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Abstract

Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is
finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to
assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the
following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based ce-
rebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique
to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a
surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic
CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to as-
sess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize
some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) im-
aging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In
summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI tech-
nique with high translational value in studying resting-state brain function.
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Introduction

The importance of assessing brain function using
resting-state functional magnetic resonance imaging

(rs-fMRI) was suggested by the presence of consistent intrinsic
metabolic and perfusion patterns in the brain in the absence of
tasks (Gloor, 1969; Raichle, 2011). The widespread use of rs-
fMRI is largely attributable to the seminal discovery of resting-
state functional connectivity (FC) by Biswal and associates
(1995), and rs-fMRI has since gained considerable attention
in basic and clinical neuroscience (Biswal et al., 1995; Fox
and Greicius, 2010). This rapid growth is fostered by the abil-
ity to bypass the hurdles of task performance and behavioral
evaluations of experimental paradigms in assessing brain func-
tion, opening a new avenue for neuroimaging research in pedi-
atrics (de Bie et al., 2012), aging (Andrews-Hanna et al., 2007;
Hampson et al., 2010), and in a variety of neurologic and psy-
chiatric diseases (Castellanos et al., 2013; Kenny et al., 2012).

To date, the majority of rs-fMRI studies have employed
blood oxygen level-dependent (BOLD) contrast, focusing pri-
marily on FC measures (van Dijk et al., 2010; Worsley et al.,

1998), power spectral analyses (Duff et al., 2008; Handwerker
et al., 2012; Rack-Gomer and Liu, 2012), or nonlinear com-
plexity measures of rs-fMRI (Friston et al., 2014; Liu et al.,
2013). Despite its success and widespread use, rs-fMRI
based on the BOLD contrast has several shortcomings: (1)
the BOLD signal is not neuronally specific due to numerous
physiological and noise contributions to its contrast mecha-
nism; (2) even in the absence of noise, the BOLD technique of-
fers limited spatial specificity to the site of neuronal activity
due to the contribution of draining veins to the BOLD contrast;
(3) the BOLD signal alone does not provide a direct and quan-
titative measure of brain function during the resting state and
cannot be used in isolation to derive neuronal metabolism met-
rics. The study of resting-state brain function is by no means
limited to that of FC, and with the buildup of technical ad-
vances in recent years, arterial spin labeling (ASL) and dy-
namic blood flow-related metrics are becoming increasingly
feasible alternatives to BOLD fMRI.

ASL has been used in conjunction with BOLD for assess-
ing brain function both at rest and during task activation.
ASL provides noninvasive and quantitative measurements
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of cerebral blood flow (CBF) using magnetically labeled ar-
terial blood water as an endogenous tracer. Since CBF is nor-
mally coupled to glucose metabolism and neuronal activity
(Akgoren et al., 1994; Hoge and Pike, 2001), it is a surrogate
marker of brain function. Compared with BOLD, ASL has
several potential advantages, notably (1) it offers increased
spatial specificity to neuronal activity due to the capillary/
tissue origin of the ASL signal; (2) it has the capacity for ab-
solute quantification of CBF—a well-characterized physio-
logical parameter that is critical to the viability of brain
tissue; and (3) it can be used to generate dynamic CBF and
BOLD measurements simultaneously, thereby allowing the
computation of the cerebral metabolic rate of oxygen
(CMRO2) (Hoge et al., 1999; Wong et al., 1997).

There has been an exponential growth in the translation of
ASL in recent years, spanning the study of a spectrum of neu-
rologic and psychiatric disorders, as well as pharmacological
interventions. A comprehensive overview of clinical studies
using ASL can be found in a recent review (Detre et al.,
2012; Telischak et al., 2014) and will not be reiterated in
this article. However, the integration of ASL as part of rs-
fMRI studies is just emerging.

This review will discuss the use of ASL for characterizing
resting-state brain function from the following three perspec-
tives: (1) ASL perfusion-based FC measurement—the interac-
tion among brain regions has important implications for
cognitive function and has been linked to resting perfusion,
so in this work, we will discuss the use of ASL connectivity
as an alternative or supplement to BOLD; (2) using ASL per-
fusion to explain the physiological underpinnings of resting-
state BOLD connectivity—network CBF may serve as a sur-
rogate of the basal metabolic activity of the corresponding
brain networks; and (3) using dynamic ASL to investigate
CBF-BOLD coupling in resting state—this coupling underlies
resting-state FC and intrinsic cerebral metabolism, and we dis-
cuss simultaneous CBF-BOLD measurements that offer phys-
iological insight. We will also address future research
directions and challenges along with plausible solutions.

Recent Technical Advances in ASL

Although ASL perfusion MRI was first introduced in the
early 1990s (Detre et al., 1992; Williams et al., 1992), the rel-
atively rapid growth of its technical development and clinical
translation occurred mainly during the past 10 years. The main
limitations of ASL have been the relatively low signal-to-noise
ratio (SNR) due to the small arterial blood fraction (*1%) as
well as the arterial transit effects if the postlabeling delay is not
long enough to allow labeled blood to reach the tissue (e.g.,
stroke).

In response, several key technologies have been developed
during the past decade to maximize the SNR and temporal sta-
bility of ASL scans, including pseudocontinuous ASL (pCASL)
(Dai et al., 2008; Wu et al., 2007), background suppression (BS),
and three-dimensional (3D) fast imaging sequences, such as
GRASE (a hybrid of gradient and spin echo) and stack of spirals.
3D acquisitions not only offer increased SNR compared with
two-dimensional (2D) acquisitions such as echo-planar imaging
(EPI) through the excitation of a larger volume but they are also
ideally suited for BS, given the single excitation time point. A
recent consensus article recommended pCASL with back-
ground-suppressed 3D acquisitions as the preferred common
strategy for clinical applications (Alsop et al., 2014).

