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Abstract

In this paper, the notion of normalized nonspecificity is introduced. The nonspecificity mea-
sures the uncertainty of the estimated parameters that reflect impairment in a controlled system.
Basced on this notion, a quantity called a reconfiguration coverage is caleulated. It represents
the likelihood of suecess of a control reconfiguration action. ‘This coverage links the overall sys-
tem reliability to the achievable and required control, as well as diagnostic performance. The
coverage, when calculated on-line, is used for managing the redundancy in the system.

1. Introduction
Reliability has always been a subjective issue in the analysis and design of fault-tolerant
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predicament is due to the fact that standard reliability assessment techniques are not geared
toward systems with the type of redundancy that is involved in reconfigurable control. There-
fore, it is difficult to establish a functional linkage between reliability and diagnostic/control
performance. This paper is intended to establish such a linkage.

One way to achieve fanlt-tolerance in a controlled system is to reconfigure its control law
when the system fails. The method of control reconfiguration becomes feasible and effective in a
system if adequate redundancy exists for possible accommodation of few critical but. foreseeable
failures. The reader is referred to a recent survey paper by Patton (1997) for an outline of the
state of the art in the field of fault-tolerant control. Some causes of difficulty, common to all
fault-tolerant control designs, are the vagueness in the definition of a failure in the context of
control performance, the uncertaintics in the system and in the exogenous signal models, the
limited processing/memory capabilitics in carrying out diagnosis, and, above all, the lack of re-

liable means of managing redundancy. especially analytic redundancy. For example, the ailerons
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of an aircraft are primarily for controlling the roll movement when used differentially. But they
have also a secondary function of aiding clevons for controlling the pitch movement, when used
collectively. Therefore, by analytically recontiguring the control actions of the surfaces, redun-
dancy could be effectively provided without added hardware. Unlike the hardware rednndaney,
analytical redundaney is inherent in the static and dynamic relations among the system variables,
and is more difficult to manage.

The design of reconfigurable control systems is commonly perceived to involve designs of

three separate subsystemn modules (Jacobson and Nett 1997): a control subsystem module, a

Baguostie subsyston modile, and arecenty
A schematie diagram of a recontigurable control system is shown in fignre 1. The control module
contains a finite munber of pre-designed or online-designed coutrol settings. Each control sefting,
when properly sclected nnder a given impairment condition, is to provide the controlled system
with a certain prescribed performance level. The diagnostic module processes the measurements
to estimate the current impairment condition. The reconfiguration module decides which control
setting should be switched on to accommeodate the coudition. Note that control reconfiguration
need not take place whenever an impairment condition oceurs. It is only needed when control
performance falls below a preseribed threshold. In that case, a failure is said to have oconrred.

An attempt was made by Wu (1997) to link the reconfiguration coverage with a diagnostic
resolution and a control performance threshold. The reconfignration coverage measures the
likelihood of success of a reconfiguration action that enters the assessment of the overall system
reltability as one of the domnAtng parameters. T ne diagnoste resoltition is ntroduced on e
basis of a relevant nonspecificity measure,

A measure of nonspecificity, as one type of uncertainty, was first conceived in terms of finite
crisp sets by Hartley (1928); it is usnally called a [artley measure. A measure of nonspecificity
of convex sets in the 1 -dimensional Enclidean space was proposed by Klir and Yuan (1995); they
call it a artley-like measure.

One of the main contributions in this paper is a refinement of the nonspecificity measure,
which can be applied to measure and compare uncertainties of varions physical gnantities of dif-
ferent physical dimensions in a meaningful inanner. This is achieved by a normalization process.
As a result, nonspecificity is dimenstonless, and has a range between zero and one. Two important
measures of reconfigurable control systems are then derived from the normalized nonspecificity.
Oue measures the performance of the diagnostic module in terms of diagnostic resolution, and

one measures the performance of the reconfiguration module in terms of coverage. This coverage
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allows us to depict in a precise manner how the overall system reliability is related to the per-
formance of the control subsystem module and to the performance of the diagnostic subsystem
module. Therefore, it is suitable as a criterion for the management of analytic redundancy.

