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Abstract

Human functional Magnetic Resonance Imaging (fMRI) data are acquired while participants 

engage in diverse perceptual, motor, cognitive, and emotional tasks. Although data are acquired 

temporally, they are most often treated in a quasi-static manner. Yet, a fuller understanding of the 

mechanisms that support mental functions necessitates the characterization of dynamic properties. 

Here, we describe an approach employing a class of recurrent neural networks called reservoir 

computing, and show the feasibility and potential of using it for the analysis of temporal properties 

of brain data. We show that reservoirs can be used effectively both for condition classification and 

for characterizing lower-dimensional “trajectories” of temporal data. Classification accuracy was 

approximately 90% for short clips of “social interactions” and around 70% for clips extracted from 

movie segments. Data representations with 12 or fewer dimensions (from an original space with 

over 300) attained classification accuracy within 5% of the full data. We hypothesize that such 

low-dimensional trajectories may provide “signatures” that can be associated with tasks and/or 

mental states. The approach was applied across participants (that is, training in one set of 

participants, and testing in a separate group), showing that representations generalized well to 

unseen participants. Taken together, we believe the present approach provides a promising 

framework to characterize dynamic fMRI information during both tasks and naturalistic 

conditions.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) data are acquired while participants engage 

in diverse perceptual, motor, cognitive, and emotional tasks. Three-dimensional images are 

acquired every 1–2 seconds and reflect the state of blood oxygenation in the brain, which 

serves as a proxy for neuronal activation. Although data are acquired temporally, they are 

most often treated in a quasi-static manner [Huettel et al., 2004]. In blocked designs, fairly 
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constant mental states are maintained for 15–30 seconds, and data are essentially averaged 

across multiple repetitions of a given block type, such as performing a working memory 

task. In event-related designs, short trials typically 1–5 seconds long are employed and the 

responses evoked are estimated with multiple regression.

Many fMRI studies also are constrained spatially, in the sense that activation is analyzed 

independently at every location in space. However, so-called multivariate pattern analysis 

techniques capitalize on information that is potentially distributed across space to 

characterize and classify brain activation [Haxby et al., 2001, Kamitani and Tong, 2005, 

Haynes and Rees, 2006]. For example, in an early study, Cox and Savoy [Cox and Savoy, 

2003] investigated the performance of a linear discriminant classifier, a polynomial 

classifier, and a linear support vector machine to classify objects presented to participants 

from voxel activations (i.e., features) across visual cortex. Since then the field has matured 

and developed a wealth of approaches, including the investigation of “representational” 

content carried by brain signals [Kriegeskorte et al., 2006]. However, given the relatively 

low signal-to-noise ratio of fMRI data (which necessitates a large number of repetitions of 

data segments of interest), the vast majority of multivariate methods for investigating brain 

data are “static,” that is, the inputs to classification are patterns of activation that are 

averaged across time (“snapshots”) [Haynes, 2015]. Some studies have proposed using 

temporal information as well as spatial data [Mourao-Miranda et al., 2007, Hutchinson et al., 

2009, Nestor et al., 2011, Janoos et al., 2011,Chu et al., 2011]. One of the goals in such 

cases has been to extend the features provided for classification by considering a temporal 

data segment instead of, for example, the average signal during the acquisition period of 

interest. Despite some progress, key issues remain largely unexplored, including 

understanding the integration of temporal information across time, and questions about the 

dimensionality of temporal information (see below).

In all, despite the potential of fMRI to be used to investigate temporal structure in task data 

the technique is employed in a largely static fashion. However, a fuller understanding of the 

mechanisms that support mental functions necessitates the characterization of dynamic 

properties. Here, we describe an approach that aims to address this gap. At the outset, we 

acknowledge that the low-pass nature of the blood-oxygenation response is such that 

dynamics should be understood at a commensurate temporal scale (on the order of a few 

seconds or typically longer). Yet, many mental processes unfold at such time scales, such as 

the processing of event boundaries [Zacks et al., 2001], a gradually approaching threatening 

stimulus [Najafi et al., 2017], listening to a narrative [Ferstl et al., 2005], or watching a 

movie [Hasson et al., 2004].

Several machine learning techniques exist that are sensitive to temporal information. Among 

them, recurrent neural networks (RNNs) have attracted considerable attention [Williams and 

Zipser, 1989,Pearlmutter, 1989,Horne and Giles, 1995]. However, effectively training RNNs 

is very challenging, particularly without large amounts of data ( [Pascanu et al., 2013]; but 

for recent developments see [Martens and Sutskever, 2011,Graves et al., 2013]). Here, we 

propose to use reservoir computing to study temporal properties of fMRI data. This class of 

algorithms, which includes liquid-state machines [Maass et al., 2002], echo-state networks 

[Jaeger, 2001, Jaeger and Haas, 2004], and related formalisms [Steil, 2004,Sussillo and 
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Abbott, 2009], includes recurrence (like RNNs) but the learning component is only present 

in the read-out, or output, layer (Fig. 1A). Because of the feedback connections in the 

reservoir, the architecture has memory properties, that is, its state depends on the current 

input and past reservoir states. The read-out stage can be one of many simple classifiers, 

including linear discrimination or logistic regression, thus providing considerable flexibility 

to the framework. Intuitively, reservoir computing is capable of separating complex stimuli 

because the reservoir “projects” the input into a higher-dimensional space, making it easier 

to classify them. Of course, this is related to the well-known difficulty of attaining 

separability in low dimensions, as was recognized early on with the use of Perceptrons 

[Cover, 1965].

Reservoir computing has been effectively used for time series prediction [Lu et al., 2017], 

temporal signal classification [Skowronski and Harris, 2007], as well as applications in 

several other domains [Triefenbach et al., 2010, Vandoorne et al., 2008]. Here, we show the 

feasibility and potential of using it for the analysis of temporal properties of brain data. The 

central objectives of our study were as follows. First, to investigate reservoir computing for 

the purposes of classifying fMRI data, in particular when temporal structure might be 

relevant, including both task data and data acquired during movie watching. The latter 

illustrates the potential of the technique for the analysis of naturalistic conditions, which are 

an increasing focus of research. Here, classification was attempted on task condition (for 

example, theory of mind versus random motion) or movie category (“scary” versus 

“funny”).

Our second goal was to characterize the dimensionality of the temporal information useful 

for classification. Many systems can be characterized by a lower-dimensional description 

that captures many important system properties. In neuroscience, research with multi-unit 

neuronal data has suggested that low-dimensional “trajectories” can be extracted from high-

dimensional noisy data [Yu et al., 2009, Buonomano and Maass, 2009]. As Yu and 

colleagues proposed [Yu et al., 2009], a neural trajectory potentially provides a compact 

representation of the high-dimensional recorded activity as it evolves over time, thereby 

facilitating data visualization and the study of neural dynamics under different experimental 

conditions (see also [Gao et al., 2017]). Here, we hypothesized that reservoir computing 

could be used to extract low-dimensional fMRI trajectories that would provide “signatures” 

for task conditions and/or states (Fig. 1B). For both of our objectives, we sought to 

investigate them at the between-participant level (in contrast to within-participant) to 

ascertain the generalizability of the representations created by the proposed framework.

