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Abstract

We consider words coding exchange of three intervals with permutation (3,2,1),
here called 3iet words. Recently, a characterization of substitution invariant 3iet
words was provided. We study the opposite question: what are the morphisms fixing
a 3iet word? We reveal a narrow connection of such morphisms and morphisms fixing
Sturmian words using the new notion of amicability.

1 Introduction

Words coding exchange of three intervals represent one of possible generalizations of Stur-
mian words to a ternary alphabet. An exchange of three intervals is given by a permutation
π on the set {1, 2, 3}, and a triplet of positive numbers α, β, γ, corresponding to lengths
of intervals IA, IB, IC , respectively, which define a division of the interval I. In this paper
we study infinite words coding exchange of three intervals with the permutation (3, 2, 1).
Such words are called here 3iet words. Properties of 3iet words have been studied from
various points of view in papers [1, 8, 10, 11, 12].

Recently, articles [5] and [3] gave a characterization of 3iet words invariant under a
substitution. Recall that a similar question for Sturmian words (i.e. words coding exchange
of two intervals) has been partially solved in [9, 14, 16]. Complete solution to the task was
provided by Yasutomi [18]. An alternative proof valid for bidirectional Sturmian words is
given in [4], yet another proof in [7].

One has also asked the question from another angle: what are the substitutions fixing
a Sturmian word, this problem has been studied in a wider context. One considers the
so-called Sturmian morphisms, i.e. morphisms that preserve the set of Sturmian words.
The monoid of Sturmian morphisms has been described in [17, 15]. It turns out that it is
generated by three simple morphisms, namely

ϕ :
0 7→ 01

1 7→ 0
, ψ :

0 7→ 10

1 7→ 0
, and E :

0 7→ 1

1 7→ 0
. (1)

It is known [6] that a morphism ξ such that ξ(u) is Sturmian for at least one Sturmian
word u belongs also to the monoid. In particular, all morphisms fixing Sturmian words
are Sturmian morphisms.

The aim of this paper is to describe morphisms over the alphabet {A,B,C} fixing a 3iet
word. The main tool which we use is a narrow connection between 3iet words and Sturmian
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words over the alphabet {0, 1} by means of morphisms σ01, σ10 : {A,B,C}∗ → {0, 1}∗

given by

σ01 :

A 7→ 0

B 7→ 01

C 7→ 1

, and σ10 :

A 7→ 1

B 7→ 10

C 7→ 0

. (2)

In [3] the following statement is proved.

Theorem 1 ([3]). A ternary word u is a 3iet word if and only if both σ01(u) and σ10(u)
are Sturmian words.

Another important statement connecting 3iet words and Sturmian words is taken
from [5].

Theorem 2 ([5]). A non-degenerate 3iet word u is invariant under a substitution if and
only if both σ01(u) and σ10(u) are invariant under substitution.

The paper is organized as follows. In Section 2 we recall the definitions of 3iet words and
morphisms and the geometric representation of a fixed point of a morphism. In Section 3
we define a relation on the set of Sturmian morphisms with a given incidence matrix, called
amicability, and we show how to construct from a pair of amicable morphisms a morphism
over the alphabet {A,B,C} with a 3iet fixed point (Theorem 10). In Section 4 we show,
that any morphism η fixing a non-degenerate 3iet word (or its square η2) is constructed
in this way (Theorem 11).

2 Preliminaries

2.1 Three interval exchange

A transformation T : I → I of an exchange of three intervals is usually defined as a
mapping with the domain I = [0, α+ β + γ), where α, β, γ are arbitrary positive numbers
determining the splitting of I into three disjoint subintervals I = IA ∪ IB ∪ IC . An infinite
word associated to such a transformation is given as a coding of an initial point x0 ∈ I in
a ternary alphabet {A,B,C}. Properties of the transformation T and the corresponding
infinite word do not depend on absolute values of α, β, γ, but rather on their relative sizes.
As well, translation of the interval I on the real line does not influence the corresponding
dynamical system. For the study of substitution properties of 3iet words it proved useful
to consider the definition of a 3iet mapping with parameters normalized by α+2β+γ = 1
and a translation of the interval I such that the initial point x0 is the origin.