The paper is organized as follows. Section 2 discusses some background material, including
the modeling of a plant in a way snitable for control reconfiguration, and the proper assessment
of 1the control performance. Section 3 introduces the notion of normalized nonspecificity upon
which the diagnostic resolution is defined. Section 4 introdnces the reconfiguration performance
measure in the form of a coverage. The coverage serves not only as a means for incorporating the
tikelinood of & suceessing,/ falled 1econiiguration action into e icliabilily assesstuctit, bul alao as
a device for managing the analytic redundancy. In this regard it is used as a ranking criterion
for sclecting the most reliable control law. An example is discussed in which the relationship
hetween the level of reconfiguration coverage and the levels of diagnostic resolution and control
performance threshold are graphed. The graphs offer a clear view of the alternatives by which
the design objectives can be either accomplished or compromised.
2. A fuzzy set description of control performance

The purpoese of this scction is to climinate the vagueness in the definition of a failure in the
context of control performance, and to create a reference framework for redundancy management.

Since the design of both the control module and the diagnostic module in a reconfigurable
control systemn is based on the knowledge of the plant, it is important that a model suitable for the
purpose of contral reconfignration be extablished. By snitable we mean that inipaivment. of critical
nature enter the model in an appropriate manner, and available redundancy is fully refiecred in
the model. In the following discussion, it is assumed that all imparments under consideration
enter the plant model in the form of appropriate parameters. Some enter as physical parameters
when the model is formed based on the laws of physics. Some enter as coefficients when the
model of a preseribed structure is identified through some experimental means. Others enter
simply as dimensionless scaling factors to indicate the degree of abnormality of some particular

components. Suppose that at a given operating point, the state-space linear model
Y= A ) B, 0 )= Co L L (0) - (1)

simulates the input-ontput characteristics of a plant, where « + aod » arc 1- n -, and -
dimensional state, input. and output vectors, respectively. anc ¢ b anc C are known matrices

(which may be time dependent) of appropriate dimensions.  As an example, the impairments

representing the loss of sensor/actuator effectiveness can be characterized by sensor and actuator

effectiveness factors. The factors enter the model in the form
[ LA, C-C L O,

where A, — dia 6, ... & 1, and A — dia by . ., b, ) (Wu 1996). Each & ranges
between 0, representing no loss of effectiveness. and 1, representing complete loss of the offec-
tiveness in the th effector (sensor or actuator). In geueral, we define an impatrment parameter
space as the Euclidean space of all parameters that change their values as the result of some
iropairment. The preseribed ranege of variation of such parameters form a set in the fmpairment
parameter space. Let € denote a vector in the impairment parameter space of dimensio V and
€2 denote the st over whict 6 resides when impairments occur. Without loss of gencrality, £ can

be regarded as a hyper-rectangle

Q= Oy <t S Opa. =

Denote by Qx the normalized impairment parameter domain. It is obtained by scaling cach axis
of the impairment paramcter space by the respective Lebesgue measures of the projections of
impairment domain 2 onto that axis.
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Obviously, {0x is a unit hypercube which will be used to define the normalized nonspecificity.
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hyper-rectangles in m + pth dimensional Euclidean spaces. Next, control performance will be
defined over the universal set of the impairment domain.

In the schematic diagram shown in figure 1, G(8) represents a model for the input to output
mapping of the plant, including models of actuators and the sensors. The argument 6 is made
explicit to indicate that the model is dependent on the impairment parameter vector. Vector w
contains all external signals, including disturbances, sensor noises and reference signals. Con-
trolled output z is an error vector, capturing the design specifications on the system; y is the
vector of measured variables; u is the vector of control inputs.

Let T,,.(8) represent the closed-loop input-to-output mapping from w to 2. The control design
problem under a given impairment condition can be formulated as follows. Select a control setting
that maps y to u so that

sup T (87}l < 7, ()
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where the subseripts 27 anc out indicate the norms used for measuring the sizes of the input and
the output space signals, respectively 4 > 4, is a positive real munber representing a preseribed
performance level, anc 44 is the optimally achievable performance level. Depending on what the
input and output spaces are, design procedures vary and the resulting controllers are different.
Several software packages are available, snch as some MATLAR ‘Tnholhoxes (Balas, et al. 1991),
which contain routines for synthesizing such controllers wher G is a linear and time-invariant
input-output manoir- ~—- both input and output signal spaces are Hilbert spaces of energy

bounded signals L (> )). No matter how well a model represents the plant to be controlled,

+h ignals are always prosemt. Such

and in
uncertamnties can be formalized 1 plant modc G of fignre 1 as weighting factors (Doyle, et al.
1989). A good control design achieves the required performance in the face of these uncertaintics.
In this case, the controller is said to provide a robust performance. It should be pointed out that
the purpose of this paper is not to discuss fuzzy logic contro of som model frec plant (Mendel
1995), nor to discuss any human-intervened fuzey supervision (Frank, et al. 1993). The plant
1o be controlled is reasonably well modeled, and a complete antomation is required for control,
diagnosis, and reconfiguration.