2 Methods

2.1 Human Connectome Project Data

We employed working memory and theory of mind data collected as part of the Human 

Connectome Project (HCP; [Barch et al., 2013]). Data were collected with a TR of 720 ms. 

We employed data from N = 200 participants. This included N = 100 unrelated participants, 

and a separate, non-overlapping set of N = 100 participants randomly selected from the N = 

1200 data release.
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Working memory dataset—Participants performed a “2-back” working memory task, 

where they indicated if the current stimulus matched the one presented two stimuli before, or 

a control condition called “0-back” (without a memory component). Data for two runs were 

available, each containing four 27.5-second blocks of each kind. Stimuli consisted of faces, 

places, tools, and body parts. To account for the cue response at the start of the block and the 

hemodynamic lag, data from 12–30 seconds after block onset were used (25 data points per 

block).

Theory of mind dataset—Participants performed a theory of mind task, where they 

indicated whether short video clips displayed a potential social interaction, no meaningful 

interaction (“random”), or they were unsure. Stimuli consisted of 20-second video clips in 

which geometric objects (squares, circles, triangles) appeared to interact either meaningfully, 

or randomly. Data for two runs were available, each containing five video clips; thus, five 

social interaction and five random clips were available in total. To account for hemodynamic 

lag (no cue was employed), data from 3–21 seconds after block onset were used (25 data 

points per block).

2.2 Participants (movie watching)

Sixteen participants with normal or corrected-to-normal vision and no reported neurological 

or psychiatric disease were recruited from the University of Maryland community. Data 

from 12 participants (5 males and 7 females, ages 18–22 years; mean: 20.6, SD: 1.5) were 

employed for data analysis (two participants voluntarily quit the study before completion, 

and data from three participants were discarded due to head motion exceeding 4 mm). The 

project was approved by the University of Maryland College Park Institutional Review 

Board and all participants provided written informed consent before participation.

2.3 Movie data acquisition

Functional and structural MRI data were acquired using a 3T Siemens TRIO scanner with a 

32-channel head coil. First, a high-resolution T1-weighted MPRAGE anatomical scan (0.9 

mm isotropic) was collected. Subsequently, we collected six functional runs of 384 EPI 

volumes each using a multiband scanning sequence [Feinberg et al., 2010]. For 3/12 

participants, the following imaging parameters were used: TR = 1.25 sec, TE = 42.8 ms, 

FOV = 210 mm, voxel size: 2.0 mm isotropic, number of slices = 72, and multiband factor = 

6. For the remaining 9 participants, slightly altered parameters used were: TR = 1.25 sec, TE 

= 39.4 ms, FOV = 210 mm, voxel size: 2.2 mm isotropic, number of slices = 66, and 

multiband factor = 6. For all participants, non-overlapping oblique slices were oriented 

approximately 20–30 clockwise relative to the AC-PC axis (2.0 mm isotropic) helping to 

decrease susceptibility artifacts at regions such as the orbitofrontal cortex and amygdala.

2.4 Movie data

We employed fMRI data collected from 12 usable participants while viewing short movie 

segments (duration between 1–3 minutes) with content that was either “scary,” “funny,” or 

“neutral” (neutral segments were not utilized here) (see Table S1 for a list of the movies 

employed). Participants viewed one movie clip of each kind per run for a total of six runs. A 

total of 30 movie clips (15 of each kind) were extracted from the movie segments such that 
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at least one clip originated from each of the movies viewed. Clips contained 25 data points 

(like the HCP data above), which lasted 31.25 seconds (data were acquired with a TR of 

1.25 seconds). All video clips focused on parts of the movie segments that were deemed by 

one of the authors (M.V.) to be of high arousal/interest.

2.5 Preprocessing

HCP data—Data were part of the “minimally preprocessed” release, which included 

fieldmap-based distortion correction, functional to structural alignment, and intensity 

normalization. Data were collected with a TR of 720 ms. We investigated cortical data which 

are directly provided in surface representation. In addition to the preprocessing above, we 

regressed out 12 motion-related variables (6 translation parameters and their derivatives) 

using the 3dDeconvolve routine of the AFNI package [Cox, 1996] (with the “ortvec” 

option). Low frequency signal changes were also regressed out with the same routine by 

using the “polort” option (with the polynomial order set automatically).

Movie data—A combination of packages and in-house scripts were used to preprocess 

both the functional and anatomical MRI data. The first five volumes of each functional run 

were discarded to account for equilibration effects. Slice-timing correction (with AFNI’s 

3dTshift) used Fourier interpolation to align the onset times of every slice in a volume to the 

first acquisition slice, and then a six-parameter rigid body transformation (with AFNI’s 

3dvolreg) corrected head motion within and between runs by spatially registering each 

volume to the first volume.

To skull strip the T1 high-resolution anatomical image (which was rotated to match the 

oblique plane of the functional data with AFNI’s 3dWarp), the ROBEX package [Iglesias et 

al., 2011] was used. Then, FSL’s epi-reg was used to apply boundary-based co-registration 

in order to align the first EPI volume image with the skull-stripped T1 anatomical image 

[Greve and Fischl, 2009]. Next, ANTS [Avants et al., 2011] was used to estimate a nonlinear 

transformation that mapped the skull-stripped anatomical image to the skull-stripped 

MNI152 template (interpolated to 1-mm isotropic voxels). Finally, ANTS combined the 

transformations from co-registration (from mapping the first functional EPI volume to the 

anatomical T1) and normalization (from mapping T1 to the MNI template) into a single 

transformation that was applied to map volume registered functional volumes to standard 

space (interpolated to 2-mm isotropic voxels). The overall approach described in this 

paragraph was based on [Smith et al., 2018] and used previously by our group ( [Najafi et 

al., 2017]). The resulting spatially normalized functional data were smoothed using a 6 mm 

full-width half-maximum Gaussian filter. Spatial smoothing was restricted to gray-matter 

mask voxels (with AFNI’s 3dBlurInMask). Finally, the average intensity at each voxel (per 

run) was scaled to 100.

2.6 Regions of Interest

HCP data—Because our goal was to evaluate the general framework described here, and 

not test specific hypotheses tied to particular brain regions, we considered cortical data only. 

Because for cortical data the HCP processing pipeline is oriented toward a surface 

representation, we employed the cortical parcellation developed by their research group 
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[Glasser et al., 2016]. The parcellation includes 360 cortical regions of interest (ROIs), and 

is based on a semi-automated approach that delineates areas based on architecture, function, 

connectivity, and topography (see Fig. S1A).

