greater computational complexity. For example domain matching in the volume can be
improved under highly nonlinear warps, but that is still rarely done despite marked
improvements in registration software (Ashburner, 2007; Klein et al., 2009). It remains
easier to deform the surface for the purposes of alignment because there is simply less to
align than in the volume.

And Then Came SUMA
In the early days of FMRI surface-based analysis, much of the effort went into creating the
surfaces out of MRI volumes - a complex task to be sure - but manipulating surfaces or data,
or relating the surfaces to the volumetric data from which they originated was cumbersome
at best. In the mid to late nineties, by the time one got done analyzing retinotopic data on a
flattened version of the cortical surface, multiple steps were needed to find out where a
particular node on the flat (or inflated) map came from in the volume. Even surface display
was difficult and sluggish: one moved a slider bar to set viewing angles and then clicked a
button to refresh the display. Now the user simply clicks on the brain and moves it around
until the desired view is achieved, or with a mouse flick sends the brain twirling gently in
space - a task particularly mesmerizing for toddlers and grizzled scientists alike. This
interactivity requires high-performance graphics hardware that is now readily available on
handheld devices. However, in the early days displaying surface models was only available
on expensive high-end Silicon Graphics Incorporated machines, and interactivity was very
limited. For instance, as a graduate student in the mid nineties, where home-grown tools
were the norm for creating and mapping data onto cortical surfaces, I (author ZSS) was
asked to compare FMRI signal properties in visual areas that had been delineated by FMRI
retinotopy on flattened models of the occipital cortex. To my chagrin, the only way to read
the data values off of the flattened occipital maps was by reverse mapping node colors back
to data values per the color scale! That was because a colorized rendering of the data was the
end point of the mapping process; data values were not preserved in the process. Needless to
say, that project did not go far. Such difficulties in relating surfaces to the volume made it
harder to detect anomalies in the segmentation, or in the functional data. It was also difficult
to view in detail the meshes modeling the cortical surfaces, a problem particularly vexing
when trying to understand the source of errors in the geometry or the triangulation of dense
surface meshes. Such frustrations, coupled with an interest in the spatial properties of the
BOLD response and the irresistible lure of beautiful 3D cortical renderings begat SUMA
and shaped its structure and features.

SUMA was first released on the 4th of March 2002, about 1 year after I joined Bob Cox at
the Scientific and Statistical Computing Core at NIMH. Unencumbered by the task of
creating surface models and their myriad derivates, SUMA’s design focus was on
controlling the mapping between volume and surface domains, concurrent display of all
geometric variants of the same surface and maintaining an interactive and direct link
between the surface and volume domains. Initially SUMA used surface models created by
Caret (Van Essen et al., 2001), FreeSurfer, and BrainVoyager. With the advent and adoption
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of GIFTI http://www.nitrc.org/projects/gifti, surfaces and data from other platforms such as
BrainVisa are now readily utilized. The rapid development and the high level of interactivity
of SUMA at the first release were due to multiple factors: 1- A first-hand experience with
what was missing in surface-based analysis: the ability to see and access the data on the
surface and relate surface and data to the volume. 2- A MATLAB-based prototype of the
mapping process that I had developed for my own use during a post-doc in Peter
Bandettini’s group. 3- An efficient organization of surfaces and data structures and the use
of C language and basic OpenGL libraries. 4- Leveraging AFNI’s existing functions for
handling and rendering volumetric data.

Standardizing Surface Meshes for Group Comparisons
Before discussing the handling of data on surface models, we describe the process by which
we take a set of surfaces and re-create them with a new ‘standard’ mesh that is shared by all
subjects in a group study. A standard-mesh version of a surface is virtually identical in 3D
shape to the original one; however, each node of the new mesh encodes the same cortical
location across subjects, within the accuracy of the warping-to-template step. We detail this
procedure, which is particular to SUMA, because this simple process greatly facilitates the
handling of group statistics when multiple subject surfaces are not created to be
topologically isomorphic, as is the case with FreeSurfer and Caret (for example).