At present, the primary purpose of clinical ASL examina-
tions is to provide quantitative resting CBF maps based on a
single scan within a clinically acceptable time of a few min-
utes, with results shown to be comparable with 15O-water
PET (Heijtel et al., 2014; Kilroy et al., 2014). Since an
ASL scan contains multiple pairs of label and control acqui-
sitions, it is also conceivable to perform FC analysis of per-
fusion time series in a manner similar to BOLD rs-fMRI. In
this regard, a combination of pCASL with BS (Garcia et al.,
2005; Ghariq et al., 2014) offers major advantages over con-
ventional ASL acquisitions in terms of the temporal SNR and
stability of the perfusion image series (Fig. 1).

We note that 3D acquisitions for ASL have been demon-
strated to increase spatial SNR with little effect on temporal

FIG. 1. Comparison of temporal
signal-to-noise ratio (SNR) and
frame-by-frame perfusion image se-
ries by three-dimensional (3D)
background suppression (BS)
GRASE and two-dimensional (2D)
echo-planar imaging (EPI) pseudo-
continuous arterial spin labeling
(pCASL). Although mean cerebral
blood flow (CBF) maps are compa-
rable, the temporal SNR (tSNR) of
3D GRASE pCASL is approxima-
tely three times that of 2D EPI
pCASL, resulting in reliable frame-
by-frame perfusion image series,
while large variations exist in 2D
EPI pCASL image series.
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SNR (Vidorreta et al., 2013). Due to the high image SNR (vs.
thermal noise in the background) in both 3D GRASE and 2D
EPI images (typically SNR > 100), the temporal SNR is
mainly determined by physiological noise. Therefore, we at-
tribute the three-fold temporal SNR gain mainly to BS, con-
sistent with the findings of Vidorreta and associates (2013).
Furthermore, BS was recently shown to increase temporal
SNR in 2D acquisitions (Wang et al., 2015) as well, although
the effect was less pronounced than on 3D acquisitions.

We also note that 3D ASL acquisitions may suffer from
spatial blurring due to modulations of k-space signals by
the transverse (T2) relaxation curve, especially along the
slice/partition direction. For single-shot acquisitions, the
full width at half-maximum of the point-spread function is
on the order of 1.3–1.5 voxels along the slice direction
(Vidorreta et al., 2013). In this regard, trade-offs between
achieving adequate temporal and spatial resolution have
to be made around single and multishot acquisitions at
present. Recent developments to reduce the 3D readout
by using techniques such as k-space sharing (Liang et al.,
2012) may also improve the feasibility of 3D ASL for rs-
fMRI applications.

ASL Signal Analysis Approaches

Minimizing BOLD effects

In analyses targeting the dynamic perfusion signal, it is
imperative to minimize BOLD contamination. This was pre-
viously demonstrated by Aguirre and colleagues (2002)
using sinc interpolation. Liu and Wong (2005) further demon-
strated the use of low-pass filtering to isolate the unmodulated
(by tag and control differences) CBF component, providing a
general framework for describing the sinc interpolation
method as well as alternative methods such as simple and sur-
round subtraction. Specifically, the sinc interpolation method
was expressed as demodulation, followed by low-pass filter-
ing of the raw ASL time series, and when evaluated against
the alternatives, demonstrated superior attenuation of spurious
BOLD components. On the other hand, Chuang and col-
leagues (2008) used high-pass filtering to isolate the modu-
lated CBF component, and subsequently demodulated it to
produce the perfusion-related CBF component, assuming
the control–tag-modulated BOLD effect is negligible. Based
on this work, as the primary frequency distribution of the
BOLD component is below 4/repetition time (TR) Hz, high-
pass temporal filtering above this frequency can be applied
to the raw ASL image series to minimize low-frequency
BOLD fluctuations (Fig. 2). Compared with the high-pass fil-
tering approach, the low-pass filtering approach may retain
more BOLD contribution that can only be minimized
through echo time minimization. Nonetheless, the method
of Chuang and colleagues (2008) builds upon ASL signal
models from previous work (Liu and Wong, 2005; Mum-
ford et al., 2006) and produces results similar to those of
sinc interpolation. Thus, there is no fundamental difference
among these various preprocessing techniques.

Minimizing physiological noise effects

In this review, we provide a brief overview of physiolog-
ical denoising methods that could be applicable to ASL. This
is by no means exhaustive, but a list of the most recent and/or

widely applied methods in fMRI. Note that BS would not
eliminate these noise effects from the CBF time course
(Wu et al., 2009b).

RETROICOR [image-based method for retrospective cor-
rection of physiological motion effects (Glover et al.,
2000)]. Involving regressing out the phase information of
time-locked respiratory and cardiac noise, RETROICOR is
a model-based method that has become a standard step in
resting-state BOLD fMRI preprocessing. CBF time series
is indeed susceptible to physiological noise as well, chiefly
respiration and cardiac effects. However, applying RETRO-
ICOR on the ASL difference time series had minimal effect
on signal quality (Restom et al., 2006). In fact, RETROICOR
was most beneficial when applied to the tag and control time
series separately before the subtraction step (Restom et al.,
2006). It was further found that the effectiveness of RETRO-
ICOR depends on the type of ASL employed (Wu et al.,
2009b), with CASL more affected by respiratory than car-
diac noise.