Suppose that various impairment scenarios require th: - A1 different controllers be designed,
each guarantecing that performance leve = be #++~~~d under a specific set of impairment. con-
ditions (a subset of 2). Suvnose a set of suc M controllers has been obtained. Let these
controllers be denoted by € C . ... Ca . and let us address the issue of control performance

measure. Define an alternative control performance measure

1

= T O 4)
8Py <1 T (B one (

Ho)

as a function of 8, where the superscript i indicates that controller C, has been used as the
feedback mapping in the performance evaluation. Some software packages (Balag, et al. 1991)
can be useful in calculating the pointwise measure for each # € €. As impairment parameter
vector # moves away from the nominal value at which the design of C, is carried out, the value

of j1,(6) generally decreases. Naturally, M fuzzy sets
C={u(6)i=1, .., M} (8)

on universal set § are formed. Each fuzzy set represents linguistically control performance

achieved by using controller C,. Figure 2 illustrates such a situation where three controllers

have been designed to cover a one dimensional impairment parameter domain, Without oss of
generality, it is asswned that 6, B, = 1. Nore that fault rolerance can be achieved only
if suthcient redundant control authority exists in the system, which is the case in figure 2. This
point will be further elaborated shortly.

Let gy denote a prescribed control performance threshold to distinguish the normal from a

failed operation for the controlled system, i.c., a failure is declared if
o <y (6)

Whenever this becomes the case. a control reconfiguration is necessarv. The essence of control
reconfiguration is the management of the control relevant redundancy. The subsequent seetion
will discuss the criteria for making control recontiguration decisions, and the nsk associated with
a particular decision.

Referring to figure 2 again it can be seen that some constraints must be imposed on the
control module when the set €} is constreted.

First, in order to guarantee that the control performance is always kept above the threshold
by at least one controller anywhere in the impairment parameter domain, a sufficient overlap

must exist among fuzzy sets (4) or (5). In mathematical terms, this condition can be stated as
ma o0 >pg. e § (7)

Instead of using the maximumn operator in (7), we way use a particular -conorm associated with
The snian of gy sers 4038 (R and Wiorman TIRY This condition mpbies that adeanate
redundancy must exist in a system in order to make fanlt tolerance possible.

Sec-—"" since complexity is detrimental to the reliability of a system, the munber of con-
trollers A ) in the control module ought to be kept to the mininmm. This condition implies
that cach controller ought to be designed to achieve the maximal robustness with respect to
the variation in the ilpairment parameter vector Suppose ¢ (2 is the nominal impairment
parameter value at which the design of controlle (7 3« carried ont. Let |B denote the Lebesgue
measure of a ball centered at € with radine rin th A dimensional iinpairment parameter space.

A robust design problem could be formmlated as follows.
may T,
&
for which

1

inf ——————— > .
o8 sup Ly @l =
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Although the past two decades have marked some major development in systematic ap-
proaches to robust designs (Green and Limebeer 1995), a focused effort is still very mch needed
for the development of an iterative scarch procedure that leads to a set of interactive robust
controllers with a well defined overall optimality. Our effort along this direction is under way,
but will not be further discussed in this paper. On the other hand, for any exasting design of
the control wmodule, regardless of the approach and the criterion by which a design is carried
ont, a control performance evalnation in the form of a set of fuzzy sets can always be obtained.

However, if the result of the control performance evaluation violates one or both constraints

and/or in the

(AN : 21 and,

control performance specifications.

Knowing that a suceessful control reconfiguration action depends on the accurate knowledge
of impairment parawmeter ¢, the challenge facing us is to acquire and to represent this knowledge
in the presence of uncertainties.

3. Normalized nonspecificity

This scetion introduces the notion of normalized nonspecificity which is then applied to
provide a measure of the uncertainty in the impairment parameter estimate. The section also
discusses how existing detenninistic and probabilistic based diagnostic schemes can be retrofitted
into the possibilistic formalization under the uncertainty invariance principle (Klir and Wierman
1998).

