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ABSTRACT Nowadays, the advancements of wearable consumer devices have become a predominant role in
healthcare gadgets. There is always a demand to obtain robust recognition of heterogeneous human activities
in complicated IoT environments. The knowledge attained using these recognition models will be then
combined with healthcare applications. In this way, the paper proposed a novel deep learning framework
to recognize heterogeneous human activities using multimodal sensor data. The proposed framework is
composed of four phases: employing dataset and processing, implementation of deep learning model,
performance analysis, and application development. The paper utilized the recent KU-HAR database with
eighteen different activities of 90 individuals. After preprocessing, the hybrid model integrating Extreme
Learning Machine (ELM) and Gated Recurrent Unit (GRU) architecture is used. An attention mechanism
is then included for further enhancing the robustness of human activity recognition in the IoT environment.
Finally, the performance of the proposed model is evaluated and comparatively analyzed with conventional
CNN, LSTM, GRU, ELM, Transformer and Ensemble algorithms. To the end, an application is developed
using the Qt framework which can be deployed on any consumer device. In this way, the research sheds
light on monitoring the activities of critical patients by healthcare professionals remotely. The proposed
ELM-GRUaM model achieved supreme performance in recognizing multimodal human activities with an
overall accuracy of 96.71% as compared with existing models.

INDEX TERMS Artificial intelligence, consumer electronics, deep learning, healthcare, human activity
recognition, [oT, multimodal data.

I. INTRODUCTION learning and deep learning techniques has greatly facilitated
Intelligent Decision Support Systems (IDSS) provide effec-  the development of IDSS, due to the easier availability of
tive solutions to many of the challenges currently being  muyltiple datasets related to various aspects of human lives [1].
faced around the world. The widespread adoption of machine These developments have proven to be more valuable during
the fight against the COVID-19 crisis. IDSS plays a crucial

The associate editor coordinating the review of this manuscript and role in helping healthcare professionals to detect diseases
approving it for publication was Yizhang Jiang . earlier, thereby increasing the chances of patient survival.
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FIGURE 1. Usage of multimodal patient data for activity monitoring in an loT environment.

In addition, the IDSS can be utilized in patients’ gesture
recognition and has been distinguished in smart healthcare,
ensuring timely response to patient needs especially remote
control of resources [2]. In under-developed nations with poor
or inadequate health services, IDSS is an important solution
to provide affordable and cost-effective services that do not
require expensive equipment or trained personnel.

In today’s scenario, there is an unusually large number
of IoT-enabled devices aimed at improving decision-making
processes in complex systems. Rapid miniaturization and
development of sensors, reduced energy requirements, rev-
olutionized the Human Activity Recognition (HAR) field
in the detection of vulnerable diseases such as diabetes [3]
and heart disease [4] early, and the first symptoms of
COVID-19 using data from sensors [5] on smartwatches.
Moreover, these advancements are becoming real and imple-
mented to assist several healthcare requirements.

Recently, there have been tremendous advancements in the
field of medicine involves transitioning away from the one-
size-fits-all approach to embrace Personalized Health Care
and medicine [6], [7]. This advancement has been driven by
the aging population and the escalating costs associated with
chronic diseases. Accordingly, a promising solution is always
in demand to address these challenges. The required solution
necessitates innovative methodologies for continuously mon-
itoring and assessing the vital signs of individual patients,
allowing for the customization of medication plans tailored
to specific needs. This can be attained through the utilization
of Machine Learning, Deep Learning, and the Internet of
Things approaches by deploying appropriate sensors around
the patient. These sensors would continuously transmit data
to healthcare professionals and hospitals, enabling them to
make well-informed decisions. This invaluable information
serves to empower patients to manage their daily activities
more effectively [8]. In this way, the work focuses on the
solution for intelligent recognition of multimodal human
activities for personal healthcare as illustrated in Figure 1.
The key contributions of the proposed work are given below:

(i) For creating a robust and discriminative representa-
tion of the input sensor data, the ELM used for feature
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transformation is integrated with the Gated Recurrent Unit
(GRU) used for sequence modeling.

(i1) The integration of GRU allows the framework in cap-
turing complex temporal patterns corresponding to human
activity recognition.

(iii) Furthermore, the output predictions are improved by
incorporating the attention mechanism (ELM-GRUaM) that
provides enhanced focus on relevant parts of the input.