Definition 3. Let ε, l, c be real numbers satisfying

ε ∈ (0, 1) , max{ε, 1− ε} < l < 1 , 0 ∈ [c, c+ l) =: I .

The mapping

T (x) =







x+ 1− ε for x ∈ [c, c+ l − 1 + ε) =: IA ,
x+ 1− 2ε for x ∈ [c+ l − 1 + ε, c+ ε) =: IB ,
x− ε for x ∈ [c+ ε, c + l) =: IC ,

(3)

is called exchange of three intervals with permutation (3, 2, 1).
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Note that the parameter ε represents the length of the interval IA ∪ IB , and 1 − ε
corresponds to the length of IB ∪ IC . The number l is the length of the interval I =
IA ∪ IB ∪ IC .

The orbit of the point x0 = 0 under the transformation T of (3) can be coded by an
infinite word (un)n∈Z in the alphabet {A,B,C}, where

un =











A if T n(0) ∈ IA ,

B if T n(0) ∈ IB ,

C if T n(0) ∈ IC ,

for n ∈ Z. (4)

The infinite word (un)n∈Z is non-periodic exactly in the case that the parameter ε is
irrational. Words coding the orbit of 0 under an exchange of intervals with the permutation
(3, 2, 1) and an irrational parameter ε are called 3iet words.

2.2 Words and morphisms

An alphabet A is a finite set of symbols. In this paper we shall systematically use the
alphabet {A,B,C} for 3iet words, and the alphabet {0, 1} for Sturmian words. A finite
word in the alphabet A is a concatenation v = v1v2 · · · vn, where vi ∈ A for all i =
1, 2, . . . , n. The length of the word v is denoted by |v| = n. The symbol A∗ denotes the
set of all finite words over A, including the empty word ǫ. Equipped with the operation
of concatenation, A∗ is a monoid. Sequences u0u1u2 · · · ∈ AN, · · · u−3u−2u−1 ∈ AZ<0 ,
· · · u−3u−2u−1|u0u1u2 · · · ∈ AZ are called right-sided, left-sided and bidirectional infinite
word, respectively.

If for a finite word w there exist (finite or infinite) words v(1) and v(2) such that
v = v(1)wv(2), then w is said to be a factor of the (finite or infinite) word v. If v(1) is the
empty word, then w is a prefix of v, if v(2) = ǫ, then w is a suffix of v. The set of all
factors of an infinite word u is called the language of u and denoted L(u). Factors of u of
length n form the set Ln(u); obviously Ln(u) = L(u)∩An. The mapping C : N → N given
by the prescription n 7→ #Ln(u) is called the factor complexity of the infinite word u.

Infinite words u such that the set {wv ∈ L(u) | w is not a factor of v} is finite for
every w ∈ L(u) are called uniformly recurrent. Right-sided Sturmian words are defined as
right-sided infinite words with factor complexity C(n) = n+1 for all n ∈ N. Bidirectional
Sturmian words are uniformly recurrent bidirectional infinite words satisfying C(n) = n+1
for all n ∈ N.

For the factor complexity C of a 3iet word it holds that

(i) either C(n) = n+K for all sufficiently large n,

(ii) or C(n) = 2n+ 1 for all n ∈ N.

3iet words with complexity C(n) = n+K belong to the set of the so-called quasisturmian
words, which are images of Sturmian words under suitable morphisms. 3iet words with
complexity C(n) = 2n+1 are called non-degenerate 3iet words or regular 3iet words. The
factor complexity of a 3iet word is given by (i) or (ii) according to the parameters ε, l: A
3iet word is non-degenerate if and only if l /∈ Z[ε] := Z+ εZ, see [1].

A mapping ξ : A∗ → B∗ satisfying ξ(wv) = ξ(w)ϕ(v) for all w, v ∈ A∗ is called a
morphism. A morphism is uniquely determined by the images ξ(a) of all letters a ∈ A.
The action of a morphism can be naturally extended to infinite words by

ξ(u0u1u2 · · · ) = ξ(u0)ξ(u1)ξ(u2) · · · ,

ξ(· · · u−3u−2u−1) = · · · ξ(u−3)ξ(u−2)ξ(u−1) ,

ξ(· · · u−3u−2u−1|u0u1u2 · · · ) = · · · ξ(u−3)ξ(u−2)ξ(u−1)|ξ(u0)ξ(u1)ξ(u2) · · · .
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With every morphism ξ one can associate a matrix M ξ. The matrix has #A rows and
#B columns, and

(M ξ)ab = number of letters b in ξ(a) .