Movie data—ROIs were determined in a volumetric fashion. To do so, we employed a 

simple k-means clustering algorithm that generated 500 cortical ROIs. Specifically, 

clustering was based on the {x, y, z} spatial coordinates of voxels in cortex (not their time 

series), and an L2 distance metric was employed to favor the grouping of nearby voxels (see 

Fig. S1B). We also performed our analysis with 400 and 600 ROIs and observed essentially 

the same results; thus, the precise choice of the number of ROIs does not appear to be 

critical. In addition to the cortical ROIs, given the importance of the amygdala for emotional 

processing in general, we also included two amygdala ROIs (one per hemisphere). Each ROI 

was generated by combining the lateral and the central/medial amygala (as defined in 

[Nacewicz et al., 2012]) into a single region.

For both HCP and movie data, a summary ROI-level time series was obtained by averaging 

signals within the region.

2.7 Reservoir computing

For temporal data analysis, we adopted the reservoir formulation used in echo-state networks 

[Jaeger, 2001, Jaeger and Haas, 2004]. The general reservoir computing architecture 

includes three main elements: an input layer, a reservoir, and a read-out (or output) layer 

(Fig. 1A). The input layer registers the input and is connected with the reservoir. The 

reservoir contains units that are randomly interconnected within the reservoir, as well as 

connected to units in the read-out layer. Only connections to the read-out layer undergo 

learning. Here, the input layer activations, u(t), represented activation for the condition of 

interest at time t. The number of input units corresponded to the number of ROIs, and one 

value was input with every data sample (every time t). The output layer contained a single 

unit with activation corresponding to a category label (0 or 1, coding the task condition). At 

every time step, the activations of the reservoir units were updated, determining a reservoir 

state, x(t), and the readout, z(t), was instantiated. Thus, the input time series data generated 

an output time series (one per time point) corresponding to category labels.

The state of the reservoir was determined by [Lukoševičius, 2012]

x(t) = tanh(Win[1; u(t)] + Wx(t − 1)), 1

x(t) = (1 − α)x(t − 1) + αx(t), 2

where x(t) is an intermediate state. The function tanh(x) was applied element-wise and 

implemented a sigmoidal activation function. The notation [·; ·] stands for vertical vector 

concatenation. Both x(t) and x(t) ∈ ℝ
Nx, where the dimensionality of the reservoir Nx = τ × 

Nu is determined by the number of input units, Nu, and the parameter τ. The dimensionality 
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of the reservoir, Nx, is related to the memory of the reservoir, namely, the number of past 

data points that can influence the current output. A general rule of thumb is that for an input 

of size Nu, to remember τ time points in the past, the reservoir should have size at least τ × 

Nu [Lukoševičius, 2012]. The weight matrices Win ∈ R
Nx × (1 + Nu)

 and W ∈ R
Nx × Nx are the 

input-to-reservoir and within-reservoir matrices, respectively. The parameter α ∈ (0, 1] is 

the leakage (or “forgetting”) rate. Interpreting the equations above, x(t) is a function of a 

weighted contribution of the input plus a weighted contribution of the prior reservoir state 

(passed through a sigmoidal function) (Equation 1). The reservoir state, x(t), is a weighted 

average of the previous reservoir state x(t − 1) and x(t) based on weights (1 − α) and α, 

respectively (Equation 2). Overall, this reservoir formulation allows it to encode temporal 

information in a spatial manner, that is, across the reservoir units. The present reservoir 

implementation utilized code from the Modeling Intelligent Dynamical Systems research 

group (http://minds.jacobs-university.de/research/esnresearch/).

A key idea in reservoir computing is that the weight matrices Win and W are not trained, but 

instead generated randomly (unlike RNNs which include adaptable weights in all layers). 

The non-symmetric matrix W is typically sparse with nonzero elements obtained from a 

standard normal distribution,N(0, 1); here, of the Nx × Nx matrix entries, 10Nx were 

randomly chosen to be non-zero. The input matrix Win is generated according to the same 

distribution, but typically is dense. It is crucial to ensure that the largest absolute value of the 

eigenvalues of the reservoir weight matrix W be less than 1, as this ensures the “echo state” 

property [Jaeger, 2001]: the state of the reservoir, x(t), should be uniquely defined by the 

fading history of the input, u(t).

2.8 Classification

The reservoir state, x(t), can be viewed as a random non-linear high-dimensional expansion 

of the input signal, u(t). If the inputs are not linearly separable in the original space ℝ
Nu,

they often become separable in the higher dimensional space, ℝ
Nx, of the reservoir. Such so-

called “kernel tricks” are common in machine learning algorithms [Murphy, 2012,Scholkopf 

and Smola, 2001], and reservoirs embed that property within a temporal processing context.

The read-out layer of a reservoir architecture can employ one of multiple simple 

components, including linear or logistic regression, or support vector machines. Here, we 

employed ℓ2-regularized logistic regression with a constant inverse regularization parameter, 

C = 1 [Pedregosa et al., 2011], for two-class classification. Given a set of data points and 

category labels, a logistic regression classifier learns the weights of the output layer, Wout, 

by maximizing the conditional likelihood of the labels given the data. A gradient descent 

algorithm searches for optimal weights such that the probability P [z(t) = 1|x(t)] = 

σ(Woutx(t)) is large when x(t) belongs to class “1” and small otherwise; σ(s) = 1
1 + exp( − s)  is 

a logistic function. The classes considered here were “2-back” vs. “0-back” for working 

memory, “social” vs. “random” for theory of mind, and “scary” vs. “funny” for movie clips.
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Because we were interested in temporal properties, classification was performed at every 

time t, with a single classifier. Thus, as stated above, the input time series data generated an 

output time series corresponding to category labels, z(t).

Finally, note that our objective was to characterize the capabilities of the reservoir 

framework to capture temporal information for classification as a function of time. 

Accordingly, we employed the “minimal” classification machinery at the output end of our 

algorithm. Had the objective been to maximize classification values, we could have 

included, for example, a “second classifier” (that is, one after the readout layer) that 

considered simultaneously all classification values z(t) during the block, for example.

2.9 Dimensionality reduction

Functional MRI data are very high-dimensional if one considers all the voxels or surface 

coordinates acquired with standard imaging parameters. Typical anatomical parcellations 

considerably reduce the dimensionality as 100 to 1,000 ROIs are usually employed (and one 

time series is commonly employed per ROI). Whereas this represents a major reduction in 

dimensionality, it is important to understand if lower-dimensional characterizations of the 

data are informative. Here, we sought to determine classification accuracy of temporal fMRI 

data of lower-dimensional representations. In particular, what is the lowest dimensionality 

that provides performance comparable to that obtained with the “full” dimensionality? 

Recall that because reservoir states, x(t), are non-linear high-dimensional expansions of the 

input signals, u(t), their dimensionality is higher than the number of ROIs (by the factor τ; 

see above).