The past two decades have witnessed much progress in the techniques of fault diagnosis (Frank
1990}, WIthin the category of model-based dlaghostic technigues, there are both deternnmstie
and probabilistic approaches, both crisp and fuzzy model-based approaches {(Dexter 1993), both
analytical and fuzzy-logic approaches (Aubrun, et al. 1993). The etnphasis of these developments
has been on the prompt and accurate identification of the system condition, in the face of
uncertaintios. In a control reconfigurable system, the role of the diagnostic module is to provide
information to the reconfiguration module on the current coudition of the controlled system so
that the existing redundancy can be best utilized through control reconfiguration. However,
due to limited processing/memory capability and the presence of model/signal uncertaintics,
conclusions on the system conditions are always based on insufficient information. One is tempted
to directly utilize the available diagnosis techniques and become preoceupied with the concerns
regarding such issues as false alarm, missed detection, and false identification. As a consequence,
conclusions are drawn prematurely at the output of the diagnostic module, which do not take

into consideration the control module involved.

A remedy is to entrust the decision to the reconfiguration modnle that can combine the
characteristics of the control and the diagnostic modules. What is needed from the diagnostic
subsystem, in addition to the estimate of the impainment parameter vector, is a description of
the uncertainty associated with cach estimate in terms of a possibility funcrion. The rarionale
for the use of possibility functions is that regardless of the diagnostic scheme used, impairment
parameter estimates can always be described by fuzzy numbers (more discussion at the end of this
scction) and these can be given a natural possibilistic interpretation (Klir 1999). In addition,

fuzzy sets have been utilized in deseribing the control performance. The interaction of these

tyrn consistont ttmos of fuzzy sors shonld offor 3 natiaral steerase toward makine rocanficnrarinn
decisions. Effort. toward the possibilistic diagnosis, though limited at the time, already exists
(Kang. et al. 1991)

It was observed that a more prudent treatment of uncertainty can result
in an improved reliability, and maxinmm/mminmun operations in possibility theory can increase
the computational efficiency.

Suppose the identified impairment parameter has been represented by a normal fuzzy set

as examplified by a triangular-shape membership function in figure 3. The quantity /R in the
figure will be disenssed whep resohition R s {formallv defined later in the scetion. (See equation
(12).) Set 4 = + ¢« 2 _ « >« }forsome valw ¢ €[ 1lis called the ¢ -cut o F. The fuzzy
set bears a4 possibilisiic interpretation (Klir 19997 Sinee F s normal | the associated possibility

distribution. vy, is given in this case by the fornmla

far all ¢ . Given now an arbitrary fuzzy se . -~  #,v 1)) 1 ¢ ¢ ] the possibility measure

¢ /# based on possibility distribution rp 1s given by the formula

Pos, +)=su mi 1, 1 . (8)
oc

. )

The notion of normalized nonspecificity is now introduced for a fuzzy set defined on a M -
dimensional Euclidean space (impairment parameter space). Nonspecificity is not the only known
uncertainty measure. Within the domain of possibility theory, however, nonspecificity has been

shown to dominate the total measure of uncertainty (Klir and Wierman 1998).



The Hartley-like measure of a convex se A in th A dimensional Euclidean space has been

shown 1o take the form

Hi o) ming -lo, T(1+ A )+ 4 TV A} (9)
- -

under some standard nncertainty messvre axioms (Klir and Yuan 1995), where 7' is the set of
all nnitary transformations on the A -dimensional Euclidean space, and A; | is the Lebesgne
measure of the projection of se 4 ou to the th axis of the wnitary transformed coordinate
system under transformation . In principle, the logarithm in {9) can be of any base. Base 2 is
vhosen for the purpose of siinplifying a vonnalization process to be introduced shortly. When
the experituental framework is confined to the normalized impairment domain Q25 as defined in
(2}, the original Euclidean space is effectively re-scaled along each axis by the Lebesgue measure
of the projection of hypercube . Using the Hartley-like measure given in (9}, the nonspecificity

{ 1) of normal fuzzy se  F s calculated by the formula
t =T 1 da, (10)
i

as explained in Klir and Wierman (1998). In the next theorem, the normalized impairment
domain Qy is need

Theorem 1. < I <1 { I)=0ifandonlyi F is a singleton.

