This is the Pre-Published Version.

Scheduling with step-improving processing times

T.C. EDWIN CHENG * YonGg HE f HAN HOOGEVEEN 8 Min J1 9

GERHARD J. WOEGINGER |

Abstract

We consider the scheduling problem of minimizing the makespan on a single machine
with step-improving job processing times around a common critical date. For this problem
we give an NP-hardness proof, a fast pseudo-polynomial time algorithm, an FPTAS, and
an on-line algorithm with best possible competitive ratio.

Keywords. Scheduling; knapsack problem; approximation scheme; competitive analysis.

1 Introduction

Recent years have shown a growing interest in the area of scheduling with time-dependent
processing times; we refer the reader to the survey paper [1] by Cheng, Ding & Lin for more
information on this area. In this short technical note, we will concentrate on the following single
machine scheduling problem with time-dependent processing times: There are n independent
jobs Jq,...,J, with a common critical date D. All jobs are available for processing at time 0.
The processing time of job J; (j =1,...,n) is specified by two integers a; and b; with 0 < b; <
a;. If job J; is started at some time ¢ < D, then its processing time equals a;; if it is started
at some time ¢t > D then its processing time is a; — b;. The goal is to find a non-preemptive
schedule that minimizes the makespan, that is, the completion time of the last job.

In this note, we will derive a number of results for this scheduling problem. Most of
our algorithmic results are based on the observation that the scheduling problem essentially
boils down to a combination of two underlying hidden knapsack problems; see Section 2.

*E-mail: 1gtcheng@polyu.edu.hk. Department of Logistics, The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong SAR, China.

"E-mail: mathhey@zju.edu.cn. Department of Mathematics, State Key Lab of CAD & CG, Zhejiang Uni-
versity, Hangzhou 310027, China.

tCorresponding author

$E-mail: slam@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB
Utrecht, The Netherlands.

YE-mail: jimkeen@math.zju.edu.cn Department of Mathematics, State Key Lab of CAD & CG, Zhejiang
University, Hangzhou 310027, China.

IE-mail: gwoegi@win.tue.nl. Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box
513, 5600 MB Eindhoven, The Netherlands.

As a consequence, a number of standard results from the knapsack literature can be carried
over directly to the scheduling problem. We thus get a pseudo-polynomial time algorithm
and a fully polynomial time approximation scheme (FPTAS) for it. We also show that the
scheduling problem is NP-hard in the ordinary sense; see Section 3. Finally, we construct an
on-line algorithm with the best possible worst-case ratio 2 for a natural on-line version of this
scheduling problem; see Section 4. Our results provide a complete picture of this scheduling
problem.

2 The two underlying knapsack problems

This section translates the scheduling problem into two corresponding knapsack problems.
For every job J;, we denote by c¢; = a; — b; > 0 the difference between a; and b;. We let
J =1{1,2,...,n} denote the index set of all jobs. For an index set I C J, we will write a(I) as
a short-hand notation for >,c; a;, b(1) for Y ;7 b;, and (1) for Y,c; ¢;. Furthermore, we will
assume

D < a(J). (1)

Otherwise, the problem instance would be trivial: The optimal schedule processes all jobs
before the critical date with a makespan of a(J). Next, let us consider an optimal schedule o
for any given instance. Let X C J denote the index set of the jobs with starting times smaller
than D in o, and let Y = J — X denote the index set of the jobs with starting times greater
than or equal to D. Schedule o belongs to one of the two possible scenarios a(X) < D —1 and
a(X) > D.

In the first scenario, the constraint a(X) < D—1 may be rewritten as a(J)—a(Y) < D—1.
In this scenario, all jobs starting before the critical date D also complete before the critical date
D. Without loss of generality we may assume that the jobs in X are processed during the time
interval [0; a(X)], that the machine then stands idle during [a(X); D], and that the remaining
jobs in Y are executed contiguously from time D onwards. Because of (1), the corresponding
makespan equals D + ¢(Y'). The best schedule in the first scenario corresponds to the solution
of the following problem:

Zy = min ¢(Y) subject to a(Y) >a(J)—D+1; Y CJ (2)

Note that the optimization problem in (2) is a knapsack problem subject to a covering con-
straint; see also Section 3 below.