Figure 1 shows the common approach for performing group analysis in the surface-domain.
The first step (Fig. 1A) involves inflating a subject’s surface to a sphere, then deforming the
spherical mesh (Fig. 1B) so that sulcal depth patterns match those of a template (Fischl et
al., 1999a). In volume-based analysis, the analogous step is transforming the brain to a
standard-template space. Other approaches match selected sulcal patterns or patterns derived
from functional data. To what extent warping improves the final results remains the subject
of debate. However, it has been repeatedly shown that group analysis on the cortical surface,
even without nonlinear registration, results in increased statistical power. Regardless of the
warping approach, the procedure for collecting group data then involves mapping each
subject’s data from a 3D voxel grid to his individual surface model, and then interpolating
into a common domain that is defined by a new standard mesh. This is necessary because
data values are attached to the nodes forming the surface (topology) and not to a spatial
location (geometry). When the discrete surface topology differs, it is necessary to perform
the analysis on a common mesh. This double interpolation step onto the standard model
must be repeated for each new dataset, as is done in the volume space; however, it is largely
unnecessary on surfaces because the data domain is explicitly defined and not confined to a
regular grid. With SUMA, instead of mapping a subject’s data value onto the template mesh,
we re-create each subject’s original surface using the mesh of the standard model (shown at
a very coarse level in the illustration). In other words, instead of assigning to each node n of
the standard mesh a data value interpolated from data on the subject’s original mesh (p.), we
now assign to that node a new set of coordinates Xn based on the coordinates of the
subject’s original mesh Xp. (Fig. 1-C). When the process is repeated for all the nodes of the
standard mesh, its geometry becomes essentially identical to that of the original surface:
99.9% of nodes of the standard-mesh surface are within 0.01mm of the original surface1
(Saad et al., 2004). The spherical template coordinate system is now embedded in the mesh
of the newly created standard surfaces. In the bottom-most row of Fig. 1, each node of the
standard-mesh surface of each subject is colorized based on its index. Nodes with similar
numbers (colors) now correspond to the same location in template space regardless of their
coordinates in subject space. Within the SUMA pipeline, we begin by creating standard-
mesh surfaces of each of the subject’s original surfaces, and we utilize the standard-mesh

1Distances are measured from each node of the standard-mesh along the surface normal to the original surface.
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versions for all subsequent analyses. On such standard meshes, functional data mapped
directly from the volume to node n on one subject’s surface can be directly compared to data
mapped to node n on another subject’s surface. Performing group-level computations on
data defined on these isomorphic meshes is then readily carried out with any of the
univariate analysis tools applicable in the volume.

Typical Pipeline
Once standard-mesh surfaces are created, they are brought into alignment with data volumes
often acquired at a different scanning session. The overlay of anatomically correct surfaces
atop anatomical volume (Fig. 2A) and EPI time series (Fig. 2B) gives direct feedback as to
the quality of the surfaces and their alignment with EPI time series as volumes and surfaces
are navigated. Shell/Volume Intersection: Motion-corrected EPI time series (or level-1
regression results) are mapped onto standard-mesh surface models before any smoothing
(beyond that inherent to motion correction) occurs in the volume. When surfaces modeling
the inner and outer boundaries of the gray matter are available, one has greater control over
how voxel values in the gray matter are mapped onto the surface. Our recommended
approach is to integrate all gray matter voxels that fall along a direction defined by
corresponding node pairs from the bounding surfaces (green and red contours in Figure 2A–
B). The endpoints for the integration can be modified to change the integration range,
including a simple intersection at an intermediate depth in the gray matter. Smoothing is
performed on the surface for the same reasons it is applied in the volume. However,
controlled smoothing on the surface is more difficult than in the volume. Smoothing by or to
a certain FWHM involves approximated iterative methods that can fail in practice to achieve
the desired smoothing level (Hagler et al., 2006). SUMA’s SurfSmooth gets around this
problem by iteratively smoothing and estimating the current smoothness level of the noise in
the data. The noise in the data is either taken from the residual time series after a regression
analysis, or by a high-order detrending of the data to reduce stimulus-response-related
upward bias of the smoothness estimate. In the default usage, the program can select
appropriate iterative kernel smoothing parameters while taking into account the mesh
density and the desired additive or target FWHM. Simulations using the method detailed in
(Hagler et al., 2006) verify that SurfSmooth achieves in practice the specified smoothness
levels. Level-1&2 analyses are carried out using the same AFNI programs used for voxel-
based tests. For multiple-comparisons correction, SUMA provides the FDR approach with
all statistical datasets, or FWE correction based on Monte Carlo simulations that estimate
the likelihood of observing spatial clusters of a particular size given an uncorrected p-value
and the smoothness of the data.