A morphism ξ : A∗ → A∗ is called primitive if some power of the square matrix M ξ has
all elements positive. In other words, there exists a positive integer k such that for all
a, b ∈ A, the letter a is a factor of the k-th iteration ξk(b).

An infinite word u in AN, AZ<0 , AZ is said to be a fixed point of a morphism ξ :
A∗ → A∗, if ξ(u) = u. It is obvious that if u = u0u1u2 · · · is a fixed point of a primitive
morphism ξ, then ξ(u0) = u0w for a non-empty word w, and u is the limit of finite words
ξn(a), which is usually denoted by ξ∞(a) = limn→∞ ξn(a). Analogous properties must be
satisfied by primitive morphisms fixing left-sided or bidirectional infinite words.

Morphisms with the above properties are sometimes called substitutions. It is quite
obvious that the only non-primitive morphism which can fix a 3iet word or a Sturmian
word is the identity. Therefore it is not misleading not to distinguish between notions of
primitive morphism and substitution when speaking about substitution invariant Sturmian
or 3iet words.

Substitution invariance of non-degenerate bidirectional 3iet words has been studied
in [5]. Similarly as in the case of Sturmian words, one needs the notion of Sturm numbers.
The original definition of a Sturm number uses continued fractions. We cite the equivalent
definition given in [2]: A real number ε ∈ (0, 1) is called a Sturm number, if it is a quadratic
irrational with algebraic conjugate ε′ /∈ (0, 1).

Let us cite here the characterization of substitution invariant 3iet words from [5].

Theorem 4 ([5]). Let u be a non-degenerate 3iet word with parameters ε, l, c. Then u is
invariant under a primitive morphism if and only if

• ε is a Sturm number

• c, l ∈ Q(ε)

• min{ε′, 1−ε′} ≤ −c′ ≤ max{ε′, 1−ε′} and min{ε′, 1−ε′} ≤ c′+l′ ≤ max{ε′, 1−ε′},
where x′ is the field conjugate of x in Q(ε).

2.3 Geometric representation of a fixed point of a morphisms

It is useful to reformulate the task of searching for a substitution fixing a given infinite
word u = (un)n∈Z ∈ AZ in geometric terms. Let us associate with letters of the alphabet
mutually distinct lengths by an injective mapping ℓ : A → (0,+∞). Then, with the
infinite word u we associate a strictly increasing sequence (tn)n∈Z such that

t0 = 0 and tn+1 − tn = ℓ(un) for all n ∈ Z.

A number Λ > 1 satisfying

ΛΣ := {Λtn | n ∈ Z} ⊂ {tn | n ∈ Z} =: Σ ,

is called a self-similarity factor of the sequence (tn)n∈Z. Let us suppose that the assignment
of lengths ℓ and the self-similarity factor Λ satisfy that to every a ∈ A there exists a finite
set Pa ⊂ (0,+∞) such that

[Λtn,Λtn+1] ∩ Σ = Λtn + Pa for all n ∈ Z with un = a. (5)

It means that the gap between tn and tn+1 is after stretching by Λ filled by members of
the original sequence (tn)n∈Z in the same way for all gaps corresponding to the letter a.
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An infinite word u for which one can find a mapping ℓ and a factor Λ with the above
described properties is obviously invariant under a substitution ξ, where the image ξ(a) is
determined by the distances between consecutive elements of the set Pa. We call the set
{tn | n ∈ Z} with the property (5) the geometric representation of the word u with the
factor Λ.

On the other hand, if an infinite word u is invariant under a primitive substitution ξ
with the matrixM ξ, then the eigenvector ofM ξ corresponding to the dominant eigenvalue
Λ is a column of length #A with all components xa, a ∈ A, positive, cf. [13]. The
correspondence ℓ : a → xa results in a sequence (tn)n∈Z having Λ as its self-similarity
factor and satisfying (5). Therefore the set {tn | n ∈ Z} is the geometric representation
of the infinite word u with the factor Λ. We illustrate the concept of the geometric
representation in Figure 1.