Proof 11+ ) is cos =~ ted to sarisfv the axinmatic requirements (Klir and Wierian 1098)
thoat 0 < F o~ whor HH Uy — b 4 Ge a einelatan i ite anivereal en X and
tha I+ . < Wi ) wheneve » C F whenn A, I ¢ X. Therefor i I > 0, where
Hi 1) =0iff Fisasivsletonin Qa. In combination with the definition o { 1) given in
(10), this mmplies tha { 1 > 0, and tha { 1) = 0iff F i« a singleton for any giver ¢. This
implies, in turn, tha Fis a sineleton. On the other hand. o ¢ ©. By the monotonicity of the
Hartley-like measwre 1 1+ 1 (2 ). Consequently [ 1 < { (.Y Bu Hi(;)—1by

the definition given in (9) becanse Qy is a hyperenbe. Therefore {1 < 1.
3

When {ly is one-dimensional, the calculation of the normalized nonspecificity is much simpler.
In this case,

i
1 1y= Tlog (1+ F da, (11)
0

where + ¢ Qa, and  F{is the Lebesgue measure of F .

9

We define now a diagnostic resobition 1 1) for a specific diagnostic onteome described by

fuzzy s 1+ ¢ €24 by the fornmla
1

PG

Theorem 2. In a one dimensional impairment parameter situation, diagnostic resolution R(F)

11)= (12)
satisfies the inequalities

1< R(F) € . (13)
In addition, R(F) is equal to the inverse of the core of a crisp set that has the same nonspecificity
as fuzzy set F. (See figure 3).
Proof. Since 0 < U(F} < 1 by Theorem 1, the definition of R by (12) yields immediately (13).
Suppose there is a crisp set C C 0y such that {C,| = 1/R(F) for all @ € (0, 1. Then its
nonspecificity is given by the formula

! 1
ifte) :/ﬁ log.(1 + 7 da

On the other hand, U(C) and U(F) are the same by assumption. With U(C) replaced by U(F),
R(F) of the form (12) is obtained by solving the above equation.

a

The geometric interpretation of R(F) as it relates to the nonspecificity of F is depicted in

the figure 3 when 0,,.,. — = 1 is satisfied. Before normalization, on the other hand, the
nonspecificity appears as
1
U(F) = [ togu(1 + ['FI/i52)dar (14)

In this case, the Lebesgue mesure of the nonspecificity-equivalent crisp set C relates to R(F)
through the equation Q
€1 = 285

It is important to point out that normalization is absolutely necessary when nonspecificity is
to be used in a real world problem. Normalization had not been considered for the definition
of nonspecificity prior to this work. By using the one-dimensional case as an example, let us
analyze the consequence of employing the non-normalized nonspecificity. This is the case when
|*F| C Q in (14) is not divided by the Lebesgue measure of impairment domain |Q2]. It is noted

that the numerical value of |“F| can be made entirely arbitrary, because the unit used for the
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impairment parameter can be arbitrarily scleeted. As a result, the numerical valne of nonspeci-
ficit> L 1) is arbitrary. When the unit of impairment parameter 8 is fixed, the non-normalized
nonspecificity can be useful but only in a relative sense. In addition, adding a dimensionless
quantity 1 with a quantity with a definite physical dimension  F ) is a fundamentally incor-
rect mathematical operation. When the impairment parameter space is of multiple dimensional,
without normalization, one is indeed comparing apples with oranges.

Since most existing diagnostic schemes are either deterministic or probabilistic, the retrofit

issue, i.c., the transformation of the diagnostic outcome from its original representation to the

kst

H listie representation, ueeds ro b disenseed
An estimate from a deterministic diagnostic scheme is represented by a point p i the im-
pairment paramcter space with an error bound 1. This error bound is typically the radius of a
hypersphere surrounding the point. Le 1 p, ) denote the set enclosed by the hypersphere. This
set can be defined by the characteristic frmetion
[ el »n

T

Hence, it may be viewed as a special fuzzy se F. The corresponding possibility measnre of this
fuzzy set is readily obtained by (8).

