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Abstract

In many optimization problems arising from scientific, engineering and artificial intelligence
applications, objective and constraint functions are available only as the output of a black-box or
simulation oracle that does not provide derivative information. Such settings necessitate the use of
methods for derivative-free, or zeroth-order, optimization. We provide a review and perspectives
on developments in these methods, with an emphasis on highlighting recent developments and
on unifying treatment of such problems in the non-linear optimization and machine learning
literature. We categorize methods based on assumed properties of the black-box functions, as well
as features of the methods. We first overview the primary setting of deterministic methods applied
to unconstrained, non-convex optimization problems where the objective function is defined by a
deterministic black-box oracle. We then discuss developments in randomized methods, methods
that assume some additional structure about the objective (including convexity, separability and
general non-smooth compositions), methods for problems where the output of the black-box oracle
is stochastic, and methods for handling different types of constraints.
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1 Introduction

The growth in computing for scientific, engineering and social applications has long been a driver
of advances in methods for numerical optimization. The development of derivative-free optimization
methods – those methods that do not require the availability of derivatives – has especially been driven
by the need to optimize increasingly complex and diverse problems. One of the earliest calculations on
MANIAC,1 an early computer based on the von Neumann architecture, was the approximate solution
of a six-dimensional non-linear least-squares problem using a derivative-free coordinate search [Fermi
and Metropolis, 1952]. Today, derivative-free methods are used routinely, for example by Google
[Golovin et al., 2017], for the automation and tuning needed in the artificial intelligence era.

In this paper we survey methods for derivative-free optimization and key results for their analysis.
Since the field – also referred to as black-box optimization, gradient-free optimization, optimization
without derivatives, simulation-based optimization and zeroth-order optimization – is now far too
expansive for a single survey, we focus on methods for local optimization of continuous-valued, single-
objective problems. Although Section 8 illustrates further connections, here we mark the following
notable omissions.

• We focus on methods that seek a local minimizer. Despite users understandably desiring the best
possible solution, the problem of global optimization raises innumerably more mathematical and
computational challenges than do the methods presented here. We instead point to the survey
by Neumaier [2004], which importantly addresses general constraints, and to the textbook by
Forrester et al. [2008], which lays a foundation for global surrogate modelling.

• Multi-objective optimization and optimization in the presence of discrete variables are similarly
popular tasks among users. Such problems possess fundamental challenges as well as differences
from the methods presented here.

• In focusing on methods, we cannot do justice to the application problems that have driven the
development of derivative-free methods and benefited from implementations of these methods.
The recent textbook by Audet and Hare [2017] contains a number of examples and references
to applications; Rios and Sahinidis [2013] and Auger et al. [2009] both reference a diverse set of
implementations. At the persistent page

https://archive.org/services/purl/dfomethods

we intend to link all works that cite the entries in our bibliography and those that cite this
survey; we hope this will provide a coarse, but dynamic, catalogue for the reader interested in
potential uses of these methods.

Given these limitations, we particularly note the intersection with the foundational books by Kelley
[1999b] and Conn et al. [2009b]. Our intent is to highlight recent developments in, and the evolution
of, derivative-free optimization methods. Figure 1.1 summarizes our bias; over half of the references
in this survey are from the past ten years.

Many of the fundamental inspirations for the methods discussed in this survey are detailed to a
lesser extent. We note in particular the activity in the United Kingdom in the 1960s (see e.g. the
works by Rosenbrock 1960, Powell 1964, Nelder and Mead 1965, Fletcher 1965 and Box 1966, and
the later exposition and expansion by Brent 1973) and the Soviet Union (as evidenced by Rastrigin
1963, Matyas 1965, Karmanov 1974, Polyak 1987 and others). In addition to those mentioned later,
we single out the work of Powell [1975], Wright [1995], Davis [2005] and Leyffer [2015] for insight into
some of these early pioneers.

1Mathematical Analyzer, Integrator, And Computer. Other lessons learned from this application are discussed by
Anderson [1986].
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Figure 1.1: Histogram of the references cited in the bibliography.

With our focus clear, we turn our attention to the deterministic optimization problem

minimize
x

f(x)

subject to x ∈ Ω ⊆ Rn
(DET)

and the stochastic optimization problem

minimize
x

f(x) = Eξ
[
f̃(x; ξ)

]
subject to x ∈ Ω.

(STOCH)

Although important exceptions are noted throughout this survey, the majority of the methods dis-
cussed assume that the objective function f in (DET) and (STOCH) is differentiable. This assumption
may cause readers to pause (and some readers may never resume). The methods considered here do
not necessarily address non-smooth optimization; instead they address problems where a (sub)gradient
of the objective f or a constraint function defining Ω is not available to the optimization method.
Note that similar naming confusion has existed in non-smooth optimization, as evidenced by the
introduction of Lemarechal and Mifflin [1978]:

This workshop was held under the name Nondifferentiable Optimization, but it has been
recognized that this is misleading, because it suggests ‘optimization without derivatives’.

1.1 Alternatives to derivative-free optimization methods

Derivative-free optimization methods are sometimes employed for convenience rather than by necessity.
Since the decision to use a derivative-free method typically limits the performance – in terms of
accuracy, expense or problem size – relative to what one might expect from gradient-based optimization
methods, we first mention alternatives to using derivative-free methods.

The design of derivative-free optimization methods is informed by the alternatives of algorithmic
and numerical differentiation. For the former, the purpose seems clear: since the methods use only
function values, they apply even in cases when one cannot produce a computer code for the function’s
derivative. Similarly, derivative-free optimization methods should be designed in order to outperform
(typically measured in terms of the number of function evaluations) gradient-based optimization meth-
ods that employ numerical differentiation.
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1.1.1 Algorithmic differentiation

Algorithmic differentiation2 (AD) is a means of generating derivatives of mathematical functions that
are expressed in computer code [Griewank, 2003, Griewank and Walther, 2008]. The forward mode of
AD may be viewed as performing differentiation of elementary mathematical operations in each line of
source code by means of the chain rule, while the reverse mode may be seen as traversing the resulting
computational graph in reverse order.

Algorithmic differentiation has the benefit of automatically exploiting function structure, such as
partial separability or other sparsity, and the corresponding ability of producing a derivative code
whose computational cost is comparable to the cost of evaluating the function code itself.

AD has seen significant adoption and advances in the past decade [Forth et al., 2012]. Tools for
algorithmic differentiation cover a growing set of compiled and interpreted languages, with an evolving
list summarized on the community portal at

http://www.autodiff.org.

Progress has also been made on algorithmic differentiation of piecewise smooth functions, such as those
with breakpoints resulting from absolute values or conditionals in a code; see, for example, Griewank
et al. [2016]. The machine learning renaissance has also fuelled demand and interest in AD, driven in
large part by the success of algorithmic differentiation in backpropagation [Baydin et al., 2018].

1.1.2 Numerical differentiation

Another alternative to derivative-free methods is to estimate the derivative of f by numerical differen-
tiation and then to use the estimates in a derivative-based method. This approach has the benefit that
only zeroth-order information (i.e. the function value) is needed; however, depending on the derivative-
based method used, the quality of the derivative estimate may be a limiting factor. Here we remark
that for the finite-precision (or even fixed-precision) functions encountered in scientific applications,
finite-difference estimates of derivatives may be sufficient for many purposes; see Section 2.3.1.

When numerical derivative estimates are used, the optimization method must tolerate inexactness
in the derivatives. Such methods have been classically studied for both non-linear equations and
unconstrained optimization; see, for example, the works of Powell [1965], Brown and Dennis, Jr.
[1971] and Mifflin [1975] and the references therein. Numerical derivatives continue to be employed by
recent methods (see e.g. the works of Cartis, Gould, and Toint 2012 and Berahas, Byrd, and Nocedal
2019). Use in practice is typically determined by whether the limit on the derivative accuracy and the
expense in terms of function evaluations are acceptable.

1.2 Organization of the paper

This paper is organized principally by problem class: unconstrained domain (Sections 2 and 3), con-
vex objective (Section 4), structured objective (Section 5), stochastic optimization (Section 6) and
constrained domain (Section 7).

Section 2 presents deterministic methods for solving (DET) when Ω = Rn. The section is split
between direct-search methods and model-based methods, although the lines between these are in-
creasingly blurred; see, for example, Conn and Le Digabel [2013], Custódio et al. [2009], Gramacy
and Le Digabel [2015] and Gratton et al. [2016]. Direct-search methods are summarized in far greater
detail by Kolda et al. [2003] and Kelley [1999b], and in the more recent survey by Audet [2014].
Model-based methods that employ trust regions are given full treatment by Conn et al. [2009b], and
those that employ stencils are detailed by Kelley [2011].

In Section 3 we review randomized methods for solving (DET) when Ω = Rn. These methods are
often variants of the deterministic methods in Section 2 but require additional notation to capture

2Algorithmic differentiation is sometimes referred to as automatic differentiation, but we follow the preferred con-
vention of Griewank [2003].
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the resulting stochasticity; the analysis of these methods can also deviate significantly from their
deterministic counterparts.

In Section 4 we discuss derivative-free methods intended primarily for convex optimization. We
make this delineation because such methods have distinct lines of analysis and can often solve consid-
erably higher-dimensional problems than can general methods for non-convex derivative-free optimiz-
ation.

In Section 5 we survey methods that address particular structure in the objective f in (DET). Ex-
amples of such structure include non-linear least-squares objectives, composite non-smooth objectives
and partially separable objectives.

In Section 6 we address derivative-free stochastic optimization, that is, when methods have access
only to a stochastic realization of a function in pursuit of solving (STOCH). This topic is increasingly
intertwined with simulation optimization and Monte Carlo-based optimization; for these areas we refer
to the surveys by Homem-de-Mello and Bayraksan [2014], Fu et al. [2005], Amaran et al. [2015] and
Kim et al. [2015].

Section 7 presents methods for deterministic optimization problems with constraints (i.e. Ω ⊂ Rn).
Although many of these methods rely on the foundations laid in Sections 2 and 3, we highlight
particular difficulties associated with constrained derivative-free optimization.

In Section 8 we briefly highlight related problem areas (including global and multi-objective
derivative-free optimization), methods and other implementation considerations.

2 Deterministic methods for deterministic objectives

We now address deterministic methods for solving (DET). We discuss direct-search methods in Sec-
tion 2.1, model-based methods in Section 2.2 and other methods in Section 2.3. At a coarse level, direct-
search methods use comparisons of function values to directly determine candidate points, whereas
model-based methods use a surrogate of f to determine candidate points. Naturally, some hybrid
methods incorporate ideas from both model-based and direct-search methods and may not be so eas-
ily categorized. An early survey of direct-search and model-based methods is given in Powell [1998a].

2.1 Direct-search methods

Although Hooke and Jeeves [1961] are credited with originating the term ‘direct search’, there is no
agreed-upon definition of what constitutes a direct-search method. We follow the convention of Wright
[1995], wherein a direct-search method is a method that uses only function values and ‘does not “in
its heart” develop an approximate gradient’.

We first discuss simplex methods, including the Nelder–Mead method – perhaps the most widely
used direct-search method. We follow this discussion with a presentation of directional direct-search
methods; hybrid direct-search methods are discussed in Section 2.3. (The global direct-search method
DIRECT is discussed in Section 8.3.)

2.1.1 Simplex methods

Simplex methods (not to be confused with Dantzig’s simplex method for linear programming) move
and manipulate a collection of n + 1 affinely independent points (i.e. the vertices of a simplex in
Rn) when solving (DET). The method of Spendley et al. [1962] involves either taking the point in
the simplex with the largest function value and reflecting it through the hyperplane defined by the
remaining n points or moving the n worst points toward the best vertex of the simplex. In this manner,
the geometry of all simplices remains the same as that of the starting simplex. (That is, all simplices
are similar in the geometric sense.)

Nelder and Mead [1965] extend the possible simplex operations, as shown in Figure 2.1 by allowing
the ‘expansion’ and ‘contraction’ operations in addition to the ‘reflection’ and ‘shrink’ operations
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Figure 2.1: Primary Nelder–Mead simplex operations: original simplex, reflection, expansion, inner
contraction, and shrink.

of Spendley et al. [1962]. These operations enable the Nelder–Mead simplex method to distort the
simplex in order to account for possible curvature present in the objective function.

Nelder and Mead [1965] propose stopping further function evaluations when the standard error
of the function values at the simplex vertices is small. Others, Woods [1985] for example, propose
stopping when the size of the simplex’s longest side incident to the best simplex vertex is small.

Nelder–Mead is an incredibly popular method, in no small part due to its inclusion in Numerical
Recipes [Press et al., 2007], which has been cited over 125 000 times and no doubt used many times
more. The method (as implemented by Lagarias, Poonen, and Wright 2012) is also the algorithm
underlying fminsearch in MATLAB. Benchmarking studies highlight Nelder–Mead performance in
practice [Moré and Wild, 2009, Rios and Sahinidis, 2013].

The method’s popularity from its inception was not diminished by the lack of theoretical results
proving its ability to identify stationary points. Woods [1985] presents a non-convex, two-dimensional
function where Nelder–Mead converges to a non-stationary point (where the function’s Hessian is
singular). Furthermore, McKinnon [1998] presents a class of thrice-continuously differentiable, strictly
convex functions on R2 where the Nelder–Mead simplex fails to converge to the lone stationary point.
The only operation that Nelder–Mead performs on this relatively routine function is repeated ‘inner
contraction’ of the initial simplex.

Researchers have continued to develop convergence results for modified or limited versions of
Nelder–Mead. Kelley [1999a] addresses Nelder–Mead’s theoretical deficiencies by restarting the method
when the objective decrease on consecutive iterations is not larger than a multiple of the simplex
gradient norm. Such restarts do not ensure that Nelder–Mead will converge: Kelley [1999a] shows
an example of such behaviour. Price et al. [2002] embed Nelder–Mead in a different (convergent)
algorithm using positive spanning sets. Nazareth and Tseng [2002] propose a clever, though perhaps
superfluous, variant that connects Nelder–Mead to golden-section search.

Lagarias et al. [1998] show that Nelder–Mead (with appropriately chosen reflection and expansion
coefficients) converges to the global minimizer of strictly convex functions when n = 1. Gao and Han
[2012] show that the contraction and expansion steps of Nelder–Mead satisfy a descent condition on
uniformly convex functions. Lagarias et al. [2012] show that a restricted version of the Nelder–Mead
method – one that does not allow an expansion step – can converge to minimizers of any twice-
continuously differentiable function with a positive-definite Hessian and bounded level sets. (Note
that the class of functions from McKinnon [1998] have singular Hessians at only one point – their
minimizers – and not at the point to which the simplex vertices are converging.)

The simplex method of Rykov [1980] includes ideas from model-based methods. Rykov varies the
number of reflected vertices from iteration to iteration, following one of three rules that depend on
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Algorithm 1: x+ = test descent(f,x,P )

1 Initialize x+ ← x
2 for pi ∈ P do
3 Evaluate f(pi)
4 if f(pi)− f(x) acceptable then
5 x+ ← pi
6 optional break

the function value at the simplex centroid xc. Rykov considers both evaluating f at the centroid
and approximating f at the centroid using the values of f at the vertex. The non-reflected vertices
are also moved in parallel with the reflected subset of vertices. In general, the number of reflected
vertices is chosen so that xc moves in a direction closest to −∇f(xc). This, along with a test of
sufficient decrease in f , ensures convergence of the modified simplex method to a minimizer of convex,
continuously differentiable functions with bounded level sets and Lipschitz-bounded gradients. (The
sufficient-decrease condition is also shown to be efficient for the classical Nelder–Mead algorithm.)

Tseng [1999] proposes a modified simplex method that keeps the bk best simplex vertices on a
given iteration k and uses them to reflect the remaining vertices. Their method prescribes that ‘the
rays emanating from the reflected vertices toward the bk best vertices should contain, in their convex
hull, the rays emanating from a weighted centroid of the bk best vertices toward the to-be-reflected
vertices’. Their method also includes a fortified descent condition that is stronger than common
sufficient-decrease conditions. If f is continuously differentiable and bounded below and bk is fixed for
all iterations, Tseng [1999] prove that every cluster point of the sequence of candidate points generated
by their method is a stationary point.

Bűrmen et al. [2006] propose a convergent version of a simplex method that does not require a
sufficient descent condition be satisfied. Instead, they ensure that evaluated points lie on a grid of
points, and they show that this grid will be refined as the method proceeds.

2.1.2 Directional direct-search methods

Broadly speaking, each iteration of a directional direct-search (DDS) method generates a finite set
of points near the current point xk; these poll points are generated by taking xk and adding terms
of the form αkd, where αk is a positive step size and d is an element from a finite set of directions
Dk. Kolda et al. [2003] propose the term generating set search methods to encapsulate this class of
methods.3 The objective function f is then evaluated at all or some of the poll points, and xk+1 is
selected to be some poll point that produces a (sufficient) decrease in the objective and the step size
is possibly increased. If no poll point provides a sufficient decrease, xk+1 is set to xk and the step size
is decreased. In either case, the set of directions Dk can (but need not) be modified to obtain Dk+1.

A general DDS method is provided in Algorithm 2, which includes a search step where f is evaluated
at any finite set of points Yk, including Yk = ∅. The search step allows one to (potentially) improve
the performance of Algorithm 2. For example, points could be randomly sampled during the search
step from the domain in the hope of finding a better local minimum, or a person running the algorithm
may have problem-specific knowledge that can generate candidate points given the observed history
of evaluated points and their function values. While the search step allows for this insertion of such
heuristics, rigorous convergence results are driven by the more disciplined poll step. When testing for
objective decrease in Algorithm 1, one can stop evaluating points in P (line 6) as soon as the first
point is identified where there is (sufficient) decrease in f . In this case, the polling (or search) step is
considered opportunistic.

3The term generating set arises from a need to generate a cone from the nearly active constraint normals when Ω is
defined by linear constraints.
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Algorithm 2: Directional direct-search method

1 Set parameters 0 < γdec < 1 ≤ γinc

2 Choose initial point x0 and step size α0 > 0
3 for k = 0, 1, 2, . . . do
4 Choose and order a finite set Yk ⊂ Rn // (search step)

5 x+
k ← test descent(f,xk,Yk)

6 if x+
k = xk then

7 Choose and order poll directions Dk ⊂ Rn // (poll step)

8 x+
k ← test descent(f,xk, {xk + αkdi : di ∈Dk})

9 if x+
k = xk then

10 αk+1 ← γincαk
11 else
12 αk+1 ← γdecαk

13 xk+1 ← x+
k

DDS methods are largely distinguished by how they generate the set of poll directions Dk at
line 7 of Algorithm 2. Perhaps the first approach is coordinate search, in which the poll directions
are defined as Dk = {±ei : i = 1, 2, . . . , n}, where ei denotes the ith elementary basis vector (i.e.
column i of the identity matrix in n dimensions). The first known description of coordinate search
appears in the work of Fermi and Metropolis [1952] where the smallest positive integer l is sought
such that f(xk + lαe1/2) > f(xk + (l− 1)αe1/2). If an increase in f is observed at e1/2 then −e1/2
is considered. After such an integer l is identified for the first coordinate direction, xk is updated
to xk ± le1/2 and the second coordinate direction is considered. If xk is unchanged after cycling
through all coordinate directions, then the method is repeated but with ±ei/2 replaced with ±ei/16,
terminating when no improvement is observed for this smaller α. In terms of Algorithm 2 the search
set Yk = ∅ at line 4, and the descent test at line 4 of Algorithm 1 merely tests for simple decrease,
that is, f(pi) − f(x) < 0. Other versions of acceptability in line 4 of Algorithm 1 are employed by
methods discussed later.

Proofs that DDS methods converge first appeared in the works of Céa [1971] and Yu [1979], although
both require the sequence of step-size parameters to be non-increasing. Lewis et al. [2000] attribute
the first global convergence proof for coordinate search to Polak [1971, p. 43]. In turn, Polak cites
the ‘method of local variation’ of Banichuk et al. [1966]; although Banichuk et al. [1966] do develop
parts of a convergence proof, they state in Remark 1 that ‘the question of the strict formulation of
the general sufficient conditions for convergence of the algorithm to a minimum remains open’.

Typical convergence results for DDS require that the set Dk is a positive spanning set (PSS) for
the domain Ω; that is, any point x ∈ Ω can be written as

x =

|Dk|∑
i=1

λidi,

where di ∈ Dk and λi ≥ 0 for all i. Some of the first discussions of properties of positive spanning
sets were presented by Davis [1954] and McKinney [1962], but recent treatments have also appeared
in Regis [2016]. In addition to requiring positive spanning sets during the poll step, earlier DDS
convergence results depended on f being continuously differentiable. When f is non-smooth, no
descent direction is guaranteed for these early DDS methods, even when the step size is arbitrarily
small. See, for example, the modification of the Dennis–Woods [Dennis, Jr. and Woods, 1987] function
by Kolda et al. [2003, Figure 6.2] and a discussion of why coordinate-search methods (for example)
will not move when started at a point of non-differentiability; moreover, when started at differentiable
points, coordinate-search methods tend to converge to a point that is not (Clarke) stationary.
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The pattern-search method of Torczon [1991] revived interest in direct-search methods. The
method therein contains ideas from both DDS and simplex methods. Given a simplex defined by
xk,y1, . . . ,yn (where xk is the simplex vertex with smallest function value), the polling directions are
given by Dk = {yi−xk : i = 1, . . . , n}. If a decrease is observed at the best poll point in xk +Dk, the
simplex is set to either xk

⋃
xk +Dk or some expansion thereof. If no improvement is found during

the poll step, the simplex is contracted. Torczon [1991] shows that if f is continuous on the level set
of x0 and this level set is compact, then a subsequence of {xk} converges to a stationary point of f ,
a point where f is non-differentiable, or a point where f is not continuously differentiable.

A generalization of pattern-search methods is the class of generalized pattern-search (GPS) methods.
Early GPS methods did not allow for a search step; the search-poll paradigm was introduced by Booker
et al. [1999]. GPS methods are characterized by fixing a positive spanning setD and selectingDk ⊆D
during the poll step at line 7 on each iteration of Algorithm 2. Torczon [1997] assumes that the test
for decrease in line 4 in Algorithm 1 is simple decrease, that is, that f(pi) < f(x). Early analysis of
GPS methods using simple decrease required the step size αk to remain rational [Audet and Dennis,
Jr., 2002, Torczon, 1997]. Audet [2004] shows that such an assumption is necessary by constructing
small-dimensional examples where GPS methods do not converge if αk is irrational. Works below
show that if a sufficient (instead of simple) decrease is ensured, αk can take irrational values.

A refinement of the analysis of GPS methods was made by Dolan et al. [2003], which shows that
when ∇f is Lipschitz-continuous, the step-size parameter αk scales linearly with ‖∇f(xk)‖. Therefore
αk can be considered a reliable measure of first-order stationarity and justifies the traditional approach
of stopping a GPS method when αk is small. Second-order convergence analyses of GPS methods have
also been considered. Abramson [2005] shows that, when applied to a twice-continuously differentiable
f , a GPS method that infinitely often has Dk include a fixed orthonormal basis and its negative will
have a limit point satisfying a ‘pseudo-second-order’ stationarity condition. Building off the use of
curvature information in Frimannslund and Steihaug [2007], Abramson et al. [2013] show that a
modification of the GPS framework that constructs approximate Hessians of f will converge to points
that are second-order stationary provided that certain conditions on the Hessian approximation hold
(and a fixed orthonormal basis and its negative are in Dk infinitely often).

In general, first-order convergence results (there exists a limit point x∗ of {xk} generated by a
GPS method such that ∇f(x∗) = 0) for GPS methods can be demonstrated when f is continuously
differentiable. For general Lipschitz-continuous (but non-smooth) functions f , however, one can only
demonstrate that on a particular subsequence K, satisfying {xk}k∈K → x∗, for each d that appears
infinitely many times in {Dk}k∈K, it holds that f ′(x∗;d) ≥ 0; that is, the directional derivative at x∗
in the direction d is non-negative.

The flexibility of GPS methods inspired various extensions. Abramson et al. [2004] consider ad-
apting GPS to utilize derivative information when it is available in order to reduce the number of
points evaluated during the poll step. Abramson et al. [2009b] and Frimannslund and Steihaug [2011]
re-use previous function evaluations in order to determine the next set of directions. Custódio and Vi-
cente [2007] consider re-using previous function evaluations to compute simplex gradients; they show
that the information obtained from simplex gradients can be used to reorder the poll points P in
Algorithm 1. A similar use of simplex gradients in the non-smooth setting is considered by Custódio
et al. [2008]. Hough et al. [2001] discuss modifications to Algorithm 2 that allow for increased effi-
ciency when concurrent, asynchronous evaluations of f are possible; an implementation of the method
of Hough et al. [2001] is presented by Gray and Kolda [2006].

The early analysis of Torczon [1991, Section 7] of pattern-search methods when f is non-smooth
carries over to GPS methods as well; such methods may converge to a non-stationary point. This
motivated a further generalization of GPS methods, mesh adaptive direct search (MADS) methods
[Audet and Dennis, Jr., 2006, Abramson and Audet, 2006]. Inspired by Coope and Price [2000],
MADS methods augment GPS methods by incorporating a mesh parametrized by a mesh parameter
βmk > 0. In the kth iteration, given the fixed PSS D and the mesh parameter βmk , the MADS mesh
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around the current point xk is

Mk =
⋃
x∈Sk

{
x+ βmk

|D|∑
j=1

λjdj : dj ∈D, λj ∈ N
⋃
{0}

}
,

where Sk is the set of points at which f has been evaluated prior to the kth iteration of the method.
MADS methods additionally define a frame

Fk = {xk + βmk d
f : df ∈Df

k},

where Df
k is a finite set of directions, each of which is expressible as

df =

|D|∑
j=1

λjdj ,

with each λj ∈ N
⋃
{0} and dj ∈ D. Additionally, MADS methods define a frame parameter βfk and

require that each df ∈ Df
k satisfies βmk ‖df‖ ≤ βfk max{‖d‖ : d ∈ D}. Observe that in each iteration,

Fk ( Mk. Note that the mesh is never explicitly constructed nor stored over the domain. Rather,
points are evaluated only at what would be nodes of some implicitly defined mesh via the frame.

In the poll step of Algorithm 2, the set of poll directions Dk is chosen as {y − xk : y ∈ Fk}. The

role of the step-size parameter αk in Algorithm 2 is completely replaced by the behaviour of βfk , β
m
k .

If there is no improvement at a candidate solution during the poll step, βmk is decreased, resulting in

a finer mesh; likewise βfk is decreased, resulting in a finer local mesh around xk. MADS intentionally

allows the parameters βmk and βfk to be decreased at different rates; roughly speaking, by driving βmk to

zero faster than βfk is driven to zero, and by choosing the sequence {Df
k} to satisfy certain conditions,

the directions in Fk become asymptotically dense around limit points of xk. That is, it is possible
to decrease βmk , β

f
k at rates such that poll directions will be arbitrarily close to any direction. This

ensures that the Clarke directional derivative is non-negative in all directions around any limit point
of the sequence of xk generated by MADS; that is,

f ′C(x∗;d) ≥ 0 for all directions d, (1)

with an analogous result also holding for constrained problems, with (1) reduced to all feasible direc-
tions d. (DDS methods for constrained optimization will be discussed in Section 7.) This powerful
result highlights the ability of directional direct-search methods to address non-differentiable functions
f .

MADS does not prescribe any one approach for adjusting βmk , β
f
k so that the poll directions are

dense, but Audet and Dennis, Jr. [2006] demonstrate an approach where randomized directions are

completed to be a PSS and βfk either is n
√
βmk or

√
βmk results in a asymptotically dense poll directions

for any convergent subsequence of {xk}. MADS does not require a sufficient-decrease condition.
Recent advances to MADS-based algorithms have focused on reducing the number of function

evaluations required in practice by adaptively reducing the number of poll points queried; see, for
example, Audet et al. [2014] and Alarie et al. [2018]. Smoothing-based extensions to noisy deterministic
problems include Audet et al. [2018b]. Vicente and Custódio [2012] show that MADS methods converge
to local minima even for a limited class of discontinuous functions that satisfy some assumptions
concerning the behaviour of the disconnected regions of the epigraph at limit points.