C B C A C B C B C
︸ ︷︷ ︸

ℓ(B)

︸ ︷︷ ︸

ℓ(C)

︸ ︷︷ ︸

ℓ(A)

C B C A C B C B C
︸ ︷︷ ︸

Λℓ(C)

︸ ︷︷ ︸

Λℓ(A)

︸ ︷︷ ︸

Λℓ(B)

Figure 1: Geometric representation of a ternary word u fixed by a substitution η with the
self-similarity factor Λ. In our example, η(A) = B, η(B) = BCB, η(C) = CAC.

In [3], the authors derive (in their Corollaries 7.1 and 7.2) several properties of matrices
of substitutions fixing a 3iet word.

Theorem 5 ([3]). Let u be a non-degenerate 3iet word with parameters ε, l, c which is
invariant under a primitive substitution η. Then for the dominant eigenvalue Λ of the
matrix Mη one has

1. Λ is a quadratic unit;

2. (1− ε, 1− 2ε,−ε)T is the right eigenvector of Mη, corresponding to Λ′ the algebraic
conjugate of Λ.

Item (2) of the above theorem implies for the matrix Mη that v := (1−ε′, 1−2ε′,−ε′)T

is its right eigenvector corresponding to the dominant eigenvalue Λ. Using Theorem 4, the
parameter ε is a Sturm number, and so ε′ /∈ (0, 1). The vector v has thus all components
positive or all components negative. In any case, in the geometric representation of the
fixed point of the substitution η of Theorem 5, the length ℓ(B) corresponding to the letter
B is the sum ℓ(A) + ℓ(C).

3 Amicable morphisms

The narrow connection of 3iet words and Sturmian words and their invariance under
morphisms is described in Theorems 1 and 2 by means of morphisms σ01, σ10, see (3).
These morphisms also allow us the description of morphisms fixing a 3iet word using
Sturmian morphisms. For that, several notions need to be defined.
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u =

v =

w =

0

0

A

1

1

C

0

0

A

0 1

1 0

B

0

0

A

1

1

C

(6)

Figure 2: Finite words u = 0100101 and v = 0101001 satisfy u ∝ v and their ternarization
is equal to w = ter(u, v) = ACABAC.

Definition 6. Let u, v be finite or infinite words over the alphabet {0, 1}. We say that
u is amicable to v, and denote it by u ∝ v, if there exist a ternary word w over {A,B,C}
such that u = σ01(w) and v = σ10(w). In such a case we denote w := ter(u, v) and say
that w is the ternarization of u and v.

Note that the relation ∝ is not symmetric. For example, u = 01 is amicable to v = 10,
but not vice versa. It is also interesting to notice that if two finite words u, v satisfy u ∝ v,
then they are of the same length and the number of letters a in u and v are equal for both
a = 0, 1.

Figure 2 illustrates an easy way how to recognize amicability of two words and how
to construct their ternarization. According to the definition, u ∝ v if u can be written
as a concatenation u = u(1)u(2)u(3) · · · and v as a concatenation v = v(1)v(2)v(3) · · · such
that for all i = 1, 2, 3, . . . we have either u(i) = v(i) = 0 or u(i) = v(i) = 1 or u(i) = 01
and v(i) = 10. The ternarization w is then constructed by associating letters in the
alphabet {A,B,C} to the blocks, namely it associates A, if u(i) = v(i) = 0; it gives C if
u(i) = v(i) = 1, and it gives B, if u(i) = 01 and v(i) = 10.

We introduce the notion of amicability and ternarization also for morphisms.

Definition 7. Let ϕ,ψ : {0, 1}∗ → {0, 1}∗ be two morphisms. We say that ϕ is amicable
to ψ, and denote it by ϕ ∝ ψ, if the three following relations hold

ϕ(0) ∝ ψ(0) ,

ϕ(1) ∝ ψ(1) ,

ϕ(01) ∝ ψ(10) .