(iv) Thus the combined ELM-GRUaM framework pro-
vides effective HAR task recognition in diversified environ-
ments and across different individuals.

Il. RELATED WORKS
Several researchers have attempted to recognize distinct
human activities through different approaches. Some of them
are discussed in this section. The authors [9] utilized a deep
recurrent neural network (DRNN) architecture for recogniz-
ing human activities. The architecture is employed to capture
the complete longer-range of input relationships instead of
being limited to the kernel window size. Moreover, the work
utilized DRNN in cascading, bidirectional, and unidirectional
fashions. The UCI-HAR database was utilized and provided
a maximum accuracy of 96% as compared with Support
Vector Machines (SVM). The researchers [10] introduced
an ensemble approach of combining Naive Bayes, Decision
Tree, and kNN models. The approach was implemented
using heuristic-based hand-crafted features taken from gyro,
magnetometer, and accelerometer devices. The implemented
ensemble model is found to be highly sensitive to data col-
lected through distinct people, overlapping, and window size.
The researchers [11] introduced a modern hybridized evo-
lutionary algorithm that combines Genetic Algorithm (GA)
with effective evolutionary methods. An implementation of a
decision support system was done to help clinicians to man-
age regular activities. Through a comprehensive empirical
study, they demonstrated the effectiveness of their approach
for solving models related to healthcare intelligent solutions.
The authors [12] proposed a human activity recognition
(HAR) model based on an LSTM framework, aimed at
improving assistance in the IoT environment. A grid was
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added, solving the challenge of limited labeled data. Mixing
the user’s body sensor data with environmental data, their
model achieved the best results compared to other methods
such as Random Forest (RF), DNN, and SVM.

The authors [13] developed a dedicated HAR model with
the inputs taken from different sensor devices. The model
alters the collected time-series inputs from sensor devices
as image inputs. These converted image inputs are adopted
for maintaining the necessary pattern and feature vectors
for solving the problem. For training and evaluation, the
researchers utilized a fusion residual architecture through the
integration of dual network models. The research yielded
better performance with 93% and 98% accuracies on the
HAR and MHEALTH datasets. The researchers [14] fol-
lowed a methodology for HAR tasks through non-invasive
means of collecting human movements using video frames.
The implementation is done in the following ways: The
initial phase is an offline approach for generating binary
CNN architectures for recognition. The next is the infer-
ence phase which deals with human recognition and their
movements by using CNNs. In this way, the research out-
paced other approaches with 56% accuracy on the UCF-ARG
database.

The researchers [15] employed neural network models to
approximate the time-dependent distributions within non-
Markovian models. They achieved this by utilizing solutions
from simpler, time-inhomogeneous Markovian models, a pro-
cess that preserves model dimensionality while enabling the
inference of kinetic parameters. This neural network was
trained using a limited set of noisy measurements obtained
from either experimental data or stochastic simulations
of the non-Markovian model. As a result, their findings
demonstrated that the neural network successfully learned
Markovian models capable of accurately representing
stochastic dynamics across a spectrum of models. The
authors [16] introduced AHAR (Adaptive Human Activ-
ity Recognition), energy-efficient CNNs optimized for
least-power edge devices. AHAR employs an adaptive design
during the inference phase, allowing it to select specific
components from its baseline architecture intelligently. The
model is evaluated on two databases. For the Opportu-
nity dataset, AHAR achieved better weighted F1 scores of
91.7%, whereas it achieved a supreme 91.5% for the w-HAR
dataset.

The authors [17] developed a hybrid model based on the
combination of CNN and LSTM for solving HAR tasks. This
is applied to a database that integrates the activity samples
of 20 people with twelve distinct classes. The study revealed
that it provided a maximum performance of 90.8% accuracy
over others. The key findings of the current state-of-the-art
works related to human activity recognition are compara-
tively summarized in Table 1. In this way, the paper proposed
a deep learning-based architecture integrating the power of
ELM and GRU with an attention mechanism to recognize
18 distinct human activities using multimodal data as given
in Figure 1.
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TABLE 1. Comparative summary of the related works.