Surface and Volume Domain Linkage
SUMA, at the moment, has little support for displaying volumetric data and relies on AFNI
for that purpose. Figure 2 is an illustration of the graphical interface in a typical session. All
the images displayed are cropped versions of the live display. The main constraint for how
much can be shown is screen space. From SUMA, anatomically correct (e.g. non-inflated)
surfaces are sent to AFNI and their intersection with the volume is displayed on all slice
renderings (Fig. 2AC). Each surface model is shown in separate but linked interactive
surface viewers (Fig. 2D–G). All the renderings are connected, so that a click on any of the
surfaces updates the crosshair location on all surfaces and time series windows (Fig. 2C),
and jumps to the corresponding location in all the volume views including volume-based
time series graphs (Fig. 2I). Vice versa, selecting a voxel close to the surface causes
crosshairs in SUMA windows to jump to the closest node. Surface annotations and volume
atlas information about crosshair locations are also updated (not shown). The display
supports a layering of multiple datasets that can be blended in different forms, including
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node coordinate bumping as shown on the flattened cortical view in Fig. 2G. While
retinotopy is old hat in terms of FMRI techniques, those who attempt it can testify to the
difficulty in getting it right despite cookbook recipes for the approach (Warnking et al.,
2002), and that being able to readily access the various stages of the data processing is
particularly important in assessing the results (Fig. 2H). While SUMA is tightly connected
to AFNI, the two programs are independent; they communicate by sending commands and
associated data via shared memory or network sockets using TCP/IP. Commands and data
are packaged in a simplified version of XML, which, unlike XML itself, also allows for
binary data. This communication mode is at the core of SUMA and AFNI’s ability to
communicate together and with other programs. For example, the skull stripping program
3dSkullStrip can communicate with both SUMA, and AFNI, sending the envelope of the
brain with each iteration to SUMA and the processed volume to AFNI. Doing this helped us
refine the skull striping algorithm as we tested it on difficult brain images for humans and
other species. Both AFNI and SUMA remain available for user interaction during the
process.

Hands-Off GUI Control
Another useful aspect of the communication support is the ability to script the behavior of
the graphical interface. This is easily done by issuing commands via the command-line
program DriveSuma. Such scripting can be used to create complex summaries of the data as
in Figure 3, which shows one frame from a movie depicting MEG beamformer results
(Cheyne et al., 2006) 0 to 600 msec after the stimulus. This particular movie was generated
entirely automatically including text annotations and pictures.