Worst-case complexity analysis. Throughout this survey, when discussing classes of methods, we
will refer to their worst-case complexity (WCC). Generally speaking, WCC refers to an upper bound
on the number of function evaluations Nε required to attain an ε-accurate solution to a problem drawn
from a problem class. Correspondingly, the definition of ε-accurate varies between different problem
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classes. For instance, and of particular immediate importance, if an objective function is assumed
Lipschitz-continuously differentiable (which we denote by f ∈ LC1), then an appropriate notion of
first-order ε-accuracy is

‖∇f(xk)‖ ≤ ε. (2)

That is, the WCC of a method applied to the class LC1 is characterized by Nε, an upper bound on the
number of function evaluations the method requires before (2) is satisfied for any f ∈ LC1. Similarly,
we can define a notion of second-order ε-accuracy as

max{‖∇f(xk)‖,−λk} ≤ ε, (3)

where λk denotes the minimum eigenvalue of ∇2f(xk).
Note that WCCs can only be derived for methods for which convergence results have been estab-

lished. Indeed, in the problem class LC1, first-order convergence results canonically have the form

lim
k→∞

‖∇f(xk)‖ = 0. (4)

The convergence in (4) automatically implies the weaker lim-inf-type result

lim inf
k→∞

‖∇f(xk)‖ = 0, (5)

from which it is clear that for any ε > 0, there must exist finite Nε so that (2) holds. In fact, in many
works, demonstrating a result of the form (5) is a stepping stone to proving a result of the form (4).
Likewise, demonstrating a second-order WCC of the form (3) depends on showing

lim
k→∞

max{‖∇f(xk)‖,−λk} = 0, (6)

which guarantees the weaker lim-inf-type result

lim inf
k→∞

max{‖∇f(xk)‖,−λk} = 0. (7)

Proofs of convergence for DDS methods applied to functions f ∈ LC1 often rely on a (sub)sequence
of positive spanning sets {Dk} satisfying

cm(Dk) = min
v∈Rn\{0}

max
d∈Dk

d>v

‖d‖‖v‖
≥ κ > 0, (8)

where cm(·) is the cosine measure of a set. Under Assumption (8), Vicente [2013] obtains a WCC
of type (2) for a method in the Algorithm 2 framework. In that work, it is assumed that Yk = ∅
at every search step. Moreover, sufficient decrease is tested at line 4 of Algorithm 1; in particular,
Vicente [2013] checks in this line whether f(pi) < f(x)− cα2

k for some c > 0, where αk is the current
step size in Algorithm 2. Under these assumptions, Vicente [2013] demonstrates a WCC in O(ε−2).
Throughout this survey, we will refer to Table 8.1 for more details concerning specific WCCs. In
general, though, we will often summarize WCCs in terms of their ε-dependence, as this provides an
asymptotic characterization of a method’s complexity in terms of the accuracy to which one wishes to
solve a problem.

When f ∈ LC2, work by Gratton et al. [2016] essentially augments the DDS method analysed by
Vicente [2013], but forms an approximate Hessian via central differences from function evaluations
obtained (for free) by using a particular choice of Dk. Gratton et al. [2016] then demonstrate that this
augmentation of Algorithm 2 has a subsequence that converges to a second-order stationary point.
That is, they prove a convergence result of the form (7) and demonstrate a WCC result of type (3) in
O(ε−3) (see Table 8.1).

We are unaware of WCC results for MADS methods; this situation may be unsurprising since MADS
methods are motivated by non-smooth problems, which depend on the generation of a countably
infinite number of poll directions. However, WCC results are not necessarily impossible to obtain
in structured non-smooth cases, which we discuss in Section 5. We will discuss a special case where
smoothing functions of a non-smooth function are assumed to be available in Section 5.3.2.
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2.2 Model-based methods

In the context of derivative-free optimization, model-based methods are methods whose updates are
based primarily on the predictions of a model that serves as a surrogate of the objective function or of
a related merit function. We begin with basic properties and construction of popular models; readers
interested in algorithmic frameworks such as trust-region methods and implicit filtering can proceed
to Section 2.2.4. Throughout this section, we assume that models are intended as a surrogate for the
function f ; in future sections, these models will be extended to capture functions arising, for example,
as constraints or separable components. The methods in this section assume some smoothness in f
and therefore operate with smooth models; in Section 5, we examine model-based methods that exploit
knowledge of non-smoothness.

2.2.1 Quality of smooth model approximation

A natural first indicator of the quality of a model used for optimization is the degree to which the
model locally approximates the function f and its derivatives. To say anything about the quality
of such approximation, one must make an assumption about the smoothness of both the model and
function. For the moment, we leave this assumption implicit, but it will be formalized in subsequent
sections.

A function m : Rn → R is said to be a κ-fully linear model of f on B(x; ∆) = {y : ‖x− y‖ ≤ ∆}
if

|f(x+ s)−m(x+ s)| ≤ κef∆
2, for all s ∈ B(0; ∆), (9a)

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆, for all s ∈ B(0; ∆), (9b)

for κ = (κef , κeg). Similarly, for κ = (κef , κeg, κeH), m is said to be a κ-fully quadratic model of f on
B(x; ∆) if

|f(x+ s)−m(x+ s)| ≤ κef∆
3, for all s ∈ B(0; ∆), (10a)

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg∆2, for all s ∈ B(0; ∆), (10b)

‖∇2f(x+ s)−∇2m(x+ s)‖ ≤ κeH∆, for all s ∈ B(0; ∆). (10c)

Extensions to higher-degree approximations follow a similar form, but the computational expense
associated with achieving higher-order guarantees is not a strategy pursued by derivative-free methods
that we are aware of.

Models satisfying (9) or (10) are called Taylor-like models. To understand why, consider the
second-order Taylor model

m(x+ s) = f(x) +∇f(x)Ts+
1

2
sT∇2f(x)s. (11)

This model is a κ-fully quadratic model of f , with

(κef , κeg, κeH) = (LH/6, LH/2, LH),

on any B(x; ∆), where f has a Lipschitz-continuous second derivative with Lipschitz constant LH.
As illustrated in the next section, one also can guarantee that models that do not employ derivative

information satisfy these approximation bounds in (9) or (10). This approximation quality is used
by derivative-free algorithms to ensure that a sufficient reduction predicted by the model m yields an
attainable reduction in the function f as ∆ becomes smaller.

2.2.2 Polynomial models

Polynomial models are the most commonly used models for derivative-free local optimization. We let

Pd,n denote the space of polynomials of n variables of degree d and φ : Rn → Rdim(Pd,n) define a basis
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for this space. For example, quadratic models can be obtained by using the monomial basis

φ(x) = [1, x1, . . . , xn, x
2
1, . . . x

2
n, x1x2, . . . , xn−1xn]T, (12)

for which dim(P2,n) = (n+ 1)(n+ 2)/2; linear models can be obtained by using the first dim(P1,n) =
n + 1 components of (12); quadratic models with diagonal Hessians, which are considered by Powell
[2003], can be obtained by using the first 2n+ 1 components of (12).

Any polynomial model m ∈ Pd,n is defined by φ and coefficients a ∈ Rdim(Pd,n) through

m(x) =

dim(Pd,n)∑
i=1

aiφi(x). (13)

Given a set of p points Y = {y1, . . . ,yp}, a model that interpolates f on Y is defined by the solution
a to

Φ(Y )a =
[
φ(y1) · · · φ(yp)

]T
a =

f(y1)
...

f(yp)

. (14)

The existence, uniqueness and conditioning of a solution to (14) depend on the location of the
sample points Y through the matrix Φ(Y ). We note that when n > 1, |Y | = dim(Pd,n) is insuf-
ficient for guaranteeing that Φ(Y ) is non-singular [Wendland, 2005]. Instead, additional conditions,
effectively on the geometry of the sample points Y , must be satisfied.

Simplex gradients and linear interpolation models. The geometry conditions needed to uniquely
define a linear model are relatively straightforward: the sample points Y must be affinely independent;
that is, the columns of

Y−1 =
[
y2 − y1 · · · yn+1 − y1

]
(15)

must be linearly independent. Such sample points define what is referred to as a simplex gradient g
through g = [a2, . . . , an+1]T, when the monomial basis φ is used in (14).

Simplex gradients can be viewed as a generalization of first-order finite-difference estimates (e.g.
the forward differences based on evaluations at the points {y1,y1 + ∆e1, . . . ,y1 + ∆en}); their use in
optimization algorithms dates at least back to the work of Spendley et al. [1962] that inspired Nelder
and Mead [1965]. Other example usage includes pattern search [Custódio and Vicente, 2007, Custódio
et al., 2008] and noisy optimization [Kelley, 1999b, Bortz and Kelley, 1998]; the study of simplex
gradients continues with recent works such as those of Regis [2015] and Coope and Tappenden [2019].

Provided that (15) is non-singular, it is straightforward to show that linear interpolation models
are κ-fully linear model of f in a neighbourhood of y1. In particular, if Y ⊂ B(y1; ∆) and f has
an Lg-Lipschitz-continuous first derivative on an open domain containing B(y1; ∆), then (9) holds on
B(y1; ∆) with

κeg = Lg(1 +
√
n∆‖Y −1

−1 ‖/2) and κef = Lg/2 + κeg. (16)

The expressions in (16) also provide a recipe for obtaining a model with a potentially tighter error
bound over B(y1; ∆): modify Y ⊂ B(y1; ∆) to decrease ‖Y −1

−1 ‖. We note that when Y−1 contains
orthonormal directions scaled by ∆, one recovers κeg = Lg(1 +

√
n/2) and κef = Lg(3 +

√
n)/2,

which is the least value one can obtain from (16) given the restriction that Y ⊂ B(y1; ∆). Hence, by
performing LU or QR factorization with pivoting, one can obtain directions (which are then scaled
by ∆) in order to improve the conditioning of Y −1

−1 and hence the approximation bound. Such an
approach is performed by Conn et al. [2008a] for linear models and by Wild and Shoemaker [2011] for
fully linear radial basis function models.

The geometric conditions on Y , induced by the approximation bounds in (9) or (10), can be
viewed as playing a similar role to the geometric conditions (e.g. positive spanning) imposed on D in
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directional direct-search methods. Naturally, the choice of basis function used for any model affects
the quantitative measure of that model’s quality.

Note that many practical methods employ interpolation sets contained within a constant multiple
of the trust-region radius (i.e. Y ⊂ B(y1; c1∆) for a constant c1 ∈ [1,∞)).

Quadratic interpolation models. Quadratic interpolation models have been used for derivative-
free optimization for at least fifty years [Winfield, 1969, 1973] and were employed by a series of methods
that revitalized interest in model-based methods; see, for example, Conn and Toint [1996], Conn et al.
[1997a], Conn et al. [1997b] and Powell [1998b, 2002].

Of course, the quality of an interpolation model (quadratic or otherwise) in a region of interest is
determined by the position of the underlying points being interpolated. For example, if a model m
interpolates a function f at points far away from a certain region of interest, the model value may
differ greatly from the value of f in that region. Λ-poisedness is a concept to measure how well a set
of points is dispersed through a region of interest, and ultimately how well a model will estimate the
function in that region.

The most commonly used metric for quantifying how well points are positioned in a region of
interest is based on Lagrange polynomials. Given a set of p points Y = {y1, . . . ,yp}, a basis of
Lagrange polynomials satisfies

`j(yi) =

{
1 if i = j,

0 if i 6= j.
(17)

We now define Λ-poisedness. A set of points Y is said to be Λ-poised on a set B if Y is linearly
independent and the Lagrange polynomials {`1, . . . , `p} associated with Y satisfy

Λ ≥ max
1≤i≤p

max
x∈B
|`i(x)|. (18)

(For an equivalent definition of Λ-poisedness, see Conn et al. [2009b, Definition 3.6].) Note that the
definition of Λ-poisedness is independent of the function being modelled. Also, the points Y need not
necessarily be elements of the set B. Also, note that if a model is poised on a set B, it is poised on
any subset of B. One is usually interested in the least value of Λ so that (18) holds.

Powell’s unconstrained optimization by quadratic approximation method (UOBYQA) follows such
an approach in maximizing the Lagrange polynomials. In Powell [1998b], Powell [2001] and Powell
[2002], significant care is given to the linear algebra expense associated with this maximization and
the associated change of basis as the methods change their interpolation sets. For example, in Pow-
ell [1998b], particular sparsity in the Hessian approximation is employed with the aim of capturing
curvature while keeping linear algebraic expenses low.

Maintaining, and the question of to what extent it is necessary to maintain, this geometry for
quadratic models has been intensely studied; see, for example, Fasano et al. [2009], Marazzi and
Nocedal [2002], D’Ambrosio et al. [2017] and Scheinberg and Toint [2010].

Underdetermined quadratic interpolation models. A fact not to be overlooked in the context
of derivative-free optimization is that employing an interpolation set Y requires availability of the |Y |
function values {f(yi) : yi ∈ Y }. When the function f is computationally expensive to evaluate, the
(n + 1)(n + 2)/2 points required by fully quadratic models can be a burden, potentially with little
benefit, to obtain repeatedly in an optimization algorithm.

Beginning with Powell [2003], Powell investigated quadratic models constructed from fewer than
(n + 1)(n + 2)/2 points. The most successful of these strategies was detailed in Powell [2004a] and
Powell [2004b] and resolved the (n+1)(n+2)/2−|Y | remaining degrees of freedom by solving problems
of the form

minimize
m∈P2,n

‖∇2m(x̌)−H‖2F

subject to m(yi) = f(yi), for all yi ∈ Y
(19)
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to obtain a model m about a point of interest x̌. Solutions to (19) are models with a Hessian closest
in Frobenius norm to a specified H = HT among all models that interpolate f on Y . A popular
implementation of this strategy is the NEWUOA solver [Powell, 2006].

By using the basis

φ(x̌+ x) =
[
φfg(x̌+ x)T |φH(x̌+ x)T

]T
(20)

=

[
1, x1, . . . , xn

∣∣∣∣ 1

2
x2

1, . . . ,
1

2
x2
n,

1√
2
x1x2, . . . ,

1√
2
xn−1xn

]T

,

the problem (19) is equivalent to the problem

minimize
afg,aH

‖aH‖22 (21)

subject to aT
fgφfg(yi) + aT

HφH(yi) = f(yi)−
1

2
yT
i Hyi, for all yi ∈ Y .

Existence and uniqueness of solutions to (21) again depend on the positioning of the points in Y .
Notably, a necessary condition for there to be a unique minimizer of the seminorm is that at least
n + 1 of the points in Y be affinely independent. Lagrange polynomials can be defined for this
case; Conn et al. [2008b] establish conditions for Λ-poisedness (and hence a fully linear, or better,
approximation quality) of such models.

Powell [2004c, 2007, 2008] develops efficient solution methodologies for (21) when H and m are
constructed from interpolation sets that differ by at most one point, and employ these updates in
NEWUOA and subsequent solvers. Wild [2008a] and Custódio et al. [2009] use H = 0 in order to
obtain tighter fully linear error bounds of models resulting from (21). A strategy of using even fewer
interpolation points (including those in a proper subspace of Rn) is developed by Powell [2013] and
Zhang [2014]. In Section 5.2, we summarize approaches that exploit knowledge of sparsity of the
derivatives of f in building quadratic models that interpolate fewer than (n+ 1)(n+ 2)/2 points.

Figure 2.2 shows quadratic models in two dimensions that interpolate (n+1)(n+2)/2−1 = 5 points
as well as the associated magnitude of the remaining Lagrange polynomial (note that this polynomial
vanishes at the five interpolated points).

Regression models. Just as one can establish approximation bounds and geometry conditions when
Y is linearly independent, the same can be done for overdetermined regression models [Conn et al.,
2008b, 2009b]. This can be accomplished by extending the definition of Lagrange polynomials from (17)

to the regression case. That is, given a basis φ : Rn → Rdim(Pd,n) and points Y = {y1, . . . ,yp} ⊂ Rn
with p > dim(Pd,n), the set of polynomials satisfies

`j(yi)
l.s.
=

{
1 if i = j,

0 if i 6= j,
(22)

where
l.s.
= denotes the least-squares solution. The regression model can be recovered finding the least-

squares solution (now overdetermined) system from (14), and the definition of Λ-poisedness (in the
regression sense) is equivalent to (18). Ultimately, given a linear regression model through a set of
Λ-poised points Y ⊂ B(y1; ∆), and if f has an Lg-Lipschitz-continuous first derivative on an open
domain containing B(y1; ∆), then (9) holds on B(y1; ∆) with

κeg =
5

2

√
pLgΛ and κef =

1

2
Lg + κeg. (23)

Conn et al. [2008b] note the fact that the extension of Lagrange polynomials does not apply to the
1-norm or infinity-norm case. Billups et al. [2013] show that the definition of Lagrange polynomials
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(a) (b)

(c) (d)

Figure 2.2: (a) Minimum-norm-Hessian model through five points in B(xk; ∆k) and its minimizer.
(b) Absolute value of a sixth Lagrange polynomial for the five points. (c) Minimum-norm-Hessian
model through five points in B(xk+1; ∆k+1) and its minimizer. (d) Absolute value of a sixth Lagrange
polynomial for the five points.
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can be extended to the weighted regression case. Verdério et al. [2017] show that (9) can also be
recovered for support vector regression models.

Efficiently minimizing the model (regardless of type) over a trust region is integral to the usefulness
of such models within an optimization algorithm. In fact, this necessity is a primary reason for the
use of low-degree polynomial models by the majority of derivative-free trust-region methods. For
quadratic models, the resulting subproblem remains one of the most difficult non-convex optimization
problems solvable in polynomial time, as illustrated by Moré and Sorensen [1983]. As exemplified
by Powell [1997], the implementation of subproblem solvers is a key concern in methods seeking to
perform as few algebraic operations between function evaluations as possible.

2.2.3 Radial basis function interpolation models

An additional way to model non-linearity with potentially less restrictive geometric conditions is by
using radial basis functions (RBFs). Such models take the form

m(x) =

|Y |∑
i=1

biψ(‖x− yi‖) + aTφ(x), (24)

where ψ : R+ → R is a conditionally positive-definite univariate function and aTφ(x) represents a
(typically low-order) polynomial as before; see, for example, Buhmann [2000]. Given a sample set Y ,
RBF model coefficients (a, b) can be obtained by solving the augmented interpolation equations

ψ(‖y1 − y1‖) · · · ψ(‖y1 − y|Y |‖) φ(y1)T

...
...

...
ψ(‖y|Y | − y1‖) · · · ψ(‖y|Y | − y|Y |‖) φ(y|Y |)

T

φ(y1) · · · φ(y|Y |) 0


[
b
a

]
=


f(y1)

...
f(y|Y |)

0

. (25)

That RBFs are conditionally positive-definite ensures that (25) is non-singular provided that the
degree d of the polynomial φ is sufficiently large and that Y is poised for degree-d polynomial inter-
polation. For example, cubic (ψ(r) = r3) RBFs require a linear polynomial; multiquadric (ψ(r) =
−(γ2 + r2)1/2) RBFs require a constant polynomial; and inverse multiquadric (ψ(r) = (γ2 + r2)−1/2)
and Gaussian (ψ(r) = exp(−γ−2r2)) RBFs do not require a polynomial. Consequently, RBFs have rel-
atively unrestrictive geometric requirements on the interpolation points Y while allowing for modelling
a wide range of non-linear behaviour.

This feature is typically exploited in global optimization (see e.g. Björkman and Holmström 2000,
Gutmann 2001 and Regis and Shoemaker 2007), whereby an RBF surrogate model is employed to
globally approximate f . However, works such as Oeuvray and Bierlaire [2009], Oeuvray [2005], Wild
[2008b] and Wild and Shoemaker [2013] establish and use local approximation properties of these
models. This approach is typically performed by relying on a linear polynomial aTφ(x), which can be
used to establish that the RBF model in (24) can be a fully linear local approximation of smooth f .

2.2.4 Trust-region methods

Having discussed issues of model construction, we are now ready to present a general statement of a
model-based trust-region method in Algorithm 3.

A distinguishing characteristic of derivative-free model-based trust-region methods is how they
manage Yk, the set of points used to construct the model mk. Some methods ensure that Yk contains a
scaled stencil of points around xk; such an approach can be attractive since the objective at such points
can be evaluated in parallel. A fixed stencil can also ensure that all models sufficiently approximate
the objective. Other methods construct Y by using previously evaluated points near xk, for example,
those points within B(xk; c1∆k) for some constant c1 ∈ [1,∞). Depending on the set of previously
evaluated points, such methods may need to add points to Yk that most improve the model quality.
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Algorithm 3: Derivative-free model-based trust-region method

1 Set parameters ε > 0, 0 < γdec < 1 ≤ γinc, 0 < η0 ≤ η1 < 1, ∆max

2 Choose initial point x0, trust-region radius 0 < ∆0 ≤ ∆max, and set of previously evaluated
points Yk

3 for k = 0, 1, 2 . . . do
4 Select a subset of Yk (or augment Yk and evaluate f at new points) for model building
5 Build a model mk using points in Yk and their function values
6 while ‖∇mk(xk)‖ < ε do
7 if mk is accurate on B(xk; ∆k) then
8 ∆k ← γdec∆k

9 else
10 By updating Yk, make mk accurate on B(xk; ∆k)

11 Generate a direction sk ∈ B(0; ∆k) so that xk + sk approximately minimizes mk on
B(xk; ∆k)

12 Evaluate f(xk + sk) and ρk ←
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)

13 if ρk < η1 and mk is inaccurate on B(xk; ∆k) then
14 Add model improving point(s) to Yk

15 if ρk ≥ η1 then
16 ∆k+1 ← min{γinc∆k,∆max}
17 else if mk is accurate on B(xk; ∆k) then
18 ∆k+1 ← γdec∆k

19 else
20 ∆k+1 ← ∆k

21 if ρk ≥ η0 then xk+1 ← xk + sk else xk+1 ← xk
22 Yk+1 ← Yk
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Determining which additional points to add to Yk can be computationally expensive, but the method
should be willing to do so in the hope of needing fewer evaluations of the objective function at new
points in Yk. Most methods do not ensure that models are valid on every iteration but rather make a
single step toward improving the model. Such an approach can ensure a high-quality model in a finite
number of improvement steps. (Exceptional methods that ensure model quality before sk is calculated
are the methods of Powell and manifold sampling of Khan et al. [2018].) The ORBIT method [Wild
et al., 2008] places a limit on the size of Yk (e.g. in order to limit the amount of linear algebra or to
prevent overfitting). In the end, such restrictions on Yk may determine whether mk is an interpolation
or regression model.

Derivative-free trust-region methods share many similarities with traditional trust-region methods,
for example, the use of a ρ-test to determine whether a step is taken or rejected. As in a traditional
trust-region method, the ρ-test measures the ratio of actual decrease observed in the objective versus
the decrease predicted by the model.

On the other hand, the management of the trust-region radius parameter ∆k in Algorithm 3 differs
remarkably from traditional trust-region methods. Derivative-free variants require an additional test
of model quality, the failure of which results in shrinking ∆k. When derivatives are available, Taylor’s
theorem ensures model accuracy for small ∆k. In the derivative-free case, such a condition must be
explicitly checked in order to ensure that ∆k does not go to zero merely because the model is poor,
hence the inclusion of tests of model quality. As a direct result of these considerations, ∆k → 0 as
Algorithm 3 converges; this is generally not the case in traditional trust-region methods.

As in derivative-based trust-region methods, the solution to the trust-region subproblem in line 11
of Algorithm 3 must satisfy a Cauchy decrease condition. Given the model mk used in Algorithm 3,
we define the optimal step length in the direction −∇mk(xk) by

tCk = arg min
t≥0:xk−t∇mk(xk)∈B(xk;∆k)

mk(xk − t∇mk(xk)),

and the corresponding Cauchy step
sCk = −tCk∇mk(xk).

It is straightforward to show (see e.g. Conn, Scheinberg, and Vicente 2009b, Theorem 10.1) that

mk(xk)−mk(xk + sCk ) ≥ 1

2
‖∇mk(xk)‖min

{
‖∇mk(xk)‖
‖∇2mk(xk)‖

,∆k

}
. (26)

That is, (26) states that, provided that both ∆k ≈ ‖∇mk(xk)‖ and a uniform bound exists on the
norm of the model Hessian, the model decrease attained by the Cauchy step sCk is of the order of
∆2
k. In order to prove convergence, it is desirable to ensure that each step sk generated in line 11 of

Algorithm 3 decreases the model mk by no less than sCk does, or at least some fixed positive fraction
of the decrease achieved by sCk . Because successful iterations ensure that the actual decrease attained
in an iteration is at least a constant fraction of the model decrease, the sequence of decreases of
Algorithm 3 are square-summable, provided that ∆k → 0. (This is indeed the case for derivative-free
trust-region methods.) Hence, in most theoretical treatments of these methods, it is commonly stated
as an assumption that the subproblem solution sk obtained in line 11 of Algorithm 3 satisfies

mk(xk)−mk(xk + sk) ≥ κfcd(mk(xk)−mk(xk + sCk )), (27)

where κfcd ∈ (0, 1] is the fraction of the Cauchy decrease. In practice, when mk is a quadratic model,
subproblem solvers have been well studied and often come with guarantees concerning the satisfaction
of (27) [Conn et al., 2000]. Wild et al. [2008, Figure 4.3] demonstrate the satisfaction of an assumption
like (27) when the model mk is a radial basis function.

Under reasonable smoothness assumptions, most importantly f ∈ LC1, algorithms in the Al-
gorithm 3 framework have been shown to be first-order convergent (i.e. (4)) and second-order con-
vergent (i.e. (6)), with the (arguably) most well-known proof given by Conn et al. [2009a]. In more
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recent work, Garmanjani et al. [2016] provide a WCC bound of the form (2) for Algorithm 3, recover-
ing essentially the same upper bound on the number of function evaluations required by DDS methods
found in Vicente [2013], that is, a WCC bound in O(ε−2) (see Table 8.1). When f ∈ LC2, Gratton
et al. [2019a] demonstrate a second-order WCC bound of the form (3) in O(ε−3); in order to achieve
this result, fully quadratic models mk are required. In Section 3.3, a similar result is achieved by using
randomized variants that do not require a fully quadratic model in every iteration.

Early analysis of Powell’s UOBYQA method shows that, with minor modifications, the algorithm
can converge superlinearly in neighbourhoods of strict convexity [Han and Liu, 2004]. A key distinc-
tion between Powell’s methods and other model-based trust-region methods is the use of separate
neighbourhoods for model quality and trust-region steps, with each of these neighbourhoods changing
dynamically. Convergence of such methods is addressed by Powell [2010, 2012].

The literature on derivative-free trust-region methods is extensive. We mention in passing several
additional classes of trust-region methods that have not fallen neatly into our discussion thus far.
Wedge methods [Marazzi and Nocedal, 2002] explicitly enforce geometric properties (Λ-poisedness) of
the sample set between iterations by adding additional constraints to the trust-region subproblem.
Alexandrov et al. [1998] consider a trust-region method utilizing a hierarchy of model approximations.
In particular, if derivatives can be obtained but are expensive, then the method of Alexandrov et al.
[1998] uses a model that interpolates not only zeroth-order information but also first-order (gradient)
information. For problems with deterministic noise, Elster and Neumaier [1995] propose a method
that projects the solutions of a trust-region subproblem onto a dynamically refined grid, encouraging
better practical behaviour. Similarly, for problems with deterministic noise, Maggiar et al. [2018]
propose a model-based trust-region method that implicitly convolves the objective function with a
Gaussian kernel, again yielding better practical behaviour.