Study Approach Key Features

Deep Recurrent Neural
[9] Network (DRNN) architecture
with UCI-HAR data

Ensemble

Maximum accuracy of
96% compared to Support
Vector Machines (SVM)

Highly sensitive to data

approach
combining  Naive Bayes,
Decision Tree, and kNN

[10] collected through distinct
people, overlapping, and

models window size

Hybridized evolutionary  Effectiveness

algorithm combining Genetic demonstrated in solving
[11]  Algorithm (GA) with effective  models related to

evolutionary methods with healthcare intelligent

Healthcare data solutions

Achieved  best

compared to other methods

results
Long Short-Term Memory

[12] (LSTM) framework with grid

addition in IoT environment

such as Random Forest
(RF), DNN, and SVM

Model converting time-series
inputs from sensor devices Better performance with
93% and 98% accuracies

on HAR and MHEALTH

[13] into image inputs, utilizing
fusion residual architecture

with HAR and MHEALTH datasets

data

CNN architectures for Outpaced other
recognition of human  approaches with  56%

[14]

movements from video frames  accuracy on the UCF-ARG

with UCF-ARG data database
Neural network models .
. Successful learning of
approximating time-dependent .
o . Markovian models
[15] distributions  within  non- R
accurately  representing

Markovian models with . .
stochastic dynamics

experimental data

Adaptive Human Activity = Achieved better weighted
F1 scores of 91.7% and
91.5% on the Opportunity

and w-HAR datasets

[16] Recognition (AHAR), energy-
efficient CNNs optimized for

least-power edge devices

Hybrid model based on a
combination of CNN and
[17] LSTM for solving HAR tasks
on a database with activity

Provided

performance

maximum
of 90.8%

accuracy over others

samples of 20 people

Ill. MATERIALS AND METHODS

A. KU-HAR - INPUT DATASET

KU-HAR dataset [18] is an open-source database containing
eighteen distinct heterogeneous activity information acquired
from nighty people with a mixture of genders. The dataset
comprises multimodal data acquired through Gyroscope and
accelerometer sensors available in smartphones. It consists
of 1,945 rawly collected activity sample values and 20,750
sub-samples extricated from the involved people. Each of
these data has three seconds of non-overlapping information
about the respective activity [18]. The output classes corre-
spond to 18 distinct human activities are sitting, standing,
talking with hand movements while standing or walking, talk-
ing with hand movements while sitting, performing sit-ups,
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performing full push-ups, repeatedly lying down and standing
up, laying still, repeatedly sitting down and standing up,
running 20 meters, walking along a circular path, walking
20 meters, walking backward for 20 meters, jumping repeat-
edly, picking up an object from the floor, playing table tennis,
descending from a set of stairs, and ascending on a set of
stairs.
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FIGURE 2. Distribution of KU-HAR dataset.

B. VISUALIZATION AND PREPROCESSING OF KU-HAR
DATA

Data visualization is much more useful in both analysis
and solving real-world problems. The paper visualizes the
KU-HAR dataset for predicting its nature. The distribution
of input data is illustrated in Figure 2. This plot reveals that
the input consists of 18 distinct classes (y-axis) with a total
of 20750 samples (x-axis). And the volume of data to be
handled is larger and the multimodal data composition of the
KU-HAR dataset is plotted in Figure 3. This plot illustrates
that columns 1 to 900 represent the sensor readings from
the accelerometer axes (X, Y, Z) and 901 to 1800 has the
sensor readings from the gyroscope axes (X, Y, Z). A sam-
ple visualization of multimodal readings of the KU-HAR
dataset is plotted in Figure 4. Here, the plot reveals how
the accelerometer (acceleration) and gyroscope data (angular
rotation) change over time during the “Jump” activity for
the 20001st sample. The two plots of Figure 4 illustrate the
data from different sensor axes separately and give the idea
of understanding the motion characteristics of the activity.
This illustration portrays that the data collected from the two
sensors with different axes have a nature of highly overlap-
ping. Thus, the paper involves in employing the Extreme
Learning Machine (ELM) and Gated Recurrent Unit (GRU)
with an Attention Mechanism (aM) for capturing the input
patterns efficiently and hence making a robust recognition of
multimodal human activities.

The strip plot visualization of sample data is plotted in
Figure 5 which provides a visualization of the distribution
of sensor data across various activities. For the huge vol-
ume of collected overlapping data with different scales as
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FIGURE 4. (a) Sample data from accelerometer X axis (b) Sample data
from gyroscope Z axis representing jumping activity of human.

shown in Figure 5, the standardization of data is mandatory
for further classification process. The paper employed the
StandardScaler [19] function of the sklearn library which
transforms the data through the removal of mean and scaling
to unit variance. The standardization [19] is performed using
the mathematical operation as presented in Equation (1).
e=2"F (1)
o
In Equation (1), x is the data inputs, © and o represent
the mean and standard deviation. In addition, the dataset is
checked for any missing values but there are no missing
values found. In addition, gravity acceleration data were
ignored from the accelerometer information, so no filters
were employed to get rid of noise [18].
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FIGURE 5. Sample data visualization of multimodal dataset.