(7)

The morphism η : {A,B,C}∗ → {A,B,C}∗ given by

η(A) := ter(ϕ(0), ψ(0)) ,

η(B) := ter(ϕ(01), ψ(10)) ,

η(C) := ter(ϕ(1), ψ(1)) ,

is called the ternarization of ϕ and ψ and denoted by η := ter(ϕ,ψ).

As an example, consider two basic Sturmian morphisms ϕ, ψ from (1),

ϕ :
0 7→ 01

1 7→ 0
, ψ :

0 7→ 10

1 7→ 0
.

It can be easily checked that ϕ ∝ ψ and that their ternarization η = ter(ϕ,ψ) is of the
form

η :

A 7→ ter(01, 10) = B ,

B 7→ ter(010, 010) = ACA ,

C 7→ ter(0, 0) = A .

(8)
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From the definition of amicability of words it follows that if u ∝ v and u′ ∝ v′ then for
their concatenation we have uu′ ∝ vv′. As a simple consequence of this idea, we have the
following lemma.

Lemma 8. Let u, v be two (finite or infinite) words over {0, 1} such that u ∝ v, and let
ϕ,ψ : {0, 1}∗ → {0, 1}∗ be two morphisms such that ϕ ∝ ψ. Then ϕ(u) ∝ ψ(v). Moreover,
if w = ter(u, v), then ter(ϕ(u), ψ(v)) = η(w), where η = ter(ϕ,ψ).

Remark 9. Note that if ϕ ∝ ψ and η = ter(ϕ,ψ), then

ϕ :
0 7→ σ01η(A)

1 7→ σ01η(C)
and ψ :

0 7→ σ10η(A)

1 7→ σ10η(C)
.

Theorem 10. Let ϕ,ψ : {0, 1}∗ → {0, 1}∗ be two primitive Sturmian morphisms having
fixed points such that ϕ ∝ ψ. Then the morphism η : {A,B,C}∗ → {A,B,C}∗ given by
η = ter(ϕ,ψ) has a 3iet fixed point.

Proof. The first step is to prove that a fixed point of ϕ, say u, is amicable to a fixed point
of ψ, say v. We prove the statement for right-sided words only, the proof for left-sided
and bidirectional fixed points follows the same lines. We will discuss two separate cases.

Case A. Let there exists a letter X ∈ {0, 1} such that ϕ(X) starts with X and ψ(X)
starts with X. Primitivity of ϕ and ψ implies that both ϕ(X) and ψ(X) have at least two
letters. Therefore

u = lim
k→∞

ϕk(X) and v = lim
k→∞

ψk(X) .

Since X ∝ X we have u ∝ v by Lemma 8.

Case B. Let the negation of Case A hold.

a) Let ϕ(1) start with 1. Then necessarily ψ(1) starts with 0 which is in contradiction
with ϕ(1) ∝ ψ(1).

b) Let ϕ(1) start with 0. Since ϕ has a fixed point, ϕ(0) must start with 0. Thus ψ(0)
does not start with 0, which implies that ψ(1) starts with 1 since ψ also has a fixed
point.

Consider ϕ(01) and ψ(10). Clearly, ϕ(01) = ϕ(0)ϕ(1) starts with 0 and ψ(10) =
ψ(1)ψ(0) starts with 1. Moreover, since ϕ(01) ∝ ψ(10), the word ϕ(01) must have the
prefix 01 and the word ψ(10) must have the prefix 10. Therefore u = limk→∞ ϕk(01)
and v = limk→∞ ψk(10). Now 01 ∝ 10 and therefore by Lemma 8, it follows that u ∝ v.

We have shown in all cases that the fixed points u, v of the Sturmian morphisms ϕ ∝ ψ
satisfy u ∝ v. Moreover, Lemma 8 implies that if w = ter(u, v), then w = η(w), i.e. w
is the fixed point of the ternarization of ϕ and ψ. But since σ01(w) = u, σ10(w) = v are
fixed points of primitive Sturmian morphisms, they are Sturmian words, and therefore the
infinite word w must be a 3iet word, as follows from Theorem 1.

4 Morphisms with 3iet fixed point

The aim of this section is to prove the following theorem.