CompCor [component-based noise correction (Behzadi
et al., 2007)]. Partly data driven, CompCor uses principal
signal components from white matter and cerebrospinal
fluid regions as nuisance regressors in a general linear
model. It has compared favorably against RETROICOR in
task-based BOLD studies in terms of increasing the extent
of activation detection (Behzadi et al., 2007). It was since ap-
plied successfully on ASL data (tag and control series sepa-
rately) to control the effect of physiological noise.

Global signal regression (Desjardins et al., 2001). Another
general linear model-based approach, this method is simple
and widely adopted in rs-fMRI. In addition to removing a
large portion of physiological noise, this method may also cor-
rect global motion effects (Power et al., 2012). It has been
shown that global signal regression improves tSNR and
test–retest reliability of CASL-based CBF maps (Wang,
2012). However, the global perfusion signal will likely con-
tain neuronal contributions (Leopold and Maier, 2012; Mur-
phy et al., 2009), and regressing out the global signal will
likely bias the perfusion time series just as it biases the
BOLD time series and connectivity measures. Thus, the use
of global signal regression is a controversial issue in FC cal-
culations (Saad et al., 2013).

RVHRCOR [low-frequency respiratory and heart rate vari-
ability correction (Chang et al., 2013)]. This method
includes as nuisance regressors low-frequency variations in
respiration and cardiac pulsation instead of their time-locked
components. It has been demonstrated to potentially reduce
false positives in BOLD FC measurements (Chang and Glo-
ver, 2009a). The same principles should apply to ASL CBF
data, but as for RETROICOR, RVHRCOR should be applied
to tag and control time series independently. However,
RVHRCOR has been shown to reduce the test–retest repro-
ducibility of resting-state BOLD connectivity results (Birn
et al., 2014) and mask drug effects on connectivity in phar-
macological fMRI (Khalili-Mahani et al., 2013). Thus, the
true significance of low-frequency physiological fluctuations
and the benefits of their removal by RVRHCOR have yet to
be elucidated.
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APPLECOR and PEARCOR (Marx et al., 2013). APPLE-
COR stands for affine parameterization of physiological
large-scale error correction, while PEARCOR stands for paral-
lel execution of APPLECOR and RVHRCOR. APPLECOR es-
timates the global noise regressors based on the detection and
modeling of globally consistent spatial correlation patterns. In
fact, the adoption of PEARCOR was shown to result in maxi-
mal suppression of temporal variability in resting-state BOLD
default mode FC patterns when compared with RVHRCOR
and global signal regression. In regard to application in ASL,
similar recommendations apply as for RVHRCOR.

FIX (FMRIB independent component network analysis-
based X-noisifier) (Salimi-Khorshidi et al., 2014). Part of
the FSL toolbox, FIX uses a trained classifier to automati-
cally detect noise components from a standard independent
component network analysis (ICA) based on numerous attri-
butes of each independent component. This technique can be
applied directly to the CBF-based ICA results instead of on
the control and tag time series separately. This approach
can be easily deployed in the absence of physiological re-
cordings, but the effectiveness of this approach in view of

the other approaches listed here has yet to be quantified. It
would also call for a new classifier for CBF data sets that
has to be trained and identified.

Perfusion-Based FC Mapping

While BOLD rs-fMRI is the dominant technique used in
studies of resting-brain networks (RBNs), the possibility of
using ASL perfusion MRI for assessing RBNs has been
attracting increasing interest (Chuang et al., 2008; Zou
et al., 2009) due to the closer coupling (relative to BOLD) be-
tween CBF and neuronal activity (Lauritzen, 2001; Wong
et al., 1997). Resting-state FC based on CBF fluctuations
was first demonstrated by Biswal and associates (1997) in
the bilateral motor cortices. Subsequently, Chuang and col-
leagues (2008) proposed a theoretical framework in which
CBF-based FC can be derived with minimal BOLD contam-
inations by taking advantage of the unique frequency modu-
lation of control–tag alternations in the ASL time series. This
analysis framework (see previous section for details) was
later applied to examine connectivity in the default mode net-
work (DMN), which was consistently identified using BOLD

FIG. 2. CBF-based resting-state
functional connectivity (FC) mea-
surement [Figure adapted with per-
mission from Chuang et al. (2008)].
(a) The resting-state functional
magnetic resonance imaging
(fMRI) signal spectra show distinct
blood oxygen level-dependent
(BOLD)-related (<0.08 Hz) and
CBF-related (>0.08 Hz) peaks. (b)
FC maps of the motor cortex (out-
lined in green) were derived using
high-pass-filtered CASL data (top)
and are comparable with the
BOLD-based connectivity maps
(middle); note that the high-passed
BOLD data showed minimal FC
(bottom). (c) Composite functional
connectivity maps show differential
sensitivity of the BOLD- and CBF-
based connectivity measures. Color
images available online at www
.liebertpub.com/brain
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and CBF data (Fernández-Seara et al., 2011; Viviani et al.,
2011; Zou et al., 2009). Viviani and colleagues (2011) dem-
onstrated this equivalence in a large sample (N = 265) by find-
ing significant correlation with BOLD-based connectivity in
the frontal eye field and intraparietal sulcus, as well as in the
main nodes of the DMN.