The ability to wade through a large number of datasets and readily access the data remains
crucial for MRI and FMRI studies. Twenty years into FMRI, and we still struggle in practice
with mundane issues such as image registration when data is less than optimal. This can be
particularly challenging when scanning unhealthy populations and in great numbers. Thanks
to fully automated pipelines, analyzing thousands of datasets is no more strenuous than
analyzing a few, not counting computation time. However, group differences can reflect
biases in some of the processing stages that can later be incorrectly attributed to brain
anatomical or functional changes. It is important to be able to navigate the data from each
subject and at various key processing steps. The recent efforts which have resulted in the
wide adoption of NIFTI and GIFTI formats facilitate the exchange and examination of large
data sets such as FCON1000 (Biswal et al.) or ADNI(Jack et al., 2008; Mueller et al., 2005),
regardless of the package in which they processed. An example that takes advantage of the
SUMA standard-meshes approach, the cross-program communication, the scripting of GUI
control, and ease of visualization is illustrated by running @Install_InstaCorr_Demo (part of
the AFNI/SUMA installation), which sets up an interactive seed-based group resting state
connectivity mapping using data from the FCON1000 dataset. A user’s click on the surface
sends a seed location to AFNI’s 3dGroupInCorr program, which performs group seed-based
correlations on one or two groups, then performs one- or two- sample t-tests with or without
subject-level covariates, and sends all the statistical results back for display in SUMA. We
detailed this feature, not only because it is really cool, but also to say that being able to
interactively query and navigate large collections of datasets leads to insights into the data
that are otherwise hard to find when looking only at summary results. It remains quite
striking to watch resting state patterns shift as the cursor is dragged along the surface,
revealing the high level of detail present in the data; e.g., as reflected in the bilateral
homology of correlations (Jo et al., 2011).
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Future Features
For software developers, user feedback is mostly of the negative variety. If we were to
summarize the appeal of SUMA from the smaller but quite positive sample, it would be the
ease with which multiple surfaces and associated data are displayed and related to the
volume, and the way group analysis can be carried out. Eye candy images are also a big
plus. Currently, SUMA remains under active development. The authors’ SUMA-specific
code exceeds 250,000 lines of C for the graphical interface and three dozen command-line
programs. Continuing with the theme of ready access to data, we plan to make more
information readily available with minimal interface clutter. For example, beyond
parcellation results (FreeSurfer), and various volume-based atlas queries currently
supported, it would be useful to provide selective anatomical or functional connectivity
information, whether atlas-based or data-derived. A researcher examining a set of SPM
blobs would benefit from seeing, after pointing to a region of interest, what connectivity or
co-activation information exists from that region to the rest of the brain. Queries could be
conducted on datasets present on one’s computer or more likely from websites containing
extensive databases such as BrainMap http://www.brainmap.org. The new XML-based
connectivity format CIFTI http://www.nitrc.org/projects/cifti would help facilitate such
information exchanges.

Summary
SUMA is a suite of programs for performing surface-based analysis and visualization. It was
written to facilitate viewing sets of multiple dense surfaces while maintaining the linkage
between them, and to allow for a fine control of and simplify the once tedious process from
mapping volume data to the surface domain, through the group statistics stage. SUMA’s
graphical interface allows for fast, simultaneous, and linked rendering of a large number of
surfaces, along with composite displays of multiple datasets with contouring options for
representing parcellations or atlas regions and translucent overlaying of continuous valued
datasets. The surface displays are intimately connected to the volumetric data, allowing for
direct verification of surface to volume correspondence. The SUMA GUI is fully scriptable,
making it uniquely suited to navigate and summarize results from large numbers of datasets
with minimal effort.
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Figure 1.
The process of transforming original- to standard- mesh surfaces. See text for details. a1, a2,
and a3 are the barycentric coordinates of node n in the triangle formed by nodes p1,p2,p3.
Node colors of original-mesh surfaces (top two rows) show FreeSurfer’s cortical
parcellations. Colors on standard-mesh surfaces (bottom row) reflect each node’s index.
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Figure 2.
The linkage between data rendering modes. SUMA and AFNI directly control surface-and
volume-based renderings, respectively (thin arrows). The two programs are independent but
communicate together via TCP/IP. Data shown is from the sample data for the retinotopy
analysis pipeline (http://afni.nimh.nih.gov/pub/dist/tgz/AfniRetinoDemo.tgz) courtesy of
Peter J. Kohler and Sergey V. Fogelson.
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Figure 3.
Illustration for driving SUMA’s GUI from the command line with DriveSuma. The example
here illustrates the functioning of a script that automatically generates a movie of MEG
SAM data from 0 to 600 ms after stimulus delivery. (Data and script to generate this movie
are courtesy of Chunmao Wang, and available at
http://afni.nimh.nih.gov/pub/dist/tgz/SumaMovieDemo.tgz)
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