
Scheduling with step-improving processing times

T.C. Edwin Cheng ∗ Yong He † Han Hoogeveen ‡§ Min Ji ¶

Gerhard J. Woeginger ‖

Abstract

We consider the scheduling problem of minimizing the makespan on a single machine
with step-improving job processing times around a common critical date. For this problem
we give an NP-hardness proof, a fast pseudo-polynomial time algorithm, an FPTAS, and
an on-line algorithm with best possible competitive ratio.

Keywords. Scheduling; knapsack problem; approximation scheme; competitive analysis.

1 Introduction

Recent years have shown a growing interest in the area of scheduling with time-dependent
processing times; we refer the reader to the survey paper [1] by Cheng, Ding & Lin for more
information on this area. In this short technical note, we will concentrate on the following single
machine scheduling problem with time-dependent processing times: There are n independent
jobs J1, . . . , Jn with a common critical date D. All jobs are available for processing at time 0.
The processing time of job Jj (j = 1, . . . , n) is specified by two integers aj and bj with 0 ≤ bj ≤
aj . If job Jj is started at some time t < D, then its processing time equals aj; if it is started
at some time t ≥ D then its processing time is aj − bj . The goal is to find a non-preemptive
schedule that minimizes the makespan, that is, the completion time of the last job.

In this note, we will derive a number of results for this scheduling problem. Most of
our algorithmic results are based on the observation that the scheduling problem essentially
boils down to a combination of two underlying hidden knapsack problems; see Section 2.

∗E-mail: lgtcheng@polyu.edu.hk. Department of Logistics, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong SAR, China.
†E-mail: mathhey@zju.edu.cn. Department of Mathematics, State Key Lab of CAD & CG, Zhejiang Uni-

versity, Hangzhou 310027, China.
‡Corresponding author
§E-mail: slam@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB

Utrecht, The Netherlands.
¶E-mail: jimkeen@math.zju.edu.cn Department of Mathematics, State Key Lab of CAD & CG, Zhejiang

University, Hangzhou 310027, China.
‖E-mail: gwoegi@win.tue.nl. Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box

513, 5600 MB Eindhoven, The Netherlands.

1

This is the Pre-Published Version.



As a consequence, a number of standard results from the knapsack literature can be carried
over directly to the scheduling problem. We thus get a pseudo-polynomial time algorithm
and a fully polynomial time approximation scheme (FPTAS) for it. We also show that the
scheduling problem is NP-hard in the ordinary sense; see Section 3. Finally, we construct an
on-line algorithm with the best possible worst-case ratio 2 for a natural on-line version of this
scheduling problem; see Section 4. Our results provide a complete picture of this scheduling
problem.

2 The two underlying knapsack problems

This section translates the scheduling problem into two corresponding knapsack problems.
For every job Jj , we denote by cj = aj − bj ≥ 0 the difference between aj and bj . We let
J = {1, 2, . . . , n} denote the index set of all jobs. For an index set I ⊆ J , we will write a(I) as
a short-hand notation for

∑
i∈I ai, b(I) for

∑
i∈I bi, and c(I) for

∑
i∈I ci. Furthermore, we will

assume

D ≤ a(J). (1)

Otherwise, the problem instance would be trivial: The optimal schedule processes all jobs
before the critical date with a makespan of a(J). Next, let us consider an optimal schedule σ
for any given instance. Let X ⊆ J denote the index set of the jobs with starting times smaller
than D in σ, and let Y = J − X denote the index set of the jobs with starting times greater
than or equal to D. Schedule σ belongs to one of the two possible scenarios a(X) ≤ D− 1 and
a(X) ≥ D.

In the first scenario, the constraint a(X) ≤ D−1 may be rewritten as a(J)−a(Y ) ≤ D−1.
In this scenario, all jobs starting before the critical date D also complete before the critical date
D. Without loss of generality we may assume that the jobs in X are processed during the time
interval [0; a(X)], that the machine then stands idle during [a(X); D], and that the remaining
jobs in Y are executed contiguously from time D onwards. Because of (1), the corresponding
makespan equals D + c(Y ). The best schedule in the first scenario corresponds to the solution
of the following problem:

Z1 := min c(Y ) subject to a(Y ) ≥ a(J) − D + 1; Y ⊆ J. (2)

Note that the optimization problem in (2) is a knapsack problem subject to a covering con-
straint; see also Section 3 below.