More recent studies have employed a combination of 3D
pCASL and ICA to explore CBF-based connectivity. Liang
and associates (2012) used a 3D GRASE pCASL technique
with view sharing to minimize image blurring while achiev-
ing whole-brain coverage at a TR of 3.75 sec. Their ICA-
based results showed that CBF and BOLD data reveal
remarkably similar RBNs, including the DMN, attention, au-
ditory, sensorimotor, and visual networks. These findings
were confirmed in a more quantitative comparison between
ASL and BOLD FC in a more recent study ( Jann et al.,
2015a). In the latter study, also based on 3D GRASE
pCASL, the similarity and reliability between BOLD- and
CBF-based RBNs were quantitatively evaluated. Both sepa-
rate and joint FC analyses of ASL and BOLD rs-fMRI data
generated RBNs common to both imaging techniques, with
a moderate-to-high level of spatial overlap as shown by
Dice similarity coefficients (range: separate-ICA 0.35–
0.80; joint-ICA 0.59–0.71). Specifically, test–retest analyses
indicated more reliable spatial network patterns in BOLD
(average intraclass correlation coefficient [ICC] = 0.91 – 0.03
between sessions and 0.89 – 0.05 between scanners) than in
ASL data (ICC = 0.55 – 0.05 and 0.58 – 0.06, respectively).
It bears mentioning that ASL provided an added benefit of
highly reproducible network-specific quantitative CBF mea-
surements (ICC = 0.96 – 0.02 between sessions and 0.97 –

0.01 between scanners) that are complementary to FC as a
metric of resting brain function (Jann et al., 2015a). The rela-
tionship between FC and resting CBF will be discussed in
more detail in a later section.

Overall, existing work suggests that ASL and BOLD rs-
fMRI have complementary strengths, and taken together,
they may provide a powerful tool for better characterizing
the spatiotemporal and quantitative properties of RBNs.
Nevertheless, since ASL-based perfusion contrast is typi-
cally two- to threefold lower than BOLD contrast, it is rea-
sonable to assume that the lower SNR would contribute to
lower test–retest reliability of the CBF-based results. Indeed,
higher SNR may indicate a greater capacity to faithfully rep-
resent underlying neuronal processes. However, as a general
comment, we note that test–retest reliability alone may not
be representative of accuracy in depicting underlying brain
processes. As recently found (Birn et al., 2014), physiologi-
cal noise processes such as respiration and cardiac pulsation
can produce highly reproducible, but spurious, connectivity
patterns in rs-fMRI. Thus, the true reliability of CBF-based
measurements of resting-state brain function without poten-
tial modulation of physiological signals remains to be ex-
plored. Furthermore, improvements in the temporal
resolution (Liang et al., 2012) and spatial coverage ( Jann
et al., 2015a) of 3D ASL remain in progress, as will be dis-
cussed in a later section (Fig. 3).

As ASL requires that T2 weighting be minimized, it is less
sensitive to magnetic field inhomogeneity effects compared
with BOLD, thus allowing improved visualization of brain
regions bordering high susceptibility gradients. Indeed,
Jann and colleagues (2015a) showed that CBF-based FC

FIG. 3. Similarities and differences between resting-state functional networks derived from BOLD and from CBF [Figure
adapted with permission from Jann et al. (2015a)]. Group joint independent component network analysis (ICA) was used to
derive five common resting-state brain networks: the default mode network (DMN), left and right executive control networks
(LECN/RECN), occipital visual network (OVN), and auditory network (AUN). Meaningful resting-state networks were
detected using both BOLD and CBF data. BOLD- and CBF-based FC maps are in the top two rows. Differences between
BOLD and ASL were assessed by means of two-sample two-sided t-tests (significance threshold was set at p < 0.001). Cor-
relation maps between resting perfusion and FC are also shown (CBF-FC), with CBF-based connectivity maps more strongly
associated with resting perfusion. Color images available online at www.liebertpub.com/brain
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analysis revealed greater connectivity of the DMN in the pre-
frontal cortex compared with BOLD, in agreement with find-
ings by Tak and colleagues (2013). It was also found that the
amplitude of low-frequency fluctuation (ALFF) computed
from CBF time series was significantly different across
RBNs and subjects (Fig. 4). The advantage of CBF ALFF
compared with BOLD ALFF is that the former provides an
absolute measure of the magnitude of temporal fluctuations
in ml/100 g/min, facilitating the comparison of ALFF across
studies and populations.

In addition to seed-based FC and ICA, the whole-brain
CBF connectome has been explored using graph theory anal-
ysis. Liang and colleagues (2013) detected small-world net-
work properties in CBF-based connectome and further found
that nodal connectedness and centrality of BOLD connectiv-
ity are nonlinearly correlated with resting perfusion.

In principle, as ASL depends on vascular water exchange
with tissue, it is inherently more heavily weighted toward the
microvasculature than conventional BOLD (Wong et al.,
1997), which typically emphasizes large veins. In addition,
CBF is linearly related to cerebral oxidative metabolism
(CMRO2), unlike BOLD. Furthermore, ASL can be used to
provide quantitative CBF information, whereas BOLD is
for the most part a relative measure. These factors indicate
that in theory, CBF measurements are more representative
of underlying neuronal activity.