2.3 Hybrid methods and miscellanea

While the majority of work in derivative-free methods for deterministic problems can be classified as
direct-search or model-based methods, some work defies this simple classification. In fact, several works
[Conn and Le Digabel, 2013, Custódio et al., 2009, Dennis, Jr. and Torczon, 1997, Frimannslund and
Steihaug, 2011] propose methods that seem to hybridize these two classes, existing somewhere in the
intersection. For example, Custódio and Vicente [2005] and Custódio et al. [2009] develop the SID-PSM
method, which extends Algorithm 2 so that the search step consists of minimizing an approximate
quadratic model of the objective (obtained either by minimum-Frobenius norm interpolation or by
regression) over a trust region. Here, we highlight methods that do not neatly belong to the two
aforementioned classes of methods.

2.3.1 Finite differences

As noted in Section 1.1.2, many of the earliest derivative-free methods employed finite-difference-
based estimates of derivatives. The most popular first-order directional derivative estimates include
the forward/reverse difference

δf(f ;x;d;h) =
f(x+ hd)− f(x)

h
(28)

and central difference

δc(f ;x;d;h) =
f(x+ hd)− f(x− hd)

2h
, (29)

where h 6= 0 is the difference parameter and the non-trivial d ∈ Rn defines the direction. Several
recent methods, including the methods described in Sections 2.3.2, 2.3.3 and 3.1.2, use such estimates
and employ difference parameters or directions that dynamically change.

As an example of a potentially dynamic choice of difference parameter, we consider the usual case
of roundoff errors. We denote by f ′∞(x;d) the directional derivative at x of the infinite-precision (i.e.
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based on real arithmetic) objective function f∞ in the unit direction d (i.e. ‖d‖ = 1). We then have
the following error for forward or reverse finite-difference estimates based on the function f available
through computation:

|δf(f ;x;d;h)− f ′∞(x;d)| ≤ 1

2
Lg(x)|h|+ 2

ε∞(x)

|h|
, (30)

provided that |f ′′∞(·;d)| ≤ Lg(x) and |f∞(·)− f(·)| ≤ ε∞(x) on the interval [x,x+ hd]. In Gill et al.

[1981] and Gill et al. [1983], the recommended difference parameter is h = 2
√
ε∞(x)/Lg(x), which

yields the minimum value 2
√
ε∞(x)Lg(x) of the upper bound in (30); when ε∞ is a bound on the

roundoff error and Lg is of order one, then the familiar h ∈ O(
√
ε∞) is obtained.

Similarly, if one models the error between f∞ and f as a stationary stochastic process (through the
ansatz denoted by fξ) with variance εf(x)2, minimizing the upper bound on the mean-squared error,

Eξ
[
(δf(fξ;x;d;h)− f ′∞(x;d))2

]
≤ 1

4
Lg(x)2h2 + 2

εf(x)2

h2
, (31)

yields the choice h = (
√

8εf(x)/Lg(x))1/2 with an associated root-mean-squared error of (
√

2ε∞(x)Lg(x))1/2;
see, for example, Moré and Wild [2012, 2014]. A rough procedure for computing εf is provided in Moré
and Wild [2011] and used in recent methods such as that of Berahas et al. [2019].

In both cases (30) and (31), the first-order error is c
√
ε(x)Lg(x) (for a constant c ≤ 2), which can

be used to guide the decision on whether the derivatives estimates are of sufficient accuracy.

2.3.2 Implicit filtering

Implicit filtering is a hybrid of a grid-search algorithm (evaluating all points on a lattice) and a Newton-
like local optimization method. The gradient (and possible Hessian) estimates for local optimization
are approximated by the central differences {δc(f ;xk; ei; ∆k) : i = 1, . . . , n}. The difference parameter
∆k decreases when implicit filtering encounters a stencil failure at xk, that is,

f(xk) ≤ f(xk ±∆kei), (32)

where ei is the ith elementary basis vector. This is similar to direct-search methods, but notice that
implicit filtering is not polling opportunistically: all polling points are evaluated on each iteration.
The basic version of implicit filtering from Kelley [2011] is outlined in Algorithm 4. Note that most
implementations of implicit filtering require a bound-constrained domain.

Considerable effort has been devoted to extensions of Algorithm 4 when f is ‘noisy’. Gilmore and
Kelley [1995] show that implicit filtering converges to local minima of (DET) when the objective f
is the sum of a smooth function fs and a high-frequency, low-amplitude function fn, with fn → 0
quickly in a neighbourhood of all minimizers of fs. Under similar assumptions, Choi and Kelley [2000]
show that Algorithm 4 converges superlinearly if the step sizes ∆k are defined as a power of the norm
of the previous iteration’s gradient approximation.

2.3.3 Adaptive regularized methods

Cartis et al. [2012] perform an analysis of adaptive regularized cubic (ARC) methods and propose a
derivative-free method, ARC-DFO. ARC-DFO is an extension of ARC whereby gradients are replaced
with central finite differences of the form (29), with the difference parameter monotonically decreasing
within a single iteration of the method. ARC-DFO is an intrinsically model-based method akin to
Algorithm 3, but the objective within each subproblem regularizes third-order behaviour of the model.
Thus, like a trust-region method, ARC-DFO employs trial steps and model gradients. During the main
loop of ARC-DFO, if the difference parameter exceeds a constant factor of the minimum of the trial step
norm or the model gradient norm, then the difference parameter is shrunk by a constant factor, and the
iteration restarts to obtain a new trial step. This mechanism is structurally similar to a derivative-free
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Algorithm 4: Implicit-filtering method

1 Set parameters feval max > 0, ∆min > 0, γdec ∈ (0, 1) and τ > 0
2 Choose initial point x0 and step size ∆0 ≥ ∆min

3 k ← 0; evaluate f(x0) and set fevals← 1
4 while fevals ≤ feval max and ∆k ≥ ∆min do
5 Evaluate f(xk ±∆kei) for i ∈ {1, . . . , n} and approximate ∇f(xk) via

{δc(f ;xk; ei; ∆k) : i = 1, . . . , n}
6 if equation (32) is satisfied or ‖∇f(xk)‖ ≤ τ∆k then
7 ∆k+1 ← γdec∆k

8 xk+1 ← xk
9 else

10 Update Hessian estimate Hk (or set Hk ← I)

11 sk ← −H−1
k ∇f(xk)

12 Perform a line search in the direction sk to generate xk+1

13 ∆k+1 ← ∆k

14 k ← k + 1

trust-region method’s checks on model quality. Cartis et al. [2012] show that ARC-DFO demonstrates
a WCC result of type (2) in O(ε−3/2), the same asymptotic result (in terms of ε-dependence) that
the authors demonstrate for derivative-based variants of ARC methods. In terms of dependence on ε,
this result is a strict improvement over the WCC results of the same type demonstrated for DDS and
trust-region methods, although this result is proved under the stronger assumption that f ∈ LC2.

In a different approach, Hare and Lucet [2013] show convergence of a derivative-free method that
penalizes large steps via a proximal regularizer, thereby removing the necessity for a trust region.
Lazar and Jarre [2016] regularize their line-search with a term seeking to minimize a weighted change
of the model’s third derivatives.

2.3.4 Line-search-based methods

Several line-search-based methods for derivative-free optimization have been developed. Grippo et al.
[1988] and De Leone et al. [1984] (two of the few papers appearing in the 1980s concerning derivative-
free optimization) both analyse conditions on the step sizes used in a derivative-free line-search al-
gorithm, and provide methods for constructing such steps. Lucidi and Sciandrone [2002b] present
methods that combine pattern-search and line-search approaches in a convergent framework. The
VXQR method of Neumaier et al. [2011] performs a line search on a direction computed from a QR
factorization of previously evaluated points. Neumaier et al. [2011] apply VXQR to problems with
n = 1000, a large problem dimension among the methods considered here.

Consideration has also been given to non-monotone line-search-based derivative-free methods.
Since gradients are not available in derivative-free optimization, the search direction in a line-search
method may not be a descent direction. Non-monotone methods allow one to still employ such direc-
tions in a globally convergent framework. Grippo and Sciandrone [2007] extend line-search strategies
based on coordinate search and the method of Barzilai and Borwein [1988] to develop a globally con-
vergent non-monotone derivative-free method. Grippo and Rinaldi [2014] extend such non-monotone
strategies to broader classes of algorithms that employ simplex gradients, hence further unifying direct-
search and model-based methods. Another non-monotone line-search method is proposed by Diniz-
Ehrhardt et al. [2008], who encapsulate early examples of randomized DDS methods (Section 3.2).
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2.3.5 Methods for non-smooth optimization

In Section 2.1.2, we discuss how MADS handles non-differentiable objective functions by densely
sampling directions on a mesh, thereby ensuring that all Clarke directional derivatives are non-negative
(i.e. (1)). Another early analysis of a DDS method on a class of non-smooth objectives was performed
by Garćıa-Palomares and Rodŕıguez [2002].

Gradient sampling methods are a developing class of algorithms for general non-smooth non-convex
optimization; see the recent survey by Burke et al. [2019]. These methods attempt to estimate the ε-
subdifferential at a point x by evaluating a random sample of gradients in the neighbourhood of x and
constructing the convex hull of these gradients. In a derivative-free setting, the approximation of these
gradients is not as immediately obvious in the presence of non-smoothness, but there exist gradient-
sampling methods that use finite-difference estimates with specific smoothing techniques [Kiwiel, 2010].

In another distinct line of research, Bagirov et al. [2007] analyse a derivative-free variant of sub-
gradient descent, where subgradients are approximated via so-called discrete gradients. In Section 5.3,
we will further discuss methods for minimizing composite non-smooth objective functions of the form
f = h ◦ F , where h is non-smooth but a closed-form expression is known and F is assumed smooth.
These methods are characterized by their exploitation of the knowledge of h, making them less general
than the methods for non-smooth optimization discussed so far.

3 Randomized methods for deterministic objectives

We now summarize randomized methods for solving (DET). Such methods often have promising
theoretical properties, although some practitioners may dislike the non-deterministic behaviour of
these methods. We discuss randomization within direct-search methods in Section 3.2 and within
trust-region methods in Section 3.3, but we first begin with a discussion of random search as applied
to deterministic objectives.

In any theoretical treatment of randomized methods, one must be careful to distinguish between
random variables and their realizations. For the sake of terseness in this survey, we will intention-
ally conflate variables with realizations and refer to respective papers for more careful statements of
theoretical results.

3.1 Random search

We highlight two randomized methods for minimizing a deterministic objective: pure random search
and Nesterov random search.

3.1.1 Pure random search

Pure random search is a natural method to start with for randomized derivative-free optimization.
Pure random search is popular for multiple reasons; in particular, it is easy to implement (with few or
no user-defined tolerances), and (if the points generated are independent of one another) it exhibits
perfect scaling in terms of evaluating f at many points simultaneously.

A pure random-search method is given in Algorithm 5, where points are generated randomly from
Ω. For example, if Ω = {x : c(x) ≤ 0, l ≤ x ≤ u}, line 3 of Algorithm 5 may involve drawing points
uniformly at random from [l,u] and checking whether they satisfy c(x) ≤ 0. If the procedure for
generating points in line 3 of Algorithm 5 is independent of the function values observed, then the
entire set of points used within pure random search can be generated beforehand: we intentionally
omit the index k in the statement of Algorithm 5.

Nevertheless, for the sake of analysis, it is useful to consider an ordering of the sequence of random
points generated by Algorithm 5. With such a sequence {xk}, one can analyse the best points after
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Algorithm 5: Pure random search

1 Choose initial point x̂ ∈ Ω, termination test, and point generation scheme
2 while Termination test is not satisfied do
3 Generate x ∈ Ω
4 if f(x) < f(x̂) then
5 x̂← x

N evaluations,

x̂N ∈ arg min
k=1,...,N

f(xk).

If f∗ is the global minimum value, then

P[f(x̂N ) ≤ f∗ + ε] = 1−
N∏
k=1

(1− P[xk ∈ Lf∗+ε(f)]),

where ε ≥ 0 and Lα(f) = {x : f(x) ≤ α}. Provided that the procedure used to generate points at
line 3 of Algorithm 5 satisfies

lim
N→∞

N∏
k=1

(1− P[xk ∈ Lf∗+ε(f)]) = 0

for all ε > 0, then f(x̂k) converges in probability to f∗. For example, if each xk is drawn independently
and uniformly over Ω, then one can calculate the number of evaluations required to ensure that the
x̂k returned by Algorithm 5 satisfies x̂k ∈ Lf∗+ε with probability p ∈ (0, 1), that is,

N ≥ log(p)

log

(
1− µ(Lf∗+ε

⋂
Ω)

µ(Ω)

) ,
provided µ(Lf(x∗)+ε ∩Ω) > 0 and Ω is measurable.

Random-search methods typically make few assumptions about f ; see Zhigljavsky [1991] for further
discussion about the convergence of pure random search. Naturally, a method that assumes only that
f is measurable on Ω is likely to produce function values that converge more slowly to f∗ when
applied to an f ∈ C0 than does a method that exploits the continuity of f . Heuristic modifications
of random search have sought to improve empirical performance on certain classes of problems, while
still maintaining random search’s global optimization property; see, for example, the work of Zabinsky
and Smith [1992] and Patel et al. [1989].

3.1.2 Nesterov random search

We refer to the method discussed in this section as Nesterov random search because of the seminal
article by Nesterov and Spokoiny [2017], but the idea driving this method is much older. A similar
method, for instance, is discussed in Polyak [1987, Chapter 3.4].

The method of Nesterov random search is largely motivated by Gaussian smoothing. In particular,
given a covariance (i.e. symmetric positive-definite) matrix B and a smoothing parameter µ > 0,
consider the Gaussian smoothed function

fµ(x) =

√
det(B)

(2π)n

∫
Rn

f(x+ µu) exp

(
−1

2
uTBu

)
du.
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Algorithm 6: Nesterov random search

1 Choose initial point x0 ∈ Ω, sequence of step sizes {αk}∞k=0, oracle g from (33), smoothing
parameter µ > 0 and covariance matrix B

2 for k = 0, 1, 2, . . . do
3 x̂k ← arg minj∈{0,1,...,k} f(xj)

4 Generate uk ∈ N (0,B−1); compute g(xk;uk)
5 xk+1 ← proj(xk − αkB−1g(xk;uk),Ω)

This smoothing has many desirable properties; for instance, if f is Lipschitz-continuous with constant
Lf , then fµ is Lipschitz-continuous with a constant no worse than Lf for all µ > 0. Likewise, if f has
Lipschitz-continuous gradients with constant Lg, then fµ has Lipschitz-continuous gradients with a
constant no worse than Lg for all µ > 0. If f is convex, then fµ is convex.

One can show that

∇fµ(x) =
1

µ

√
det(B)

(2π)n

∫
Rn

(f(x+ µu)− f(x)) exp

(
−1

2
uTBu

)
Budu.

In other words, ∇fµ(x), which can be understood as an approximation of ∇f(x) in the smooth case,
can be computed via an expectation over u ∈ Rn weighted by the finite difference f(x+ µu)− f(x)
and inversely weighted by a radial distance from x. With this interpretation in mind, Nesterov
and Spokoiny [2017] propose a collection of random gradient-free oracles, where one first generates a
Gaussian random vector u ∈ N (0,B−1) and then uses one of

gµ(x;u) = δf(f ;x;u;µ)Bu, or

ĝµ(x;u) = δc(f ;x;u;µ)Bu,
(33)

for a difference parameter µ > 0. Nesterov and Spokoiny also propose a third oracle, g0(x;u) =
f ′(x;u)Bu, intended for the optimization of non-smooth functions; this oracle assumes the ability to
compute directional derivatives f ′(x;u). For this reason, Nesterov and Spokoiny refer to all oracles as
gradient-free instead of derivative-free. Given the scope of this survey, we focus on the derivative-free
oracles gµ and ĝµ displayed in (33).

With an oracle g chosen as either oracle in (33), Nesterov random-search methods are straightfor-
ward to define, and we do so in Algorithm 6. In Algorithm 6, proj(·; Ω) denotes projection onto a
domain Ω.

A particularly striking result proved in Nesterov and Spokoiny [2017] was perhaps the first WCC
result for an algorithm (Algorithm 6) in the case where f ∈ LC0 – that is, f may be both non-smooth
and non-convex. Because of the randomized nature of iteratively sampling from a Gaussian distribution
in Algorithm 6, complexity results are given as expectations. That is, letting Uk = {u0,u1, . . . ,uk}
denote the random variables associated with the first k iterations of Algorithm 6, complexity results
are stated in terms of expectations with respect to the filtration defined by these variables. A WCC
is given as an upper bound on the number of f evaluations needed to attain the approximate (ε > 0)
optimality condition

EUk−1
[‖∇fµ̌(x̂k)‖] ≤ ε, (34)

where x̂k = arg minj=0,1,...,k−1 f(xj). By fixing a particular choice of µ̌ (dependent on ε, n and
Lipschitz constants), Nesterov and Spokoiny [2017] demonstrate that the number of f evaluations
needed to attain (34) is in O(ε−3); see Table 8.1. For f ∈ LC1 (but still non-convex), Nesterov and
Spokoiny [2017] prove a WCC result of type (34) in O(ε−2) for the same method. WCC results of
Algorithm 6 under a variety of stronger assumptions on the convexity and differentiability of f are
also shown in Table 8.1 and discussed in Section 4. We further note that some randomized methods
of the form Algorithm 6 have also been developed for (STOCH), which we discuss in Section 6.
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We remark on an undesirable feature of the convergence analysis for variants of Algorithm 6: the
analysis of these methods supposes that the sequence {αk} is chosen as a constant that depends on
parameters, including Lf , that may not be available to the method. Similar assumptions concerning
the preselection of {αk} also appear in the convex cases discussed in Section 4, and we highlight these
dependencies in Table 8.1.

3.2 Randomized direct-search methods

Randomization has also been used in the DDS framework discussed in Section 2.1 in the hope of
more efficiently using evaluations of f . Polling every point in a PSS requires at least n + 1 function
evaluations; if f is expensive to evaluate and n is relatively large, this can be wasteful. A determ-
inistic strategy for performing fewer evaluations on many iterations is opportunistic polling. Work
in randomized direct-search methods attempts to address, formalize and analyse the situation where
polling directions are randomly sampled from some distribution in each iteration. The ultimate goal
is to replace the O(n) per-iteration function evaluation cost with an O(1) per-iteration cost,4 while
still guaranteeing some form of global convergence.

In Section 2.1, we mentioned MADS methods that consider the random generation of polling dir-
ections in each iteration (in order to satisfy the asymptotic density required of search directions for
the minimization of non-smooth, but Lipschitz-continuous, f). Examples include Audet and Dennis,
Jr. [2006] and Van Dyke and Asaki [2013], which implement LTMADS and QRMADS, respectively.
While this direction of research is within the scope of randomized methods, the purpose of random-
ization in MADS methods is to overcome particular difficulties encountered when optimizing general
non-smooth objectives. This particular randomization does not fall within the scope of this section,
where randomization is intended to decrease a method’s dependence on n. In the remainder of this
section, we focus on a body of work that seems to exist entirely for the unconstrained case where f is
assumed sufficiently smooth.

Gratton et al. [2015] extend the direct-search framework (Algorithm 2) by assuming that the set of
polling directions Dk includes only a descent direction with probability p (as opposed to assuming Dk

always includes a descent direction, which comes for free when f ∈ LC1 provided Dk is, for example,
a PSS). To formalize, given p ∈ (0, 1), a random sequence of polling directions {Dk} is said to be
p-probabilistically κd-descent provided that, given a deterministic starting point x0,

P[cm([D0,−∇f(x0)]) ≥ κd] ≥ p, (35)

and for all k ≥ 1,

P[cm([Dk,−∇f(xk)]) ≥ κd |D0, . . . ,Dk−1] ≥ p, (36)

where cm(·) is the cosine measure in (8). A collection of polling directions Dk satisfying (35) and (36)
can be obtained by drawing directions uniformly on the unit ball.

As with the other methods in this section, xk in (36) is in fact a random variable due to the random
sequence {Dk} generated by the algorithm, and hence it makes sense to view (36) as a probabilistic
statement. In words, (36) states that with probability at least p, the set of polling directions used
in iteration k has a positive cosine measure with the steepest descent direction −∇f(xk), regardless
of the past history of the algorithm. Gratton et al. [2015] use Chernoff bounds in order to bound
the worst-case complexity with high probability. Roughly, they show that if f ∈ LC1, and if (35) and
(36) hold with p > 1/2 (this constant changing when γdec 6= 1/γinc), then ‖∇f(xk)‖ ≤ ε holds within
O(ε−2) function evaluations with a probability that increases exponentially to 1 as ε→ 0. The WCC
result of Gratton et al. [2015] demonstrates that as p → 1 (i.e. Dk almost always includes a descent
direction), the known WCC results for Algorithm 2 discussed in Section 2.1.2 are recovered. A more
precise statement of this WCC result is included in Table 8.1.

4We note that a O(1) cost can naturally be achieved by deterministic DDS methods when derivatives are available
[Abramson et al., 2004].
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Bibi et al. [2019] propose a randomized direct-search method in which the two poll directions in
each iteration are Dk = {ei,−ei}, where ei is the ith elementary basis vector. In the kth iteration, ei
is selected from {e1, . . . , en} with a probability proportional to the Lipschitz constant of the ith partial
derivative of f . Bibi et al. [2019] perform WCC analysis of this method assuming a known upper bound
on Lipschitz constants of partial derivatives; this assumption leads to improved constant factors, but
they essentially prove an upper bound on the number of iterations needed to attain E [‖∇f(xk)‖] ≤ ε
in O(ε−2), where the expectation is with respect to the random sequence of Dk. Bibi et al. [2019]
prove additional WCC results in cases where f is convex or c-strongly convex.

An early randomized DDS derivative-free method that only occasionally employs a descent direction
is developed by Diniz-Ehrhardt et al. [2008]. There, a non-monotone line-search strategy is used to
accommodate search directions along which descent may not be initially apparent. Belitz and Bewley
[2013] develop a randomized DDS method that employs surrogates and an adaptive lattice.

3.3 Randomized trust-region methods

Whereas the theoretical convergence of a DDS method depends on the set of polling directions satis-
fying some spanning property (e.g. a cosine measure bounded away from zero), the theoretical conver-
gence of a trust-region method (e.g. Algorithm 3) depends on the use of fully linear models. Analogous
to how randomized DDS methods relax the requirement of the use of a positive spanning set in every
iteration, (36), it is reasonable to ask whether one can relax the requirement of being fully linear in
every iteration of a trust-region method. Practically speaking, in the unconstrained case it may not be
necessary to ensure that every model is built by using a Λ-poised set of points (therefore ensuring that
the model is fully linear) on every iteration, since ensuring Λ-poised sets entails additional function
evaluations.

Bandeira et al. [2014] consider a sequence of random models {mk} and a random sequence of trust-
region centres and radii {xk,∆k}. They say that the sequence of random models is p-probabilistically
κ-fully linear provided

P[mk is a κ-fully linear model of f on B(xk; ∆k)
∣∣ Hk−1] ≥ p, (37)

where Hk−1 is the filtration of the random process prior to the current iteration. That is, Hk−1

is the σ-algebra generated by the algorithm’s history. Under additional standard assumptions con-
cerning Algorithm 3 (e.g. γdec = 1/γinc), the authors show that if (37) holds with p > 1/2, then
limk→∞ ‖∇f(xk)‖=0 almost surely (i.e. with probability one). Gratton et al. [2018] build on this
result; they demonstrate that, up to constants, the same (with high probability) WCC bound that
was proved for DDS methods in Gratton et al. [2015] holds for the randomized trust-region method
proposed by Bandeira et al. [2014]. Higher-order versions of (37) also exist; in Section 5.2 we dis-
cuss settings for which Bandeira et al. [2014] obtain probabilistically κ-fully quadratic models by
interpolating f on a set of fewer than (n+ 1)(n+ 2)/2 points.

4 Methods for convex objectives

As is true of derivative-based optimization, convexity in the objective of (DET) or (STOCH) can be
exploited either when designing new methods or when analysing existing methods. Currently, this split
falls neatly into two categories. The majority of work considering (DET) when f is convex sharpens
the WCCs for frameworks already discussed in this survey. On the other hand, the influence of machine
learning, particularly large-scale empirical risk minimization, has led to entirely new derivative-free
methods for solving (STOCH) when f is convex.



Derivative-free optimization methods 29

4.1 Methods for deterministic convex optimization

We first turn our attention to the solution of (DET). In convex optimization, one can prove WCC
bounds on the difference between a method’s estimate of the global minimum of f and the value of
f at a global minimizer x∗ ∈ Ω (i.e. a point satisfying f(x∗) ≤ f(x) for all x ∈ Ω). This differs
from the local WCC bounds on the objective gradient, namely (4), that are commonly shown when f
is not assumed to be convex. For convex f , under appropriate additional assumptions, one typically
demonstrates that a method satisfies

lim
k→∞

f(xk)− f(x∗) = 0, (38)

where xk is the kth point of the method. Hence, an appropriate measure of ε-optimality when
minimizing an unconstrained convex objective is the satisfaction of

f(xk)− f(x∗) ≤ ε. (39)

For the DDS methods discussed in Section 2.1.2, Dodangeh and Vicente [2016] and Dodangeh et al.
[2016] analyse the worst-case complexity of Algorithm 2 when there is no search step and when f is
smooth and convex, and has a bounded level set. By imposing an appropriate upper bound on the
step sizes αk, and (for c > 0) using a test of the form

f(pi) ≤ f(xk)− cα2
k, (40)

in line 4 of Algorithm 2, Dodangeh and Vicente [2016] show that the worst-case number of f evaluations
to achieve (2) is in O(n2L2

gε
−1). Dodangeh et al. [2016] show that this n2-dependence is optimal (in

the sense that it cannot be improved) within the class of deterministic methods that employ positive
spanning sets. Recall from Section 3.2 that randomized methods allow one to reduce this dependence
to be linear in n. Under additional assumptions, which are satisfied, for example, when f is strongly
convex, Dodangeh and Vicente [2016] prove R-linear convergence of Algorithm 2, yielding a WCC
of type (39) with the dependence on ε reduced to log(ε−1). We note that, in the convex setting,
R-linear convergence had been previously established for a DDS method by Dolan et al. [2003]. It
is notable that the method analysed in Dolan et al. [2003] requires only strict decrease, whereas, to
the authors’ knowledge, the DDS methods for which WCC results have been established all require
sufficient decrease.

Konečný and Richtárik [2014] propose a DDS method that does not allow for increases in the step
size αk and analyse the method on strongly convex, convex and non-convex objectives. Although
Konečný and Richtárik [2014] demonstrate WCC bounds with the same dependence on n and ε as do
Dodangeh and Vicente [2016], they additionally assume that one has explicit knowledge of a Lipschitz
gradient constant Lg and can thus replace the test (40) explicitly with

f(pi) ≤ f(xk)− Lg

2
αk. (41)

Exploiting this additional knowledge of Lg, the WCC result in Konečný and Richtárik [2014] exhibits
a strictly better dependence on Lg than does the WCC result in Dodangeh and Vicente [2016], with
a WCC of type (39) in O(n2Lgε

−1). Additionally assuming f is c-strongly convex, Konečný and
Richtárik [2014] provide a result showing a WCC of type (39) in O(log(ε−1)).

In the non-convex case, Konečný and Richtárik [2014] recover the same WCC of type (2) from
Vicente [2013]; see the discussion in Section 2.1. Once again, however, the result by Konečný and
Richtárik [2014] assumes knowledge of Lg and again recovers a strictly better dependence on Lg by
using the test (41) in line 4 of Algorithm 2.