Theorem 11. Let η be a primitive substitution fixing a non-degenerate 3iet word u. Then
there exist Sturmian morphisms ϕ and ψ having fixed points, such that ϕ ∝ ψ and η or
η2 is equal to ter(ϕ,ψ).
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•

0
T :

c c + lIA
︷ ︸︸ ︷

IB
︷ ︸︸ ︷

IC
︷ ︸︸ ︷

︸ ︷︷ ︸

l−1+ε

︸ ︷︷ ︸

1−l

︸ ︷︷ ︸

l−ε

•

0
T01 :

c + 1
︸ ︷︷ ︸

I0

︸ ︷︷ ︸

I1

1−l
︷ ︸︸ ︷

•

0
T10 :

c + l − 1
︸ ︷︷ ︸

I0

︸ ︷︷ ︸

I1

1−l
︷ ︸︸ ︷

Figure 3: Exchanges of intervals corresponding to a 3iet word u and Sturmian words
σ01(u), σ10(u).

The proof will combine results of papers [3, 5] concerning substitution invariance of
non-degenerate 3iet words and of the paper [4] which solves the same question for Sturmian
words. We shall study infinite words defined by (4) under a transformation T from (3)
where parameters ε, l satisfy additional conditions

ε ∈ (0, 1) \Q and l /∈ Z[ε] = Z+ εZ . (9)

These conditions guarantee that the corresponding infinite 3iet word is non-degenerate.
According to Theorem 1, the images of a 3iet word u under morphisms σ01, σ10 are

Sturmian words. Let us determine parameters of the Sturmian words σ01(u), σ10(u) (i.e.
the corresponding exchanges of two intervals), provided that the parameters of u are ε, l, c.
The procedure is illustrated in Figure 3.

Define the mapping T01 : [c, c + 1) → [c, c+ 1) by

T01(x) =

{

x+ 1− ε for x ∈ [c, c + ε) =: I0
x− ε for x ∈ [c+ ε, c+ 1) =: I1

Comparing T01 and T we obtain (see Figure 3)

x ∈ IB ⇐⇒ T01(x) ∈ [c+ l, c+ 1) .

For x ∈ [c, c+ l) we have

x ∈ IA =⇒ x ∈ I0 and T01(x) = T (x) ,

x ∈ IB =⇒ x ∈ I0, T01(x) ∈ I1 and T (x) = T 2
01(x) ,

x ∈ IC =⇒ x ∈ I1 and T01(x) = T (x) .

Therefore σ01(u) is the infinite word coding the orbit of 0 under the exchange T01 of
intervals with lengths ε and 1 − ε. Such a word is a Sturmian word of the slope ε and
intercept −c (i.e. the distance of the initial point of the orbit and the left end-point of the
interval [c, c+ 1) which is the domain of T01).

In a similar way, we derive that the infinite word σ10(u) is the coding of the orbit of 0
under the exchange of two intervals T10 : [c+ l− 1, c+ l) → [c+ l− 1, c+ l). In particular,
it is a Sturmian word of the slope ε and intercept −c− l + 1.
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Let us cite the result characterizing substitution invariant Sturmian words. Compar-
ing [18] and [4] we obtain that a right-sided Sturmian word with the slope α and intercept
β is substitution invariant if and only if the bidirectional Sturmian word with the same
slope and intercept is substitution invariant.

Theorem 12 ([18]). Let α ∈ (0, 1) be irrational and β ∈ [0, 1). A Sturmian word with the
slope α and intercept β is invariant under a primitive morphism if and only if

1. α is a Sturm number;

2. β ∈ Q(α);

3. min{α′, 1 − α′} ≤ β′ ≤ max{α′, 1 − α′}, where α′, β′ denote the field conjugates of
α, β in Q(α).

Note that the inequalities in Item (3) are satisfied for β′ if and only they are satisfied
replacing β′ by 1− β′. Knowing the slope and intercept of Sturmian words σ01(u), σ10(u)
we can deduce from Theorem 4 the statement of Theorem 1, namely that a non-degenerate
3iet word is invariant under a primitive substitution if and only if both Sturmian words
σ01(u), σ10(u) are substitution invariant.

We will now put into relation the substitutions fixing infinite words u, σ01(u), and
σ10(u). First we consider the self-similarity factors and geometric representations of these
substitutions.