For dimensionality reduction, we employed principal component analysis (PCA) to the 

reservoir states, x(t) (Fig. 2A). In brief, PCA provides a coordinate transformation such that 

the dimensions are orthogonal. In the new coordinate system, the transformed reservoir state, 

y(t), has the same dimensionality as the original representation. It is possible to reduce the 

dimensionality of the input by retaining a subset of the dimensions that capture the most 

variance of the original signals. Our goal, however, was to perform dimensionality reduction 

while considering dimensions that were useful for classification, and not necessarily 

capturing the most variance. To do so, we performed logistic regression analysis using PCA-

transformed states, y(t), and used the weights of the resulting classifier to select the principal 

components that best distinguished the task conditions (somewhat akin to partial least 

squares; see [Brereton and Lloyd, 2014]). Components associated with large positive 

weights encourage the decision toward one of the classes, whereas those associated with 

large negative weights encourage the decision toward the other class. We can then select the 

k dimensions with largest positive weights and the k dimensions with the largest negative 

weights, which we called the “top” and “bottom” principal components; we called time 

series data along the k dimensions “top and bottom time series.” For example, the dimension 

with the largest positive weight (call it dimension 1) is associated with time series y1(t). See 

(Fig. 2A) for a schematic of the sequence of data transformations. Importantly, since these 

components were determined by using classifier weights, which were based solely on 

training data, test data were unseen and could be used to assess classification performance 

(see Section 3.2).
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Region importance—The high-dimensional representation of the reservoir, or the lower-

dimensional representation of the k top/bottom components, is considerably removed from 

the original fMRI time series. However, it is important to determine which original ROI time 

series express the most information about them, what we call region importance. To do so, 

we first computed the Pearson correlation between each original ROI fMRI time series and 

each of a number of top time series. To facilitate interpretation of importance, we employed 

only top time series because they contributed positively to classification performance, that is, 

they had positive classification weights (Fig. 2A); recall that positive weights provided 

evidence for the “active class” and negative weights for the control condition.

The contribution of an ROI to classification was not only dependent on its correlation with a 

top time series but also the logistic regression weight associated with the time series. 

Specifically, the weight wi from the PCA-transformed reservoir dimension, yi(t). Thus, the 

“importance value” of an ROI to a particular task condition was based on the correlation 

value times the classification weight (Fig. 2B). Finally, an importance index for an ROI was 

obtained by adding the extent to which an ROI time series “loaded” (correlated with) onto k 
top time series corresponding to the task (k was 5 for working memory data, 6 for theory of 

mind data, and 6 for movie data; see Results for explanation of how k was determined). 

Importance values were then shown on brain maps (for illustration, we display the 25 

highest importance values/ROIs on the brain). For display of importance across tasks, values 

were rescaled into the range [0, 1]: IROI′ =
IROI − min
max − min , where IROI is the importance value 

prior to rescaling.

2.10 Additional temporal analyses

To understand the ability of reservoirs to integrate information across time, temporal 

information was also used in a straightforward manner. Here, the activations across a block 

were concatenated into a single long vector of size number-of-ROIs × number-of-time-

points. The resulting vector was then used as input to a logistic regression classifier (instead 

of data at each time step separately) and performance determined.

To assess the role of the non-linear expansion in the reservoir, we compared the results with 

those obtained with a linear autoregressive model, a standard technique used to model time 

series data. Activations at time t for each ROI k, uk(t), were predicted based on the previous 

p time points, such that the predicted value at time t was given by

uk(t) = β0 +
l = 1

p
βluk(t − l), 3

where p is the so-called model order. The estimated coefficients, βi, that minimize the 

squared error between uk(t) and uk(t) can be obtained via least squares. As routinely done, 

the first p time points in the block were ignored in this AR(p) model. The activations 

predicted based on this model were used to train a logistic classifier, as done with reservoirs.
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2.11 Statistical approach and tests

Studying reservoir parameters—Our initial goal was to investigate the ability of 

reservoirs to capture temporal information in fMRI data. Accordingly, we varied the 

parameters α (forgetting rate) and τ (ratio of the number of reservoir to input units), which 

together determine the memory properties of the reservoir. To determine classification 

accuracy, we employed a between-subject cross-validation approach. For HCP data, N = 100 

unrelated participants were used (for reference, we will call this the “first” dataset). Five-

fold cross-validation was employed by randomly splitting the data into 80–20 train-

validation sets: in each fold, 80 participants were used to train the reservoir, and 20 

participants for validation (that is, to determine classification accuracy in unseen data). This 

procedure was applied for each of the α × τ parameter combinations.

Because we were interested in temporal properties, classification was performed at every 

time t. Classification accuracy for a block was defined on the time point with the best 

classification accuracy, tbest, during the block. We did not employ the average accuracy 

across the entire block, because for temporally varying data some segments of the block 

would not be expected to contain distinguishing information; for instance, the beginning of a 

block (see Fig. 6). To improve robustness, we considered tbest and its two adjacent time 

points, tbest − 1 and tbest + 1, such that accuracy was the average across these three time 

points. Note that tbest was defined on training data only and applied on test data that was not 

used to define it. Overall, the “first” dataset served to investigate reservoir parameters and 

define the best-performing α, τ , and tbest.

To evaluate the classification accuracy of reservoirs, we employed permutation testing [Ojala 

and Garriga, 2010]. Given the computational demands of permutation testing in our 

framework, p-values were based on 1000 iterations (with the exception of the test of 

randomizing temporal information; see below). The best-performing reservoir parameters 

were used to train a logistic classifier (see Section‘2.8) by utilizing the entire N = 100 

participants of the “first” dataset, but accuracy was determined entirely based on a separate 

N = 100 dataset (for reference, the “second” dataset). This ensured that classification 

information generalized to completely unseen data. The observed accuracy was then 

compared to a null distribution of accuracy that was obtained by repeating this procedure 

1000 times but with class labels randomly permuted; for each iteration, training with 

permuted labels was performed on the “first” dataset and testing was based on the “second” 

dataset. If m is the number of iterations where the classification accuracy on data with 

permuted labels exceeded the accuracy on data with true labels, and k is the total number of 

iterations, the p-value was obtained as p = m + 1
k + 1 .

Comparison with other methods—We compared the performance observed with 

reservoirs to three other methods. The first was to simply test classification on raw activation 

signals. In this case, the logistic classifier was directly fed the inputs u(t); everything else 

was identical to the classification with reservoirs. In other words, the inputs to classification 

were directly from the input layer and not the reservoir (see Fig. 1A). Thus, identical to the 

case of reservoirs, classification on activation signals generated a time series of 

corresponding labels z(t). The other two methods employed temporal information as 
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outlined previously: concatenating data across time points in a block, and using 

autoregressive modeling. The reservoir used the best-performing α, τ , and tbest obtained 

using the “first” dataset. Likewise, the order of the autoregressive model (p = 10) was the 

best performing one obtained with the “first” dataset; the model orders investigated were p = 

{2, 5, 10}, which were comparable to the reservoir parameter τ values, but for results as a 

function of p, see Fig. S2). The actual comparison between methods was established based 

on the “second” dataset. To compare accuracy values, a Wilcoxon signed-rank test was 

utilized.