IV. PROPOSED METHOD

The proposed Extreme Learning Machine-Gated Recurrent
Unit with Attention Mechanism (ELM-GRUaM) model used
for multimodal human activity recognition will be explained
here with different sub-sections.

A. NEED FOR FEATURE TRANSFORMATION USING
EXTREME LEARNING MACHINE (ELM)

The multimodal data from the gyroscope and accelerometer
sensors are found to be highly complex (as illustrated in
the plot of Figure 4) and non-linear (as shown in the plot
of Figure 5). In this research, ELM introduces non-linearity
through its hidden layer activation function (ReLU). This
makes ELM to capture complex patterns and relationships in
the data that might not be captured effectively by linear trans-
formations. This enhanced representation supports improved
recognition of human activities and thus making it easier for
subsequent models to classify activities accurately.

B. EXTREME LEARNING MACHINE (ELM) FOR FEATURE
TRANSFORMATION
The architecture of ELM used for feature transformation is
given in Figure 6. As in the plot, ELM’s architecture resem-
bles the neural network models but ELM is faster than the
traditional neural network models [20]. The mathematical
background of ELM used in this paper for feature transfor-
mation will be discussed next. For an input feature vector,
xeR" with n features, a hidden layer with m neurons, and an
output layer having p neurons, the ELM model computes the
output, yeR? as given below.

As illustrated in Equation (2), for each neuron i in the

hidden layer [21],
n
W=

In Equation (2), w;j and b; represent the weight connecting
feature j to the hidden neuron i and bias of the hidden neuron i.

wiixj + b; 2)
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FIGURE 6. ELM architecture for feature transformation.

z; refers to the net input to hidden neuron i. In addition, the
paper employed the activation function used in the hidden
layer as the ReLU (Rectified Linear Unit) function as pre-
sented in Equation (3).

hi = ReLU (z;) 3)

The weights connecting the input to the hidden layer are
fixed and randomly generated but the weights connecting
the hidden layer to the output layer will be learned through
training. Finally, the output of the ELM model is calculated as
a weighted sum of the activations of the hidden layer neurons
as presented in Equation (4):

m
Vo= wiithi+ bR o

In Equation (4), wii refers to the weight connecting the
hidden neuron i to the output neuron k. b7"" denotes the bias
of the output neuron k. And y; indicates the final computation
of the output neuron k. It is to be noted that the ELM used
here is not for classification tasks but for feature transfor-
mation. That is, ELM simply transforms the input data into
a newer feature space characterized by the activations /; of
the hidden layer neurons. These activations must serve as
the transformed features. Now these are fed as input to the
subsequent GRU network with an attention mechanism for
multimodal human activity recognition. As a result, the above
ELM-transformed features will support the research to cap-
ture relevant information and patterns from the multimodal
sensor data.

C. ELM-GATE RECURRENT UNIT (GRU)

The proposed framework for multimodal human activity is
illustrated in Figure 7. As in Figure, the ELM transformed
features are fed as input to the GRU network. Human activi-
ties are basically temporal and sequential. The readings were
recorded over time, and capturing the dependencies and pat-
terns within sequences of multimodal sensor data is necessary
for improved recognition. The paper chooses GRU as the
recurrent neural network (RNN) model since it is good at
modeling sequential data [22]. In addition, GRU involves
fewer parameters as compared to LSTM architecture. This
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makes GRU as computationally efficient and effective at
capturing long-term dependencies [23].

As in Figure 7, GRU starts with an initial hidden
state (hg) and this will be initialized either to zeros or learned
as a parameter of the model. The update (z;) and reset gates
(r;) control how the data is conceded between time-steps and
this makes GRU to selectively reset and update its hidden
states. Here, z; helps in deciding how much of the previous
hidden states 4;_ are to be retained and how much of the new
candidate hidden states 71, are to be added to the current state.