On the other hand, an estimate from a probabilistic diagnostic scheme is represented by
a probability distribution function. The transformation from the probability to a possibility

zation is howover more involved. The reader is referred to recent papers by Kiir {10081 and
Ther papers by )

al

forr

Harmanee and Kliv (1997) for more information. The following example shows how an uncertain-
invariant probability-to-possibility transformation is made for an impairment parameter estimate
called elevon effectivencess factor that enters an aircraft model. Please sce Balas et al (1991) and
Wi and Chen (1996) for a description of the 4th order linearized state space model and its
modification.

The elevon effectiveness is estimated using an adaptive Kalman estimator (W, ct al. 1998),
and at cach given time is described by a computed probability density function. This density
function is then integrated to a discrete probability distribution function, a snap shot of which
at = dsee is shown in the upper plot of figure 4. Although treatments for both continuous and
discrete nniversal sets are available, our continuous problem is to be treated in the discrete domain
for computational officicney, The lower plot in figure 4 shows the possibility distribution at

~ dsee. The following result is used for carrying out the probability to possibility transformation

for the example.

11

Theorem 3 (Harmaner and Klir 1997) Le [l denote the number of distinet values of in the

k-tupl <p . p -+ p, >, represeuting a probability distribution arraneed in descendine arder
Then there exic Flintegers, i, € . .. J,suchthaty —- —n >p,, = -p >
> Piy_i+ — - — by, - All possibility distribution <7 ..., v > consistent with the given

probability distribution and containing the same amount of uncertainty are all those possibility
distributions that satisfy
Figs = S m
[

for all =1 b = withe — ) and

ry 2t Yp,
-

for € o, Y-+ =00 1 - )

The transformation expressed by Theorem 3 remains the same for any nmltidimensional case,
provided that the probabilities and the possibilities involved are ordered as specified. When there
are equal probabilities in the distribution, an additional critcrion is needed to uniquely determine
the corresponding possibility measure. The criterion of maximal nonspecificity (Iarmanee and
Klir 1997) is adopted, for one wishes to be constrained only as much as necessary in making
decisions based on the possibility distribution.

Figure 5 shows the plots of the nonuspecificity and the corresponding diagnostic resolution as
Fanetione af rime Thewe nlore provide s hasic for comparing varions diannastie schemes dospite
the method used for diagnosis. The volatile behavior in these plots is cansed by a sudden drop
of the elevon control effectiveness at - = Hsec. The impairment. parameter estimator recognizes
the large uncertainty in the estimate during the transient process.

4. Optimal redundancy management

The focus of our discussion in this section is shifted from the diagnostic modnle to the
recoufiguration module where the decision is made on whether and how a control reconfiguration
should take place in order to accommodate a failure. In this regard, the reconfiguration module
carries out the task of redundancy management. Optimal redundancy management amounts to
selecting in a prescribed class of controllers one and only one that offers the highest reliability.

It is possible to estimate the likelihood of success and the likelihood of unsuccess in a recon-
fignration action, which arc respectively named a coverage, «, and a complementary coverage,

¢, in the following discussion, More specifically, the coverage indicates the likelihood of fuzay
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set (controller € being selected while the actual impairment parameter lios within the interval
over which the prescribed control performance level is achieved ¢+ 2 g ). The complemen-
tary coverage indicates the likelihood of fuzzy se C being selected while the actual impairment,
parameter lies ontside of the interval.

Suppose the reconfiguration module has selectec €, by using some ranking method. ‘The
coverage can be defined by using the ratio of two weighted nonlinear intervals. Recall that fuzzy
se Forepresent the outcome of the impairment narameter estimation. Expres F as the union of
twoset, FFUF whene Fow 0, ) p > j,anc F — 0, ) po <pu . Then

| F da U(F")

T THL(F)da _ U(F)’ (%)

and, similarly, 1
HL(“F")da F!
= brhier O 19
where HL(-) denotes the Hartley-like measure defined by (9), and U(.) denotes the nonspecificity
defined by (10). Fuzzy set F is subdivided according to whether a particular possible impairment
condition is accommodated by controller C,. The following one-dimensional expressions for the
coverage and the complementary coverage may reveal more explicitly their dependence on the

partitioned fuzzy sets.
_ L3 logy(1 + [F*)da -
[ log,(1 + |*Fl)da’

and
 Jologo{1 + [°F'|)dex
T [ loga(1 4+ [Fl)da
These expressions show that the coverage and the complementary coverage depend on the di-
agnostic performance, characterized by nonspecificity U(F') which uniquely determines the res-
olution, as well as the control performance, characterized by threshold u;, which uniquely de-

(18)

termines subdivisions F* and F'. Therefore it links the performance of individual modules to
overall system reliability.