Recalling the Nesterov random search methods discussed in Section 3.1.2, we remark that Nesterov
and Spokoiny [2017] explicitly give results for deterministic, convex f . In particular, Nesterov and
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Spokoiny prove WCCs of a specific type. Because of the randomized nature of Algorithm 6, WCCs
are given as expectations of the form

EUk−1
[f(x̂k)]− f(x∗) ≤ ε, (42)

where x̂k = arg minj∈{0,1,...,k−1} f(xj) and where Uk−1 = {u0,u1, . . . ,uk−1} is the filtration of Gaus-
sian samples. The form of ε-optimality represented by (42) can be interpreted as a probabilistic variant
of (39). The WCC results of Nesterov and Spokoiny show that the worst-case number of f evaluations
to achieve (42) is in O(ε−1) when f ∈ LC1. Additionally assuming that f is c-strongly convex yields
an improved result; the WCC of type (42) is now in O(log(ε−1)). Moreover, by mimicking the method
of accelerated gradient descent (see e.g. Nesterov 2004, Chapter 2.2), Nesterov and Spokoiny present a
variant of Algorithm 6 with a WCC of type (42) in O(ε−1/2). When f ∈ LC0, Nesterov and Spokoiny
provide a WCC of type (42) in O(ε−2), but this result assumes that Algorithm 6 uses an oracle with
access to exact directional derivatives of f . Thus, the method achieves the O(ε−2) result when f ∈ LC0

is not a derivative-free method.
As remarked in Section 3, these convergence results depend on preselecting a sequence of step

sizes {αk} for Algorithm 6; in the convex case, the necessary {αk} depends not only on the Lipschitz
constants but also on a bound Rx on the distance between the initial point and the global minimizer
(i.e. ‖x0−x∗‖ ≤ Rx). The aforementioned WCC results will hold only if one chooses {αk} and µ (the
difference parameter of the oracle used in Algorithm 6) that scale with Lg and Rx appropriately. When
additionally assuming f is c-strongly convex, {αk} and µ also depend on c. Stich et al. [2013]5 extend
the framework of Algorithm 6 with an approximate line search that avoids the need for predetermined
sequences of step sizes.

In general, the existing WCC results for derivative-free methods match the WCC results for their
derivative-based counterparts in ε-dependence. The WCC results for derivative-free methods tend
to involve an additional factor of n when compared with their derivative-based counterparts. This
observation mirrors a common intuition in derivative-free optimization: since a number of f evaluations
in O(n) can guarantee a suitable approximation of the gradient, then for any class of gradient-based
method for which we replace gradients with approximate gradients or model gradients, one should
expect to recover the WCC of that method, but with an extra factor of n. WCC results such as those
discussed thus far in this survey add credence to this intuition. As we will see in Section 4.2, however,
this optimistic trend does not always hold: we will see problem classes for which derivative-free methods
are provably worse than their derivative-based counterparts by a factor of ε−1.

Bauschke et al. [2014] offer an alternative approach to Algorithm 6 for the solution of (DET) when
f is assumed convex and, additionally, lower-C2. (Such an assumption on f is obviously stronger
than plain convexity but contains, for example, functions that are defined as the pointwise maximum
over a collection of convex functions.) Bauschke et al. [2014] show that linear interpolation through
function values is sufficient for obtaining approximate subgradients of convex, lower-C2 function; these
approximate subgradients are used in lieu of subgradients in a mirror-descent algorithm (see e.g.
Srebro, Sridharan, and Tewari 2011) similar to Algorithm 7 in Section 4.2.2. Bauschke et al. [2014]
establish convergence of their method in the sense of (38), and they demonstrate the performance of
their method when applied to pointwise maxima of collections of convex quadratics.

4.2 Methods for convex stochastic optimization

We now turn our attention to the solution of the problem (STOCH) when f̃(x; ξ) is assumed convex
in x for each realization ξ. Up to this point in the survey, we have typically assumed that (STOCH)
is unconstrained, that is, Ω = Rn. In this section, however, it will become more frequent that Ω is a
compact set.

5A careful reader may be caught off guard by the fact that Stich et al. [2013] was published before Nesterov and
Spokoiny [2017]. This is not a typo; Stich et al. [2013] build on the results from an early preprint of Nesterov and
Spokoiny [2017].
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In the machine learning community, zeroth-order information (i.e. evaluations of f̃ only) is fre-
quently referred to as bandit feedback,6 due to the concept of multi-armed bandits from reinforcement
learning. Multi-armed bandit problems are sequential allocation problems defined by a prescribed set
of actions. Robbins [1952] formulates a multi-armed bandit problem as a gambler’s desire to minimize
the total losses accumulated from pulling discrete sequence (of length T ) of A <∞ slot machine arms.
The gambler does not have to decide the full length-T sequence up front. Rather, at time k ≤ T , the
losses associated with the first k−1 pulls are known to the gambler when deciding which of the A arms
to pull next. The gambler’s decision of the kth arm to pull is represented by the scalar variable xk ∈ Ω.
Given additional environmental variables outside the gambler’s control, ξk ∈ Ξ, which represents the
stochastic nature of the slot machine,7 the environment makes a decision ξ simultaneously with the
gambler’s decision x. The gambler’s loss is then f̃(x; ξ).

Within this multi-armed bandit setting, the typical metric of the gambler’s performance is the
cumulative regret. Provided that the expectation Eξ[f̃(x; ξ)] = f(x) exists for each x ∈ {1, . . . , A}, then
the gambler’s best long-run strategy in terms of minimizing the expected total losses is to constantly
play x∗ ∈ arg minx∈{1,...,A} f(x). If, over the course of T pulls, the gambler makes a sequence of
decisions x1, . . . , xT and the environment makes a sequence of decisions ξ1, . . . , ξT resulting in a
sequence of realized losses f̃(x1; ξ1), . . . , f̃(xT ; ξT ), then the cumulative regret rT associated with the
gambler’s sequence of decisions is the difference between the cumulative loss incurred by the gambler’s
strategy (x1, . . . , xT ) and the loss incurred by the best possible long-run strategy (x∗, . . . , x∗). Analysis
of methods for bandit problems in this set-up is generally concerned with expected cumulative regret

Eξ [rT (x1, . . . , xT )] = Eξ

[
T∑
k=1

f̃(xk; ξk)

]
− Tf(x∗), (43)

where the expectation is computed over ξ ∈ Ξ, since we assume here that the sequence of ξk is
independent and identically distributed.

This particular treatment of the bandit problem with a discrete space of actions x ∈ {1, . . . , A}
was the one considered by Robbins [1952] and has been given extensive treatment [Auer et al., 2003,
Lai and Robbins, 1985, Agrawal, 1995, Auer et al., 2002].

Extending multi-armed bandit methods to infinite-armed bandits makes the connections to derivative-
free optimization – particularly derivative-free convex optimization – readily apparent. Auer [2002]
extends the multi-armed bandit problem to allow for a compact (as opposed to discrete) set of actions
for the gambler x ∈ Ω ⊂ Rn as well as a compact set of vectors for the environment, ξ ∈ Ξ ⊂ Rn.
The vectors ξ in this set-up define linear functions; that is, if the gambler chooses xk in their kth pull,
and the environment chooses ξk ∈ Ξ, then the gambler incurs loss f̃(xk; ξk) = ξT

k xk. In this linear
regime, expected regret takes a form remarkably similar to (43), that is,

Eξ [rT (x1, . . . ,xT )] = Eξ

[
T∑
k=1

f̃(xk; ξk)

]
−min
x∈Ω

Eξ

[
T∑
k=1

f̃(xk; ξk)

]

=

(
T∑
k=1

f(xk)

)
− Tf(x∗),

(44)

with x∗ ∈ arg minx∈Ω f(x). As in (43), (44) defines the expected regret with respect to the best
long-run strategy x ∈ Ω that the gambler could have played for the T rounds (i.e. the strategy that

6A ‘one-armed bandit’ is an American colloquialism for a casino slot machine, the arm of which must be pulled to
reveal a player’s losses or rewards.

7Depending on the problem set-up, the environment of a bandit problem may be either stochastic or adversarial.
Because this section is discussing stochastic convex optimization, we will assume that losses are stochastic; that is, the
ξk are i.i.d. and independent of the gambler’s decisions xk. See Bubeck and Cesa-Bianchi [2012] for a survey of bandit
problems more general than those discussed in this survey.
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would minimize the expected cumulative losses).8

By using a bandit method known as Thompson sampling, one can show (under appropriate ad-
ditional assumptions) that if f̃(x; ξ) = ξTx, then (44) can be bounded as Eξ[rT (x1, . . . ,xT )] ∈
O(n

√
T log(T )) [Russo and Van Roy, 2016]. Analysis of bounds on (44) in the linear case raises an

interesting question: to what extent can similar analysis be performed for classes of functions f̃(x; ξ)
that are non-linear in x?

In much of the bandit literature, the additional structure defining a class of non-linear functions
is convexity; here, by convexity, we mean that f̃(x; ξ) is convex in x for each realization ξ ∈ Ξ.

Regret bounds on (44) automatically imply WCC results for stochastic convex optimization. To
see this, define an average point

x̄k =
1

k

k∑
t=1

xt.

Because of the convexity of f ,

f(x̄T )− f(x∗) ≤
1

T

T∑
k=1

f(xk)− f(x∗) =
Eξ [rT (x1, . . . ,xT )]

T
, (45)

where the inequality follows from an application of Jensen’s inequality. We see in (45) that, given an
upper bound of r̄(T ) on the expected regret Eξ[rT ], we can automatically derive, provided r̄(T )/T ≤ ε,
a WCC result for stochastic convex optimization of the form

Eξ
[
f̃(x̄T ; ξ)− f̃(x∗; ξ)

]
= f(x̄T )− f(x∗) ≤ ε. (46)

Equation (46) corresponds to a stochastic version of a WCC result of type (39) where Nε = T .
The converse implication, however, is not generally true: a small optimization error does not imply

a small regret. That is, WCC results of type (46) do not generally imply bounds on expected regret
(44). This is particularly highlighted by Shamir [2013], who considers a class of strongly convex
quadratic objectives f . For such objectives, Shamir [2013] establishes a strict gap between the upper
bound on the optimization error (the left-hand side of (46)) and the lower bound on the expected
regret (44) attainable by any method in the bandit setting. Such a gap, between expected regret and
optimization error, has also been proved for bandit methods applied to problems of logistic regression
[Hazan et al., 2014].

Results such as those of Shamir [2013], Jamieson et al. [2012] and Hazan et al. [2014] have led
researchers to consider methods of derivative-free (stochastic) optimization within the paradigm of
convex bandit learning. In this survey, we group these methods into two categories of assumptions on
the type of bandit feedback (i.e. the observed realizations of f̃) available to the method: one-point
bandit feedback or two-point (multi-point) bandit feedback. Although many of the works we cite have
also analysed regret bounds for these methods, we focus on optimization error.

4.2.1 One-point bandit feedback

In one-point bandit feedback, a method is assumed to have access to an oracle f̃ that returns unbiased
estimates of f . In particular, given two points x1, x2 ∈ Ω, two separate calls to the oracle will return
f̃(x1; ξ1) and f̃(x2; ξ2); methods do not have control over the selection of the random variables ξ1 and
ξ2. Many one-point bandit methods do not fall neatly into the frameworks discussed in this survey
[Agarwal et al., 2011, Belloni et al., 2015, Bubeck et al., 2017]. See Table 4.1 for a summary of best
known WCC results of type (46) for one-point bandit feedback methods.

8We remark that many of the references we provide here may also refer to methods minimizing (44) as methods of
online optimization; one reference in particular [Bach and Perchet, 2016] even suggests a taxonomy identifying bandit
learning as a restrictive case of online optimization.
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Table 4.1: Best known WCCs for Nε, the number of evaluations required to bound (46), for one-point
bandit feedback. Nε is given only in terms of n and ε. See text for the definition of β-smooth; here
β > 2. Method types include random search (RS), mirror descent (MD) and ellipsoidal.

Assumption on f Nε Method type (citation)

convex, f ∈ LC0 n2ε−4 RS [Flaxman et al., 2005]

n13/2ε−2 ellipsoidal [Belloni et al., 2015]

c-strongly convex, f ∈ LC0 n2ε−3 RS [Flaxman et al., 2005]

convex, f ∈ LC1 nε−3 MD [Gasnikov et al., 2017]

n13/2ε−2 ellipsoidal [Belloni et al., 2015]

c-strongly convex, f ∈ LC1 n2ε−2 MD [Gasnikov et al., 2017]

convex, β-smooth n2ε−2β/(β−1) RS [Bach and Perchet, 2016]

c-strongly convex, β-smooth n2ε−(β+1)/(β−1) RS [Bach and Perchet, 2016]

One example of a method using one-point bandit feedback, whose development falls naturally
into our discussion thus far, is given by Flaxman et al. [2005]; they analyse a method resembling
Algorithm 6, but the gradient-free oracle is chosen as

gµ(x;u; ξ) =
f̃(x+ µu; ξ)

µ
u, (47)

where u is drawn uniformly from the unit n-dimensional sphere. That is, given a realization ξ ∈ Ξ,
a stochastic gradient estimator based on a stochastic evaluation at the point x+ µu is computed via
(47). For this method, and for general convex f , Flaxman et al. [2005] demonstrate a WCC bound of
type (46) in O(n2ε−4) for general convex f . For strongly convex f , Flaxman et al. [2005] demonstrate
a WCC bound of type (46) in O(n2ε−3). Various extensions of these results are given in Saha and
Tewari [2011], Dekel et al. [2015] and Gasnikov et al. [2017]. To the best of our knowledge, the best
known upper bound on the WCC for smooth, strongly convex problems is in O(n2ε−2) and the best
known upper bound on the WCC for smooth, convex problems is in O(nε−3) [Gasnikov et al., 2017].

For the solution of (STOCH) when Ω = Rn, Bach and Perchet [2016] analyse a method resembling
Algorithm 6 wherein the gradient-free oracle is chosen as

gµ(x;u; ξ+, ξ−) =
f̃(x+ µu; ξ+)− f̃(x− µu; ξ−)

µ
u, (48)

where u is again drawn uniformly from the unit n-dimensional sphere. We remark that ξ+, ξ− ∈ Ξ
in (48) are different realizations; this distinction will become particularly relevant in Section 4.2.2.
For the solution of (STOCH) when Ω ( Rn, Bach and Perchet [2016] also consider a gradient-free
oracle like (47). Bach and Perchet [2016] are particularly interested in how the smoothness of f can
be exploited to improve complexity bounds in the one-point bandit feedback paradigm; they define
a parameter β and say that a function f is β-smooth provided f is almost everywhere (β − 1)-times
Lipschitz-continuously differentiable (a strictly weaker condition than assuming f ∈ LCβ−1). When
β = 2, Bach and Perchet [2016] recover similar results to those seen in Table 4.1 for when f ∈ LC1.
When β > 2, however, in both the constrained and unconstrained case, Bach and Perchet [2016] prove
a WCC result of type (46) in O(n2ε2β/(1−β)) when f is convex and β-smooth. Further assuming that f
is c-strongly convex, Bach and Perchet [2016] prove a WCC result of type (46) in O(n2ε(β+1)/(1−β)/c)
. Notice that asymptotically, as β → ∞, this bound is in O(n2ε−1/c). This asymptotic result is
particularly important because it attains the lower bound on optimization error demonstrated by
Shamir [2013] for strongly convex ∞-smooth (quadratic) f .

We also note that Bubeck et al. [2017] conjecture that a particular kernel method can achieve a
WCC of type (46) in O(n3ε−2) for general convex functions. In light of well-known results in determ-
inistic convex optimization, the WCCs summarized in Table 4.1 may be surprising. In particular,
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for any c-strongly convex function f ∈ LC1, the best known WCC results are in O(ε−2). We place
particular emphasis on this result because it illustrates a gap between derivative-free and derivative-
based optimization that is not just a factor of n. In this particular one-point bandit feedback setting,
there do not seem to exist methods that achieve the optimal9 O(ε−1) convergence rate attainable by
gradient-based methods for smooth strongly convex stochastic optimization. Hu et al. [2016] partially
address this issue concerning one-point bandit feedback, which they refer to as ‘uncontrolled noise’.
These observations motivated the study of two-point (multi-point) bandit feedback, which we will
discuss in the next section, Section 4.2.2.

We further remark that every WCC in Table 4.1 has a polynomial dependence on the dimension n,
raising natural questions about the applicability of these methods in high-dimensional settings. Wang
et al. [2018] consider a mirror descent method employing a special gradient-free oracle computed via a
compressed sensing technique. They prove a WCC of type (46) in O(log(d)3/2n2

zε
−3), under additional

assumptions on derivative sparsity, most importantly, that for all x ∈ Ω, ‖∇f(x)‖0 ≤ nz for some nz.
Thus, provided nz � n, the polynomial dependence on n becomes a logarithmic dependence on n,
at the expense of a WCC with a strictly worse dependence on ε than ε−2. In Section 5.2, we discuss
methods that similarly exploit known sparsity of objective function derivatives.

In an extension of Algorithm 6, Chen [2015, Chapter 3] dynamically updates the difference para-
meter by exploiting knowledge of the changing variance of ξ.

4.2.2 Two-point (multi-point) bandit feedback

We now focus on the stochastic paradigm of two-point (or multi-point) bandit feedback. In this setting
of bandit feedback, we do not encounter the same gaps in WCC results between derivative-free and
derivative-based optimization that exist for one-point bandit feedback.

The majority of methods analysed in the two-point bandit feedback setting are essentially random-
search methods of the form Algorithm 6. The gradient-free oracles from (33) in the two-point setting
takes one of the two forms

gµk
(x;u; ξ) = δf(f̃(·, ξ);x;u;µk)Bu, or

ĝµk
(x;u; ξ) = δc(f̃(·, ξ);x;u;µk)Bu.

(49)

The key observation in (49) is that ξ denotes a single realization used in the computation of both
function values in the definitions of the oracles (see (28) and (29)). This assumption of ‘controllable
realizations’ separates two-point bandit feedback from the more pessimistic one-point bandit feedback.
This property of being able to recall a single realization ξ for two (or more) evaluations of f̃ is precisely
why this setting of bandit feedback is called ‘two-point’ (or ‘multi-point’). This property will also be
exploited in Section 6.1.

The early work of Agarwal et al. [2010] directly addresses the discussed gap in WCC results and
demonstrates that a random-search method resembling Algorithm 6, but applied in the two-point (or
multi-point) setting as opposed to the one-point setting, attains a WCC of type (46) in O(ε−1); this
is a complexity result matching the optimal rate (in terms of ε-dependence) shown by Agarwal et al.
[2009]. See Table 4.2 for a summary of best known WCC results of type (46) for two-point bandit
feedback methods.

Nesterov and Spokoiny [2017] provide a WCC result for Algorithm 6 using the stochastic gradient-
free oracles (49), but strictly better WCCs have since been established. We also note that, in contrast
with the gradient-free oracles of (33) in Section 3.1.2, the difference parameter µ is written as µk in
(49), indicating that a selection for µk must be made in the kth iteration. In the works that we discuss
here, µk in (49) is either chosen as a constant sufficiently small or else µk → 0 at a rate typically of
the order of 1/k. We also remark that many of the results discussed in this section trivially hold for
deterministic convex problems, and can be seen as an extension of results concerning methods of the
form of Algorithm 6.

9Optimal here is meant in a minimax information-theoretic sense [Agarwal et al., 2009].
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Algorithm 7: Mirror-descent method with two-point gradient estimate

1 Choose initial point x0, sequence of step sizes {αk}, sequence of difference parameters {µk},
and distribution of ξ

2 for k = 1, 2, . . . , T − 1 do
3 Sample uk uniformly from the unit sphere B(0; 1)
4 Sample a realization ξk
5 gk ← gµk

(xk;uk; ξk) using an oracle from (49)

6 xk+1 ← arg miny∈Ω g
T
k y + 1

αk
Dψ(y,xk)

Provided f ∈ LC0, the best known WCCs of type (46) (with variations in constants) can be found in
Duchi et al. [2015], Gasnikov et al. [2017] and Shamir [2017]. These works consider variants of mirror-
descent methods with approximate gradients given by estimators of the form (49); see Algorithm 7
for a description of a basic mirror-descent method. Algorithm 7 depends on the concept of a Bregman
divergence Dψ, used in line 6 of Algorithm 7 to define a proximal-point subproblem. The Bregman
divergence is defined by a function ψ : Ω→ R, which is assumed to be 1-strongly convex with respect
to the norm ‖ · ‖p. To summarize many findings in this area [Duchi et al., 2015, Gasnikov et al., 2017,
Shamir, 2017], if ‖·‖q is the dual norm to ‖·‖p (i.e. p−1 +q−1 = 1) where p ∈ {1, 2} and Rp denotes the
radius of the feasible set in the ‖ · ‖p-norm, then a bound on WCC of type (46) in O(n2/qR2

pε
−2) can

be established for a method like Algorithm 7 in the two-point feedback setting where f ∈ LC0. These
WCCs for methods like Algorithm 7 are responsible for the popularity of mirror-descent methods in
machine learning. For many machine learning problems, solutions are typically sparse, and so, in some
sense, R1 ≤ R2. Thus, using a function ψ that is 1-strongly convex with respect to the ‖ · ‖1-norm
(e.g. simply letting ψ = ‖ · ‖1) may be preferable to p = 2, in both theory and practice.

Duchi et al. [2015] also provide an information-theoretic lower bound on convergence rates for any
method in the (non-strongly) convex, f ∈ LC0, two-point feedback setting. This bound matches the
best known WCCs up to constants, demonstrating that these results are tight. This lower bound is
still of the order of ε−2, matching the result of Agarwal et al. [2009] in ε-dependence in the case where
f ∈ LC0. It is also remarkable that this result is only a factor of

√
n worse than the bounds provided

by Agarwal et al. [2009] for the derivative-based case, as opposed to the factor of n that one may
expect.

Additionally assuming f(x) is strongly convex (but still assuming f ∈ LC0), Agarwal et al. [2010]
prove, for a method like Algorithm 6, a WCC in O(n2ε−1). Using a method like Algorithm 7, Gasnikov
et al. [2017] improve the dependence on n in this WCC to O(n2/qc−1

p ε−1), provided f is cp-strongly
convex with respect to ‖ · ‖p.

We now address the case where f is convex and f ∈ LC1. Given an assumption that ‖gµ(x;u; ξ)‖
is uniformly bounded, Agarwal et al. [2010] demonstrate a WCC of type (46) in O(n2ε−1). Dropping
this somewhat restrictive assumption on the gradient-free oracle and assuming instead that the oracle
used in a method like Algorithm 6 has bounded variance (i.e. the oracle satisfies Eξ[‖gµ(x;u; ξ) −
∇f(x)‖2] ≤ σ2), Ghadimi and Lan [2013] prove a WCC of a type similar to (46) (we avoid a discussion
of randomized stopping) in O(max{nLg‖x0−x∗‖ε−1, nσ2Lg‖x0−x∗‖ε−2}). We mention that Nesterov
and Spokoiny [2017] hinted at a similar WCC result, but with a strictly worse dependence on n, and
different assumptions on ξ.

5 Methods for structured objectives

The methods discussed in Sections 2 and 3 assume relatively little about the structure of the objective
function f beyond some differentiability required for analysis. Section 4 considered the case where f
is convex, which resulted, for example, in improved worst-case complexity results. In this section, we
consider a variety of assumptions about additional known structure in f (including non-linear least
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Table 4.2: Best known WCCs of type (46) for two-point bandit feedback. Nε is given only in terms of
n and ε. See text for the definition of p, q. Rp denotes the size of the feasible set in the ‖ · ‖p-norm. If
f is cp-strongly convex, then f is strongly convex with respect to the ‖ · ‖p-norm with constant cp. σ
is the standard deviation on the gradient estimator gµ(x;u; ξ) (i.e. Eξ[‖gµ(x;u; ξ)−∇f(x)‖2] ≤ σ2).
The Lipschitz constant of the gradient Lg is defined by the ‖ · ‖2-norm. ? denotes the additional
assumption that Eξ[‖gµ(x;u; ξ)‖] < ∞. Method types include random search (RS), mirror descent
(MD) and accelerated mirror descent (AMD).

Assumption on f Nε Method type (citation)

convex n2/qRpε
−2 MD [Duchi et al., 2015, Shamir, 2017]

[Gasnikov et al., 2017]

cp-strongly convex n2/qc−1
p ε−1 MD [Gasnikov et al., 2017]

convex, smooth max

{
nLgR2

ε
,
nσ2

ε2

}
RS [Ghadimi and Lan, 2013]

max

{
n2/qLgR

2
p

ε
,
n2/qσ2R2

p

ε2

}
MD [Dvurechensky et al., 2018]

max

{
n1/2+1/q

√
LgR

2
p

ε
,
n2/qσ2R2

p

ε2

}
AMD [Dvurechensky et al., 2018]

convex, smooth, ? n2/qRpε
−2 MD [Duchi et al., 2015]

cp-strongly conv., smooth, ? n2/qc−1
p ε−1 MD [Gasnikov et al., 2017]

squares, sparse, composite and minimax-based functional forms) and methods designed to exploit
this additional structure. Although problems in this section could be solved by the general-purpose
methods discussed in Sections 2 and 3, practical gains should be expected by exploiting the additional
structure.

5.1 Non-linear least squares

A frequently encountered objective in many applications of computational science, engineering and
industry is

f(x) =
1

2
‖F (x)‖22 =

1

2

p∑
i=1

Fi(x)2. (50)

For example, data-fitting problems are commonly cast as (50); given data yi collected at design sites
θi, one may need to estimate the parameters x of a non-linear model or simulation output that best
fit the data. In this scenario, Fi is represented by Fi(x) = wi(Si(θ;x) − yi), which is a weighted
residual between the simulation output Si and target data yi. In this way, objectives of the form (50)
(and their correlated residual generalizations) encapsulate both the solution of non-linear equations
and statistical estimation problems.

The methods of Zhang et al. [2010], Zhang and Conn [2012] and Wild [2017] use the techniques
of Section 2.2 to construct models of the individual Fi (thereby obtaining a model of the Jacobian
∇F ) in (50). These models are then used to generate search directions in a trust-region framework
resembling the Levenberg–Marquardt method [Levenberg, 1944, Marquardt, 1963, Moré, 1978]. The
analysis by Zhang et al. [2010] and Zhang and Conn [2012] demonstrates – under certain assumptions,
such as f(x∗) = 0 at an optimal solution x∗ (i.e. that the associated data-fitting problem has zero
residual) – that the resulting methods achieve the same local quadratic convergence rate does as the
Levenberg–Marquardt method. POUNDERS is a trust-region-based method for minimizing objectives
of the form (50) that uses a full Newton approach for each residual Fi [Wild, 2017, Dener et al., 2018].
Another model-based method (implemented in DFO-LS [Cartis et al., 2018a]) for minimizing functions
of the form (50) – more closely resembling a Gauss–Newton method – is analysed by Cartis and
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Roberts [2019]. Their method is shown to converge to stationary points of (50) even when f(x∗) > 0,
at the expense of slightly weaker theoretical guarantees on the convergence rate.

Kelley [2003] proposes a hybridization of a Gauss–Newton method with implicit filtering (Al-
gorithm 4 from Section 2.3.2) that estimates the Jacobian of F by building linear models of each
component Fi using central differences (29) with an algorithmically updated difference parameter.
This hybrid method is shown to demonstrate superlinear convergence for zero-residual (i.e. f(x∗) = 0)
problems.

Earlier methods also used the vector F in order to more efficiently address objectives of the form
(50). Spendley [1969] develops a simplex-based algorithm that employs quadratic approximations
obtained by interpolating the vector F on the current simplex. Peckham [1970] proposes an iterative
process that refines models of each component of F using between n + 1 and n + 3 + n/3 points.
Ralston and Jennrich [1978] also develop derivative-free Gauss–Newton methods and highlight their
performance relative to methods that do not exploit the structure in (50). Brown and Dennis, Jr.
[1971] consider a variant of the Levenberg–Marquardt method that approximates gradients using
appropriately selected difference parameters.

Li and Fukushima [2000] analyse the convergence of a derivative-free line-search method when
assuming that the square of the Jacobian (i.e. ∇F (x)T∇F (x)) of (50) is positive-definite everywhere.
Grippo and Sciandrone [2007] and La Cruz et al. [2006] augment a non-monotone line-search method
to incorporate information about F in the case where p = n in (50). Li and Li [2011] develop a line-
search method that exploits a monotonicity property assumed about F . La Cruz [2014] and Morini,
Porcelli, and Toint [2018] address (50) in the case where simple convex constraints are present.