In practice, CBF measurements are generated through
some form of subtraction and are associated with signifi-
cantly lower SNR compared with BOLD. This reduction in
SNR may, in part, undermine the accuracy of quantitative

CBF estimates. Moreover, the SNR disadvantage may lead
to reduced sensitivity for neuronal events (Perthen et al.,
2008) and may potentially have led to the lower reliability
scores in CBF-based FC measurements ( Jann et al., 2015a;
Viviani et al., 2011). This may be exacerbated by ASL’s
need for longer TRs compared with techniques such as
slice-accelerated BOLD (Wang et al., 2015), limiting the sta-
tistical power of CBF-based FC for a given acquisition dura-
tion. These are indeed concerning areas for future efforts.
Nonetheless, the ASL family of techniques possesses several
potential advantages over BOLD. First, while the resting-
state BOLD signal is well known to exhibit a 1/f noise spec-
trum, the postsubtraction ASL noise spectrum is nearly flat,
precluding biases introduced by autocorrelated noise
(Wang et al., 2003). By the same token, the subtracted
ASL time series is potentially less sensitive to motion and
low-frequency drift effects (Liu et al., 2002), as well as
low-frequency physiological noise. Likewise, CBF data
may also be less biased by low-frequency physiological
noise (Chang et al., 2009; Chang and Glover, 2009b; Goles-
tani et al., 2015), which can account for up to 20% of the rest-
ing-state BOLD signal. Nonetheless, these advantages
require further experimental verification in this rapidly
evolving domain.

In summary, the ability to robustly capture spontaneous
CBF fluctuations using ASL has opened up the enticing pos-
sibility of mapping CBF-based resting-state FC. Thus far, ef-
forts in this direction have been successful, but have also
raised issues in signal preprocessing and interpretation. For
instance, due to the relatively low temporal resolution of

FIG. 4. The relationship between CBF-based amplitude of low-frequency fluctuation (ALFF) and simultaneously measured
resting perfusion [Figure reprinted with permission from Jann et al. (2015a)]. (a) Both the average CBF-based ALFF for each
network and subject and (b) the normalized ALFF values (%ALFF = the absolute ALFF divided by the resting brain network
(RBN)-CBF revealed significant differences across networks and subjects (based on analysis of variance [ANOVA] results).
Subjects were ordered according to their overall mean ALFF. Color images available online at www.liebertpub.com/brain
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ASL scans, perfusion time series from multiple subjects are
often concatenated, for instance, in a group ICA (Jann et al.,
2013, 2015a). In addition, as CBF and BOLD provide com-
plementary information, it is appealing to combine ASL and
BOLD for characterizing spatiotemporal and quantitative
properties of specific brain networks, as proposed by a few
recent studies ( Jann et al., 2013; Zhu et al., 2013). Further-
more, joint CBF- and BOLD-based FC analyses offer mutual
validation of findings using each modality, thereby improv-
ing confidence for statistical inferences. On the other hand,
cross-modality differences in connectivity maps also drive
the search for the neurovascular mechanisms underlying
resting-state connectivity.

Explaining Resting-State BOLD
Through Resting Perfusion

Approximately 80% of the brain’s energy budget is allo-
cated to resting-state neuronal activity and energetics (Shul-
man et al., 2004), of which CBF is a well-established
surrogate measure. Thus, in the context of defining the mech-
anisms underlying rs-fMRI-based FC measurements, resting
perfusion offers a unique insight regarding resting brain
function. The association between resting CBF and FC
may initially have been drawn from empirical observations
that resting perfusion often appears to be elevated in regions
exhibiting strong FC in BOLD rs-fMRI (Zou et al., 2009), for
example, the DMN (Buckner, 2010; Di et al., 2012; Greicius
et al., 2003). Such empirical observations were verified by
several recent studies ( Jann et al., 2015a; Li et al., 2012a,
b), although not all such studies showed similar results (Viv-
iani et al., 2011). The majority of these studies reported pos-
itive correlations between regional resting CBF and FC
strength (either BOLD or ASL FC) (Fig. 5). Furthermore,
this relationship has been found to be spatially heterogeneous

and to be modulated by pharmacological agents in healthy
individuals (Khalili-Mahani et al., 2014). Recent reports sug-
gest that FC and CBF jointly represent the degree of optimi-
zation for a region to perform efficient processing of
information and the metabolic cost associated with that pro-
cessing (Tomasi et al., 2013). Thus, knowledge of the FC-
CBF relationship provides complementary information on
the brain’s baseline functional organization.

Both perfusion and FC, as well as their interactions, are
found to be altered by disease (Kindler et al., 2015). For in-
stance, a study in patients with Alzheimer’s disease showed a
lower CBF and FC in nodes of the DMN that were correlated
with cognitive performance. Furthermore, medical treatment
resulted in improvements in both measures, accompanied
by reductions in disease severity (Li et al., 2012a). Hence,
resting-state BOLD FC analysis, like its task-based counter-
part (Liu et al., 2012), will likely benefit from including
global and regional CBF for a better understanding of the in-
terindividual variability, specifically in clinical populations
where alterations in both parameters have been observed.

It is worth noting that negative associations between net-
work CBF and FC have been reported in white matter
(Aslan et al., 2011) and were explained with the hypothesis
that more efficient networks with stronger FC require less en-
ergy, hence lower CBF, to maintain their function. The hy-
potheses for both positive and negative associations between
CBF and FC require further evaluation. Finally, in addition
to FC, other commonly used rs-fMRI metrics such as the
ALFF and regional homogeneity have also been associated
with regional perfusion. Both were found to correlate with rest-
ing CBF in the majority of cortical regions (Li et al., 2012b).

In summary, having demonstrated that network-specific
CBF measurements are highly reproducible across time
and scanners ( Jann et al., 2015a), regional resting CBF is
an important imaging marker that complements FC for

FIG. 5. Links between FC and resting perfusion. (a) Localized positive correlations between FC and resting CBF are shown for
two representative networks, namely the DMN and the LECN [Figure adapted with permission from data in Jann et al. (2015a)].
(b) A similar relationship was found between normalized regional perfusion (rCBF) and functional connectivity strength (FCS) in
the cases of both long- and short-range connectivity [Figure partially taken with permission from Liang et al. (2013)]. These results
indicate the intricate link between resting perfusion and FC. Color images available online at www.liebertpub.com/brain
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characterizing resting brain function. To take the understand-
ing of FC further, dynamic CBF will likely be required to
probe the neurovascular physiology underlying resting-
state BOLD.