This can be mathematically illustrated as shown in
Equation (5),

z =0We [hi—1, %] + by) ©)

In Equation (5), the sigmoid activation function is denoted
as o, W;, and b, represent learned weights and biases. And
[A:—1, x;] indicates the concatenation of the previous hidden
state (h;—1) and the current input (x;). Next, r; helps in
deciding how much of the previous hidden states /;_; are
to be forgotten during the computation of /,. This can be
mathematically illustrated as given in Equation (6).

rr =oWe. [hi—1, %]+ by) (6)

The value of iz, can be computed based on r; and x;. This
can be mathematically illustrated as given in Equation (7).

= tanh(W. [r; © hy—1, X;] + bp) (7

In Equation (7), tanh denotes the hyperbolic tangent activa-
tion function. The final hidden state /; can be computed as
illustrated in Equation (8).

h=0-z)0h_1+z0 I;t (8)

The GRU processes the entire sequence one-time step
at a time and so updating its hidden state %, at each step.
This ensures the capturing of temporal dependencies with A;
encoding information about the sequence upto the current-
time step.
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D. ELM- GRU WITH ATTENTION MECHANISM (aM)

Now, the attention mechanism considers the GRU’s sequence
of hidden states as its input. For each time-step, 7, an attention
score (e;) is calculated. This score quantifies the relevance of
the ™ hidden state to the current context. This could be done
by comparing each hidden state with a context vector from the
previous time-step. The e; scores are often passed via a soft-
max function to determine attention weights (a,) ensuring that
they sum to one. Then, the context vector represented as c¢;
can be determined as a weighted addition of the GRU hidden
states; mathematically illustrated as given in Equation (9).

T
c=  ah )

In Equation (9), the total number of time steps in the sequence
is denoted as T and the attention weights are represented
as a;. The ¢, from the attention mechanism captures the
most relevant information from the GRU hidden states for
the current context. The c¢; is conceded to the next time-step,
influencing the attention scoring for the subsequent hidden
state, making the mechanism recurrent.

Finally, the classification layer as shown in Figure 7 is
responsible for producing a probability distribution over the
activity classes. The layer is composed of fully connected
(dense) layers that can further process the context vector and
extract relevant features for classification. The final layer
is a typical softmax function for multi-class classification.
This function determines the probability distribution over
all possible targets based on the input context vector. Each
output neuron corresponds to one activity target, and the
softmax function normalizes the values across these neurons
for ensuring that they sum to one. The steps involved in the
overall proposed framework as discussed above are illustrated
in Algorithm 1.

V. RESULTS AND DISCUSSION
The outcomes of the recognition of multimodal human activ-
ities using the proposed framework are discussed here. The
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Algorithm 1 Overall Proposed Framework for HAR

Input: Multimodal KU-HAR Data
STEP 1: Data Visualization and Preprocessing

Perform data visualization and normalization using Equation (1).
STEP 2: Data Partitioning:

Split data into training and testing sets: X _train, X _test, y_train,
y_test with test_size = 0.3.

STEP 3: Creation of ELM Model:

Input layer with Input features (X _trainshape); hidden layer with
150 hidden neurons and ReLU activation as presented in Equa-
tions (2) and (3).

STEP 4: Training of ELM Model:

Initialize hidden layer weights (w) randomly and learn output
layer weights using Equation (4).

STEP 5: Transform Data:

ELM-transformed training and testing data: X_train_elm =
ReLU(X _trainxw + b) and X_test_elm = ReLU(X _test xw + b).
STEP 6: Give transformed data to GRU Model:

GRU_output = GRU(X_elm) using Equations (5) to (8).

STEP 7: Use attention mechanism:

Calculate attention scores () based on GRU outputs (k) and
context (¢): e = tanh(Wlxh + W2 % ¢) and o = softmax(e).
Calculate the weighted sum of GRU outputs with attention using
Equation (9).

STEP 8: Pass it to output layer:

This layer produces class probabilities using a softmax activation
as:

probabilities = softmax(output_layer _input).

STEP 9: Tracking of activities using Qt application.

execution of the research work is implemented using Python
3.6 installed on a Windows system with 16-GB of RAM
and an Intel Core i7 processor. For comparative analysis, the
paper adopted the four existing algorithms namely standalone
CNN [24], LSTM [25], GRU [26], ELM [27], Transformer
model [35], and Random Forest [18] models. For the phase
of classification, the paper employed the stratified partition
where a ratio of 70:30 throughout the implementation for
making training and testing sets of inputs.