Lemma 13. Let η be a primitive substitution over the alphabet {A,B,C} having as its
fixed point a non-degenerate 3iet word u. Let us denote its parameters ε, l, c. Denote by

Λ the dominant eigenvalue of the matrix M η and by
(

ℓ(A), ℓ(B), ℓ(C)
)T

its positive right
eigenvector corresponding to Λ. If Λ′ > 0, then there exist substitutions ϕ,ψ : {0, 1}∗ →
{0, 1}∗ fixing σ01(u), σ10(u), respectively, and such that Λ is the dominant eigenvalue of
Mϕ and Mψ, and

(

ℓ(A), ℓ(C)
)

is their common right eigenvector corresponding to Λ.
Moreover, ℓ(B) = ℓ(A) + ℓ(C).

Proof. Theorems 4 and 5 imply that v =
(

ℓ(A), ℓ(B), ℓ(C)
)T

=
(

1− ε′, 1− 2ε′,−ε′
)T

is a
right eigenvector of Mη corresponding to Λ. Recall that σ01(u) is the Sturmian word of
the slope ε and intercept −c, and σ10(u) the Sturmian word of the slope ε and intercept
−c − l + 1. By Theorem 2 they are invariant under substitutions, say φ, ψ. Since ε and
1− ε are densities of letters 0 and 1 respectively, the substitution matrices Mϕ and Mψ

must have the eigenvector
(

1− ε′,−ε′
)T

=
(

ℓ(A), ℓ(C)
)T

. Obviously ℓ(B) = ℓ(A) + ℓ(C).
It remains to show that ϕ,ψ can be chosen so that the dominant eigenvalue of η, i.e. Λ,

is also the dominant eigenvalue of Mϕ, Mψ. As a consequence of the equality Mηv = Λv
and the fact that Λ is a quadratic unit, we have Z+ε′Z =: Z[ε′] = ΛZ[ε′] = Λ′Z[ε′], which,
after conjugation, gives

Z[ε] = Λ′Z[ε] = ΛZ[ε] . (10)

Proposition 5.6 of [5] (see also Remarks 5.7 and 6.5 ibidem) implies that Λ′c ∈ c+Z[ε]
and Λ′(c+ l − 1 + ε) ∈ c+ l − 1 + ε+ Z[ε]. This, together with (10) gives

Λ′(c+ Z[ε]) = c+ Z[ε] ,

Λ′(c+ l − 1 + ε+ Z[ε]) = c+ l − 1 + ε+ Z[ε] .
(11)

Note that the assumption Λ′ > 0 is required in order that we can use results from [5].
Realize that substitution invariance of σ01(u) and σ10(u) implies by Theorem 12 that

their parameters satisfy

min{ε′, 1− ε′} ≤ −c′ ≤ max{ε′, 1− ε′}, min{ε′, 1− ε′} ≤ c′ + l′ ≤ max{ε′, 1− ε′} .
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These inequalities, together with (10), already imply that there exist substitutions ϕ and
ψ with factor Λ (see proof of Proposition 5.3 in [4]).

Proof of Theorem 11. The dominant eigenvalue of the matrix Mη is a quadratic unit Λ.
If Λ′ > 0, we shall prove the statement for η. If Λ′ < 0, we will consider the second
iteration η2. Therefore we consider without loss of generality Λ′ > 0.

With the help of geometric representation of infinite words we will show that morphisms
ϕ,ψ found by Lemma 13 are amicable, i.e. ϕ ∝ ψ, and that η is their ternarization. We
use the fact that all of the considered substitutions, η, ϕ and ψ have the same factor Λ.
The idea of the proof is illustrated in Figure 4.