Assessment of Resting-State
Neurovascular Physiology

A better understanding of the neurovascular mechanisms
underlying resting-state BOLD signals is a necessity to
draw conclusions regarding brain function and metabolism
from rs-fMRI data. The ability of ASL techniques to measure
dynamic BOLD and CBF fluctuations simultaneously (Fuku-
naga et al., 2008; van Gelderen et al., 2005; Weber et al.,
2013; Wu et al., 2009a) has made it possible to begin probing
resting-state brain physiology.

This is an attractive but ambitious use of ASL that is in its
early stages of development and warrants more detailed
methodological discussion. Since the dynamic information
in ASL data becomes critical at every time frame, signal pre-
processing requirements become more stringent. As a case in
point, in resting-state CBF calculations, physiological
denoising is typically not used. However, when examining
resting-state dynamics, all sources of bias must be minimized
in the ASL signal, thus denoising becomes much more im-
portant (Wu et al., 2009b).

The close relationship between BOLD and CBF during
tasks was first established by earlier work by Davis and col-
leagues (1998) based on BOLD and CBF data acquired

within the same session. This coupling was confirmed and
further defined by Hoge and associates (1999) using inter-
leaved BOLD and CBF measurements. As described by
Hoge’s deoxyhemoglobin dilution model, BOLD and CBF
changes due to task are only linearly related when both are
relatively low. Beyond this linear range, the BOLD signal
may vary with CBF in a sublinear manner. In addition, the
hemodynamic delay associated with BOLD is typically lon-
ger than that of CBF. While the earlier works focused on pos-
itive signal changes, negative BOLD and CBF changes were
also found to vary linearly with one another by later neuronal
deactivation studies (Shmuel et al., 2006; Stefanovic et al.,
2005). These studies set the stage for the resting-state inves-
tigation of BOLD-CBF coupling.

One of the earliest works targeting BOLD-CBF dynamics
using ASL is by Fukunaga and colleagues (2008) who aimed
to monitor resting-state oxidative metabolism fluctuations
through a BOLD-CBF ratio. BOLD and CBF data were simul-
taneously obtained using a custom-pulsed ASL technique. Fur-
ther analysis was performed using regions of interest (ROIs)
identified from regions displaying high resting-state time se-
ries correlations, and ROIs were placed in the visual, lateral
temporoparietal, sensorimotor, and prefrontal cortices. Sig-
nificant correlation was observed primarily in gray matter,
and a linear relationship was found between BOLD and
CBF in the resting state in all ROIs. A very similar linear re-
lationship was observed under visual stimulation (Fig. 6a),
implying that similar CBF-BOLD coupling underlies both
intrinsic and task-induced brain activity. One potential

FIG. 6. Measuring neuro-
metabolic mechanisms of
resting-state fMRI using ASL:
(a) The resting-state relation-
ship between BOLD and CBF
[Reprinted with permission
from Fukunaga et al. (2008)].
The relationship between
BOLD and CBF fluctuations
in the resting state is shown to
be strongly linear. Further-
more, this CBF-BOLD rela-
tionship was shown to be
similar to that observed during
visual stimulation (VT) and
breath holding (BH). (b) The
derivation of dynamic oxida-
tive metabolism (CMRO2)
and FC from simultaneous
CBF-BOLD data [Reprinted
with permission from Wu
et al. (2009)]. CMRO2 was
derived based on the linear
approximation of the CBF-
BOLD relationship. Futher-
more, FC maps, computed
from resting-state BOLD,
CBF, and CMRO2 time
courses, are spatially consis-
tent in multiple functional
networks, including the
visual, hippocampal, and
DMNs. Color images
available online at www
.liebertpub.com/brain
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caveat of this work is that the resting-state CBF fluctuations
were normalized to the global mean instead of to the voxel
mean ASL signal, introducing added variability and reducing
the sensitivity of resting BOLD-CBF analysis. In fact, this
background-suppressed pulsed ASL technique may bias the
BOLD measurements, and the lack of a postlabeling satura-
tion may lead to inaccurate CBF measurements. Moreover,
no regional distinction was made when accounting for the
delay between the BOLD and CBF time courses. Further-
more, while BS was used in the ASL acquisition, the CBF
time series was not corrected for physiological noise.

In a subsequent work by Wu and colleagues (2009a),
pulsed ASL was used to obtain BOLD and CBF time courses.
The PASL time series first underwent high-pass filtering to
isolate the CBF component and low-pass filtering for the
BOLD component, as suggested in Chuang and colleagues
(2008). The CMRO2 time series were estimated from
BOLD and CBF time courses by assuming the steady-state
BOLD model with a fixed set of parameters for the entire
brain. Sample resting-state time courses were taken from
the visual, anterior cingulate, posterior cingulate, and hippo-
campal regions and are shown in Figure 6b. These regions
were subsequently used as seeds in a resting-state connectiv-
ity analysis. This work aimed to demonstrate once again that
the resting-state dynamic relationship between BOLD and
CBF can be approximated as linear. Compared with prior
work by Fukunaga and colleagues (2008), Wu and colleagues
used a more complete ASL preprocessing approach, hence re-
ducing the effect of CBF normalization bias mentioned earlier.
However, physiological noise was not explicitly removed
from ASL data, introducing potential uncertainty in the neuro-

nal specificity of the BOLD-CBF relationship. The resting-
state CMRO2 connectivity patterns highly resemble those of
CBF, which on the one hand may confirm the tight relation-
ship between CMRO2 and CBF, but on the other hand may
also simply suggest that the CMRO2 estimates are dominated
by CBF variability in the model employed. As a potential
cross-validation of these results, it may provide insight to es-
timate dynamic CMRO2 change directly using simultaneous
CBF-CBV-BOLD measurements (Yang et al., 2004).