A. PERFORMANCE METRICS AND HYPERPARAMETERS

The paper adopted the performance measures which are
derived using the confusion matrix (CM). This matrix com-
prehends four parameters namely true negative and positives,
false negative and positives, characterized as TN, TP, FN,
and FP. The metrics adopted are precision, accuracy, and
recall [28]. For attaining a better balance between sensitivity
and precision, the paper employed an additional metric of
F1 score [29] for the experimentations. Finally, the paper
utilized Cohen’s kappa metric (x) [30] for further analysis and
validation. The number of hidden neurons selection is crucial
when ELM is employed for solving time-series problems.
Based on the experimental study, the research employed an
optimal count of 150 as the number of hidden neurons. The
employed GRU model is implemented with 128 units and is
set to return sequences. This makes GRU to capture temporal
dependencies in the data. The GRU model is compiled with
the Adam optimizer and categorical cross-entropy loss func-
tion. GRU is trained using the ELM-transformed training data
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and one-hot encoded labels for ten epochs with a batch-size
of 64. An Attention layer is implemented then for weighing
the significance of distinct time-steps in the sequence. The
attention output is finally concatenated with the GRU output
for obtaining final predictions.

B. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

At an initial point of experimentation, an ablation study is
performed against each component as illustrated in Table 2.
Here, the combination of ELM+GRU+aM provides the
maximum classification performance for the employed prob-
lem. The overall cross-validated results using the proposed
and existing classification models for the employed problem
of multimodal human activity recognition are tabulated in
Table 3. One of the ensemble models, the Random Forest
(RF) algorithm provided an overall accuracy of 89.64% with a
kappa («) value of 0.888. The standalone ELM model used for
classification provided an overall accuracy of 90.02% with
the kappa (k) value of 0.892. A simple CNN is then employed
for classification which gives 90.58% of overall accuracy and
0.899 as kappa. It is to be noted that the performance of all
three above models provided overlapping performance. The
LSTM, Transformer, and GRU models are then employed
where 91.93%, 95.18%, and 93.16% are obtained as over-
all classification accuracies. As compared with LSTM and
Transformer models, GRU performed well for the employed

TABLE 2. Ablation study for multimodal human activity recognition.

Modules Test 1

ELM X X v v Vv
CNN v X X X X
LST™M X v X X X
GRU X X X v Vv

aM with a

classification x x x x \/

layer
Accuracy (%)  90.58 9193  90.02 9244  96.71

Test 2 Test 3  Test 4 Test 5

TABLE 3. Classifiers’ performance for multimodal human activity
recognition.

Classifiers Overall Accuracy (%) Kappa (k)
RF 89.64 0.888
ELM 90.02 0.892
CNN 90.58 0.899
LSTM 91.93 0.913
Transformer Model 95.18 0.948
GRU 93.16 0.926
ELM-GRUaM 96.71 0.965
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FIGURE 8. Comparative analysis of the proposed model.

human activity recognition and this is due to the nature of
computationally efficiency and being effective at capturing
long-term dependencies of applied inputs. Thus, the GRU
model outperforms the performance of all other models with
a validated kappa value of 0.926.

The graphical illustration of comparative performance
analysis with validation is plotted in Fig. 8. As in the plot, the
proposed architecture of ELM-GRUaM provides a supreme
overall classification accuracy of 96.71%. The right choice
of integrating ELM for feature representation and GRU for
efficient capturing of input patterns provided a better perfor-
mance than others. Furthermore, the attention mechanism is
concatenated with the above model to focus on different parts
of the input sequence dynamically. This makes the proposed
model, ELM-GRUaM provide a supreme validated kappa
value of 0.965. This superior « value shows that the proposed
architecture, ELM-GRUaM gives a perfect agreement for the
employed multiclass classification problem as reported in the
ablation study.

C. INSIGHT PERFORMANCE ANALYSIS
The discussion made in the previous sub-section is only about
the analysis of overall performance for the employed prob-
lem. The research involves the classification of 18 distinct
human activities collected from multimodal sensor devices.
Hence, the individual or insight performance of each classifi-
cation algorithm needs to be examined for individual output
classes, respectively. Furthermore, due to the unavoidable
class imbalance as shown in Fig. 2, the insight performance
analysis of classification models is essential. This gives us
more clarification on where the algorithm’s performance
lacks or is better in recognizing multimodal human activi-
ties. The individual performance analysis of GRU and the
proposed ELM-GRUaM models are listed in Tables 4 and 5.
Here, the number of classified outputs indicates the number
of activities classified as belonging to that class from all
the classes. The individual performance comparison of GRU
and the proposed ELM-GRUaM model is graphically plotted
in Fig. 9.