5.2 Sparse objective derivatives

In some applications, it is known that

∇2f(x)ij = ∇2f(x)ji = 0 for all (i, j) ∈ S, (51)

for all x ∈ Ω, where the index set S defines the sparsity pattern of the Hessian. Similarly, one can
consider partially separable objectives of the form

f(x) =

p∑
i=1

Fi(x) =

p∑
i=1

Fi({xj}j∈Si
), (52)

where each Fi depends only on some subset of indices Si ⊂ {1, 2, . . . , n}. The extreme cases of (52)
are totally separable functions, where p = n and Si = {i} for i ∈ {1, . . . , n}. In this special case,
(DET) reduces to the minimization of n univariate functions.

Given the knowledge encoded in (51) and (52), derivative-free optimization methods need not
consider interactions between certain components of x because they are known to be exactly zero. In
the context of the model-based methods of Section 2.2, particularly when using quadratic models, using
this knowledge amounts to dropping monomials in φ(x) in (12) corresponding to the non-interacting
(i, j) pairs from (51). Intuitively, such an action reduces the degrees of freedom in (14) when building
models, necessitating fewer function evaluations in the right-hand side of (14).

Colson and Toint [2005] propose a trust-region method for functions of the form (52) that builds
and maintains separate fully linear models for the individual Fi in an effort to use fewer objective
function evaluations. Similarly, Colson and Toint [2001] propose a method for the case when ∇2f has
a band or block structure that exploits knowledge when building models of the objective; the work
of Colson and Toint [2002] extends this work to general sparse objective Hessians. Bagirov and Ugon
[2006] develop an algorithm that exploits the fact that efficient discrete gradient estimates can be
obtained for f having the form (52).

In the context of pattern-search methods (discussed in Section 2.1.2), Price and Toint [2006] exploit
knowledge of f having the form (52) to choose a particular stencil of search directions when forming
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a positive spanning set. In particular, the stencil is chosen as {e1, . . . , en, en+1, . . . , en+p}, where
{e1, . . . , en} are the elementary basis vectors and

en+i =
∑
j∈Si

−ej ,

for i ∈ {1, . . . , p}. Frimannslund and Steihaug [2010] also develop a DDS method for (52), with the
search directions determined based on a smoothed quadratic formed from previously evaluated points.

Bandeira et al. [2012] also assume that ∇2f(x) is sparse but do not assume knowledge of the
sparsity structure (i.e. S in (51) is not known). They develop a quadratic model-based trust-region
method where the models are selected by a minimum 1-norm solution to an underdetermined in-
terpolation system (14). Under certain assumptions on f , if nz is the number of non-zeros in the
(unknown) sparsity pattern for ∇2f , Bandeira et al. [2012] prove that Y in (14) must contain only
O((nz + n) log(nz + n) log(n)) (as opposed to O(n2)) randomly generated points in order to ensure
that the constructed interpolation models are fully quadratic models of f with high probability. This
work motivated the analysis of randomized trust-region methods discussed in Section 3.3 because the
random underdetermined interpolation models of Bandeira et al. [2012] satisfy the assumptions made
in Bandeira et al. [2014].

In Section 4.2.1, we noted the work of Wang et al. [2018], who used assumptions of gradient and
Hessian sparsity (in particular, ‖∇f(x)‖0 ≤ nz) to improve the reduce the dependence on n in a WCC
of type (46) from polynomial to logarithmic. Note that, similar to Bandeira et al. [2012], this is an
assumption on knowing a universal bound (i.e. for all x ∈ Ω) on the cardinality ‖∇f(x)‖0 rather
than the actual non-zero components. Under a similar sparsity assumption, Balasubramanian and
Ghadimi [2018] consider the two-point bandit feedback setting discussed in Section 4.2.2 and show
that a truncated10 version of the method proposed in Ghadimi and Lan [2013] has a WCC of type (46)
in O(nz log(n)2/ε2). Like the result of Wang et al. [2018], this WCC result also exhibits a logarithmic
dependence on n, provided nz � n. As we will discuss in Section 6.4, Ghadimi and Lan [2013] analyse
a method resembling Algorithm 6 to be applied to non-convex f in (STOCH). Balasubramanian and
Ghadimi [2018] prove that the unaltered method of Ghadimi and Lan [2013] applied to problems in
this sparse setting achieves a WCC of type

E [‖∇f(xk)‖] ≤ ε, (53)

in O(n2
z log(n)2ε−4); this WCC result once again eliminates a polynomial dependence on n that would

otherwise exist in a non-sparse setting. This WCC result, however, maintains the same ε-dependence
as the method of Ghadimi and Lan [2013] in the non-sparse setting; in this sense, the method of
Ghadimi and Lan [2013] is ‘automatically’ tuned for the sparse setting.

5.3 Composite non-smooth optimization

Sometimes, the objective f in (DET) is known to be non-smooth. Often, one has knowledge about the
form of non-smoothness present in the objective, and we discuss methods that exploit specific forms
of non-smoothness in this section. For methods that do not access any structural information when
optimizing non-smooth functions f , see Sections 2.1.2 and 2.3.

We define composite non-smooth functions as those of the form

f(x) = h(F (x)), (54)

where h : Rp → R is a non-smooth function (in contrast to smooth h such as the sum of squares in
(50)), and F : Rn → Rp is continuously differentiable. In some of the works we cite, the definition of
a composite non-smooth objective may include an additional smooth function g so that the objective
function has the form f(x) + g(x), but we omit a discussion of this for the sake of focusing on the
non-smooth aspect in (54).

10That is, all but the nz largest values in xk+1 are set to 0 in line 5 of Algorithm 6.
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5.3.1 Convex h

When h in (54) is convex (note that f may still be non-convex due to non-convexity in F ), one thrust
of research extends the techniques in derivative-based composite non-smooth optimization; see the
works of Yuan [1985] and Fletcher [1987, Chapter 14]. For example, Yuan [1985] use derivatives to
construct convex first-order approximations of f near x,

`(x+ s) = h(F (x) +∇F (x)s), (55)

where ∇F denotes the Jacobian of F ; see Hare [2017] for properties of such approximations in the
derivative-free setting. By replacing ∇F in (55) with the matrix M(xk) containing the gradients
of a fully linear approximation to F at xk, Grapiglia et al. [2016] and Garmanjani et al. [2016]
independently analyse a model-based trust-region method similar to Algorithm 3 from Section 2.2.4
that uses the non-smooth trust-region subproblem

minimize
s:‖s‖≤∆k

`(xk + s) = h(F (xk) +M(xk)s). (56)

Note that only F is assumed to be a black-box; these methods exploit the fact that h is convex with
a known form in order to appropriately solve (55). Both Grapiglia et al. [2016] and Garmanjani et al.
[2016] use the stationarity measure of Yuan [1985] in their analysis,

Ψ(x) = `(x)− min
‖s‖≤1

`(x+ s), (57)

for which it is known that Ψ(x∗) = 0 if and only if x∗ is a critical point of f in the sense that
`(x∗) ≤ `(x∗ + s) for all s ∈ Rn. Worst-case complexity results that bound the effort required to
attain ‖Ψ(xk)‖ ≤ ε are included in Table 8.1.

Methods using the local approximation (55) require convexity of h in order for Ψ in (57) to be
interpreted as a stationarity measure. From a practical perspective, the form of h directly affects the
difficulty of solving the trust-region subproblem. Grapiglia et al. [2016] demonstrate this approach on
a collection of problems of the form

f(x) = max
i=1,...,p

Fi(x), (58)

where each Fi is assumed smooth. Garmanjani et al. [2016] test their method on a collection of
problems of the form

f(x) = ‖F (x)‖1 =

p∑
i=1

|Fi(x)|. (59)

For objectives of the form (58) or (59), the associated trust-region subproblems (56) can be cast as
linear programs when the ∞-norm defines the trust region. (An early example of such an approach
appears in Madsen [1975], where linear approximations to each Fi in (58) are constructed.) Although
more general convex h could fit into this framework, one must be wary of the difficulty of the resulting
subproblems.

Direct-search methods have also been adapted for composite non-smooth functions of specific forms.
In these variants, knowledge of h in (54) informs the selection of search directions in a manner similar
to that described in Section 5.2. Ma and Zhang [2009] and Bogani et al. [2009] consider the cases of
f of the form (58) and (59), respectively.

Objectives of the form (58) are also addressed by Hare et al. [2019], who develop an algorithm that
decomposes such problems into orthogonal subspaces associated with directions of non-smoothness and
directions of smoothness. The resulting derivative-free V U -algorithm employs model-based estimates
of gradients to form and update this decomposition [Hare, 2014]. Liuzzi et al. [2006] address finite
minimax problems by converting the original problem into a smooth problem using an exponential
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Algorithm 8: Smoothing method

1 Set initial smoothing parameter µ1 > 0, terminal smoothing parameter µ∗ < µ1, and decrease
parameter γ ∈ (0, 1)

2 Choose initial point x0 and smooth optimization method M
3 k ← 1
4 while µk < µ∗ do
5 Apply M to fµk

, supplying xk−1 as an initial point to M, until a termination criterion is
satisfied and xk is returned

6 µk+1 ← γµk
7 k ← k + 1

penalty function. Their DDS method adjusts the penalty parameter via a rule that depends on the
current step size in order to guarantee convergence to a Clarke stationary point.

Approximate gradient-sampling methods are developed and analysed by Hare and Macklem [2013]
and Hare and Nutini [2013] for the finite minimax problem (58). These methods effectively exploit
the subdifferential structure of h(y) = maxi=1,...,p yi and employ derivative-free approximations of
each ∇Fi(x). Larson et al. [2016] propose a variant of gradient sampling, called manifold sampling,
for objectives of the form (59). Unlike (approximate) gradient sampling, manifold sampling does not
depend on a random sample of points to estimate the ε-subdifferential.

5.3.2 Non-convex h

When h is non-convex, minimization of (54) is considerably more challenging than when h is convex.
Few methods exist that exploit the structure of non-convex h. One of the many challenges is that
the model in (55) may no longer be an underestimator of h. Khan et al. [2018] propose a manifold
sampling method for piecewise linear h; in contrast to the previously discussed methods, this method
does not require that h be convex. Other methods applicable for non-convex h employ smoothing
functions.

As mentioned in Section 2.1.2, the worst-case complexity of DDS methods applied to non-smooth
(Lipschitz-continuous) objective functions is difficult to analyse. The reason that DDS methods gen-
erate an asymptotically dense set of polling directions is to ensure that no descent directions exist.
An exception to this generality, however, is functions for which an appropriate smoothing function
exists. Given a locally Lipschitz-continuous f , we say that fµ : Rn → R is a smoothing function for f
provided that for any µ ∈ (0,∞), fµ is continuously differentiable and that

lim
z→x,µ→0+

fµ(z) = f(x),

for all x ∈ Rn.
Thus, if a smoothing function fµ exists for f , it is natural to iteratively apply a method for smooth

unconstrained optimization to obtain approximate solutions xk to minx fµk
(x) while decreasing µk.

We roughly prescribe such a smoothing method in Algorithm 8.
Garmanjani and Vicente [2012] consider the DDS framework analysed by Vicente [2013] as the

method M in Algorithm 8. They terminate M when the step-size parameter α of Algorithm 2 is
sufficiently small, where the notion of sufficiently small scales with µk in Algorithm 8. Garmanjani
and Vicente [2012] prove a first-order stationarity result of the form

lim inf
k→∞

‖∇fµk
(xk)‖ = 0. (60)

Under certain assumptions (for instance, that h satisfies some regularity conditions at F (x∗)) this
first-order stationarity result is equivalent to 0 ∈ ∂f(x∗); that is, x∗ is Clarke stationary.
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Garmanjani and Vicente [2012] consider the decrease to be sufficient in line 4 of Algorithm 1 if
f(pi) < f(x)− c1α3/2 for some c1 > 0. If, furthermore, M terminates in each iteration of Algorithm 8
when α < c2µ

2
k for some c2 > 0, then an upper bound on the number of function evaluations needed

to obtain
‖∇fµ∗(xk)‖ ≤ ε, (61)

for ε ∈ (0, 1) and µ∗ ∈ O(n−1/2ε), is in O(ε−3); see Table 8.1. We note that while the sequence
of smoothing parameters µk induces a type of limiting behaviour of the gradients (as seen in (61))
returned by the method M used in Algorithm 8, this still does not necessarily recover elements of
the Clarke subdifferential of f . The smoothing functions fµk

must satisfy an additional gradient
consistency property in order for Algorithm 8 to produce a sequence of points xk converging to Clarke
stationary points [Rockafellar and Wets, 2009, Theorem 9.67].

Garmanjani et al. [2016] consider the use of a model-based trust-region method M in Algorithm 8.
The authors demonstrate the first-order convergence result (60); they also prove the same WCC as is
proved by Garmanjani and Vicente [2012].

5.4 Bilevel and general minimax problems

Bilevel optimization addresses problems where a lower-level objective is embedded within an upper-
level problem. Bilevel problems take the form

minimize
x∈Ω

fu(x,xl)

subject to xl ∈ arg min
z∈Ωl

{f l(x, z)},
(62)

where fu : Ω ⊆ Rn → R and f l : Ωl ⊆ Rnl → R. Conn and Vicente [2012] propose a model-based
trust-region method for solving (63) in the absence of derivative information. They show how to obtain
approximations of the upper-level objective by solving the lower-level problem to sufficient accuracy.
Mersha and Dempe [2011] and Zhang and Lin [2014] develop DDS-based algorithms for (62) under
particular assumptions (e.g. strict convexity of the lower-level problem).

A special case of (62) is when f l = −fu, which results in the minimax problem (DET), where the
objective is given by a maximization:

f(x) = max
xl∈Ωl

f l(x,xl). (63)

In contrast to the finite minimax problem (58), the objective in (63) involves a potentially infinite set
Ωl.

Bertsimas et al. [2010] and Bertsimas and Nohadani [2010] consider (63) when exact gradients of f l

may not be available. The authors assume that approximate gradients of f l are available and propose
methods with convergence analysis restricted to functions f in (63) that are convex in x. Ciccazzo et al.
[2015] and Latorre et al. [2019] develop derivative-free methods that employ approximate solutions of
the inner problem in (63). Menickelly and Wild [2019] also consider (63) and develop a derivative-free
method of outer approximations for more general f . Their analysis shows that the resulting limit
points are Clarke stationary for f .

6 Methods for stochastic optimization

We now turn our attention to methods for solving the stochastic optimization problem (STOCH). In
Section 4.2, we considered the case where f(x) = Eξ[f̃(x; ξ)] is convex. In this section, we lift the

assumption of convexity to consider a more general class of stochastic functions f̃ .
In general, the analysis of methods for stochastic optimization requires assumptions on the random

variable ξ. In this section, we use the convention that ξ ∼ Ξ denotes that the random variable ξ is
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from a distribution Ξ and that ξ ∈ Ξ refers to a random variable in the support of this distribution.
Frequently, realizations ξ ∼ Ξ are assumed to be independent and identically distributed (i.i.d.).
Throughout this section, we assume that Eξ[f̃(x; ξ)] exists for each x ∈ Ω and f(x) = Eξ[f̃(x; ξ)];
that is, the objective of (STOCH) is well-defined. Another common assumption in the stochastic
optimization literature is that some bound on the variance of f̃(x; ξ) is assumed, that is,

Eξ
[
(f̃(x; ξ)− f(x))2

]
< σ2 <∞ for all x ∈ Ω. (64)

If, for a given x, ∇xf̃(x; ξ) exists for each ξ ∈ Ξ, then under certain regularity conditions it follows
that ∇f(x) = Eξ[∇xf̃(x; ξ)]; one such regularity condition is that

f̃(·; ξ) is Lf̃(·;ξ)-Lipschitz-continuous and Eξ
[
Lf̃(·;ξ)

]
<∞.

We note that when first-order information is available, the assumption (64) is often replaced by an
assumption on the variance of the expected gradient norm; see e.g. Bottou et al. [2018, Assumption 4.3].
In this setting, a key class of methods for (STOCH) are stochastic approximation (SA) methods; see
the paper proposing SA methods by Robbins and Monro [1951] and a survey of modern SA methods
(often also referred to as ‘stochastic gradient’ methods when first-order information is available) by
Bottou et al. [2018]. Here we focus on situations where no objective derivative information is available;
that is, stochastic gradient methods are not directly applicable. That said, some of the work we discuss
attempts to approximate stochastic gradients, which are then used in an SA framework. As discussed
in Section 1, we will not address global optimization methods, such as Bayesian optimization.11

Section 6.1 discusses stochastic approximation methods, and Section 6.2 presents direct-search
methods for stochastic optimization. In Section 6.3 we highlight modifications to derivative-free model-
based methods to address (STOCH), and in Section 6.4 we discuss bandit methods for (non-convex)
stochastic optimization.

6.1 Stochastic and sample-average approximation

One of the first analysed approaches for solving (STOCH) is the method of Kiefer and Wolfowitz
[1952], inspired by the SA method of Robbins and Monro [1951]. We state the basic Kiefer–Wolfowitz
framework in Algorithm 9. Since Kiefer and Wolfowitz [1952] consider only univariate problems,
Algorithm 9 is in fact the multivariate extension first of Blum [1954a]. In Algorithm 9, ∇f(xk) is
approximated by observing realizations of f̃ using central differences. That is, ∇f(xk) is approximated
by

gK(xk;µk; ξk) =


f̃(xk + µke1; ξ+

1 )− f̃(xk − µke1; ξ−1 )

2µk
...

f̃(xk + µken; ξ+
n )− f̃(xk − µken; ξ−n )

2µk

, (65)

where µk > 0 is a difference parameter, ei is the ith elementary basis vector, and 2n realizations ξ ∼ Ξ
are employed. The next point xk+1 is then set to be xk−αkgK(xk;µk; ξk), where αk > 0 is a step-size
parameter. As in Section 3, we note that xk+1 is a random variable that depends on the filtration
generated by the method before xk+1 is realized; this will be the case throughout this section. In the
SA literature, the sequences {αk} and {µk} are often referred to as gain sequences.

Because evaluation of the function f requires computing an expectation (and in contrast to the
primarily monotone algorithms in Section 2), stochastic optimization methods generally do not mono-
tonically decrease f . This is exemplified by Algorithm 9, which updates xk+1 without considering the
value of f̃(xk+1; ξ) for any realization of ξ.

11We recommend Shahriari et al. [2016] and Frazier [2018] to readers interested in recent surveys of Bayesian optim-
ization.
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Algorithm 9: Kiefer–Wolfowitz method

1 Choose initial point x0, sequence of step sizes {αk} and sequence of difference parameters {µk}
2 for k = 0, 1, 2, . . . do
3 Generate ξk = (ξ+

1 , ξ
−
1 , . . . , ξ

+
n , ξ

−
n )

4 Compute gradient estimate gK
k (xk;µk; ξk) via (65)

5 xk+1 ← xk − αkgK
k (xk;µk; ξk)

Historically, Algorithm 9 has been analysed by a community more concerned with stochastic pro-
cesses than with optimization. Hence, convergence results differ from those commonly found in the
optimization literature. For example, many results in the SA literature consider a continuation of the
dynamics of Algorithm 9 applied to the deterministic f as an ordinary differential equation (ODE) in
terms of x(t) : R→ Rn. That is, they consider

dx

dt
= −∇f(x), x = x(t).

and define the set of fixed points of the ODE, S = {x : ∇f(x) = 0}. Many convergence results then
demonstrate that the continuation x(t) satisfies x(t) → S with probability one as the continuous
iteration counter t→∞; see Kushner and Yin [2003] for a complete treatment of such ODE results.

In order to prove that the sequence of points xk generated by Algorithm 9 converges almost surely
(i.e. with probability one), conditions must be placed on the objective function, step sizes and difference
parameters. In the SA literature there is no single consistent set of conditions, but there are nearly
always conditions on the sequence of step sizes {αk} requiring αk → 0 and

∑
k αk = ∞. Intuitively,

this divergence condition ensures that any point in the domain Ω can be reached, independent of the
history of iterations. As one example of convergence conditions, Bhatnagar et al. [2013] prove almost
sure convergence of Algorithm 9 under the following assumptions (simplified for presentation).

(1). The sequences of step sizes and difference parameters satisfy αk > 0, µk > 0, αk → 0, µk → 0,∑
k αk =∞ and

∑
k α

2
kµ
−2
k <∞.

(2). The realizations ξ ∼ Ξ are i.i.d. and the distribution Ξ has a finite second moment.

(3). The function f is in LC1.

(4). supk{‖xk‖} <∞ with probability one.

Similar assumptions on algorithms of the form Algorithm 9 appear throughout the SA literature
[Blum, 1954b, Derman, 1956, Sacks, 1958, Fabian, 1971, Kushner and Huang, 1979, Ruppert, 1991,
Spall, 2005]. Convergence of Algorithm 9 under similar assumptions to those above, but with the
modification that µk is fixed in every iteration to a sufficiently small constant (that scales inversely
with Lg), is additionally demonstrated by Bhatnagar et al. [2013].

In terms of WCCs, the convergence rates that have been historically derived for Algorithm 9 are
also non-standard for optimization. In particular, results concerning convergence rates are typically
shown as a convergence in distribution [Durrett, 2010, Chapter 3.2]: given a fixed x∗ ∈ S,

1

kγ
(xk − x∗)→ N (0,B), (66)

where γ > 0 and B is a covariance matrix, the entries of which depend on algorithmic parameters
and ∇2f(x∗) (provided it exists). With few assumptions on ξ, it has been shown that (66) holds with
γ = 1/3 [Spall, 1992, L’Ecuyer and Yin, 1998]. Observe that these convergence rates are distinct from
WCC results like those in (2).
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Later, the use of common random numbers (CRNs) was considered. In contrast to (65), which
employs a realization ξk = (ξ+

1 , ξ
−
1 , . . . , ξ

+
n , ξ

−
n ), a gradient estimator in the CRN regime uses a single

realization ξk and has the form

gK(xk;µk; ξk) =

δc(f̃(·; ξk);xk; e1;µk)
...

δc(f̃(·; ξk);xk; en;µk)

, (67)

where δc(·) is defined in (29)

The difference between (65) and (67) is analogous to the difference between one-point and two-
point bandit feedback in the context of bandit problems (see Section 4.2). In the CRN regime, we can
recall a single realization ξk to compute a finite-difference approximation in each coordinate direction.
By using (67) as the gradient estimator in Algorithm 9, the rate (66) holds with γ = 1/2 [L’Ecuyer
and Yin, 1998, Kleinman et al., 1999]. Thus, as in the analysis of bandit methods, the use of CRNs
allows for strictly better convergence rate results.

Dai [2016a, 2016b] studies the complexity of Algorithm 9, as well as a method that uses the
estimator (65) in Algorithm 7, under varying assumptions on Ξ. Dai considers a gradient estimate of
the form (67) with δf(f̃(·; ξk);xk; ei;µk) replacing each central difference; recall the definition of δf(·)
in (28). Dai demonstrates that the best rate of the form (66) achievable by Algorithm 9 with forward
differences has γ = 1/3, even when common random numbers are used. However, a rate of the form
(66) with γ = 1/2 can be achieved using forward differences in Algorithm 7; Dai [2016a, 2016b] draws
parallels between this result and the WCC of Duchi et al. [2015], discussed in Section 4.2.2.

We remark that the gradient estimate (65) used in Algorithm 9 requires 2n evaluations of f̃ per
iteration. Although replacing δc(f̃(·; ξk);xk; ei;µk) with δf(f̃(·; ξk);xk; ei;µk) could reduce this cost
to n+1 evaluations of f̃ per iteration, it is still desirable to reduce this per-iteration cost from O(n) to
O(1) evaluations. The SPSA method of Spall [1992] achieves this goal by using the gradient estimator

gS(xk;µk; ξk;uk) = δc(f̃(·, ξk);xk;uk;µk)


1

[uk]1
...
1

[uk]n

, (68)

where uk ∈ Rn is randomly generated from some distribution in each iteration.

The construction of (68) requires evaluations of f̃(·; ξk) at exactly two points. Algorithm 9 is
then modified by replacing the gradient estimator gK

k (xk;µk; ξk) with gS
k(xk;µk; ξk;uk). Informally,

the conditions on the distribution governing uk originally proposed by Spall [1992] cause each entry
of uk to be bounded away from 0 with high probability (intuitively, to avoid taking huge steps). A
simple example distribution satisfying these properties is to let each entry of uk independently follow
a Bernoulli distribution with support {1,−1}, both events occurring with probability 1/2. Under
appropriate assumptions resembling those for Algorithm 9, the sequence {xk} generated by SPSA can
be shown to converge in the same sense as Algorithm 9. Convergence rates of the form (66) matching
those obtained for Algorithm 9 have also been established [Gerencsér, 1997, Kleinman et al., 1999].

The performance of SA methods is highly sensitive to the chosen sequence of step sizes {αk}
[Hutchison and Spall, 2013]. This mirrors the situation in gradient-based SA methods where the
tuning of algorithmic parameters is an active area of research [Diaz et al., 2017, Ilievski et al., 2017,
Balaprakash et al., 2018].

The SA methods above consider only a single evaluation of the stochastic function f̃ at any point.
Other methods more accurately estimate f(xk) by querying f̃(xk; ξ) for multiple, different realizations
(‘samples’) of ξ. These methods belong to the framework of sample average approximation, wherein
the original problem (STOCH) is replaced with a (sequence of) deterministic sample-path problem(s):
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minimize
x∈Ω

1

p

p∑
i=1

f̃(x; ξi). (69)

Retrospective approximation methods [Chen and Schmeiser, 2001] vary the number of samples, p, in a
predetermined sequence {p0, p1, . . .}; the accuracy to which each instance of (69) subproblem is solved
can also vary as a sample average approximation method progresses. Naturally, the performance of
such a method depends critically on the sequence of sample sizes and accuracies used at each iteration;
Pasupathy [2010] characterizes a class of sequences of predetermined sample sizes and accuracies
for which derivative-free retrospective approximation methods can be shown to converge for smooth
objectives.

Other approaches dynamically adjust the number of samples p from iteration to the next. For
example, the method of Pasupathy et al. [2018] adjusts the number of samples pk to balance the
contributions from deterministic and stochastic errors in iteration k. The stochastic error at xk is
then ∣∣∣∣f(xk)− 1

pk

pk∑
i=1

f̃(xk; ξk,i)

∣∣∣∣.
The deterministic error is the difference between the objective f and a specified approximation; for
example, the deterministic error at xk − αk∇f(xk) using a first-order Taylor approximation is

|f(xk − αk∇f(xk))− (f(xk)− αk‖∇f(xk)‖2)|.

Pasupathy et al. [2018] establish convergence rates for a variant of Algorithm 9 drawing independent
samples {ξk,1, . . . , ξk,pk} in each iteration.

6.2 Direct-search methods for stochastic optimization

Unsurprisingly, researchers have modified methods for deterministic objectives in order to produce
methods appropriate for stochastic optimization. For example, in the paper inspiring Nelder and
Mead [1965], Spendley et al. [1962] propose re-evaluating the point corresponding to the best simplex
vertex if it hasn’t changed in n + 1 iterations, saying that if the vertex is best ‘only by reason of
errors of observation, it is unlikely that the repeat observation will [be the best observed point], and
the point will be eliminated in due course’. Barton and Ivey, Jr. [1996] propose modifications to the
Nelder–Mead method in order to avoid premature termination due to repeated shrinking. To alleviate
this problem, they suggest reducing the amount the simplex is shrunk, re-evaluating the best point
after each shrink operation, and re-evaluating each reflected point before performing a contraction.
Chang [2012] proposes a Nelder–Mead variant that samples candidate points and all other points in
the simplex an increasing number of times; this method ultimately ensures that stochasticity in the
function evaluations will not affect the correct ranking of simplex vertices.