In recent work by Tak and colleagues (2014), we used
dual-echo 2D-EPI pCASL to assess the biophysical relation-
ship between resting-state fluctuations in BOLD and CBF
across the human brain. In this study, in addition to the previ-
ously described techniques to minimize BOLD-CBF cross talk
(Chuang et al., 2008), we also employed physiological noise
correction in the tag and control ASL images individually
(Wu et al., 2009b). Moreover, to maximize the specificity of
the findings to neuronal activity, the influence of global car-
diac and respiratory fluctuations was excluded from the ob-
served CBF-BOLD coupling. This work showed resting-state
BOLD-CBF coupling strength to vary across the brain and
was incidentally stronger for the most robustly reproduced rest-
ing-state functional networks (Fig. 7c), including the medial
prefrontal, intraparietal sulcus, inferior parietal lobule, and pos-
terior cingulate regions. Moreover, this coupling appeared to
be strongly modulated by local macrovascular content, being
negatively associated with large vessel occupancy in the
voxel (Fig. 7d). While these findings demonstrate the feasibil-
ity of an ASL-based approach for investigating rs-fMRI physi-
ology, a clear knowledge of neuronal and non-neuronal origins
of the rs-fMRI signal remains elusive (Peng et al., 2013).

FIG. 7. Spatial variability in
the dynamic coupling between
BOLD and CBF fluctuations in
the resting state [adapted with
permission from Tak et al.
(2014)]. Sample time series
corresponding to simulta-
neously acquired BOLD and
CBF data in (a) the posterior
cingulate (PCC) and (b) the
dorsolateral prefrontal cortex
(DCLPC-R). The parameter
dBOLD indicates the estimated
time delay in the BOLD signal
relative to the CBF signal. (c)
Group-level CBF-BOLD corre-
lations are strongest in known
functional networks: these in-
clude the DMN, the medialpre-
frontal (MPFC), and PCC
regions, labeled in yellow, as
well as regions exhibiting an-
ticorrelations with default mode
activity, namely the intraparietal
sulcus (IPS) and inferior par-
iental lobule (IPL), both labeled
in blue. (d) Moreover, CBF-
BOLD coupling appeared to be
strongly modulated by local
macrovascular content. Color
images available online at
www.liebertpub.com/brain
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Tak and colleagues’ (2015) subsequent work took the CBF-
BOLD coupling analysis one step further to examine the rela-
tionship between the degree of coupling and the corresponding
FC measurements. The analysis demonstrated that resting-state
FC strength, in this case based on the BOLD signal, is stronger
in regions of stronger CBF-BOLD coupling (Fig. 8). This is the
case within several major resting-state brain networks, includ-
ing the default mode, dorsal attention, and primary motor-
sensory regions. This finding complements a previous finding
that CBF-BOLD coupling is stronger within the most robust
functional network regions of the brain and further highlights
the contribution of dynamic CBF fluctuations to BOLD
FC. Future experiments may involve background-suppressed
dual-echo pCASL for improved sensitivity to both BOLD
and CBF contrast (Ghariq et al., 2014).

In summary, the study of BOLD and CBF dynamics using
ASL is a challenging but promising avenue of research. It of-
fers the potential for accessing valuable information regarding
the nature of resting-state activity that we are attempting to
measure using fMRI. Most importantly, this new research di-
rection could lead to innovative methods to assess brain health
beyond FC, for instance, through the derivation of dynamic
metrics based solely on resting-state temporal information.

Challenges and Future Directions

Effect of head motion and physiological processes
in ASL-based FC

It has been shown that minimizing potential confounding
influences of head motion and systemic physiological pro-
cesses (e.g., respiration and heart rate) is essential for
BOLD FC analysis (Chang and Glover, 2009a). Motion
can be particularly concerning in pediatric, clinical, and el-

derly populations (Power et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012). Various strategies have been
proposed, including scrubbing or censoring of corrupted im-
ages, regression of motion parameters, and/or global signals
(Power et al., 2012, 2014; Satterthwaite et al., 2013). These
methods are shown to be effective in alleviating, but not
eliminating, the effects of motion on rs-fMRI.

In the case of ASL, the regression of noise components has
proven to increase temporal SNR in the time series (Wang,
2012). However, the effect of head motion on perfusion-
based FC analysis is complex and not well studied. Notably,
similar areas seem to be affected by head motion in ASL
( Jann et al., 2015b) and BOLD (Van Dijk et al., 2012). The
pairwise subtraction of label and control images would mag-
nify motion-related signal variation (SD) in the raw image
time series by a factor of

ffiffiffi

2
p
ðr2

ASL ¼ r2
control þ r2

labelÞ. With
BS, the effect of head motion on 3D GRASE pCASL may
be less pronounced than on BOLD rs-fMRI. 3D GRASE with
BS has demonstrated more stable and reliable RBNs than its
2D-EPI counterpart in a preliminary study (Jann et al., 2015a)
with physiological noise regression, resulting in only subtle FC
changes (in the DMN, as shown in Fig. 9). Nonetheless, the ob-
served improvements in temporal SNR brought about by noise
regression suggest that FC analyses in the latest 3D ASL will
still require proper noise regression to prevent erroneous find-
ings related to motion or physiological noise. Further studies
are, however, needed to verify these preliminary findings.