In the second scenario with a(X) > D, we may assume that the jobs in X are processed
during the time interval [0; a(X)], and that the remaining jobs in Y are processed during
[a(X); a(X) + c(Y)]. The corresponding makespan equals

a(X)+cY) = b(X)+ce(X)+c(Y) = cJ)+b(X).
Hence, the best schedule under the second scenario corresponds to the optimal solution of
Zy = min b(X) subject to a(X) > D; X CJ. (3)

Note that (3) again is a knapsack problem subject to a covering constraint. The optimal
makespan for the scheduling problem equals min{D + Zy, ¢(J) + Z5}, that is, the better
makespan found under the two scenarios.

3 Results on the off-line version

This section deduces a number of results from the knapsack characterization. We first prove
the ordinary NP-hardness of the problem. For this we use a reduction from PARTITION: We
are given n positive integers p1, ..., p, with Z?:l = 2P and we are asked whether there exists
aset I C{l,...,n} with 3°,.;p; = P. We construct the following instance of the scheduling
problem: There are n jobs, where job J; is specified by a; = 2p; and b; = p;, and the critical
date is D = 2P. It is easily verified that the answer to PARTITION is YES if and only if
the optimal makespan in the scheduling instance equals 3P. As a consequence, we find the
following theorem.

Theorem 1 Makespan minimization for jobs with step-improving processing times and a com-
mon critical date on a single machine is NP-hard in the ordinary sense. m

Recall that the knapsack problem subject to a covering constraint has as its input n items
with weights wy, ..., w, and profits pi,...,p, and a bound P. The goal is to find a subset of the
items that has total profit at least P and that has the smallest possible weight. The knapsack
problem can be solved in pseudo-polynomial time by dynamic programming with running time
O(n> %y wj) or O(nX % p;j); see for instance Kellerer, Pferschy & Pisinger [2]. For our
knapsack problems in (2) and (3), this translates into a time complexity of O(n > 7_; a;).

Theorem 2 Makespan minimization for jobs with step-improving processing times and a com-
mon critical date on a single machine can be solved in O(n 3 7, a;) time. ®

The knapsack problem subject to a covering constraint also possesses a fully polynomial time
approximation scheme (FPTAS); see for instance Kellerer, Pferschy & Pisinger [2]. This means
that for any € > 0, there is an approximation algorithm that yields a feasible solution with
total weight at most 1 + € times the optimal weight. The running time of this approximation
algorithm is polynomially bounded in the input size and in 1/e. This yields an FPTAS for
our knapsack problems in (2) and (3). In (2), the FPTAS gives us an approximation Y4 of
the optimal solution Y* such that ¢(Y4) < (1 4 ¢)e(Y™*). Consequently, the corresponding
approximate makespan D + ¢(Y4) is at most 1 + ¢ times the optimal makespan D + ¢(Y*).
And in (3), the FPTAS gives us an approximation X4 of the optimal solution X* with b(X4) <
(14¢)b(X*). Consequently, the corresponding approximate makespan c(.J) +b(X4) is at most
1 + & times the optimal makespan ¢(J) + b(X™*). We summarize these observations in the
following theorem.

Theorem 3 Makespan minimization for jobs with step-improving processing times and a com-
mon critical date on a single machine possesses an FPTAS. m

If we apply other fast knapsack approximation algorithms to problems (2) and (3), we will
get corresponding approximation algorithms with corresponding approximation guarantees for
our scheduling problem in a straightforward way.