Sriver et al. [2009] augment a GPS method with a ranking and selection procedure and dynam-
ically determine the number of samples performed for each polling point. The ranking and selection
procedure allows the method to also address cases where x contains discrete variables. For the case of
additive unbiased, Gaussian noise (i.e. f̃(x; ξ) = f(x)+σξ with ξ from a standard normal distribution
and σ > 0 finite), they prove that the resulting method converges almost surely to a stationary point of
f . For problems involving more general distributions, Kim and Zhang [2010] consider a DDS method
that employs the sample mean

1

pk

pk∑
i=1

f̃(x; ξk,i), (70)

with a dynamically increasing sample size pk. They establish a consistency result and appeal to the
convergence properties of DDS methods. Sankaran et al. [2010] propose a surrogate-assisted method
for stochastic optimization inspired by stochastic collocation techniques (see e.g. Gunzburger, Webster,
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and Zhang 2014). Convergence for the method is established by appealing to the GPS and MADS
mechanisms underlying the method.

Chen and Kelley [2016] consider an implicit-filtering method in which values of f are observable
only through the sample average (70). Chen and Kelley [2016] demonstrate that the sequence of points
generated by the method converges (i.e. {∇f(xk)} admits a subsequence that converges to zero) with
probability one if the sample size pk increases to infinity. Algorithmically, pk is adjusted to scale with
the square of the inverse of the stencil step size (∆k in Algorithm 4).

Chen et al. [2018b] consider the bound-constrained minimization of a composite non-smooth func-
tion of the form (54), where h is Lipschitz-continuous (but non-smooth) and F is continuously differ-
entiable. However, they assume that values of F are observable only through sample averages and that
a smoothing function hµ of h (as discussed in Section 5.3.2) is available. They show that with probab-
ility one, the sequence of points from a smoothed implicit-filtering method converges to a first-order
stationary point, where the stationarity measure is appropriate for non-smooth optimization.

6.3 Model-based methods for stochastic optimization

Analysis of the model-based trust-region methods in Section 2.2 generally depends on the construction
of fully linear models of a deterministic function f ; see (9). In particular, methods of the form of
Algorithm 3 typically require that a model mk satisfy

|f(xk + s)−mk(xk + s)| ≤ κef∆
2
k for all s ∈ B(0; ∆k).

A natural model-based trust-region approach to stochastic optimization is to build a model mk of the
function f by fitting the model to observed values of the stochastic function f̃ . Intuitively, if such
models satisfy (9), then an extension of the analysis described in Section 2.2.4 should also apply to the
minimization of f in (STOCH). The methods described here formalize the approximation properties
of such models (which are stochastic because of their dependence on ξ) and employ the models in a
trust-region framework. For example, by employing an estimator f̄p of f at each interpolation point
x used in model construction, we can replace each function value f(x) with f̄p(x) in the interpolation
system (14). One example of such an estimator f̄p is the sample average (70).

Early work in applying derivative-free trust-region methods for stochastic optimization includes
that of Deng and Ferris [2006], which modifies the UOBYQA method of Powell [2002]. The kth iteration
of the method of Deng and Ferris [2006] uses Bayesian techniques to dynamically update a budget of
pk new f̃ evaluations. This budget is then apportioned among the current set of interpolation points
y ∈ Y in order to reduce the variance in each value of f̄pk(y), with the authors using the sample
mean for the estimator f̄pk . Deng and Ferris [2009] show that, given assumptions on the sequence of
evaluated ξ (i.e. the sample path), every limit point x∗ produced by this method is stationary with
probability 1.

Another method in this vein, STRONG, was proposed by Chang et al. [2013] and combines re-
sponse surface methodology [Box and Draper, 1987] with a trust-region mechanism. In the analysis of
STRONG, it is assumed that model gradients ∇mk(xk) almost surely equal the true gradients ∇f(xk)
as k → ∞, which is algorithmically encouraged by monotonically increasing the sample size pk in
an inner loop. QNSTOP by Castle [2012] presents a similar approach using response surface models
in a trust-region framework, but its convergence analysis and assumptions mirror those of stochastic
approximation methods.

Both Larson and Billups [2016] and Chen et al. [2018a] build on the idea of probabilistically
fully linear models in (37), which essentially says that the condition (9) needs to hold on a given
iteration only with some probability [Bandeira et al., 2014]. In contrast to the usage of such models in
randomized methods for deterministic objectives (the subject of Section 3.3), in stochastic optimization
the filtration in (37) also includes the realizations of the stochastic evaluations of f̃ . This probabilistic
notion of uniform local model quality is powerful. For example, although the connection is not made
by Regier et al. [2017], this notion of model quality implies probabilistic descent properties such as
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those required by Regier et al. [2017]. This implication is an example of a setting in which stochastic
gradient estimators can be replaced by gradients of probabilistically fully linear models.

One way to satisfy (37) is to build a regression model using randomly sampled points. For example,
Menickelly [2017, Theorem 4.2.6] shows that evaluating f̃ on a sufficiently large set of points uniformly
sampled from B(xk; ∆k) can be used to construct a probabilistically fully linear regression model.

Larson and Billups [2016] prove convergence of a probabilistic variant of Algorithm 3 in the sense
that, for any ε > 0,

lim
k→∞

P[‖∇f(xk)‖ > ε] = 0.

Under similar assumptions, Chen et al. [2018a] prove almost sure convergence to a stationary point,
that is,

lim
k→∞

‖∇f(xk)‖ = 0 with probability one. (71)

Blanchet et al. [2019] provide a WCC result for the variant of Algorithm 3 presented by Chen
et al. [2018a]. Blanchet et al. [2019] extend the analysis of Cartis and Scheinberg [2018] to study the
stopping time of the stochastic process generated by the method of Chen et al. [2018a]. In contrast
to previous WCC results discussed in this survey, which bound the number of function evaluations
Nε needed to attain some form of expected ε-optimality (e.g. (34) or (53)), Blanchet et al. [2019]
prove that the expected number of iterations, E [Tε], needed to achieve (2) is in O(ε−2). Paquette
and Scheinberg [2018] apply similar analysis to a derivative-free stochastic line-search method, where
they demonstrate that for non-convex f , E [Tε] ∈ O(ε−2), while for convex and strongly convex f ,
E [Tε] ∈ O(ε−1) and E [Tε] ∈ O(log(ε−1)), respectively. Since the number of function evaluations per
iteration of the derivative-free methods of Blanchet et al. [2019] and Paquette and Scheinberg [2018]
is highly variable across iterations, the total work (in terms of function evaluations) is not readily
apparent from such WCC results.

Larson and Billups [2016] and Chen et al. [2018a] demonstrate that sampling f̃ on B(xk; ∆k) of
the order of ∆−4

k times will ensure that (9) holds (i.e. one can obtain a fully linear model) with high
probability. Shashaani et al. [2016] and Shashaani et al. [2018] take a related but distinct approach.
As opposed to requiring that models be probabilistically fully linear, their derivative-free trust-region
method performs adaptive Monte Carlo sampling both at current points xk and interpolation points;
the number of samples pk is chosen to balance a measure of statistical error with the optimality gap
at xk. Shashaani et al. [2018] prove that their method achieves almost sure convergence of the form
(71).

A model-based trust-region method for constrained stochastic optimization, SNOWPAC, is de-
veloped by Augustin and Marzouk [2017]. Their method addresses the stochasticity by employing
Gaussian process-based models of robustness measures such as expectation and conditional value at
risk. The approach used is an extension of the constrained deterministic method NOWPAC of Augustin
and Marzouk [2014], which we discuss in Section 7.

6.4 Bandit feedback methods

While much of the literature on bandit methods for stochastic optimization focuses on convex object-
ives f (as discussed in Section 4.2), here we discuss treatment of non-convex objectives f . We recall
our notation and discussion from Section 4.2, in particular the notion of regret minimization shown
in (44).

In the absence of convexity, regret bounds do not translate into bounds on optimization error as
easily as in (45). Some works address the case where each f̃(·; ξk) in (44) is Lipschitz-continuous and
employ a partitioning of the feasible region Ω [Kleinberg et al., 2008, Bubeck et al., 2011b,a, Valko
et al., 2013, Zhang et al., 2015]. These methods employ global optimization strategies that we do not
discuss further here.

In another line of work, Ghadimi and Lan [2013] consider the application of an algorithm like
Algorithm 6 with the choice of gradient estimator gµ(x;u; ξ) from (49). Under an assumption of
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bounded variance of the estimator (i.e. Eξ[‖gµ(x;u; ξ) − ∇f(x)‖2] ≤ σ2), Ghadimi and Lan [2013]
prove a WCC result similar to the one they obtained in the convex case; see Section 4.2.2. They show
that an upper bound on the (randomized) number of iterations needed to attain

E
[
‖∇f(xk)‖2

]
≤ ε (72)

is in O(max{nLgRxε−1, nLgRxσ
2ε−2}). Notice that the stationarity condition given in (72) involves

a square on the gradient norm, making it distinct from a result like (34) or (53). Thus, assuming σ2 is
sufficiently large, the result of Ghadimi and Lan [2013] translates to a WCC of type (53) in O(n2ε−4).

Balasubramanian and Ghadimi [2018, 2019] propose a method that uses two-point bandit feedback
(i.e. a gradient estimator from (49)) within a derivative-free conditional gradient method [Ghadimi,
2019]. The gradient estimator is used to define a linear model, which is minimized over Ω to produce
a trial step. If Ω is bounded, they show a WCC of type (53) that again grows like ε−4.

By replacing gradients with estimators of the form (49) in the stochastic variance-reduced gradient
framework of machine learning [Reddi et al., 2016], Liu et al. [2018] prove a WCC of type (72) in
O(nε−1 + b−1), where b is the size of a minibatch drawn with replacement in each iteration. Gu et al.
[2016] prove a similar WCC result in an asynchronous parallel computing environment for a distinct
method using minibatches for variance reduction.

7 Methods for constrained optimization

In this section, we discuss derivative-free methods for problems where the feasible region Ω is a
proper subset of Rn. In the derivative-free setting, such constrained optimization problems can take
many forms since an additional distinction is associated with the derivative-free nature of objective
and constraint functions. For example, and in contrast to the preceding sections, a derivative-free
constrained optimization problem may involve an objective function f for which a gradient is made
available to the optimization method. The problem is still derivative-free if there is a constraint
function defining the feasible region Ω for which a (sub)gradient is not available to the optimization
method.

As is common in many application domains where derivative-free methods are applied, the feasible
region Ω may also involve discrete choices. In particular, these choices can include categorical variables
that are either ordinal (e.g. letter grades in {A, B, C, D, F}) or non-ordinal (e.g. compiler type in
{flang, gfortran, ifort}). Although ordinal categorical variables can be mapped to a subset of the
reals, the same cannot be done for non-ordinal variables. Therefore, we generalize the formulations of
(DET) and (STOCH) to the problem

minimize
x,y

f(x,y)

subject to x ∈ Ω ⊂ Rn

y ∈ N,

(CON)

where y represents a vector of non-ordinal variables and N is a finite set of feasible values. Here we
assume that discrete-valued ordinal variables are included in x. Furthermore, most of the methods
we discuss do not explicitly treat non-ordinal variables y; hence, except where indicated, we will drop
the use of y.

Similar to Section 5, here we distinguish methods based on the assumptions made about the
problem structure. We organize these assumptions based on the black-box optimization constraint
taxonomy of Le Digabel and Wild [2015], which characterizes the type of constraint functions that
occur in a particular specification of a derivative-free optimization problem. When constraints are
explicitly stated (i.e. ‘known’ to the method), this taxonomy takes the form of the tree in Figure 7.1.

The first distinction in Figure 7.1 is whether a constraint is algebraically available to the optim-
ization method or whether it depends on a black-box simulation. In the context of derivative-free
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Known constraints (K)

A or S?

Algebraic (A)

R or U?

Relaxable (R)

Q or N?

Quant.

(Q)

KARQ

Nonquant.

(N)

KARN

Unrelaxable (U)

Q or N?

Quant.

(Q)

KAUQ

Nonquant.

(N)

KAUN

Black-box simulation-based (S)

R or U?

Relaxable (R)

Q or N?

Quant.

(Q)

KSRQ

Nonquant.

(N)

KSRN

Unrelaxable (U)

Q or N?

Quant.

(Q)

KSUQ

Nonquant.

(N)

KSUN

Figure 7.1: Tree-based taxonomy of known (i.e. non-hidden) constraints from [Le Digabel and Wild,
2015].

optimization, we will assume that it is these latter constraint functions for which a (sub)gradient is
not made available to the optimization method. Algebraic constraints are those for which a functional
form or simple projection operator is provided to the optimization method. Section 7.1 discusses
methods that exclusively handle algebraic constraints. Examples of such algebraic constraints have
been discussed earlier in this paper (e.g. Sections 3.1 and 4), wherein it is assumed that satisfaction
of the constraints (e.g. through a simple projection) is trivial relative to evaluation of the objective.
This imbalance between the ease of the constraint and objective functions is also the subject of recent
WCC analysis [Cartis et al., 2018b].

Section 7.2 discusses methods that target situations where one or more constraints do not have
available derivatives.

The next distinction in Figure 7.1 is whether a constraint can be relaxed or whether the constraint
must be satisfied in order to obtain meaningful information for the objective f and/or other constraint
functions. Unrelaxable constraints are a relatively common occurrence in derivative-free optimization.
In contrast to classic optimization, constraints are sometimes introduced solely to prevent errors in the
evaluation of, for example, a simulation-based objective function. Methods for addressing relaxable
algebraic constraints are discussed in Section 7.1.1, and unrelaxable algebraic constraints are the focus
of Section 7.1.2.

Hidden constraints are not represented in Figure 7.1. Hidden constraints are constraints that are
not explicitly stated in a problem specification. Violating these constraints is detected only when
attempting to evaluate the objective or constraint functions; for example, a simulation may fail to
return output, thus leaving one of these functions undefined. Some derivative-free methods directly
account for the possibility that such failures may be present despite not being explicitly stated. Hidden
constraints have been addressed in works including those of Avriel and Wilde [1967], Choi and Kelley
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[2000], Choi et al. [2000], Carter et al. [2001], Conn et al. [2001], Huyer and Neumaier [2008], Lee et al.
[2011], Chen and Kelley [2016], Porcelli and Toint [2017] and Müller and Day [2019].

7.1 Algebraic constraints

When all constraints are algebraically available, we can characterize the ordinal feasible region by a
collection of inequality constraints:

Ω = {x ∈ Rn : ci(x) ≤ 0, for all i ∈ I}, (73)

where each ci : Rn → R ∪ {∞} and the set I is finite for all of the methods discussed. Problems with
semi-infinite constraints can be addressed by using structured approaches as in Section 5.4. In this
setting, we define the constraint function c : Rn → (R ∪ {∞})|I|, where the ith entry of the vector
c(x) is given by ci(x). Equality constraints can be represented in (73) by including both ci(x) and
−ci(x); however, this practice should be avoided since it can hamper both theoretical and empirical
performance.

7.1.1 Relaxable algebraic constraints

Relaxable algebraic constraints are the constraints that are typically treated in derivative-based non-
linear optimization. We will organize our discussion into three primary types of methods: penalty
approaches, filter approaches, and approaches with subproblems that employ models of the constraint
functions.

Penalty approaches. Given constraints defined by (73), it is natural in the setting of relaxable
constraints to quantify the violation of the ith constraint via the value of max{0, ci(x)}. In fact, given
a penalty parameter ρ > 0, a common approach in relaxable constrained optimization is to replace
the minimization of f(x) with the minimization of a merit function such as

f(x) +
ρ

2

∑
i∈I

max{0, ci(x)}. (74)

The merit function in (74) is typically called an exact penalty function, because for a sufficiently
large (but finite) value of ρ > 0, every local minimum x∗ of (CON) is also a local minimum of the merit
function in (74). We note that each summand max{0, ci(x)} is generally non-smooth; the summand
is still convex provided ci(x) is convex. Through the mapping

F (x) =

[
f(x)
c(x)

]
,

functions of the form (74) can be seen as cases of the composite non-smooth function (54) and are
hence amenable to the methods discussed in Section 5.3. In contrast to this non-smooth approach, a
more popular merit function historically has been the quadratic penalty function,

f(x) + ρ
∑
i∈I

max{0, ci(x)}2. (75)

However, the merit function in (75) lacks the same exactness guarantees that come with (74); even
as ρ grows arbitrarily large, local minima of (CON) need not correspond in any way with minima of
(75).

Another popular means of maintaining the smoothness (and convexity, when applicable) of (75)
but regaining the exactness of (74) is to consider Lagrangian-based merit functions. Associating
multipliers λi with each of the constraints in (73), the Lagrangian of (CON) is

L(x;λ) = f(x) +
∑
i∈I

λi ci(x). (76)
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Combining (76) with (75) yields the augmented Lagrangian merit function

LA(x;λ; ρ) = f(x) +
∑
i∈I

λi ci(x) +
ρ

2

∑
i∈I

max{0, ci(x)}2 (77)

with the desired properties; that is, for non-negative λ and ρ, LA(x;λ; ρ) is smooth (convex) provided
that c is.

In all varieties of these methods, which we broadly refer to as penalty approaches, the parameter ρ is
dynamically updated between iterations. Methods typically increase ρ in order to promote feasibility;
penalty methods tend to approach solutions from outside of Ω and hence typically assume that the
penalized constraints are relaxable. For a review on general penalty approaches, see [Fletcher, 1987,
Chapter 12].

Lewis and Torczon [2002] adapt the augmented Lagrangian approach of Conn et al. [1991] in one
of the first proofs that DDS methods can be globally convergent for non-linear optimization. They
utilize pattern search (see the discussion in Section 2.1.2) to approximately minimize the augmented
Lagrangian function (77) in each iteration of their method. That is, each iteration of their method
solves a subproblem

minimize
x

{LA(x;λ; ρ) : l ≤ x ≤ u}. (78)

Lewis and Torczon [2002] prove global convergence of their method to first-order Karush–Kuhn–Tucker
(KKT) points. We note that the algebraic availability of bound constraints is explicitly used in (78).
Other constraints could be algebraic or simulation-based because the method used to approximately
solve (78) does not require availability of the derivative ∇xLA(x;λ; ρ). The approach of Lewis and
Torczon [2002] is expanded by Lewis and Torczon [2010], who demonstrate the benefits of treating
linear constraints (including bound constraints) outside of the augmented Lagrangian merit function.
That is, they consider subproblems of the form

minimize
x

{LA(x;λ; ρ) : Ax ≤ b}. (79)

Bueno et al. [2013] propose an inexact restoration method for problems (CON) where Ω is given
by equality constraints. The inexact restoration method alternates between improving feasibility
(measured through the constraint violation ‖c(x)‖2 in this equality-constrained case) and then ap-
proximately minimizing a ‖ ·‖2-based exact penalty function before dynamically adjusting the penalty
parameter ρ. Because of the separation of the feasibility and optimality phases of the inexact res-
toration method, the feasibility phase requires no evaluations of f . This feasibility phase is easier
when constraint functions are available algebraically because (sub)derivative-based methods can be
employed. Bueno et al. [2013] prove global convergence to first-order KKT points of this method under
appropriate assumptions.

Amaioua et al. [2018] study the performance of a search step in MADS when solving (CON). One
of their approaches uses the exact penalty (74), a second approach uses the augmented Lagrangian
(77) and a third combines these two.

Audet et al. [2015] show that the convergence properties of MADS extend to problems with linear
equality constraints. They explicitly address these algebraic constraints by reformulating the ori-
ginal problem into a new problem without equality constraints (and possibly fewer variables); other
constraints are treated as will be discussed in Section 7.2.

Filter approaches. Whereas a penalty approach combines an objective function f and a measure
of constraint violation into a single merit function to be minimized approximately, a filter method
can be understood as a biobjective method minimizing the objective and the constraint violation
simultaneously. For this general discussion, we will refer to the measure of constraint violation as
h(x). For example, in (74),

h(x) =
∑
i∈I

max{0, ci(x)}.
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From the perspective of biobjective optimization, a filter can be understood as a subset of non-
dominated points in the (f, h) space. A two-dimensional point (f(xl), h(xl)) is non-dominated, in the
finite set of points {xj : j ∈ J} evaluated by a method, provided there is no j ∈ J \ {l} with

f(xj) ≤ f(xl) and h(xj) ≤ h(xl).

Unlike biobjective optimization, however, filter methods adaptively vary the subset of non-dominated
points considered in order to identify feasible points (i.e. points where h vanishes). Different filter
methods employ different mechanisms for managing the filter and generating new points.

Brekelmans et al. [2005] employ a filter for handling relaxable algebraic constraints. Their model-
based method attempts to have model-improving points satisfy the constraints. Ferreira et al. [2017]
extend the inexact-restoration method of Bueno et al. [2013] by replacing the penalty formulation with
a filter mechanism and again prove global convergence to first-order KKT points.

Approaches with subproblems using modelled constraints. Another means of constraint
handling is to construct local models mci of each constraint ci in (73). Given a local model mf of the
objective function f , such methods generally employ a sequence of subproblems of the form

minimize
s

{mf (s) : ci(x+ s) ≤ 0, for all i ∈ I}. (80)

As an example approach, sequential quadratic programming (SQP) methods are popular derivative-
based methods that employ a quadratic model of the objective function and linear models of the
constraint functions. Several derivative-free approaches of this form exist, which we detail in this
section. We mention that many of these approaches will generally impose an additional trust-region
constraint (i.e. ‖s‖ ≤ ∆) on (80). As in Section 2.2.4, this trust-region constraint often has the
additional role of monitoring the quality of the model mf . Furthermore, such a trust-region constraint
ensures that whenever s = 0 is feasible for (80), the feasible region of (80) is compact.

Conn et al. [1998] consider an adaptation of a model-based trust-region method to constrained
problems with differentiable algebraic constraints treated via the trust-region subproblem (80). They
target problems where they deem the algebraic constraints to be ‘easy’, meaning that the resulting
trust-region subproblem is not too difficult to solve. This method is implemented in the solver DFO
[Conn et al., 2001].

The CONDOR method of Vanden Berghen [2004] and Vanden Berghen and Bersini [2005] extends
the unconstrained UOBYQA method of Powell [2002] to address algebraic constraints. The trust-region
subproblem considered takes the form

minimize
x

{mf (x) : ci(s) ≤ 0, for all i ∈ I ′;Ax ≤ b; ‖s‖ ≤ ∆}, (81)

where mf is a quadratic model and I ′ ⊆ I captures the non-linear constraints in (73). In solving
(81), the linear constraints are enforced explicitly and the non-linear constraints are addressed via an
SQP approach. As will be discussed in Section 7.1.2, this corresponds to the linear constraints being
treated as unrelaxable.

The LINCOA model-based method of Powell [2015] addresses linear inequality constraints. The
LINCOA trust-region subproblem, which can be seen as (81) with I ′ = ∅, enforces the linear constraints
via an active set approach. The active set decreases the degrees of freedom in the variables by
restricting x to an affine subspace. Numerically efficient conjugate gradient and Krylov methods are
proposed for working in the resulting subspace. Although considerable care is taken to have most
points satisfy the linear constraints Ax ≤ b, these constraints are ultimately treated as relaxable,
since the method does not enforce these constraints when attempting to improve the quality of the
model mf .

Conejo et al. [2013] propose a trust-region algorithm when Ω is closed and convex. They assume
that it is easy to compute the projection onto Ω, which facilitates enforcement of the constraints via
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the trust-region subproblem (80). This approach is extended to include more general forms of Ω by
Conejo et al. [2015]. As with LINCOA, although subproblem solutions are feasible, the constraints are
treated as relaxable since they may be violated in the course of improving the model mf .

Mart́ınez and Sobral [2012] propose a feasibility restoration method intended for problems with
inequality constraints where the feasible region is ‘thin’: for example, if Ω is defined by both ci(x) ≤ 0
and −ci(x) ≤ 0 for some i. Each iteration contains two steps: one that seeks to minimize the objective
and one that seeks to decrease infeasibility using many evaluation of the constraint functions (without
evaluating the objective). Similar to the progressive-barrier method discussed in Section 7.2, the
method by Mart́ınez and Sobral [2012] dynamically updates a tolerable level of infeasibility.

7.1.2 Unrelaxable algebraic constraints

We now address the case when all of the constraints are available algebraically but an unrelaxable
constraint also exists. In this setting, such unrelaxable constraints are typically necessary to ensure
meaningful output of a black-box objective function. Consequently, methods must always maintain
feasibility (or at least establish feasibility and then maintain it) with respect to the unrelaxable con-
straints.

An early example of a method for unrelaxable constraints is the ‘complex’ method of Box [1965].
This extension of the simplex method of Spendley et al. [1962] treats unrelaxable bound constraints
by modifying the simplex operations to project into the interior of any potentially violated bound
constraint. May [1974, 1979] extends the unconstrained derivative-free method of Mifflin [1975] to
address unrelaxable linear constraints. The method of May [1979] uses finite-difference estimates, but
care is taken to ensure that the perturbed points never violate the constraints.

As seen in Section 7.1.1, several approaches treat non-linear algebraic constraints via a merit
function and enforce unrelaxable linear constraints via a constrained subproblem. These include
the works of Lewis and Torczon [2002] for bound constraints in (78), Lewis and Torczon [2010] for
inequality constraints in (79), and Vanden Berghen [2004] for inequality constraints in (81). Another
merit function relevant for unrelaxable constraints is the extended-value merit function

h(x) = f(x) +∞ δΩC (x), (82)

where δΩC is the indicator function of ΩC . Such an extreme-barrier approach (see e.g. the discussion
by Lewis and Torczon 1999) is particularly relevant for simulation-based constraints. Hence, with the
exception of explicit treatment of unrelaxable algebraic constraints, we postpone significant discussion
of extreme-barrier methods until Section 7.2.

DDS methods for unrelaxable algebraic constraints. Within DDS methods, an intuitive ap-
proach to handling unrelaxable constraints is to limit poll directions Dk so that xk+dk is feasible with
respect to the unrelaxable constraints. Lewis and Torczon [1999] and Lucidi and Sciandrone [2002a], re-
spectively, develop pattern-search and coordinate-search methods for unrelaxable bound-constrained
problems. By modifying the polling directions Lewis and Torczon [2000] show that pattern-search
methods are also convergent in the presence of unrelaxable linear constraints. Chandramouli and
Narayanan [2019] address unrelaxable bound constraints within a DDS method that employs a model-
based method in the search step in addition to a bound-constrained line-search step. Kolda et al. [2006]
develop and analyse a new condition, related to the tangent cone of nearby active constraints, on the
sets of directions used within a generating set search method when solving linearly constrained prob-
lems. The condition ensures that evaluated points are guaranteed to satisfy the linear constraints.
Lucidi et al. [2002] propose feasible descent methods that sample the objective over a finite set of
search directions. Each iteration considers a set of ε-active constraints (i.e. those constraints for which
ci(xk) ≥ −ε) for general algebraic inequality constraints. Poll steps are projected in order to ensure
they are feasible with respect to these ε-active constraints. The analysis of Lucidi et al. [2002] ex-
tends that of Lewis and Torczon [2000] and establishes convergence to a first-order KKT point under
standard assumptions.
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As introduced in Section 7.1.1, Audet et al. [2015] reformulate optimization problems with unre-
laxable linear equality constraints in the context of MADS.

Gratton et al. [2019b] extend the randomized DDS method of Gratton et al. [2015] to linearly
constrained problems; candidate points are accepted only if they are feasible. Gratton et al. [2019b]
establish probabilistic convergence and complexity results using a stationary measure appropriate for
linearly constrained problems.

Model-based methods for unrelaxable algebraic constraints. Model-based
methods are more challenging to design in the presence of unrelaxable constraints because enfor-
cing guarantees of model quality such as those in (9) can be difficult. For a fixed value of κ in (9),
it may be impossible to obtain a κ-fully linear model using only feasible points. As an example,
consider two linear constraints for which the angle between the constraints is too small to allow for κ-
fully linear model construction; avoiding interpolation points drawn from such thin regions motivated
development of the wedge-based method of Marazzi and Nocedal [2002] from Section 2.2.4.