Randomizing temporal information—To test whether the temporal order within a 

block is informative, data points within a block were randomly shuffled. For fMRI data, 

simply reshuffling breaks the serial dependency in the data, and so a “wavestrapping” 

approach was used [Bullmore et al., 2004]. In this manner, the autocorrelation structure is 

preserved by shuffling the wavelet coefficients at each level (which are whitened and 

therefore exchangeable). Given the computational demands of the procedure, the associated 

permutation testing was based on 100 iterations.

Movie data—For movie data, we only had a limited amount of data. Accordingly, all 

classification accuracy results were based on 6-fold cross-validation by randomly splitting 

the data into 10–2 train-validation sets (10 participants for training, 2 participants for 

testing).

3 Results

Initially, we employed Human Connectome Project (HCP) data from two tasks: working 

memory and theory of mind. Working memory was chosen to represent a task with a 

relatively stable “cognitive set” (at the time scale of fMRI). For this case, the active 

condition comprised 25-second blocks of the so-called 2-back memory task, where 

participants were asked to indicate if the current item matched the one before the 

immediately preceding one. We employed the 0-back condition as a comparison condition 

(no working memory requirement). In contrast to working memory, theory of mind data 

were expected to exhibit some form of dynamics. During the active condition, participants 

watched 20-second clips containing simple geometrical objects (including squares, 

rectangles, triangles, and circles) that engaged in a socially relevant interaction (for example, 

they appeared to initially fight and then make up) that unfolded throughout the duration of 

the clip. When watching such clips, one has the impression that the potential meaning of the 

interactions gradually becomes clearer. The baseline condition in this case consisted of 

same-duration clips of the same geometrical objects following random motion.

To investigate the ability of the reservoir to capture temporal information in fMRI data, we 

varied the parameters α (forgetting rate) and τ (ratio of the number of reservoir to input 

units), which together determine the memory properties of the reservoir. Accuracy in 

classifying theory of mind task increased as the size of the reservoir increased, and exceeded 

90% (Fig. 3B), which robustly differed from chance (permutation test, p < 10−3). In contrast, 

for the working memory task, accuracy differed from chance (permutation test, p < 10−3) but 
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remained essentially the same, showing that enhanced performance was not always simply 

due to an increase in reservoir size (Fig. 3A).

We reasoned that if temporal information and context are important, classification should be 

affected by temporal order, especially in the case of theory of mind data. To evaluate this 

claim, we trained the classifier without temporal information, namely, by randomly shuffling 

the data points in a block prior to training (while preserving autocorrelation structure; see 

Methods); testing was performed with blocks that were temporally ordered. In this case, 

mean classification accuracy was drastically reduced to 67.1% correct (using the same best-

performing parameters) compared to 91.9% correct (permutation test, p < 0.01). This further 

indicates that it was not simply the high-dimensional expansion of the reservoir but also its 

memory that helped improve classification. For completeness, we also tested classification 

of working memory data in the same manner. In this case, mean classification accuracy was 

74.4%, which was a relatively small (but robust; permutation test, p < 0.01) decline in 

performance relative to the best mean accuracy of 86.3% on the unshuffled working memory 

data.

3.1 Comparisons with other approaches

To better characterize the classification performance of reservoirs, we performed a series of 

comparisons with simpler schemes. All results in the present section were obtained by 

evaluating the “second” dataset and are summarized in Table 1. Classification accuracy 

using raw activation data (no reservoir, that is, u(t) signals) was 77.6% for working memory 

and 84.2% for theory of mind. For theory of mind, when the reservoir size was small (τ = 

{1, 2}), accuracy was comparable to that with raw activation (see Fig. 3B). It appears that 

when the number of reservoir units is relatively small, the reservoir representation of the 

data is poor, particularly when the forgetting rate is high, possibly due to the inability of the 

reservoir to generate a satisfactory representation of dynamically changing data with fewer 

dimensions.

The next two approaches explicitly considered temporal properties of the data. First, we 

concatenated activation signals from multiple time steps, and performed logistic 

classification on the concatenated data. Classification accuracy of working memory data was 

82.8% correct and of theory of mind data was 86.6% correct. Next, we sought classification 

with an autoregressive model, which yielded accuracy of 81.1% correct (working memory) 

and 87.8% correct (theory of mind) (both of which were obtained with a model of order p = 

10). Although performance with these two methods was relatively close to that with 

reservoirs, the latter was consistently superior (see Table 1). Finally, note that the 

classification values across methods used in the present study were rather stable, as 

illustrated by the comparison of the estimates based on cross-validation (“first” dataset) and 

those of the “second” dataset (Table S2); recall that all statistical results were based entirely 

on the “second” dataset which was never used for parameter selection.

3.2 Low-dimensional representation

We sought to investigate the dimensionality of the reservoir representation capable of 

classifying fMRI data. To do so, we performed PCA on reservoir data and determined the 
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number of principal components required to achieve classification performance similar to 

that on the full data. Instead of considering components in terms of the variance explained, 

we considered “top” and “bottom” components based on how they improved classification 

(see Methods; Fig. 2A). Fig. 4 shows classification accuracy as the number of components 

was increased from 2 to 20 in steps of 2 (one top and one bottom component were added 

together at a time). For working memory, 10 principal components (5 top and 5 bottom) 

were required to attain classification at 95% of the level of the full dimensionality; for theory 

of mind, 12 principal components (6 top and 6 bottom) were required. Note that these 

components captured only 7% and 8% of the total variance of the working memory and 

theory of mind datasets, respectively, which should be compared to 72% and 71% captured 

by first 10 and 12 components when they were selected based on the amount of variance 

explained (and not classification), consistent with the idea that a relatively small percentage 

of the original signal variance was informative for classification.

Fig. 4 also shows that classification with only the top/bottom 2–4 components attained 

accuracy at approximately 90% of that obtained with the full dimensionality. We could thus 

capitalize on this property and select three components so as to visualize their trajectories as 

a function of time (Fig. 5). For working memory data, the trajectories indicated that the two 

conditions should exhibit better-than-chance classification even at the beginning of the 

block. In contrast, for theory of mind data, the trajectories of the social and random 

conditions initially overlapped, but later became quite distinct. To qualify these observations, 

we plotted classification accuracy as a function of time during task blocks (for various 

reservoir configurations). Fig. 6 shows the results for the full dimensionality; results for the 

top/bottom components are displayed in Fig. S3. For working memory, accuracy was 

initially around 70% correct, and increased gradually up to 85% for the best reservoir 

configuration. For theory of mind, accuracy was initially at chance, and increased more 

abruptly between time points 5–8 (3.5–5.5 seconds), eventually attaining classification over 

90%.

How does classification performance based on a lower-dimensionality representation 

compare to that obtained with regions previously reported to be engaged by theory of mind? 