4 Results on the on-line version

In the on-line version of our scheduling problem, the jobs Ji,...,.J, are revealed one by one.
As soon as the on-line algorithm learns the values a; and b; for job J;, it must assign the
job to an appropriate time interval; this decision is irrevocable and must not depend on later
arriving jobs. We consider an extremely simple on-line algorithm ON that schedules the jobs
in their given ordering Ji,...,J, and without introducing unnecessary idle time: Algorithm
ON schedules every new job J; after all the jobs Jy,...,J;_1, so that the completion time of
J; becomes as small as possible.

For analyzing algorithm ON, let k be the unique index with E?;ll a; <D < E§:1 a;; this
index k exists because of (1). Define X' = {1,...,k — 1} and Y/ = {k+ 1,...,n}. Clearly,
algorithm ON schedules the jobs J; with j € X’ before D during the interval [0; a(X’)], and
it schedules the jobs J; with j € Y’ after D. For the pivotal job .Jj there are two possibilities:
Either it is executed during the interval [D; D+ay—bg] or during the interval [a(X"); a(X')+ag].
Algorithm ON chooses the option that minimizes the completion time of Jy. If the first option
is chosen, then D — by < a(X’) holds, and the resulting makespan is

CON = D4c(Y'U{k}) < D+c(J). (4)
If the second option is chosen, then a(X’) < D — by holds, and the resulting makespan equals
CON — a(X")+ar+c(Y') < (D—=bp)+ap+c(Y') < D+c(J). (5)

In either case we have CQN. < D + ¢(J). Since D and ¢(J) both are trivial lower bounds on

the optimal makespan, we arrive at the following theorem.

Theorem 4 There exists an on-line algorithm for scheduling jobs with step-improving pro-
cessing times and a common critical date on a single machine that always produces a schedule
whose makespan is at most twice the optimal off-line makespan. =

Finally, let us show that the ratio 2 in the statement of Theorem 4 is best possible for the
on-line version. Suppose for the sake of contradiction that there exists an on-line algorithm A
that always yields a makespan that is at most 2 — ¢ times the optimal off-line makespan for
some ¢ with 0 < € < 1. We confront A with the following instance with D > 2: The first job
Ji has a; = D and by = D —e. Algorithm A either assigns J; to an interval [x; x + D] with
x < D or to an interval [x; = + ¢] with z > D.

e In the first case, job Js arrives with as = D and by = 0. The optimal off-line makespan
is D + ¢, whereas the on-line makespan is at least 2D + x. Hence, the ratio is larger than
2—c¢.

e In the second case, job Jo arrives with as = = + ¢ and by = 0. The optimal off-line
makespan equals z + 2¢, and the on-line makespan is at least 2x + 2e. Since x > D > 2,
the ratio is again larger than 2 — e.

In either case we get a contradiction. Hence, the ratio 2 is indeed best possible.

Acknowledgements

This work was partially conducted during a workshop on ‘Optimization with incomplete infor-
mation’, which was held at Schloss Dagstuhl, Germany, January 16-21. Han Hoogeveen and
Gerhard Woeginger are grateful to the organizers of the workshop and to the staff of Dagstuhl
for providing a stimulating atmosphere.

T.C. Edwin Cheng was supported in part by The Hong Kong Polytechnic University under
a grant from the Area of Strategic Development in China Business Services. Yong He acknowl-
edges support by TRAPOYT, China, and the NSFC of China (10271110, 60021201). Han
Hoogeveen and Gerhard Woeginger were partially supported by BSIK grant 03018 (BRICKS:
Basic Research in Informatics for Creating the Knowledge Society). Gerhard Woeginger was
partially supported by the Netherlands Organisation for Scientific Research, grant 639.033.403.

References

[1] T.C.E. CHENG, Q. DING, AND B.M.T. LIN (2004). A concise survey of scheduling with
time-dependent processing times. European Journal of Operational Research 152, 2004,
1-13.

[2] H. KELLERER, U. PFERSCHY, AND D. PISINGER (2004). Knapsack problems. Springer
Verlag, Berlin.