Powell [2009] proposes BOBYQA, a model-based trust-region method for bound-constrained op-
timization without derivatives that extends the unconstrained method NEWUOA in Powell [2006].
BOBYQA ensures that all points at which f is evaluated satisfy the bound constraints. Arouxét et al.
[2011] modify BOBYQA to use an active-set strategy in solving the bound-constrained trust-region
subproblems; an ‖ · ‖∞-trust region is employed so that these subproblems correspond to minimiza-
tion of a quadratic over a compact, bound-constrained domain. Wild [2008b, Section 6.3] develops
an RBF-model-based method for unrelaxable bound constraints by enforcing the bounds during both
model improvement and ‖ · ‖∞-trust-region subproblems. Gumma et al. [2014] extend the NEWUOA
method to address linearly constrained problems. The linear constraints are enforced both when solv-
ing the trust-region subproblem and when seeking to improve the geometry of the interpolation points.
Gratton et al. [2011] propose a model-based method for unrelaxable bound-constrained optimization,
which restricts the construction of fully linear models to subspaces defined by nearly active constraints.
Working in such a reduced space means that the machinery for unconstrained models in Section 2.2.4
again applies.

Methods for problems with unrelaxable discrete constraints. Constraints that certain vari-
ables take discrete values are often unrelaxable in derivative-free optimization. For example, a black-
box simulation may be unable to assign meaningful output when input variables take non-integer
values. That such integer constraints are unrelaxable presents challenges distinct from those typically
arising in mixed-integer non-linear optimization [Belotti et al., 2013].

Naturally, researchers have modified derivative-free methods for continuous optimization to address
integer constraints. Audet and Dennis, Jr. [2000] and Abramson et al. [2009a], respectively, propose
integer-constrained pattern-search and MADS methods to ensure that evaluated points respect integer
constraints. Abramson et al. [2007] develop a pattern-search method that employs a filter that handles
general inequality constraints and ensures that integer-constrained variables are always integer.

Porcelli and Toint [2017] propose the ‘brute-force optimizer’ BFO, a DDS method for mixed-variable
problems (including those with ordinal categorical variables) that aligns the poll points to respect the
discrete constraints. A recursive call of the method reduces the number of discrete variables by fixing
a subset of these variables.

Liuzzi et al. [2011] solve mixed-integer bound-constrained problems by using both a local discrete
search (to address integer variables) and a line search (for continuous variables). This approach is
extended by Liuzzi et al. [2015] to also address mixed-integer problems with general constraints using
the SQP approach from Liuzzi et al. [2010]. Liuzzi et al. [2018] solve constrained integer optimiza-
tion problems by performing non-monotone line searches along feasible primitive directions D in a
neighbourhood of the current point xk. Feasible primitive directions are those d ∈ Zn ∩Ω satisfying
GCD(d1, . . . ,d|D|) = 1, that is, directions in a bounded neighbourhood that are not integer multiples
of one another.
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The method by Rashid et al. [2012] for mixed-integer problems builds multiquadric RBF models.
Candidate points are produced by using gradient-based mixed-integer optimization techniques; the
authors’ relaxation-based approach employs a ‘proxy model’ that coincides with function values from
points satisfying the unrelaxable integer constraints. The methods of Müller et al. [2013b, 2013a] and
Müller [2016] similarly employ a global RBF model over the integer lattice, with various strategies for
generating trial points based on this model. Newby and Ali [2015] build on BOBYQA to address bound-
constrained mixed-integer problems. They outline an approach for building interpolation models of
objectives using only points that are feasible. Their trust-region subproblems consist of minimizing a
quadratic objective subject to bound and integer constraints.

Many of the discussed methods have been shown to converge to points that are mesh-isolated local
solutions; see Newby and Ali [2015] for discussion of such ‘local minimizers’. When an objective is
convex, one can do better. Larson et al. [2019] propose a method for certifying a global minimum
of a convex objective f subject to unrelaxable integer constraints. They form a piecewise linear
underestimator by interpolating f through subsets of n+ 1 affinely independent points. The resulting
underestimator is then used to generate new candidate points until global optimality has been certified.

7.2 Simulation-based constraints

As opposed to the preceding section, methods in this section are not limited to constraints that have
closed-form solutions but also address constraints that depend on the output from some calculated
function. Many methods address such simulation-based constraints by using approaches similar to
those used for algebraic constraints.

Filter approaches. Filter methods for simulation-based constraints, as with algebraic constraints,
seek to simultaneously decrease the objective and constraint violation. For example, Audet and
Dennis, Jr. [2004] develop a pattern-search method for general constrained optimization that accepts
steps that improve either the objective or some measure of violation of simulation-based constraints.
Their hybrid approach applies an extreme barrier to points that violate linear or bound constraints.
Audet [2004] provides examples where the method by Audet and Dennis, Jr. [2004] does not converge
to stationary points.

Pourmohamad [2016] models objective and constraint functions using Gaussian process models in a
filter-based method. Because these models are stochastic, point acceptability is determined by criteria
such as probability of filter acceptability or expected area of dominated region (in the filter space).

Echebest et al. [2015] develop a derivative-free method in the inexact feasibility restoration filter
method framework of Gonzaga et al. [2004]. Echebest et al. [2015] employ fully linear models of the
objective and constraint functions and show that the resulting limit points are first-order KKT points.

Penalty approaches. The original MADS method [Audet and Dennis, Jr., 2006] converts con-
strained problems to unconstrained problems by using the extreme-barrier approach mentioned above;
that is, the merit function (82) effectively assigns a value of infinity to points that violate any con-
straint. A similar approach to general constraints is used by the ‘complex’ method of Box [1965];
the simplex (complex) is updated to maintain the feasibility of the vertices of the simplex. As a
consequence of its generality, the extreme-barrier approach is applicable for algebraic constraints,
simulation-based constraints and even hidden constraints. Furthermore, because (82) is independent
of the degree of both constraint satisfaction and constraint violation, the extreme barrier is able to
address non-quantifiable constraints.

In contrast, the progressive-barrier method by Audet and Dennis, Jr. [2009] employs a quadratic
constraint penalty similar to (75) for relaxable simulation-based constraints {ci : i ∈ Ir} and an
extreme-barrier penalty for unrelaxable simulation-based constraints {ci : i ∈ Iu}. Their progressive-
barrier method maintains a non-increasing threshold value εk that quantifies the allowable relaxable
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constraint violation in each iteration. Their approach effectively uses the merit function

hk(x) =

{
f(x) if x ∈ Ωu and

∑
i∈Ir max{0, ci(x)}2 < εk,

∞ otherwise,
(83)

where Ωu = {x : ci(x) ≤ 0, ∀i ∈ Iu} denotes the feasible domain with respect to the unrelaxable
constraints. The progressive-barrier method maintains a set of feasible and infeasible incumbent points
and seeks to decrease the threshold εk to 0 based on the value of (83) at infeasible incumbent points.
Trial steps are accepted as incumbents based on criteria resembling, but distinct from, those used by
filter methods. Convergence to Clarke stationary points is obtained for particular sequences of the
incumbent points. The NOMAD [Le Digabel, 2011] implementation of MADS allows users to choose
to address inequality constraints handled via extreme-barrier, progressive-barrier or filter approaches.

Also within the DDS framework, Gratton and Vicente [2014] use an extreme-barrier approach
to handle unrelaxable constraints and an exact penalty function to handle the relaxable constraints.
That is, step acceptability is based on satisfaction of the unrelaxable constraints as well as sufficient
decrease in the merit function (74), with the set I containing only those constraints that are relaxable.
As the algorithm progresses, relaxable constraints are transferred to the set of constraints treated by
the extreme barrier; this approach is similar to that underlying the progressive-barrier approach.

Liuzzi and Lucidi [2009] and Liuzzi et al. [2010] consider line-search methods that apply a penalty to
simulation-based constraints; Liuzzi and Lucidi [2009] employ an exact penalty function (a smoothed
version of ‖ · ‖∞), whereas Liuzzi et al. [2010] employ a sequence of quadratic penalty functions of the
form (75). Fasano, Liuzzi, Lucidi, and Rinaldi [2014] propose a similar line-search approach to address
constraint and objective functions that are not differentiable.

Primarily concerned with equality constraints, Sampaio and Toint [2015, 2016] propose a derivative-
free variant of trust-funnel methods, a class of methods proposed by Gould and Toint [2010] that avoid
the use of both merit functions and filters.

Diniz-Ehrhardt et al. [2011] propose a method that models objective and constraint functions in
an augmented Lagrangian framework. Similarly, Picheny et al. [2016] use an augmented Lagrangian
framework, wherein the merit function in (77) uses Gaussian process models of the objective and
constraint functions in place of the actual objective and constraint functions.

Approaches with subproblems using modelled constraints. In early work, Glass and Cooper
[1965] develop a coordinate-search method that also uses linear models of the objective and constraint
functions. On each iteration, after the coordinate directions are polled, the models are used in a
linear program to generate new points; points are accepted only if they are feasible. Extending this
idea, Powell [1994] develops the constrained optimization by linear approximation (COBYLA) method,
which builds linear interpolation models of the objective and constraint functions on a common set of
n+ 1 affinely independent points. Care is taken to maintain the non-degeneracy of this simplex. The
method can handle both inequality and equality constraints, with candidate points obtained from a
linearly constrained subproblem and then accepted based on a merit function of the form (74).

Bűrmen et al. [2015] propose a variant of MADS with a specialized model-based search step

minimize
x

{mf (x) : Ax ≤ b}, (84)

where mf is a strongly convex quadratic model of f and (A, b) are determined from linear regression
models of the constraint functions. Both the search and poll steps are accepted only if they are feasible;
this corresponds to the method effectively treating the constraints with an extreme-barrier approach.

Gramacy and Le Digabel [2015] extend the MADS framework by using treed Gaussian processes
to model both the objective and simulation-based constraint functions. The resulting models are used
both within the search step and to order the poll points (within an opportunistic polling paradigm)
using a filter-based approach.
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A number of methods work with restrictions of the domain Ω in order to promote feasibility
(typically with respect to the simulation-based constraints) of the generated points. Such strategies are
often motivated by a desire to avoid the situation where feasibility is established only asymptotically.
An example of such a restricted domain is the set

Ωres(ε) = {x ∈ Rn : ci(x) ≤ 0 ∀i ∈ Ia, mci(x) + εi(x) ≤ 0 ∀i ∈ Is}, (85)

where algebraic constraints (corresponding to i ∈ Ia) are explicitly enforced and a parameter (or
function of x) ε controls the degree of restriction for the modelled simulation-based constraints (cor-
responding to i ∈ Is).

The methods of Regis [2013] utilize interpolating radial basis function surrogates of the objective
and constraint functions. Acceptance of infeasible points is allowed and is followed by a constraint
restoration phase that minimizes a quadratic penalty based on the modelled constraint violation. When
the current point is feasible, a subproblem is solved with a feasible set defined by (85) in addition
to a constraint that lower-bounds the distance between the trial point and the current point. Each
parameter εi is adjusted based on the feasibility of constraint i ∈ Is in recent iterations.

Augustin and Marzouk [2014] develop a trust-region method employing fully linear models of both
constraint and objective functions. They introduce a path augmentation scheme intended to locally
convexify the simulation-based constraints. Their trust-region subproblem at the current point xk
minimizes the model of the objective function subject to a trust-region constraint and the restricted
feasible set (85), where εi(x) = ε0‖x−xk‖2/(1+p) and where ε0 > 0 and p ∈ (0, 1) are fixed constants.
Augustin and Marzouk [2014] establish convergence of their method from feasible starting points;
that is, they show a first-order criticality measure asymptotically tends to 0. Augustin and Marzouk
[2014] produce a code, NOWPAC, that employs minimum-Frobenius norm quadratic models of both
the objective and constraint functions. This work is extended by Augustin and Marzouk [2017] to the
stochastic optimization problem (STOCH).

Whereas Augustin and Marzouk [2014] consider a local convexification of inequality constraints
through the addition of a convex function to the constraint models, Regis and Wild [2017] consider a
similar model-based approach but define an envelope around models of nearly active constraints. In
particular, at the current point xk, the restricted feasible set (85) uses the parameter

εi(x) =

{
0 if ci(xk) > −ξi,
ξi if ci(xk) ≤ −ξi,

where {ξi : i ∈ Is} is fixed. This form of ε ensures that trust-region subproblems remain non-empty
and avoids applying a restriction when the algorithm is sufficiently close to the level set {x : ci(x) = 0}.

Tröltzsch [2016] considers an SQP method in the style of Omojokun [1989], which applies a two-
step process that first seeks to improve a measure of constraint violation and then solves a subproblem
restricted to the null space of modelled constraint gradients. Tröltzsch [2016] uses linear models of
the constraint functions and quadratic models of the objective function, with these models replacing
c and f in the augmented Lagrangian merit function in (77). Step acceptance uses a merit function
(an exact penalty function).

Müller and Woodbury [2017] develop a method for addressing computationally inexpensive ob-
jectives while satisfying computationally expensive constraints. Their two-phase method first seeks
feasibility by solving a multi-objective optimization problem (a problem class that is the subject of
Section 8.4) in which the constraint violations are minimized simultaneously; the second phase seeks to
reduce the objective subject to constraints derived from cubic RBF models of the constraint functions.

Bajaj et al. [2018] propose a two-phase method. In the feasibility phase, a trust-region method is
applied to a quadratic penalty function that employs models of the simulation-based constraints. The
trust-region subproblem at iteration k takes the form

minimize
x

{∑
i∈Is

max{0,mci(x)}2 : ci(x) ≤ 0 ∀i ∈ Ia, x ∈ B(xk; ∆k)

}
(86)
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and thus explicitly enforces the algebraic constraints (i ∈ Ia) and penalizes violation of the modelled
simulation-based constraints (i ∈ Is). In the optimality phase, a trust-region method is applied to a
model of the objective function, and the modelled constraint violation is bounded by that achieved in
the feasibility phase; that is, the trust-region subproblem is

minimize
x

mf (x)

subject to ci(x) ≤ 0 for all i ∈ Ia
mci(x) ≤ ci(xpen) for all i ∈ Is
x ∈ B(xk; ∆k),

where xpen is the point returned from the feasibility phase.
Hare and Lewis [2005] present an approach for approximating the normal and tangent cones; their

approach is quite general and applies to the case when the domain is defined by non-quantifiable black-
box constraints. Davis and Hare [2013] consider a simplex-gradient-based approach for approximating
normal cones when the black-box constraints are quantifiable. Naturally, such approximate cones
could be used to determine if a method’s candidate solution approximately satisfies a stationarity
condition.

8 Other extensions and practical considerations

We conclude with a cursory look at extensions of the methods presented, especially highlighting active
areas of development.

8.1 Methods allowing for concurrent function evaluations

A number of the methods presented in this survey readily allow for the concurrent evaluation of the
objective function at multiple points x ∈ Rn. Performing function evaluations concurrently through
the use of parallel computing resources should decrease the wall-clock time required by a given method.
Depending on the method, there is a natural limit to the amount of concurrency that can be utilized
efficiently. Below we summarize such methods and their limits for concurrency.

The simplex methods discussed in Section 2.1 benefit from performing n concurrent evaluations of
the objective when a shrink operation is performed. Also, the points corresponding to the expansion
and reflection operations could be evaluated in parallel. Non-opportunistic directional direct-search
methods are especially amenable to parallelization [Dennis, Jr. and Torczon, 1991] because the |Dk|
poll directions can be evaluated concurrently.

Model-based methods from Section 2.2 can use concurrent evaluations during model building
when, for example, evaluating up to dim(Pd,n) additional points for use in (14). In another example,
CONDOR [Vanden Berghen and Bersini, 2005, Vanden Berghen, 2004] utilizes concurrent evaluations
of the objective to replace points far away from the current trust-region centre by maximizing the
associated Lagrange polynomial. The thesis by Olsson [2014] considers three ways of using concurrent
resources within a model-based algorithm: using multiple starting points, evaluating different models
in order to better predict a point’s value, and generating multiple points with each model (e.g. solving
with the trust-region subproblem with different radii). A similar approach of generating multiple trial
points concurrently is employed in the parallel direct-search, trust-region method of Hough and Meza
[2002].

Finite-difference-based approaches (e.g. Section 2.3) allow for n concurrent evaluations with forward
differences (28) or 2n concurrent evaluations with central differences (29). Implicit filtering also
performs such a central-difference calculation that can utilize 2n concurrent evaluations (line 5 of
Algorithm 4). Line-search methods can evaluate multiple points concurrently during their line-search
procedure. The methods of Garćıa-Palomares and Rodŕıguez [2002] and Garćıa-Palomares et al. [2013]
also consider using parallel resources to concurrently evaluate points in a neighbourhood of interest.
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When using a set of independently generated points, pure random search exhibits perfect scaling
as the level of available concurrency increases. Otherwise, the randomized methods for deterministic
objectives from Section 3 can utilize concurrent evaluations in a manner similar to that of their de-
terministic counterparts. Nesterov random search can use n or 2n concurrent objective evaluations
when computing an approximate gradient in (33). Randomized DDS methods can concurrently eval-
uate |Dk| poll points, and randomized trust-region methods can concurrently evaluate points needed
for building and improving models.

In addition to the above approaches for using parallel resources, methods from Section 5 for struc-
tured problems can use concurrent evaluations to calculate parts of the objective. For example, meth-
ods for optimizing separable objectives such as (50) or (52) can evaluate the p component functions
Fi concurrently.

The various gradient approximations used by methods in Section 6 are amenable to parallelization
in the same manner as previously discussed, but with the additional possibility of also evaluating at
multiple ξ values. SA methods can use 2n concurrent evaluations of f̃ in calculating (65) or (67) and
SPSA can use two concurrent evaluations when calculating (68). Methods employing the sample mean
estimator (70) can utilize pk evaluations concurrently.

8.2 Multistart methods

A natural approach for addressing non-convex objectives for which it is not known whether multiple
local minima exist is to start a local optimization method from different points in the domain in
the hope of identifying different local minima. Such multistart approaches also allow for the use of
methods that are specialized for optimizing problems with known structure.

Multistart methods allow for the use of concurrent objective evaluations if two or more local
optimization runs are being performed at the same time. Multistart methods also allow one to utilize
additional computational resources; this ability is especially useful when an objective evaluation does
not become faster with additional resources or when the local optimization method is inherently
sequential.

Boender et al. [1982] derive confidence intervals on the objective value of a global minimizer when
starting a local optimization method at uniformly drawn points. Their analysis gives rise to the
multilevel single linkage (MLSL) method [Rinnooy Kan and Timmer, 1987a,b]. Iteration k of the
method draws N points uniformly over the domain and starts a local optimization method from
sampled points that do not have any other point within a specific distance, depending on k and
N , with a smaller objective value. With this rule, and under assumptions on the distance between
minimizers in Ω and properties of the local optimization method used, MLSL is shown to almost
surely identify all local minima while starting the local optimization method from only finitely many
points. Larson and Wild [2016, 2018] generalize MLSL by showing similar theoretical results when
starting-point selection utilizes points both from the random sampling and from those generated by
local optimization runs.

If a meaningful variance exists in the objective evaluation times, batched evaluation of points may
result in an inefficient use of computational resources. Such concerns have motivated the development
of a number of methods including the HOPSPACK framework [Plantenga, 2009], which supports the
sharing of information between different local optimization methods. Shoemaker and Regis [2003] also
use information from multiple optimization methods to determine points at which to evaluate the
objective function. Similarly, the SNOBFIT method by Huyer and Neumaier [2008] uses concurrent
objective evaluations while combining local searches in a global framework. The software focuses on
robustness in addressing many practical concerns including soft constraints, hidden constraints, and
a problem domain that is modified by the user as the method progresses.

Instead of coordinating concurrent instances of a pattern-search method, Audet et al. [2008a]
propose an implementation of MADS that decomposes the domain into subspaces to be optimized
over in parallel. Alarie et al. [2018] study different approaches for selecting subsets of variables to
define subproblems in such an approach. Custódio and Madeira [2015] maintain concurrent instances
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of a pattern-search method, and merge those instances that become sufficiently close. Taddy et al.
[2009] use a global treed-Gaussian process to guide a local pattern-search method to encourage the
identification of better local minima.

8.3 Other global optimization methods

Guarantees of global optimality for general continuous functions rely on candidate points being gen-
erated densely in the domain [Törn and Žilinskas, 1989, Theorem 1.3]; such candidate points can
be generated in either a deterministic or randomized fashion. When f is Lipschitz-continuous on Ω
and the Lipschitz constant Lf is available to the optimization method, one need not generate points
densely in the domain. In particular, if x̂ is an approximate minimizer of f and x is a point satisfying
f(x) > f(x̂), no global minimizer can lie in – and therefore no point needs to be sampled from –
B(x; (f(x)− f(x̂))/Lf). Naturally, the benefit of exploiting this fact requires accurate knowledge of
the Lipschitz constant. One can empirically observe a lower bound on Lf , but obtaining useful up-
per bounds on Lf may not be possible. Methods that exploit this Lipschitz knowledge may suffer a
considerable performance decrease when overestimating Lf [Hansen et al., 1991].

Motivated by situations where the Lipschitz constant of f is unavailable, Jones et al. [1993] develop
the DIRECT (DIviding RECTangles) method. DIRECT partitions a bound-constrained Ω into 2n+ 1
hyper-rectangles (hence the method’s name) with an evaluated point at the centre of each. Each hyper-
rectangle is scored via a combination of the length of its longest side and the function value at its
centre. This scoring favours hyper-rectangles exhibiting both long sides and small function values; the
best-scoring hyper-rectangles are further divided. (As such, DIRECT’s performance can be significantly
affected by adding a constant value to the objective [Finkel and Kelley, 2006].) DIRECT generates
centres that are dense in Ω and will therefore identify the global minimizers of f over Ω, even when
f is non-smooth [Jones et al., 1993, Finkel and Kelley, 2004, 2009]. Several versions of DIRECT that
perform concurrent function evaluations take significant care to ensure the sequence of points generated
is the same as that produced by DIRECT [He et al., 2009a, 2007, 2009b,c]. Similar hyper-rectangle
partitioning strategies are used by the methods of Munos [2011]. The multilevel coordinate-search
(MCS) method by Huyer and Neumaier [1999] is inspired by DIRECT in many ways. MCS maintains
a partitioning of the domain and subdivides hyper-rectangles based on their size and value. MCS uses
the function values at boundary points, rather than the centre points, to determine the value of a
hyper-rectangle; such boundary points can be shared by more than one hyper-rectangle. Huyer and
Neumaier [2008] show that a version of MCS needs to consider only finitely many hyper-rectangles
before identifying a global minimizer.

Many randomized approaches for generating points densely in a domain Ω have been developed.
These include Bayesian optimization methods and related variants [Mockus, 1989, Jones et al., 1998,
Frazier, 2018], some of which have established complexity rates [Bull, 2011]. Such randomized samplings
of Ω can be used to produce a global surrogate; similar to other model-based methods, this global
model can be minimized to produce points where the objective should be evaluated. Although min-
imizing such a global surrogate may be difficult, such a subproblem may be easier than the original
problem, which typically entails a computationally expensive objective function for which derivatives
are unavailable. Vu et al. [2016] provide a recent survey of such surrogate-based methods for global
optimization.

8.4 Methods for multi-objective optimization

Multi-objective optimization problems are typically stated as

minimize
x

F (x)

subject to x ∈ Ω ⊂ Rn,
(MOO)

where p > 1 objective functions fi : Rn → R for i = 1, . . . , p define the vector-valued mapping F via
F (x) = [f1(x), . . . , fp(x)]. Given potentially conflicting objectives f1, . . . , fp, the problem (MOO) is
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well-defined only when given an ordering on the vector of objective values F (x). Given distinct points
x1,x2 ∈ Rn, x1 Pareto dominates x2 provided

fi(x1) ≤ fi(x2) for all i = 1, . . . , p and fj(x1) < fj(x2) for some j.

The set of all feasible points that are not Pareto-dominated by any other feasible point is referred to as
the Pareto(-optimal) set of (MOO). An in-depth treatment of such problems is provided by Ehrgott
[2005].

Ideally, a method designed for the solution of (MOO) should return an approximation of the
Pareto set. If at least one objective f1, . . . , fp is non-convex, however, approximating the Pareto set
can be challenging. Consequently, methods for multi-objective optimization typically pursue Pareto
stationarity, which is a form of local optimality characterized by a first-order stationarity condition.
If Ω = Rn, a point x∗ is a Pareto stationary point of F provided that for each d ∈ Rn, there exists
j ∈ {1, . . . , p} such that f ′j(x∗;d) ≥ 0. This notion of stationarity is an extension of the one given for
single-objective optimization in (1).

Typical methods for (MOO) return a collection of points that are not known to be Pareto-
dominated and thus serve as an approximation to the set of Pareto points. From a theoretical point of
view, most methods endeavour only to demonstrate that all accumulation points are Pareto stationary,
and rarely prove the existence of more than one such point. From a practical point of view, comparing
the approximate Pareto sets returned by a method for multi-objective optimization is not straight-
forward. For discussions of some comparators used in multi-objective optimization, see Knowles and
Corne [2002] and Audet et al. [2018a].

Various derivative-free methods discussed in this survey have been extended to address (MOO).
The method of Audet et al. [2008b] solves biobjective optimization problems by iteratively combining
the two objectives into a single objective (for instance, by considering a weighted sum of the two
objectives); MADS is then applied to this single-objective problem. Audet et al. [2010] extend the
method of Audet et al. [2008b] to multi-objective problems with more than two objectives. Audet
et al. [2008b, 2010] demonstrate that all refining points of the sequence of candidate points produced
by these methods are Pareto stationary.

Custódio et al. [2011] propose direct-multisearch methods, a multi-objective analogue of direct-
search methods. Like direct-search methods, direct-multisearch methods involve both a search step
and a poll step. Direct-multisearch methods maintain a list of non-dominated points; at the start
of an iteration, one non-dominated point must be selected to serve as the centre for a poll step.
Custódio et al. [2011] demonstrate that at any accumulation point x∗ of the maintained sequence of
non-dominated points from a direct-multisearch method, it holds that for any direction d that appears
in a poll step infinitely often, f ′j(x∗,d) ≥ 0 for at least one j. In other words, accumulation points
of the method are Pareto stationary when restricted to these directions d. Custódio and Madeira
[2016] incorporate these direct-multisearch methods within a multistart framework in an effort to find
multiple Pareto stationary points and thus to better approximate the Pareto set.

For stochastic biobjective problems, Kim and Ryu [2011] employ sample average approximation to
estimate F (x) = Eξ[F̃ (x; ξ)] and propose a model-based trust-region method. Ryu and Kim [2014]
adapt the approach of Kim and Ryu [2011] to the deterministic biobjective setting. At the start of
each iteration, these methods construct fully linear models of both objectives around a (currently)
non-dominated point. These methods solve three trust-region subproblems – one for each of the two
objectives, and a third that weights the two objectives as in Audet et al. [2008b] – and accept all
non-dominated trial points. If both objectives are in LC1, Ryu and Kim [2014] prove that one of
the three objectives satisfies a lim-inf convergence result of the form (5), implying the existence of a
Pareto-stationary accumulation point.

Liuzzi et al. [2016] propose a method for constrained multi-objective non-smooth optimization that
separately handles each objective and constraint via an exact penalty (see (74)) in order to determine
whether a point is non-dominated. Given the non-sequential nature of how non-dominated points
are selected, Liuzzi et al. [2016] identify and link the subsequences implied by a lim-inf convergence
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result. They show that limit points of these linked sequences are Pareto stationary provided the search
directions used in each linked sequence are asymptotically dense in the unit sphere.

Cocchi et al. [2018] extend implicit filtering to the multi-objective case. They approximate each
objective gradient separately using implicit-filtering techniques; they combine these approximate gradi-
ents in a disciplined way to generate search directions. Cocchi et al. [2018] demonstrate that their
method generates at least one accumulation point and that every such accumulation point is Pareto
stationary.

8.5 Methods for multifidelity optimization

Multifidelity optimization concerns the minimization of a high-fidelity objective function f = f0 in
situations where a lower-fidelity version fε (for ε > 0) also exists. Evaluations of the lower-fidelity
function fε are less computationally expensive than are evaluations of f0; hence, a goal in multifidelity
optimization is to exploit the existence of the lower-fidelity fε in order to perform as few evaluations of
f0 as possible. An example of such a setting occurs when there exist multiple grid resolutions defining
discretizations for the numerical solution of partial differential equations that defines f0 and fε.