In the second scenario with a(X) ≥ D, we may assume that the jobs in X are processed
during the time interval [0; a(X)], and that the remaining jobs in Y are processed during
[a(X); a(X) + c(Y )]. The corresponding makespan equals

a(X) + c(Y ) = b(X) + c(X) + c(Y ) = c(J) + b(X).

Hence, the best schedule under the second scenario corresponds to the optimal solution of

Z2 := min b(X) subject to a(X) ≥ D; X ⊆ J. (3)

Note that (3) again is a knapsack problem subject to a covering constraint. The optimal
makespan for the scheduling problem equals min{D + Z1, c(J) + Z2}, that is, the better
makespan found under the two scenarios.

2



3 Results on the off-line version

This section deduces a number of results from the knapsack characterization. We first prove
the ordinary NP-hardness of the problem. For this we use a reduction from Partition: We
are given n positive integers p1, . . . , pn with

∑n
j=1

= 2P and we are asked whether there exists
a set I ⊆ {1, . . . , n} with

∑
j∈I pj = P . We construct the following instance of the scheduling

problem: There are n jobs, where job Jj is specified by aj = 2pj and bj = pj , and the critical
date is D = 2P . It is easily verified that the answer to Partition is YES if and only if
the optimal makespan in the scheduling instance equals 3P . As a consequence, we find the
following theorem.

Theorem 1 Makespan minimization for jobs with step-improving processing times and a com-

mon critical date on a single machine is NP-hard in the ordinary sense.

Recall that the knapsack problem subject to a covering constraint has as its input n items
with weights w1, . . . , wn and profits p1, . . . , pn and a bound P . The goal is to find a subset of the
items that has total profit at least P and that has the smallest possible weight. The knapsack
problem can be solved in pseudo-polynomial time by dynamic programming with running time
O(n

∑n
j=1

wj) or O(n
∑n

j=1
pj); see for instance Kellerer, Pferschy & Pisinger [2]. For our

knapsack problems in (2) and (3), this translates into a time complexity of O(n
∑n

j=1
aj).

Theorem 2 Makespan minimization for jobs with step-improving processing times and a com-

mon critical date on a single machine can be solved in O(n
∑n

j=1 aj) time.

The knapsack problem subject to a covering constraint also possesses a fully polynomial time
approximation scheme (FPTAS); see for instance Kellerer, Pferschy & Pisinger [2]. This means
that for any ε > 0, there is an approximation algorithm that yields a feasible solution with
total weight at most 1 + ε times the optimal weight. The running time of this approximation
algorithm is polynomially bounded in the input size and in 1/ε. This yields an FPTAS for
our knapsack problems in (2) and (3). In (2), the FPTAS gives us an approximation Y A of
the optimal solution Y ∗ such that c(Y A) ≤ (1 + ε)c(Y ∗). Consequently, the corresponding
approximate makespan D + c(Y A) is at most 1 + ε times the optimal makespan D + c(Y ∗).
And in (3), the FPTAS gives us an approximation XA of the optimal solution X∗ with b(XA) ≤
(1+ ε)b(X∗). Consequently, the corresponding approximate makespan c(J)+ b(XA) is at most
1 + ε times the optimal makespan c(J) + b(X∗). We summarize these observations in the
following theorem.

Theorem 3 Makespan minimization for jobs with step-improving processing times and a com-

mon critical date on a single machine possesses an FPTAS.

If we apply other fast knapsack approximation algorithms to problems (2) and (3), we will
get corresponding approximation algorithms with corresponding approximation guarantees for
our scheduling problem in a straightforward way.