As from Fig. 9 and Tables 4 and 5, the conventional GRU
algorithm performs well for static activities but lacks in rec-
ognizing dynamic activities. This problem is tackled using
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TABLE 4. Insight performance analysis of GRU model.

2 o e ;\3 ;3 — 3

g S. 222 ¢ T £ %
= 22252 ¢ & % %
& E= 28 5 g 4
Standing 566 568 99.20 95.42 95.76  96.11
Sitting 562 559 99.24 96.06 95.55 9642
Talk-Sit 539 532 99.15 95.67 9443  95.28
Talk-Stand 560 564 99.26 95.56 96.25  96.19
Stand-Sitting 653 652 99.28 96.62 96.47 97.44
Laying 544 546 99.23 95.42 95.77  96.00
Lay-Stand 529 526 99.15 95.24 9470  95.17
Pick 400 397 99.18 93.95 9325 9423
Jump 200 199 99.34 89.95 89.50  90.36
Push-up 144 153 99.31 83.00 88.19  86.27
Sit-up 301 309 99.42 92.88 9534 9442
Walking 265 268 99.34 91.79 92.83 9226
Walk-Backward 95 99 99.20 72.72 7578  74.34
Walk-Circle 78 83 99.24 68.67 73.07 71.19
Running 178 184 99.33 86.95 89.88  88.46
Stair-Up 239 237 99.16 89.45 88.70  89.25
Stair-Down 234 230 99.16 89.56 88.03 8941
Table-Tennis 137 118 99.12 84.74 72.99  78.06

TABLE 5. Insight performance analysis of the proposed ELM-GRUaM
model.

4 5 %3, £ £ gz £

S 28 252 7 2 3
= EE E&85 5 8 0§ &
2 z z 0 g 3 I~ —

o < [-» [
Standing 566 568 9955 9735 9770 98.19
Sitting 562 563 9957 9751 97.68 9847
Talk-Sit 539 541 99.61 9759 9796 98.68
Talk-Stand 560 562 99.61  97.68 98.04 98.55
Stand-Sitting 653 652 99.63 9831 98.86 98.19
Laying 544 542 9955 9760 97.74 97.82
Lay-Stand 529 529 99.61 9773 9791 98.64
Pick 400 400 9955 9650 96.86 96.78
Jump 200 202 99.61  93.56 9470 9427
Push-up 144 143 99.53 9021 89.68 90.81
Sit-up 301 301 99.65 9634 96.85 96.66
Walking 265 266 99.57 9473 9549  95.19
Walk- 95 96 9953 8437 8576 85.16
Backward

Walk-Circle 78 85 99.60 81.17 8847 85.87
Running 178 179 99.60 9273 9329 93.17
Stair-Up 239 233 99.61 9613 93.74 9555
Stair-Down 234 232 99.55 9439 93.62 94.13

Table-Tennis 137 130 99.53 9153 86.88 89.94

the inclusion of an attention mechanism with the GRU model
and thus the proposed ELM-GRUaM model performs well in
recognizing multimodal human activities effectively.

D. COMPARISON WITH STATE-OF-THE-ART MODELS FOR
HAR

As a final point, the proposed approach is compared against
the recently published frameworks and it is listed in Table 6.
That is, the recent studies that are associated with the
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FIGURE 9. Individual performance analysis of GRU and proposed ELM-GRUaM method.

employed research problem are chosen for comparison.
Specifically, the works employed with the KU-HAR dataset
are taken for comparison. The summary of Table 6 illustrates
that the proposed model outperforms the existing works in the
employed problem.

TABLE 6. Comparison of the proposed method with the KU-HAR data in
recent studies.