Polak and Wetter [2006] develop a pattern-search method that exploits the existence of multiple
levels of fidelity. The method begins at the coarsest available level and then monotonically refines the
level of fidelity (i.e. decreases ε) after a sufficient number of consecutive unsuccessful iterations occur.

A method that both decreases ε and increases ε (akin to the V- and W-cycles of multigrid methods
[Xu and Zikatanov, 2017]), is the multilevel method of Frandi and Papini [2013]. The method follows
the MG/Opt framework of Nash [2000] and instantiates runs of a coordinate-search method at specified
fidelity and solution accuracy levels. Another multigrid-inspired method is developed by Liu et al.
[2015], wherein a hierarchy of DIRECT runs are performed at varying fidelity and budget levels.

Model-based methods have also been extended to the multifidelity setting. For example, March
and Willcox [2012] employ a fully linear RBF model to interpolate the error between two different
fidelity levels. Their method then employs this model within a trust-region framework, but uses f0 to
determine whether to accept a given step.

Another model-based approach for multifidelity optimization is co-kriging; see, for example, Xiong
et al. [2013] and Le Gratiet and Cannamela [2015]. In such approaches, a statistical surrogate (typ-
ically a Gaussian process model) is constructed for each fidelity level with the aim of modelling the
relationships among the fidelity levels in areas of the domain relevant to optimization.

Derivative-free methods for multifidelity, multi-objective and concurrent/parallel optimization re-
main an especially open avenue of future research.
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Appendix: Collection of WCC results

Table 8.1 contains select WCC bounds for methods appearing in the literature. Given ε > 0, all
WCC bounds in this appendix are given in terms of Nε, an upper bound on the number of function
evaluations of a method to guarantee that the specified condition is met. We present results in this
form because function evaluation complexity of derivative-free methods is often of greater interest than
is iteration complexity. We present Nε in terms of four parameters:

• the accuracy ε;

• the dimension n;

• the Lipschitz constant of the function Lf , the Lipschitz constant of the function gradient Lg or
the Lipschitz constant of the function Hessian LH (provided these constants are well-defined);
and

• a measure of how far the starting point x0 is from a stationary point x∗. In this appendix, this
measure is either f(x0)− f(x∗),

Rlevel = sup
x∈Rn

{‖x− x∗‖ : f(x) ≤ f(x0)} (87)

or
Rx ≥ ‖x0 − x∗‖. (88)

We present additional constants in Nε when particularly informative.
Naturally, each method in Table 8.1 has additional algorithmic parameters that influence al-

gorithmic behaviour. We have omitted the dependence of each method’s WCC on the selection of
algorithmic parameters to allow for an easier comparison of methods.

We recall that, with the exception of the methods from Nesterov and Spokoiny [2017] and Konečný
and Richtárik [2014], the methods referenced in Table 8.1 do not require knowledge of the value of the
relevant Lipschitz constants.

In Table 8.1, we employ the constants

p1 = exp

(
−
nL2

g

ε2
(f(x0)− f(x∗))

)
,

p2 = exp

(
−max{κef , κeg}2

ε2
(f(x0)− f(x∗))

)
,

p3 = exp

(
−max{κeg, κeH}3

ε3
(f(x0)− f(x∗))

)
.
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Table 8.1: Known WCC bounds on the number of function evaluations needed to achieve a given stationarity measure.

Rate type Method type (citation)notes Nε
f ∈ LC1

‖∇f(xk)‖ ≤ ε DDS [Konečný and Richtárik, 2014]
n2Lg(f(x0)− f(x∗))

ε2

TR [Garmanjani et al., 2016]
n2L2

g(f(x0)− f(x∗))

ε2

ARC-DFO [Cartis et al., 2012]A
n2 max{LH, Lg}3/2(f(x0)− f(x∗))

ε3/2

EUk−1 [‖∇f(x̂k)‖] ≤ ε RS [Nesterov and Spokoiny, 2017]B
nLg(f(x0)− f(x∗))

ε2

‖∇f(xk)‖ ≤ ε w.p. 1− p1 DDS [Gratton et al., 2015]C
mnL2

g(f(x0)− f(x∗))

ε2

‖∇f(xk)‖ ≤ ε w.p. 1− p2 TR [Gratton et al., 2018]C,D mmax{κef , κeg}2(f(x0)− f(x∗))

ε2
f ∈ LC2

max{‖∇f(xk)‖,−λk} ≤ ε DDS [Gratton et al., 2016]
n5 max{LH, Lg}3(f(x0)− f(x∗))

ε3

TR [Gratton et al., 2019a]
n5 max{L3

H, L
2
g}(f(x0)− f(x∗))

ε3

max{‖∇f(xk)‖,−λk} ≤ ε w.p. 1− p3 TR [Gratton et al., 2018]C,D mmax{κeg, κeH}3(f(x0)− f(x∗))

ε3
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Table 8.1 continued.

Rate type Method type (citation)notes Nε
f ∈ LC1, f is λ-strongly convex

f(xk)− f(x∗) ≤ ε DDS [Konečný and Richtárik, 2014]
n2Lg

λ
log

(
1

ε

)
EUk−1 [f(x̂k)]− f(x∗) ≤ ε RS [Nesterov and Spokoiny, 2017]B

nLg

λ
log

(
LgRx

2

ε

)
f ∈ LC1, f is convex

f(xk)− f(x∗) ≤ ε DDS [Konečný and Richtárik, 2014]E
n2LgRlevel

ε

EUk−1 [f(x̂k)]− f(x∗) ≤ ε RS [Nesterov and Spokoiny, 2017]B
nLgRx

2

ε
f ∈ LC0, f is convex

EUk−1 [f(x̂k)]− f(x∗) ≤ ε RS [Nesterov and Spokoiny, 2017]B
n2L2

fRx
2

ε2
f ∈ LC0

EUk−1 [‖∇fµ̄(x̂k)‖] ≤ ε, µ̄ =
ε

Lf

√
n

RS [Nesterov and Spokoiny, 2017]B
n3L5

f (f(x0)− f(x∗))

ε3
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Table 8.1 continued.

Rate type Method type (citation)notes Nε
f = h ◦ F , convex h ∈ LC0, F ∈ LC1

Ψ(xk) ≤ ε TR [Garmanjani et al., 2016]F
pn2Lg(F )2Lf(h)2(f(x0)− f(x∗))

ε2
A smoothed fµ(x) for f

‖∇fµk (xk)‖ ≤ ε where µk ∈ O
(

ε√
n

)
DDS [Garmanjani and Vicente, 2012]G

n5/2 [− log(ε) + log(n)] (f(x0)− f(x∗))

ε3

TR [Garmanjani et al., 2016]G
n5/2 [| log(ε)|+ log(n)] (f(x0)− f(x∗))

ε3

A We omit an additional | log(ε)| dependence.

B x̂k = arg minj=1,...,k f(xj).

C m is the number of function evaluations performed in each iteration, independent of n.

D Gratton et al. [2018] prove results for an arbitrary model-building scheme that assumes the ability to yield p-probabilistically κQ-fully
quadratic models (where κQ = (κef , κeg, κeH)) when f ∈ LC2 and p-probabilistically κL-fully linear models (where κL = (κef , κeg))
when f ∈ LC1. The construction of probabilistically fully quadratic models or probabilistically fully linear models when m �
(n + 1)(n + 2)/2 remains an open question. Note that when p = 1, it is known that by using m ∈ O(n2) points, one can guarantee
κQ-fully quadratic models with κef , κeg, κeH ∈ O(nLH) [Conn et al., 2008a, Theorem 3]. In this case, the result of Gratton et al. [2018]
yields a rate weaker than that obtained by Gratton et al. [2016] by a factor of Lg. Similarly, when p = 1, it is known that by using
m ∈ O(n) points, one can guarantee κL-fully linear models with κef , κeg ∈ O(n1/2Lg) [Conn et al., 2008a, Theorem 2]. In this case,
the result of Gratton et al. [2018] yields a rate comparable to that obtained by Garmanjani et al. [2016].

E Vicente [2013] derives the same bound but with L2
g instead of Lg; however, the method of Vicente [2013] does not require the value

Lg.

F Lg(F ) is the Lipschitz constant of the Jacobian J(F ), Lf(h) is the Lipschitz constant of h, and p is the dimension of the domain of h.
A bound for a similar method with an additional | log(ε)| dependence appears in Grapiglia et al. [2016].

G Lipschitz constants do not appear because they are ‘cancelled’ by choosing the rate at which smoothing parameter µk → 0.
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S. Gratton, P. L. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-free non-
linear bound-constrained optimization. Optimization Methods and Software, 26(4-5):873–894, Oct
2011. doi:10.1080/10556788.2010.549231.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic descent.
SIAM Journal on Optimization, 25(3):1515–1541, 2015. doi:10.1137/140961602.

S. Gratton, C. W. Royer, and L. N. Vicente. A second-order globally convergent
direct-search method and its worst-case complexity. Optimization, 65(6):1105–1128, 2016.
doi:10.1080/02331934.2015.1124271.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Complexity and global rates of trust-region
methods based on probabilistic models. IMA Journal Of Numerical Analysis, 38(3):1579–1597, 2018.
doi:10.1093/imanum/drx043.

S. Gratton, C. W. Royer, and L. N. Vicente. A decoupled first/second-order steps technique for
nonconvex nonlinear unconstrained optimization with improved complexity bounds. Mathematical
Programming, 2019a. doi:10.1007/s10107-018-1328-7. To appear.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic feasible
descent for bound and linearly constrained problems. Computational Optimization and Applications,
72(3):525–559, 2019b. doi:10.1007/s10589-019-00062-4.

G. A. Gray and T. G. Kolda. Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search
for derivative-free optimization. ACM Transactions on Mathematical Software, 32(3):485–507, 2006.
doi:10.1145/1163641.1163647.

A. Griewank. A mathematical view of automatic differentiation. Acta Numerica, 12:321–398, 2003.
doi:10.1017/s0962492902000132.

http://dx.doi.org/10.1137/0805015
http://dx.doi.org/10.1145/321250.321256
http://dx.doi.org/10.1145/3097983.3098043
http://dx.doi.org/10.1137/s1052623401399320
http://dx.doi.org/10.1007/s10107-008-0244-7
http://www.ybook.co.jp/online2/pjov11-3.html#Url#
http://www.ybook.co.jp/online2/pjov11-3.html#Url#
http://dx.doi.org/10.1007/s40314-014-0201-4
http://dx.doi.org/10.1137/130917661
http://dx.doi.org/10.1080/10556788.2010.549231
http://dx.doi.org/10.1137/140961602
http://dx.doi.org/10.1080/02331934.2015.1124271
http://dx.doi.org/10.1093/imanum/drx043
http://dx.doi.org/10.1007/s10107-018-1328-7
http://dx.doi.org/10.1007/s10589-019-00062-4
http://dx.doi.org/10.1145/1163641.1163647
http://dx.doi.org/10.1017/s0962492902000132


Jeffrey Larson, Matt Menickelly and Stefan M. Wild 80

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, 2008. doi:10.1137/1.9780898717761.

A. Griewank, A. Walther, S. Fiege, and T. Bosse. On Lipschitz optimization based on gray-box
piecewise linearization. Mathematical Programming, 158:383–415, 2016. doi:10.1007/s10107-015-
0934-x.

L. Grippo and F. Rinaldi. A class of derivative-free nonmonotone optimization algorithms employing
coordinate rotations and gradient approximations. Computational Optimization and Applications,
60(1):1–33, 2014. doi:10.1007/s10589-014-9665-9.

L. Grippo and M. Sciandrone. Nonmonotone derivative-free methods for nonlinear equations. Com-
putational Optimization and Applications, 37(3):297–328, 2007. doi:10.1007/s10589-007-9028-x.

L. Grippo, F. Lampariello, and S. Lucidi. Global convergence and stabilization of unconstrained
minimization methods without derivatives. Journal of Optimization Theory and Applications, 56
(3):385–406, 1988. doi:10.1007/bf00939550.

B. Gu, Z. Huo, and H. Huang. Zeroth-order asynchronous doubly stochastic algorithm with variance
reduction. Technical Report 1612.01425, ArXiv, 2016. URL http://arxiv.org/abs/1612.01425.

E. A. E. Gumma, M. H. A. Hashim, and M. M. Ali. A derivative-free algorithm for linearly con-
strained optimization problems. Computational Optimization and Applications, 57(3):599–621, 2014.
doi:10.1007/s10589-013-9607-y.

M. D. Gunzburger, C. G. Webster, and G. Zhang. Stochastic finite element methods for
partial differential equations with random input data. Acta Numerica, 23:521–650, 2014.
doi:10.1017/s0962492914000075.

H.-M. Gutmann. A radial basis function method for global optimization. Journal of Global Optimiz-
ation, 19:201–227, 2001. doi:10.1023/A:1011255519438.

L. Han and G. Liu. On the convergence of the UOBYQA method. Journal of Applied Mathematics
and Computing, 16(1-2):125–142, 2004. doi:10.1007/bf02936156.

P. Hansen, B. Jaumard, and S.-H. Lu. On the number of iterations of piyavskii’s global optimization al-
gorithm. Mathematics of Operations Research, 16(2):334–350, may 1991. doi:10.1287/moor.16.2.334.

W. L. Hare. Numerical analysis of VU-decomposition, U-gradient, and U-Hessian approximations.
SIAM Journal on Optimization, 24(4):1890–1913, 2014. doi:10.1137/130933691.

W. L. Hare. Compositions of convex functions and fully linear models. Optimization Letters, 11:
1217–1227, 2017. doi:10.1007/s11590-017-1117-x.

W. L. Hare and A. S. Lewis. Estimating tangent and normal cones without calculus. Mathematics of
Operations Research, 30(4):785–799, 2005. doi:10.1287/moor.1050.0163.

W. L. Hare and Y. Lucet. Derivative-free optimization via proximal point methods. Journal of
Optimization Theory and Applications, 160(1):204–220, June 2013. doi:10.1007/s10957-013-0354-0.

W. L. Hare and M. Macklem. Derivative-free optimization methods for finite minimax problems.
Optimization Methods and Software, 28(2):300–312, 2013. doi:10.1080/10556788.2011.638923.

W. L. Hare and J. Nutini. A derivative-free approximate gradient sampling algorithm for
finite minimax problems. Computational Optimization and Applications, 56(1):1–38, 2013.
doi:10.1007/s10589-013-9547-6.

http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1007/s10107-015-0934-x
http://dx.doi.org/10.1007/s10107-015-0934-x
http://dx.doi.org/10.1007/s10589-014-9665-9
http://dx.doi.org/10.1007/s10589-007-9028-x
http://dx.doi.org/10.1007/bf00939550
http://arxiv.org/abs/1612.01425
http://dx.doi.org/10.1007/s10589-013-9607-y
http://dx.doi.org/10.1017/s0962492914000075
http://dx.doi.org/10.1023/A:1011255519438
http://dx.doi.org/10.1007/bf02936156
http://dx.doi.org/10.1287/moor.16.2.334
http://dx.doi.org/10.1137/130933691
http://dx.doi.org/10.1007/s11590-017-1117-x
http://dx.doi.org/10.1287/moor.1050.0163
http://dx.doi.org/10.1007/s10957-013-0354-0
http://dx.doi.org/10.1080/10556788.2011.638923
http://dx.doi.org/10.1007/s10589-013-9547-6


Derivative-free optimization methods 81
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J. Konečný and P. Richtárik. Simple complexity analysis of simplified direct search. Technical Report
1410.0390, arXiv, 2014. URL https://arxiv.org/abs/1410.0390v2.

H. J. Kushner and H. Huang. Rates of convergence for stochastic approximation type algorithms.
SIAM Journal on Control and Optimization, 17(5):607–617, 1979. doi:10.1137/0317043.

H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Springer-Verlag, 2003. doi:10.1007/b97441.

W. La Cruz. A projected derivative-free algorithm for nonlinear equations with convex constraints.
Optimization Methods and Software, 29(1):24–41, 2014. doi:10.1080/10556788.2012.721129.

W. La Cruz, J. M. Mart́ınez, and M. Raydan. Spectral residual method without gradient information
for solving large-scale nonlinear systems of equations. Mathematics of Computation, 75(255):1429–
1449, apr 2006. doi:10.1090/s0025-5718-06-01840-0.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties of the Nelder-
Mead simplex algorithm in low dimensions. SIAM Journal on Optimization, 9:112–147, 1998.
doi:10.1137/S1052623496303470.

J. C. Lagarias, B. Poonen, and M. H. Wright. Convergence of the restricted Nelder-Mead algorithm
in two dimensions. SIAM Journal on Optimization, 22(2):501–532, 2012. doi:10.1137/110830150.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4–22, 1985. doi:10.1016/0196-8858(85)90002-8.

J. Larson and S. C. Billups. Stochastic derivative-free optimization using a trust region framework.
Computational Optimization and Applications, 64(3):619–645, 2016. doi:10.1007/s10589-016-9827-z.

J. Larson and S. M. Wild. A batch, derivative-free algorithm for finding multiple local minima.
Optimization and Engineering, 17(1):205–228, 2016. doi:10.1007/s11081-015-9289-7.

J. Larson and S. M. Wild. Asynchronously parallel optimization solver for finding multiple minima.
Mathematical Programming Computation, 10(3):303–332, 2018. doi:10.1007/s12532-017-0131-4.

J. Larson, M. Menickelly, and S. M. Wild. Manifold sampling for `1 nonconvex optimization. SIAM
Journal on Optimization, 26(4):2540–2563, 2016. doi:10.1137/15M1042097.

J. Larson, S. Leyffer, P. Palkar, and S. M. Wild. A method for convex black-box integer global
optimization. Technical Report 1903.11366, ArXiv, 2019. URL https://arxiv.org/abs/1903.

11366.

V. Latorre, H. Habal, H. Graeb, and S. Lucidi. Derivative free methodologies for circuit worst case
analysis. Optimization Letters, 2019. doi:10.1007/s11590-018-1364-5. To appear.

M. Lazar and F. Jarre. Calibration by optimization without using derivatives. Optimization and
Engineering, 17(4):833–860, 2016. doi:10.1007/s11081-016-9324-3.

S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Transactions on Mathematical Software, 37(4):44:1–44:15, 2011. doi:10.1145/1916461.1916468.

http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S1052623403433638
https://arxiv.org/abs/1410.0390v2
http://dx.doi.org/10.1137/0317043
http://dx.doi.org/10.1007/b97441
http://dx.doi.org/10.1080/10556788.2012.721129
http://dx.doi.org/10.1090/s0025-5718-06-01840-0
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/110830150
http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.1007/s10589-016-9827-z
http://dx.doi.org/10.1007/s11081-015-9289-7
http://dx.doi.org/10.1007/s12532-017-0131-4
http://dx.doi.org/10.1137/15M1042097
https://arxiv.org/abs/1903.11366
https://arxiv.org/abs/1903.11366
http://dx.doi.org/10.1007/s11590-018-1364-5
http://dx.doi.org/10.1007/s11081-016-9324-3
http://dx.doi.org/10.1145/1916461.1916468


Jeffrey Larson, Matt Menickelly and Stefan M. Wild 84

S. Le Digabel and S. M. Wild. A taxonomy of constraints in black-box simulation-based optimiza-
tion. Preprint ANL/MCS-P5350-0515, Argonne National Laboratory, Mathematics and Computer
Science Division, January 2015. URL http://www.mcs.anl.gov/papers/P5350-0515.pdf.

L. Le Gratiet and C. Cannamela. Cokriging-based sequential design strategies using fast cross-
validation techniques for multi-fidelity computer codes. Technometrics, 57(3):418–427, 2015.
doi:10.1080/00401706.2014.928233.

P. L’Ecuyer and G. Yin. Budget-dependent convergence rate of stochastic approximation. SIAM
Journal on Optimization, 8(1):217–247, 1998. doi:10.1137/S1052623495270723.

H. K. H. Lee, R. B. Gramacy, C. Linkletter, and G. A. Gray. Optimization subject to hidden constraints
via statistical emulation. Pacific Journal of Optimization, 7(3):467–478, 2011. URL http://ams.

soe.ucsc.edu/share/technical-reports/2010/ucsc-soe-10-10.pdf.

C. Lemarechal and R. Mifflin, editors. Nonsmooth Optimization; Proceedings of an IIASA Workshop,
March 28 - April 8, 1977, 1978. Oxford: Pergamon Press. ISBN 0-08-025428-5.

K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of
Applied Mathematics, 2(2):164–168, 1944. doi:10.1090/qam/10666.

R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained minimization. SIAM
Journal on Optimization, 9(4):1082–1099, 1999. doi:10.1137/s1052623496300507.

R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization. SIAM
Journal on Optimization, 10(3):917–941, 2000. doi:10.1137/s1052623497331373.

R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search algorithm
for optimization with general constraints and simple bounds. SIAM Journal on Optimization, 12
(4):1075–1089, 2002. doi:10.1137/S1052623498339727.

R. M. Lewis and V. Torczon. A direct search approach to nonlinear programming problems using an
augmented Lagrangian method with explicit treatment of the linear constraints. Technical Report
WM-CS-2010-01, Department of Computer Science, College of William and Mary, 2010. URL
http://www.cs.wm.edu/~va/research/wm-cs-2010-01.pdf.

R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: Then and now. Journal of Com-
putational and Applied Mathematics, 124(1-2):191–207, 2000. doi:10.1016/S0377-0427(00)00423-4.

S. Leyffer. It’s to solve problems: An interview with Roger Fletcher. Optima, 99:1–6, 2015. URL
http://www.mathopt.org/Optima-Issues/optima99.pdf.

D.-H. Li and M. Fukushima. A derivative-free line search and global convergence of Broyden-
like method for nonlinear equations. Optimization Methods and Software, 13(3):181–201, 2000.
doi:10.1080/10556780008805782.

Q. Li and D.-H. Li. A class of derivative-free methods for large-scale nonlinear monotone equations.
IMA Journal of Numerical Analysis, 31(4):1625–1635, 2011. doi:10.1093/imanum/drq015.

Q. Liu, J. Zeng, and G. Yang. MrDIRECT: A multilevel robust DIRECT algorithm for global optimiz-
ation problems. Journal of Global Optimization, 62:205–227, 2015. doi:10.1007/s10898-014-0241-8.

S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini. Zeroth-order stochastic variance
reduction for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 3731–3741. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/7630-

zeroth-order-stochastic-variance-reduction-for-nonconvex-optimization.pdf.

http://www.mcs.anl.gov/papers/P5350-0515.pdf
http://dx.doi.org/10.1080/00401706.2014.928233
http://dx.doi.org/10.1137/S1052623495270723
http://ams.soe.ucsc.edu/share/technical-reports/2010/ucsc- soe-10-10.pdf
http://ams.soe.ucsc.edu/share/technical-reports/2010/ucsc- soe-10-10.pdf
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/s1052623496300507
http://dx.doi.org/10.1137/s1052623497331373
http://dx.doi.org/10.1137/S1052623498339727
http://www.cs.wm.edu/~va/research/wm-cs-2010-01.pdf
http://dx.doi.org/10.1016/S0377-0427(00)00423-4
http://www.mathopt.org/Optima-Issues/optima99.pdf
http://dx.doi.org/10.1080/10556780008805782
http://dx.doi.org/10.1093/imanum/drq015
http://dx.doi.org/10.1007/s10898-014-0241-8
http://papers.nips.cc/paper/7630-zeroth-order-stochastic- variance-reduction-for-nonconvex-optimization.pdf
http://papers.nips.cc/paper/7630-zeroth-order-stochastic- variance-reduction-for-nonconvex-optimization.pdf


Derivative-free optimization methods 85

G. Liuzzi and S. Lucidi. A derivative-free algorithm for inequality constrained nonlinear program-
ming via smoothing of an `∞ penalty function. SIAM Journal on Optimization, 20(1):1–29, 2009.
doi:10.1137/070711451.

G. Liuzzi, S. Lucidi, and M. Sciandrone. A derivative-free algorithm for linearly constrained finite
minimax problems. SIAM Journal on Optimization, 16(4):1054–1075, 2006. doi:10.1137/040615821.

G. Liuzzi, S. Lucidi, and M. Sciandrone. Sequential penalty derivative-free methods for
nonlinear constrained optimization. SIAM Journal on Optimization, 20(5):2614–2635, 2010.
doi:10.1137/090750639.

G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for bound constrained mixed-
integer optimization. Computational Optimization and Applications, 53(2):505–526, apr 2011.
doi:10.1007/s10589-011-9405-3.

G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for mixed-integer constrained optim-
ization problems. Journal of Optimization Theory and Applications, 164(3):933–965, jul 2015.
doi:10.1007/s10957-014-0617-4.

G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiob-
jective nonsmooth optimization. SIAM Journal on Optimization, 26:2744–2774, 01 2016.
doi:10.1137/15M1037810.

G. Liuzzi, S. Lucidi, and F. Rinaldi. An algorithmic framework based on primitive directions and non-
monotone line searches for black box problems with integer variables. Technical Report 6471, Op-
timization Online, 2018. URL http://www.optimization-online.org/DB_HTML/2018/02/6471.

html.

S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained optimization. Com-
putational Optimization Applications, 21(2):119–142, 2002a. doi:10.1023/A:1013735414984.

S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods
for unconstrained optimization. SIAM Journal on Optimization, 13(1):97–116, 2002b.
doi:10.1137/S1052623497330392.

S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained optimiza-
tion. Mathematical Programming, 92(1):37–59, 2002. doi:10.1007/s101070100266.

J. Ma and X. Zhang. Pattern search methods for finite minimax problems. Journal of Applied
Mathematics and Computing, 32(2):491–506, mar 2009. doi:10.1007/s12190-009-0266-1.

K. Madsen. Minimax solution of non-linear equations without calculating derivatives. In M. L. Balin-
ski and P. Wolfe, editors, Nondifferentiable Optimization, volume 3 of Mathematical Programming
Studies, pages 110–126. Springer, 1975. doi:10.1007/bfb0120701.
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J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM Journal on
Optimization, 20(1):172–191, 2009. doi:10.1137/080724083.
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A. Tröltzsch. A sequential quadratic programming algorithm for equality-constrained optimization
without derivatives. Optimization Letters, 10(2):383–399, 2016. doi:10.1007/s11590-014-0830-y.

P. Tseng. Fortified-descent simplicial search method: A general approach. SIAM Journal on Optim-
ization, 10(1):269–288, 1999. doi:10.1137/S1052623495282857.

M. Valko, A. Carpentier, and R. Munos. Stochastic simultaneous optimistic optimization. In Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13), pages 19–27, 2013.

http://dx.doi.org/10.1109/wsc.2016.7822121
http://dx.doi.org/10.1137/15m1042425
http://dx.doi.org/10.1145/777412.777451
http://dx.doi.org/10.1109/9.119632
http://books.google.com/books?id=f66OIvvkKnAC
http://dx.doi.org/10.1080/00401706.1962.10490033
http://papers.nips.cc/paper/4413-on-the-universality-of- online-mirror-descent.pdf
http://papers.nips.cc/paper/4413-on-the-universality-of- online-mirror-descent.pdf
http://dx.doi.org/10.1016/j.ejor.2008.10.020
http://dx.doi.org/10.1137/110853613
http://dx.doi.org/10.1198/TECH.2009.08007
http://dx.doi.org/10.1137/0801010
http://dx.doi.org/10.1137/S1052623493250780
http://dx.doi.org/10.1007/3-540-50871-6
http://dx.doi.org/10.1007/s11590-014-0830-y
http://dx.doi.org/10.1137/S1052623495282857


Derivative-free optimization methods 93

B. Van Dyke and T. J. Asaki. Using QR decomposition to obtain a new instance of mesh adaptive
direct search with uniformly distributed polling directions. Journal of Optimization Theory and
Applications, 159(3):805–821, 2013. doi:10.1007/s10957-013-0356-y.

F. Vanden Berghen. CONDOR: A Constrained, Non-Linear, Derivative-Free Parallel Optim-
izer for Continuous, High Computing Load, Noisy Objective Functions. PhD thesis, Université
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