To investigate this issue, we used ROIs from a meta-analysis of prior fMRI studies [Schurz 

et al., 2014], and selected those found to be engaged during social animation tasks. The 

results based on the 22 ROIs from the meta-analysis are shown in Fig. 7. Performance 

mostly leveled off with τ = 5 at around 80% correct. Note that this performance was lower 

than that observed with the top/bottom 10 dimensions by about 5%. It is also instructive to 

compare the results obtained with the meta-analysis ROIs to those with the full data, with 

the latter exhibiting classification accuracy about 10% higher. The results with the the meta-

analysis ROIs did not change appreciably even when the size of the reservoir was increased 

to match the much larger reservoir size used with the full dimensionality (this was the case 

when τ = 165; recall that the size of the reservoir is given by τ times the size of the input 

vector). Thus, inferior performance with meta-analysis ROIs was not simply due to the size 

of the reservoir.

Finally, we also investigated the low-dimensional representation obtained using principal 

components directly based on activation signals (Fig. 8). For working memory, a small 
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number of components (3 top and 3 bottom) attained classification at 95% of the level of full 

activation data. However, for theory of mind, 28 components (14 top and 14 bottom) were 

required. This was more than twice of what was required for the reservoir data indicating 

that they captured more information required for classification in fewer dimensions. For 

completeness, Fig. S4 shows temporal trajectories when principal components were based 

on activation data; it appears that these do not provide temporal signatures as informative as 

with reservoirs.

3.3 Mapping low-dimensional representations to the brain

We sought to determine the brain regions providing the greatest contributions to 

classification (see also [Shine et al., 2018]). To do so, we computed an importance index for 

each ROI based on time series data (see Fig. 2B). Fig. 9 illustrates some of the ROIs 

supporting classification for the working memory and theory of mind tasks selected based 

on the highest importance values. For this analysis, we used the top 5 time series for 

working memory and top 6 for theory of mind (the top components that were part of the 

those attaining 95% classification accuracy relative to the full dimensionality, as discussed in 

the previous section).

3.4 Movie clips

We further investigated our framework by attempting to classify data segments extracted 

from movies (31.25 seconds long). Twelve usable participants viewed short movie clips 

(between 1–3 minutes long; see Methods) of scary or funny content. Given the emotional 

content of the clips, we added left and right amygdala ROIs to the set of cortical ones. 

Classification accuracy (“scary” vs. “funny” clips) is displayed in Fig. 10A and reached 

around 70% correct for larger reservoirs (which was robustly above chance levels; 

permutation test, p < 10−3). Like in the case of theory of mind data, performance improved 

with larger reservoirs. The accuracy for individual movies was between 60% and 80%, 

showing that classifier performance was not driven by one or a few of the movies watched. 

In addition, we compared classification with reservoirs with that obtained with activation 

signals (no reservoir; 60.2%), concatenated data (65.3%), and an autoregressive model 

(64.6%). As in the case of task data, reservoirs performed best, although the numerical 

difference was relatively modest (Table 1).

We also investigated lower-dimensional representations of movie data (Fig. 10B). 

Classification accuracy with 20 dimensions (out of 502) performed at the same level as with 

the full dimensionality, and with 12 dimensions within 95% of that with all dimensions. In a 

more exploratory fashion, we investigated temporal trajectories during movie watching. We 

compared trajectories generated from individual scary clips with the average trajectory 

observed for funny movie segments. Some scary clips exhibited trajectories that diverged 

from the mean trajectory for funny clips earlier on, whereas some diverged later in time (Fig. 

11), properties that were also apparent in the time course of classification accuracy values. 

To determine brain regions that most contributed to classification, we computed the 

importance index for each ROI as with task data. Fig. 12 illustrates some of the brain regions 

involved when we used the top 6 time series, which attained 95% classification accuracy 

relative to the full dimensionality (see Fig. 10).
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4 Discussion

In the present paper, we sought to analyze fMRI data with reservoir computing which, like 

recurrent neural networks, is a technique developed to process temporal data. We show that 

reservoirs can be used effectively for temporal fMRI data, both for classification and for 

characterizing lower-dimensional trajectories of temporal data. Importantly, the approach 

was performed in an out-of-sample fashion, namely, performance was only evaluated in 

participants whose data were not included for training, demonstrating that the 

representations of reservoirs generalized well across participants.

4.1 Investigating temporal structure of brain data

To date, most analyses of fMRI brain data focus on understanding relatively static 

information (but see Introduction for further discussion). Neuronal data acquired with 

physiology is also most often analyzed in terms of averaged responses during certain 

response epochs that are believed to be behaviorally relevant. Yet, brain processes are highly 

dynamic and current understanding would benefit from frameworks that focus on 

understanding temporal processing (see [Buonomano and Maass, 2009]). Here, we 

employed reservoir computing to investigate and characterize temporal information in fMRI 

data. But the framework is sufficiently general that it can be employed with other types of 

brain data time series, including those from cell electrophysiology, calcium imaging, EEG, 

and MEG (for the use of reservoirs in other neuroscience applications, see for example [Enel 

et al., 2016]).

We selected two tasks from the HCP dataset to evaluate the model. The working memory 

task was selected as it was thought to not have a noteworthy temporal component; in the 

context of classification, the working memory condition was presumed to involve a 

relatively stable”cognitive set” (in fact, during scanning participants were informed which 

condition they were performing at the beginning of a block). In contrast, the theory of mind 

condition was expected to rely more on temporal integration of information (for every trial, 

participants actively attempted to discern the meaning of the vignettes so as to classify 

stimuli between meaningful and random).

Although classification of working memory data was a little better than obtained with 

activation signals alone, classification did not improve with the size of the reservoir, 

consistent with the notion that temporal information during the block did not play a notable 

role in performance. In contrast, classification of data segments with meaningful social 

interactions (vs. random; theory of mind data) benefited from increased reservoir size. With 

larger memory size, accuracy improved close to 10% in some cases. As stated, the social 

interactions displayed in the clips build up after a few seconds and evolve throughout the 

block (for example, two objects “invite” a third to participate in an activity, and all three 

engage in it). Neuroimaging studies of theory of mind and social cognition have employed 

such dynamic stimuli to probe the brain correlates supporting this type of processing (for a 

review, see [Schurz et al., 2014]). Classification between social and random clips was 

initially at chance levels, and increased sharply within the first 5 seconds of the clip. In 

future applications of the approach described here, it would be valuable to investigate how 
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individual-level classification performance is potentially associated with behavioral 

performance and individual differences in social-cognitive skills (see [Bartz et al., 2011]).

Whereas increases in reservoir size did not benefit working memory classification, theory of 

mind classification improved for theory of mind data, consistent with integration of 

information across time being useful for classification. Larger reservoir sizes allow signals at 

the same time τ to interact in richer ways, too (for example, higher-dimensional signal 

interactions are possible). Therefore, it is possible that processing theory of mind benefited 

from this aspect as well (more so than working memory data), and that the correlates of 

theory of mind data are more distributed in the brain, and of higher inherent dimensionality 

(see below).