Theorem 4. 0 < ¢ < 1and 0 < ¢ € 1. In addition, 1 — & < ¢ whenever the subadditivity of
the Hartley-like measure with respect to set union (19) holds for “F™ and “F'. The subadditivity
always holds when N = 1.

Proof. By the monotonicity of the Hartley-like measure (Klir and Wierman 1998), 0 < HL("F*) <
HL(°F). Integrating over a € [0,1] yields 0 < U(F*) < U(F). Therefore, 0 < ¢ < 1 from (15).

13

Similarly, < < 1,or < - < I, by using (16). Assume now that the subadditivity of the

Hartlev-like measure holds for al ¢, L.,
Hy F U F - I Fy Hi F | «a (19)
It follows from (15) and (16) that

{ 1y F) Hi F dao
Ji) HL(“F)da

>1.

Although the subadditivity may not hold in general, due to the minimum operator in (9), it

certainly holds when N = 1 because in this case
HLCF"Y+ HLC'F') = logy(1+ ["F*) (1 +|'F'}) > logy(1+{"F"| + ["F![) 2 loga(1+|"F" U “F}).
Therefore, 1 — ¢ < c.

ad

It is seen that coverage 1 — ¢ is bounded above by coverage ¢. 1 — ¢ and ¢ can be regarded as
lower and upper bounds for an interval-valued coverage. Their difference reflects the amount of
information deficiency in the diagnostic outcome.

Suppose there are M possible control settings, each of which is designed to accommodate a

particular set of system conditions. In determining which control setting is most suitable, the

e S - T Py Iy #hn Fallamvina vmonnar T8 fae o Ao
coverage defined by {15) can be uscd 85 & or 7 manner. If, for o diag
outcome F', ¢, -, cyy are calculated, and

o= max {c}, (20)

e {1l A}

then control setting C; is selected. This is the essence of optimal redundancy management. As
a result, the highest coverage, and, hence, also the highest reliability at the overall system level
are achieved. Apparently, a real time computation of coverage values for every candidate control
setting is required.

The next example will shed some light on how the computation of the coverage is carried out.
It also shows some quantitative relations of the coverage to the control performance threshold,
as well as to the diagnostic resolution. For ease of visualization, a one-dimensional impairment
space is considered, as shown in figure 6. Suppose controller C; is under consideration to see

what level of coverage it can provide if it is chosen by the reconfiguration module. Suppose the
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membe - Amction that represents the performance of this controller has the shape of a triangle.
Its pea  Af. represents the level of nominal performance achieved at some value of impairment
parameter, and ¢ , the Lebesgue measure of its support, gives an indication on performance
robustness provided by controlle €. The estimated impairment paramater is represented by the
normal fuzzy se F . also with a triangular membership function. € = ae . the Lebesgue measure
of the support o F, is to be varied between 0 and ¢ via parameter ¢ € { 1]. Furthermore,
suppose that sufficient analytical redundancy exists so that figure 6 describes the extreme case
5CENaro

a

under which control setting € would still be selected. This means that a different controller

would have been chosen il ar maz < ¢ 2. In addition, suppose the diagnostic module

provides a sufficiently high resolution that
Je > M [e,

whet Al > 1 is assumed without loss of generality. Note that most of the assumptions above
arc for simplifying purposes, and can be relaxed.

For the scenario in figure 6, formulae for computing coverage ¢ and complementary ¢ intro-
dueed in the previous section take the following forms

(5 Cld R

TR
1, b<enf2—€pf

21 boeg (it a)/2inll bieg(l-a}/2—(1+eg—26)n(1ren—2b) —rua o
Thtwan{l-coa) cou v €/2—ep[2<b < ef2

201 —b~e {1 tu)/2)in[l- b+en{l-a)/2)+2b—cu{l
L et ()l +Jtn;£)ln(70:f,u)f):{)ul+ el ﬂl)r Eu/2 <b< El)/2 + 61.-/2
0, b> /24 €x/2
— i)
=T <
0, b<e/2—€./2
2Aitb eyl a)/2in[1+b ol a)/2 btea(l
L a(]l ‘](U,E)l,,“:iﬂ,,n,“ﬂl ol aJ, €2 - €pf2<b< /2

2140 eo() -u)/2tn[i+b—o(1—a)/2) — (14— Mn{1 42 ) ~egu /2 <b< €2+ e /2

(11 egalin(l -epa) ega '

L b>e/2+ /2.