Research Works Methodology Overall
Accuracy (%)

Mahmudul et al. [31] Handcrafted Feature 89.5
Extraction with RF Model

Niloy et al. [28] Ensemble Learning 90
Algorithm

Mahmudul etal. [32]  Feature Prioritization using 94.76
Wavelets

Prabhat et al. [33] Deep-Transfer 94.25
Heterogenous Model

Sakorn et al. [34] ResNet Deep Learning 93.54
Model

Proposed Model ELM-GRUaM 96.71

E. QT APPLICATION FOR HAR

A Qt application is made to deploy applications on any
platform such as Windows, Linux, Mac, and Android. The
paper employed the Qt framework for developing applica-
tions because the applications developed can be deployed
across multiple platforms of IoT environments. The front
end is designed using QML with a simple user interface.
By using this application, healthcare professionals can search
the patients either by ID or Name stored from the server for
real-time tracking of patients in IoT environments. In addi-
tion, hospital practitioners can upload the sensor data for
real-time data processing and to track the current activity of
patients. The backend implementation is fully taken care of
using Python scripts.

F. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed methodology
is given below with the summation of individual component

complexity.

79784

ELM: The computational complexity of training an ELM
can be O(MN + MD) where the numbers of input neurons,
hidden neurons, and training samples are represented by N,
M, and D.

GRUaM: The computational complexity of training a GRU
layer can be O(LNT) where its number of units, layers, and
its input sequence length are represented by N, L, and T'.
After including K attention heads in attention mechanism, the
computational complexity can be changed to O (KNT).

Combining ELM with GRUaM: The combination involves
training both an ELM and a GRUaM sequentially. So the
overall computational complexity can be computed as

Cerm + CGruam -

G. DISCUSSION OF THE FINDINGS

The summary of the research intended to improve the perfor-
mance of GRU for robust recognition of multimodal human
activities.

o The research novelty lies in enhancing the classifica-
tion performance through the successful implementation
of the proposed ELM-GRU with Attention Mechanism
(ELM-GRUaM).

The above framework is then utilized to improve the
s-GRU’s classification performance in predicting eigh-
teen distinct human activities collected through multi-
modal sensor devices.

As compared with recent existing methods, the proposed
algorithm performed well for the employed multiclass
classification problem.

The study compared the classification performance
of the proposed framework with conventional stan-
dalone models and revealed that the ELM-GRUaM
outperforms them, and thereby establishing the novelty
of the framework.

H. LIMITATIONS OF THE PROPOSED WORK
Many real-time problems always demand more accurate

outcomes either using deep learning or machine learning
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architectures. Researchers all around the world are working
towards providing promising solutions. Accordingly, the pro-
posed methodology is implemented successfully and robust
outcomes have been attained. However, from the plot of
Figure 9, it is inferred that the performance of the proposed
framework lags at recognizing dynamic activities such as
playing as compared with static activities. This reveals that
the proposed framework requires to be enhanced further
for correctly recognizing dynamic activities (playing, walk-
ing) minimizing the risk of recognizing dynamic as static
activities. In addition, the computational complexity of the
proposed methodology as discussed in Sub-Section F will
be minimized without compensating the performance. Sub-
sequently, these problems will be taken into consideration in
our future research.

VI. CONCLUSION AND FUTURE WORK
The research proposed a novel deep-learning-based robust

framework for recognizing multimodal human activities.
For evaluation, the research utilized the KU-HAR dataset
which comprises of multimodal sensor (accelerometer and
gyroscope) data. The normalized and preprocessed data are
initially subjected to feature transformation using Extreme
Learning Machine (ELM) model. The obtained feature rep-
resentation supports to capture of significant patterns and
characteristics in the sensor data. This can aid in the HAR
task, as they have undergone a non-linear transformation.
The ELM-transformed features are then applied to Gated
Recurrent Units (GRU). The GRU intakes these features
and leverages its sequential modeling capabilities to cap-
ture temporal dependencies and recognize human activities
over time efficiently. In addition, an Attention Mechanism
is concatenated with GRU for assigning distinct weights to
each time step’s output, representing the significance of each
time step’s contribution to the final classification decision.
In this way, the proposed ELM-GRUaM model provided a
supreme outcome of 96.71% as overall classification accu-
racy with a validating kappa score of 0.965. Furthermore,
the robustness of the proposed framework is analysed using
insight performance and comparative analysis. A Qt applica-
tion is developed with QML as frontend and Python scripts
as backend for real-time tracking of patients by healthcare
professionals.

The future extension of the work will be in the direction
of providing a better user interface with additional security
for the developed application. The computational complex-
ity of the proposed methodology will be reduced without
compensating the performance. Furthermore, the study sug-
gests future researchers to utilize the variants of crow-search
algorithm for feature selection since the dataset is larger.
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