To help understand the behavior of reservoirs for classification of fMRI data, we compared 

the method to other temporal schemes. Although classification based on both concatenated 

time series data and autoregressive models performed well for working memory and theory 

of mind tasks, performance with reservoirs was superior to both approaches. It should be 

said, however, that quantitatively the improvement was relatively modest. Nevertheless, our 

results suggest that the non-linear expansion of the reservoir, in addition to its temporal 

properties, contribute to classification performance. It should be stressed that reservoirs are 

straightforward to train, unlike other recurrent neural networks with fully adaptable weights. 

Finally, our general framework also suggests that reservoir computing provides an effective 

methodology to study lower-dimensional representations of the data, which may provide 

useful dynamic “signatures” of temporal information of fMRI data (see below).

We also investigated our proposal with naturalistic stimuli, specifically, short clips obtained 

from movies with either scary or funny content. Classification accuracy increased with 

larger reservoirs, consistent with the notion that temporal information was useful for 

distinguishing between the two types of clip. In the context of fMRI data which originate 

from hemodynamic processes with relatively slow dynamics, we suggest that the reservoir 

framework developed here might be particularly useful in characterizing temporal 

processing of naturalistic stimuli, including movies and narratives [Hasson et al., 2004, 

Lerner et al., 2011].

4.2 Low-dimensional trajectories

Brain data collected with multiple techniques, including cell-activity recordings and fMRI, 

are often of high dimensionality. For example, calcium imaging records neuronal activation 

across hundreds of neurons simultaneously (for example, [Barbera et al., 2016]). In fMRI, 

signals from tens or even hundreds of thousands of spatial locations are acquired if whole-

brain imaging is considered. Even in the case where only a set of regions is of central 

interest, hundreds of spatial locations may be involved. Therefore, understanding lower-

dimensional representations of signals is important. An important working hypothesis in cell 

data is that low-dimensional neural trajectories provide compact descriptions of underlying 

processes [Yu et al., 2009, Buonomano and Maass, 2009].

Here, we investigated lower-dimensionality representations of reservoir states by 

determining classification accuracy as a function of the number of dimensions employed. 
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For both working memory and theory of mind data, considerable reduction was attained and 

12 or fewer dimensions were needed to attain classification at 95% of that obtained with the 

full data. Furthermore, as illustrated in Fig. 5, even maintaining only three dimensions 

captured important characteristics of the ability to distinguish task conditions. More 

generally, we hypothesize that such low-dimensional trajectories may provide “signatures” 

that can be associated with tasks and/or mental states. We propose that investigating how 

trajectories differ across different groups of individuals (for example, low vs. high anxiety, 

autism vs. typically developing, etc.) is a fruitful avenue for future research. Notably, the 

low-dimensional trajectories captured important temporal properties of the data. For 

example, for theory of mind data, trajectories were very close initially and diverged 

subsequently, paralleling the increase from lower to higher classification levels. These 

results are consistent with the idea that reservoirs provide a mechanism for the accumulation 

of information over time, and hence result in better accuracy in the later periods of the block.

We investigated how the dimensions with the highest contributions to distinguishing 

conditions were expressed in the brain by generating importance maps. In the case of 

working memory, several regions in lateral prefrontal cortex, parietal cortex, and anterior 

insula contributed to classification. These results are consistent with a large literature 

showing the participation of these regions in effortful cognitive functions, including working 

memory [Corbetta and Shulman, 2002, Pessoa and Ungerleider, 2004]. In the case of the 

theory of mind task, we observed regions in the vicinity of the temporal-parietal junction 

and associated regions that have been implicated in theory of mind more generally, and the 

interpretation of social animations in particular [Schurz et al., 2014]. Of interest, regions in 

the cuneus/pre-cuneous, which are engaged in theory of mind tasks [Schurz et al., 2014, 

Carrington and Bailey, 2009], were observed, too. Together, these results show that the 

framework developed here captures information from brain regions known to participate in 

the tasks investigated.

For the theory of mind data, we further compared classification accuracy obtained with the 

whole brain ROI partition (360 ROIs) and the lower-dimensional representations, separately, 

with those obtained by selecting regions from a meta-analysis across studies using social 

animations [Schurz et al., 2014]. Intriguingly, classification with 22 targeted ROIs 

performed around 10% lower than obtained with the full data; it also performed more poorly 

than a lower-dimensional representation with only the top/bottom 4 time series. These 

results raise the intriguing possibility that regions not detected in the meta-analysis carry 

useful information about the type of theory of mind investigated here. Therefore, to the 

extent that classification accuracy relies on features that are “representational,” these results 

indicate that the correlates of theory of mind are more distributed across the brain. However, 

given that the present work did not determine the precise features contributing to 

classification, further work is needed to establish this possibility (see [Haynes, 2015] for 

discussion of related issues). At the same time, we should note that lower-dimensional 

representations performed rather well in classifying the stimuli; therefore, representations 

based on a relatively low number of dimensions (for example, around 10) are feasible. For a 

related approach to understand the dimensionality of temporal representations in the brain, 

see [Shine et al., 2018].
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We also studied lower-dimensional representations and temporal trajectories obtained from 

naturalistic movie watching. Whereas this component of our work was more exploratory, our 

findings revealed that the framework proposed here has the potential to be useful in these 

scenarios. We not only found that lower-dimensional representations could capture most of 

the information required for classification, but that temporal trajectories were also 

informative. Future work should evaluate more systematically the use of our proposal when 

heterogeneous stimulus sets are employed, such as the movie data investigated here.

In summary, in the present paper, we developed an approach employing reservoir 

computing, a type of recurrent neural network, and show the feasibility and potential of 

using it for the analysis of temporal properties of brain data. The framework was applied to 

both Human Connectome Data and data acquired while participants viewed naturalistic 

movie segments. We show that reservoirs can be used effectively for temporal fMRI data, 

both for classification and for characterizing lower-dimensional “trajectories” of temporal 

data. Importantly, robust classification was performed across participants (in contrast to 

within-participant classification). We hypothesize that low-dimensional trajectories may 

provide “signatures” that can be associated with tasks and/or mental states. Taken together, 

the present approach may provide a flexible and powerful framework to characterize 

dynamic fMRI information, which can be readily applied to other types of brain data. Code 

is available at http://github.com/makto-toruk/brain-esn.
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Fig. 1: 
Reservoir computing and temporal trajectories. (A) Brain data are provided to a three-layer 

neural network. The input layer registers the input; in the present case, activation at time t 
across a set of regions of interest (ROIs). The reservoir layer contains units with random 

connections, and provides a memory mechanism such that activation at time t is influenced 

by past time points. The readout (output) layer indicates the category of the input; in the 

present case, the binary labels “0” or “1” corresponding to task/condition. Only the 

connections between the reservoir and the readout layer (shown in red) are adaptable. (B) 

Time series data can be represented as a temporal “trajectory.” In the case of data from three 

ROIs (left), activation can be plotted along axes “1,” “2,” and”3” at each time point t (right). 