3



4 Results on the on-line version

In the on-line version of our scheduling problem, the jobs J1, . . . , Jn are revealed one by one.
As soon as the on-line algorithm learns the values aj and bj for job Jj , it must assign the
job to an appropriate time interval; this decision is irrevocable and must not depend on later
arriving jobs. We consider an extremely simple on-line algorithm ON that schedules the jobs
in their given ordering J1, . . . , Jn and without introducing unnecessary idle time: Algorithm
ON schedules every new job Jj after all the jobs J1, . . . , Jj−1, so that the completion time of
Jj becomes as small as possible.

For analyzing algorithm ON, let k be the unique index with
∑k−1

j=1
aj < D ≤

∑k
j=1

aj ; this
index k exists because of (1). Define X ′ = {1, . . . , k − 1} and Y ′ = {k + 1, . . . , n}. Clearly,
algorithm ON schedules the jobs Jj with j ∈ X ′ before D during the interval [0; a(X ′)], and
it schedules the jobs Jj with j ∈ Y ′ after D. For the pivotal job Jk there are two possibilities:
Either it is executed during the interval [D; D+ak−bk] or during the interval [a(X ′); a(X ′)+ak].
Algorithm ON chooses the option that minimizes the completion time of Jk. If the first option
is chosen, then D − bk ≤ a(X ′) holds, and the resulting makespan is

CON
max = D + c(Y ′ ∪ {k}) ≤ D + c(J). (4)

If the second option is chosen, then a(X ′) ≤ D − bk holds, and the resulting makespan equals

CON
max = a(X ′) + ak + c(Y ′) ≤ (D − bk) + ak + c(Y ′) ≤ D + c(J). (5)

In either case we have CON
max ≤ D + c(J). Since D and c(J) both are trivial lower bounds on

the optimal makespan, we arrive at the following theorem.

Theorem 4 There exists an on-line algorithm for scheduling jobs with step-improving pro-

cessing times and a common critical date on a single machine that always produces a schedule

whose makespan is at most twice the optimal off-line makespan.

Finally, let us show that the ratio 2 in the statement of Theorem 4 is best possible for the
on-line version. Suppose for the sake of contradiction that there exists an on-line algorithm A
that always yields a makespan that is at most 2 − ε times the optimal off-line makespan for
some ε with 0 < ε ≤ 1. We confront A with the following instance with D ≥ 2: The first job
J1 has a1 = D and b1 = D − ε. Algorithm A either assigns J1 to an interval [x; x + D] with
x < D or to an interval [x; x + ε] with x ≥ D.

• In the first case, job J2 arrives with a2 = D and b2 = 0. The optimal off-line makespan
is D + ε, whereas the on-line makespan is at least 2D +x. Hence, the ratio is larger than
2 − ε.

• In the second case, job J2 arrives with a2 = x + ε and b2 = 0. The optimal off-line
makespan equals x + 2ε, and the on-line makespan is at least 2x + 2ε. Since x ≥ D ≥ 2,
the ratio is again larger than 2 − ε.

In either case we get a contradiction. Hence, the ratio 2 is indeed best possible.

4



Acknowledgements

This work was partially conducted during a workshop on ‘Optimization with incomplete infor-
mation’, which was held at Schloss Dagstuhl, Germany, January 16-21. Han Hoogeveen and
Gerhard Woeginger are grateful to the organizers of the workshop and to the staff of Dagstuhl
for providing a stimulating atmosphere.

T.C. Edwin Cheng was supported in part by The Hong Kong Polytechnic University under
a grant from the Area of Strategic Development in China Business Services. Yong He acknowl-
edges support by TRAPOYT, China, and the NSFC of China (10271110, 60021201). Han
Hoogeveen and Gerhard Woeginger were partially supported by BSIK grant 03018 (BRICKS:
Basic Research in Informatics for Creating the Knowledge Society). Gerhard Woeginger was
partially supported by the Netherlands Organisation for Scientific Research, grant 639.033.403.

References

[1] T.C.E. Cheng, Q. Ding, and B.M.T. Lin (2004). A concise survey of scheduling with
time-dependent processing times. European Journal of Operational Research 152, 2004,
1–13.

[2] H. Kellerer, U. Pferschy, and D. Pisinger (2004). Knapsack problems. Springer
Verlag, Berlin.

5