Note that the subdivision of F into F* and F' occurs at the point where C, and p; intersect.

This point is marked by b = &4+, measured from 8 = 0. Since b is proportional to the control
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performance threshole gy, it can also be used as an indication o gy« = ¢ /ey is a fraction
indicating the support of fuzzy se F relative to its worst case support € .
The nonspecificity and the resolution for this example are
T+ee b(l+ed —ca

th= In(2)eva !

and
e

R(F) = oo 3 )0 DT =g
by equations (11) and (12). where e = 2.7183. Plots of U(F) and R versus ¢,-/¢, are shown in
figure 7. It can easily be derived that U(F) = ¢ when ¢ <« 1.

¢ and € are now computed as functions of control performance threshold s, with diagnostic
resolution R as a parameter.

The fourth plot in figure 8 shows the interval coverage between boundaries ¢ and 1 — ¢ as
a function b (ur) with resolution R = 4.13 when a = ¢4/, = 1, calculated using the above
given formulae. It is assumed that the most possible value for 8 is at 6§ = ¢,/2 = 0.25 when
€, = 0.5, and the peak location of the membership function for F remains as a changes. The
change in coverage corresponding to a gradual decrease in the value of a are shown in the third
(a = 0.65, R = 6.30), the second (a = 0.35, R = 11.58}, and the first (a = 0.05, R = 80.17)
plots, respectively.

By observing the graphs obtained, the following conclusions can be drawn. The gap between
the Lwu bounds on Coversge iucteases with dectensiug 1 (diaguosiic 1&sGlution), and wilh incieas
ing pr (control performance) at the high coverage end. The value of coverage itself increases
with increasing R at high coverage end, and with decreasing y;. All the conclusions are within
our expectations. Their significance lies in that a guideline for design iteration is provided in a
quantitative manner for meeting a prescribed reliability requirement.

Suppose that coverage ¢, = 0.99 is required for achieving a certain prescribed reliability.
With a relatively high resolution such as shown in the first plot of figure 8 (R = 80), the control
performance threshold can be set at b = 0.22 or lower. Suppose the diagnostic module designer
can afford a resolution only at R = 4.13 as shown in the last plot of figure 8. In this case, one must
be content with a much lowered control performance at around b = 0.022 (10% of the previous
case). If this performance level is not acceptable, one can attempt the following: increasing the
processing/memory capability of the diagnostic module, or increasing the performance level of

the control module at around § = 0.5 without sacrificing elsewhere. The first attempt is aimed
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at enhancing resolution [ within the given decision time, sav fron 1 =4t 1 = 80, and the
second attempt is aimed at raising the allowable level for yq, say from =(102to =12, s0
that the required coverage level ¢ can be achieved.

5. Conclusions

A method of redundancy management in control reconfigurable systems is presented. Re-
dundancy management in such systems amounts to making control reconfiguration decisions. It
is assumed that adverse conditions that may caunse the failure of the systems are parameterized
in the system models in terms of impairment parameters. Qur method of decision making is
based on the mteraction of two classes of zzy sets defined on the bounded universal set i an
impairment parameter space. One class of fuzzy sets represents the set of measures of control
performance for all control settings. The other class represents the outcome of the impairment
paramcter estimation. By introducing the notion of normalized nonspecificity measure for the
latter class, we are able to mcaningfully quantify the performance of the reconfigurable control
systems using coverage, which is defined as the likelihood of successful control law reconfigura-
tion. On the one hand, the coverage affects the reliability of the overall systems directly. On
the other hand, our definition of the coverage is functionally related to the control performance,
as well as to the diagnostic performance. It sets the criterion and provides a means for the
integrated design of control reconfigurable fault-tolerant systems.

A major theoretic issne that still remains unresolved is the subadditivity of the Hartley-
like measure of two bounded sets on an multi-dimensional Euclidean space without imposing, the
convexity condition on the sets. This has restricted the application of our solution to problems of
sequential single-fault scenarios, instead of sequential simultaneous-faults scenarios. Overcorning
this restriction may require that a new type of Hartley-like measure be defined.
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