In this manner, activation during a hypothetical task exhibits a particular trajectory, whereas 

activation during a second task exhibits a different trajectory (blue and green lines for Task 

A and B, respectively). Note that the trajectories might overlap at several time points (the 

activation at those time points is the same for both tasks), but the entire trajectory provides a 

potentially unique “signature” for the task/condition in question.
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Fig. 2: 
Dimensionality reduction and brain activation. (A) Reservoir activation provides a high-

dimensional “expansion” of the input vectors at every time t. In this manner, the reservoir is 

associated with a reservoir time series of dimensionality Nx = τ × Nu, where τ is a 

parameter and Nu is the size of the input vector (here, the number of ROIs employed). The 

first step of dimensionality reduction employed principal component analysis (PCA). 

Subsequently, the dimensions were ordered based on the weights of the logistic regression 

classifier (the larger the absolute value of the weight, the more important the dimension for 

classification). We refer to the data along these dimensions as “top” (indicative of one output 

category) and “bottom” (indicative of the alternative category) time series. (B) To indicate 

brain regions expressing top time series information, each top time series (at left, only one is 

shown for simplicity) was correlated with the original fMRI time series of each ROI. The 

correlations along with the weights associated with the top time series are indicative of the 

importance of an ROI to classifying a condition (as the active condition). A set of ROIs can 

then be indicated on the brain (right) that express the k top time series based on the 

importance values, IROI. For example, the l ROIs with largest importance values can be 

shown, or those ROIs such that the importance exceeds a specific threshold. Taken together, 

although the reservoir time series representation is a high-dimensional expansion of the 
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input data, it is possible to map the brain regions that most express the top time series, which 

are the ones providing the greatest contribution to classification.
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Fig. 3: 
Classification accuracy for working memory (A) and theory of mind (B) tasks. Parameters 

varied included α (which determines the forgetting rate) and τ (which determines reservoir 

size), both of which influence the memory properties of the reservoir. Performance did not 

vary substantially as a function of reservoir memory for the working memory task (A) but 

improved as memory increased for the theory of mind task (B). Error bars show the standard 

error of the mean across validation folds.
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Fig. 4: 
Lower-dimensional representation of reservoir signals and classification accuracy. Accuracy 

is shown as a function of the number of top plus bottom components. The magenta line 

indicates the highest performance using all components. Classification accuracy with a 

lower-dimensional representation reached within 95% of the the full data with 10 and 12 

dimensions for working memory (A) and theory of mind (B), respectively. Error bars show 

the standard error of the mean across validation folds.
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Fig. 5: 
Temporal trajectories for task fMRI data. Mean trajectories are displayed in (A) for working 

memory and (C) for theory of mind. Variability (standard error across participants) is 

displayed in (B) and (D), respectively. For working memory data (A-B), the trajectories were 

well separated throughout the block. For theory of mind data (C-D), the trajectories initially 

overlapped but diverged after 6–7 points. Trajectories were based on the top three principal 

components.
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Fig. 6: 
Classification accuracy as a function of time. Results for working memory (A) and theory of 

mind (B). Accuracy is shown as a function of time point within a task block. Different 

curves show results for different forgetting rates , α. The values of τ were based on the 

parameters exhibiting highest accuracy in Fig. 3. Error bars show the standard error of the 

mean across validation folds.
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Fig. 7: 
Classification accuracy for theory of mind data with regions involved in “social animation” 

(based on a meta-analysis of fMRI studies). Performance largely leveled off with a 

parameter τ = 5 or larger . Because the meta-analysis only included 22 regions of interest, 

we increased τ so as to match the reservoir size with that used with the full dimensionality 

(τ = 165). Note that accuracy was limited to around 80% even when the reservoir was large, 

indicating that the limiting factor was not the size of the reservoir. Error bars show the 

standard error of the mean across validation folds.
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Fig. 8: 
Lower-dimensional representation of activation data (no reservoir) and classification 

accuracy. Accuracy is shown as a function of the number of top plus bottom components. 

The magenta line indicates the highest performance using the full-dimensional activation 

data. For working memory (A), classification accuracy with the lower-dimensional 

representation reaches 95% of the full data with 6 dimensions. However, for the theory of 

mind (B), 28 dimensions (as opposed to 12 when using reservoir data) of the lower-

dimensional representation. Error bars show the standard error of the mean across validation 

folds.
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Fig. 9: 
Importance maps for task data. Lower-dimensional time series representation expressed on 

the brain. The colored ROIs are those with original fMRI time series expressing (“loading 

on”) “top” time series the most (see Fig. 2 for details).(A) Regions supporting “2-back” in 

the classification of working memory data. (B) Regions supporting “social” in the 

classification of theory of mind data.
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Fig. 10: 
Classification for movie clips. Participants viewed short movie clips that were either scary or 

funny. (A) Accuracy as a function of the parameters α (which determines the forgetting rate) 

and τ (which determines reservoir size). (B) Lower-dimensional representation and 

classification accuracy. Accuracy is shown as a function of the number of “top” plus 

“bottom” components. The magenta line indicates the highest performance using all 

components. Classification accuracy with a lower-dimensional representation reached that of 

the full data with around 20 dimensions, and reached within 95% of the the full data with 12 

dimensions. Error bars show the standard error of the mean across validation folds.
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Fig. 11: 
Temporal trajectories for sample clips in the movie data. The red trajectories are for 

particular “scary” movie clips whereas the blue trajectories are averaged across all “funny 

clips”. Mean trajectories are displayed in (A) and (C) for two particular scary movie clips. 

Variability (standard error across participants) is displayed in (B) and (D), respectively. For 

the movie clip in (A), the trajectories started to separate later than they do for the movie clip 

in (C). An analysis of the accuracy of these clips as a function of time revealed similar 

properties. Trajectories were based on the “top” three principal components.
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Fig. 12: 
Importance maps for movie data. Lower-dimensional time series representation expressed on 

the brain. The colored ROIs are those with original fMRI time series expressing (“loading 

on”) “top” time series the most (see Fig. 2 for details). Regions supporting “scary” included 

the left amygdala (A) and the insula (B).
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Table 1:

Classification accuracy for reservoirs and additional processing approaches. The p-values were determined via 

Wilcoxon signed-rank tests comparing classification accuracy of reservoirs to each method.

Working memory: “2-back” vs. “0-back”

Accuracy Accuracy p-value Signed-rank

Reservoirs 86.3%

Raw activation 77.6% < 10−8 821

Concatenation 82.8% < 10−3 761

Autoregressive model 81.1% < 10−3 1432

Theory of mind: “social” vs. “random”

Accuracy Accuracy p-value Signed-rank

Reservoirs 91.9%

Raw activation 84.2% < 10−8 2062

Concatenation 86.6% < 10−3 1370.5

Autoregressive model 87.8% < 10−3 1172

Movie data: “scary” vs. “funny”

Accuracy Accuracy p-value Signed-rank

Reservoirs 70.9%

Raw activation 60.2% < 10−3 77

Concatenation 65.3% 0.0151 69.5

Autoregressive model 64.6% 0.0107 70
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