Ternary substitution η : A 7→ B, B 7→ BCB, C 7→ CAC and its fixed point u

C B C A C B C B C

C B C A C B C B C

Sturmian substitution ϕ = σ01 ◦ η : 0 7→ 01, 1 7→ 101 and its fixed point σ01(u)

1 0 1 1 0 1 0 1 1 0 1 1

1 0 1 1 0 1 0 1 1 0 1 1

Sturmian substitution ψ = σ10 ◦ η : 0 7→ 10, 1 7→ 101 and its fixed point σ10(u)

1 1 0 1 0 1 1 0 1 1 0 1

1 1 0 1 0 1 1 0 1 1 0 1

Figure 4: Geometric representation of infinite words u, σ01(u) and σ10(u), and the sub-
stitutions η, ϕ, ψ (all with the same self-similarity factor Λ) fixing them. We have
u = ter(σ01(u), σ10(u)) and η = ter(ϕ,ψ).

Let u be a fixed point of η and let {tn}
∞

n=0 be the geometric representation of the sub-

stitution η with the dominant eigenvalue Λ and the right eigenvector
(

ℓ(A), ℓ(B), ℓ(C)
)T

for which
tn+1 − tn = ℓ(X) ⇐⇒ un = X ∈ {A,B,C} .

Morphisms ϕ and ψ are Sturmian substitutions with fixed points σ01(u), σ10(u), respec-
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tively. The geometric representation of the infinite word σ01(u) is

{t01n }∞n=0 := {tn}
∞

n=0 ∪ {tn + ℓ(A) | un = B} ,

and the geometric representation of the infinite word σ10(u) is

{t10n }∞n=0 := {tn}
∞

n=0 ∪ {tn + ℓ(C) | un = B} .

If tn+1 − tn = ℓ(A), i.e. un = A, then the segment in {tn}
∞

n=0 between Λtn and Λtn+1

(both in {tn}
∞

n=0) contains points ordered according to η(A). And the segment in {t01n }∞n=0

between Λtn and Λtn+1 (both in {t01n }∞n=0) contains points ordered according to σ01
(

η(A)
)

.
Analogically, for n such that un = C, points in {t01n }∞n=0 between Λtn and Λtn+1 are ordered
according to σ01

(

η(C)
)

.
From what was said above it is obvious, that the substitution ϕ with factor Λ fixing

the Sturmian word σ01(u) must be of the form

ϕ :
0 7→ σ01η(A)

1 7→ σ01η(C)
.

In a similar way, we can deduce that the substitution ψ under which the infinite word
σ10(u) is invariant is of the form

ψ :
0 7→ σ10η(A)

1 7→ σ10η(C)
.

By Definition 6, we have that ϕ(0) ∝ ψ(0) and ϕ(1) ∝ ψ(1), and that η(A) = ter(ϕ(0), ψ(0)),
η(C) = ter(ϕ(1), ψ(1)).

In order to complete the proof of the theorem, we have to show that ϕ(01) ∝ ψ(10)
and η(B) = ter(ϕ(01), ψ(10)). For that, consider n ∈ Z such that tn+1 − tn = ℓ(B) =
ℓ(A) + ℓ(C), i.e. un = B. The segment between Λtn and Λ

(

tn + ℓ(A)
)

in the geometric
representation {t01n }∞n=0 of σ01(u) contains the points arranged according to σ01η(A). Sim-
ilarly, the segment between Λ

(

tn+ℓ(A)
)

and Λtn+1 contains the points arranged according
to σ01η(C). Of course, the segment between Λtn and Λtn+1 in the geometric representa-
tion {tn}

∞

n=0 of the original infinite word u is arranged according to η(B). Altogether, we
have

σ01η(B) = σ01η(A)σ01η(C) = ϕ(0)ϕ(1) .

Analogously,
σ10η(B) = σ10η(C)σ10η(A) = ψ(1)ψ(0) .

This means that ϕ(01) ∝ ψ(10), and the word η(B) is the ternarization of words ϕ(01)
and ψ(10). Consequently, ϕ is amicable to ψ, and the substitution η is the ternarization
of ϕ and ψ.
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[17] P. Séébold. Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88
(1991), 365–384.

12



[18] S.-I. Yasutomi. On Sturmian sequences which are invariant under some substitutions.
In ’Number theory and its applications (Kyoto, 1997)’, volume 2 of Dev. Math.,
Kluwer Acad. Publ. (1999), 347–373.

13


	Introduction
	Preliminaries
	Three interval exchange
	Words and morphisms
	Geometric representation of a fixed point of a morphisms

	Amicable morphisms
	Morphisms with 3iet fixed point