Sampling requirements for ASL-based FC

Another main issue/challenge for perfusion-based rs-fMRI
is the relatively low temporal resolution. Due to the pairwise
subtraction of label and control acquisitions, as well as the re-
quirement for a postlabeling delay, each perfusion image

FIG. 8. The relationship
between dynamic CBF-BOLD
coupling and BOLD-based FC
[Figure adapted with permis-
sion from Tak et al. (2015)].
Resting-state FC strength,
quantified in terms of z-scores,
is significantly associated with
the strength of CBF-BOLD
coupling (also in terms of z-
scores) shown here for two
commonly observed networks:
(a) the DMN and (b) the
frontoparietal network. These
associations are quantified
through the linear equations at
the bottom corner of the plots,
with r indicating the correla-
tion. On the other hand, FC
strength is negatively corre-
lated with macrovascular con-
tent across all brain networks
examined, suggesting that
tighter CBF-BOLD coupling,
more typical around the mi-
crovasculature, results in
higher FC measurements.
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generally takes 6–8 sec to acquire, in contrast to the 1–3 sec re-
quired by conventional BOLD rs-fMRI. Past resting-state
BOLD studies have demonstrated that increasing temporal
resolution (Kalcher et al., 2014) and number of samples
would enhance the detection of rs-fMRI networks (Olafsson
et al., 2015), although the topography of the networks may
not be influenced by the sampling rate (Niazy et al., 2011).
Moreover, the strength and intersessional reproducibility of
BOLD connectivity patterns are associated with different op-
timal scan durations (Birn et al., 2013; van Dijk et al., 2010).

Thus, with the aim of minimizing acquisition length given
the low acquisition rate of ASL, the question remains—what
ASL time series length would be adequate for the FC and dy-
namic analyses mentioned above? This issue remains to be
systematically addressed in future studies.

Transit delay effects

Challenges and concerns regarding the integration of ASL as
part of rs-fMRI studies have typically been concerned with the
sensitivity and reliability of ASL CBF measurements, as well
as measurement interpretation, especially in the presence of
transit delay (Qiu et al., 2010; Wong et al., 1997). Promising
alternative spin-labeling strategies such as velocity-selective
ASL (VSASL) have been introduced to provide great transit
delay immunity and spatial specificity (Wong et al., 2006).
Based on the concept of velocity-selective labeling, VSASL
has been validated against multidelay pCASL and ultimately
xenon CT in patients with Moyamoya disease that would be
associated with long transit delays (Qiu et al., 2012). General
agreement has been achieved, although the correlation be-
tween VSASL and CT-based CBF measurements was moder-
ate (r = 0.55). Current implementations of VSASL result in
reduced SNR compared with predecessors such as pCASL
and may require compromises in spatial resolution (Qiu
et al., 2012). The effectiveness of VSASL in rs-fMRI applica-
tions has yet to be examined.

While the exact impact of transit delay depends on the
choice of ASL imaging parameters (e.g., postlabeling delay),
past experiments indicate that arterial transit variability in
ASL data can differ by up to 1 sec between gray matter regions
(van Gelderen et al., 2008). The seed-based approach is by def-
inition sensitive to uncertainty in transit delays, and synchrony
between two delay-mismatched time courses may go unde-
tected or be misinterpreted as being anticorrelated. ICA-
based approaches employ higher-order statistics to isolate
brain networks and are in theory less sensitive than seed-
based approaches to transit time variability (Beckmann and
Smith, 2004). However, in reality, sufficiently large transit
time differences between regions can bias ICA results and cre-
ate spurious networks (Calhoun et al., 2003). Given these con-
siderations, delay-insensitive methods, such as those based on
frequency analysis (Calhoun et al., 2003), cross coherence, and
phase-locking measures (David et al., 2004), may provide less
biased functional connectivity measurements in the presence
of pronounced transit delays, such as observed in patient pop-
ulations (Wang et al., 2013). Last, we note that these delay-re-
lated considerations are equally relevant for BOLD-based FC.
Unlike for BOLD, however, delay effects on ASL CBF mea-
surements can be reduced by optimizing imaging parameters.

ASL at ultrahigh field

ASL methods derive a dual benefit from high magnetic
field strengths (Wang et al., 2002). In addition to increased
sensitivity at high field, blood T1 also increases, allowing
more label to accumulate in brain tissue as well as increased
postlabeling delay times to minimize arterial transit effects.
The increased SNR can also be traded for higher spatial res-
olution. These advantages are complemented by the use of
parallel imaging and array receiver coils (Wang et al.,
2005). Recently, the feasibility of pCASL at 7 T has been
demonstrated (Ghariq et al., 2012), expanding the horizon
of ASL in new fMRI applications.

FIG. 9. The effect of motion and noise regression strategies (NRS) on CBF-based FC calculations [Figure adapted with
permission from Jann et al. (2015b)]. NRS1: no correction; NRS3: motion parameters regressed; NRS5: regressing out mo-
tion parameters plus fluctuations from white matter (WM)/cerebrospinal fluid (CSF). (a) DMN calculated by means of group
ICA. (b) The F map resulting from ANOVA statistics across all NRS shows regions in which FC strength depended on the
choice of NRS; the t map illustrates areas of the DMN in which noise regression resulted in significant differences in FC
strength. (c) Average gray matter tSNR was significantly increased after correcting for motion and WM/CSF effects.
*p < 0.05. Color images available online at www.liebertpub.com/brain
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Multiband ASL

The literature reviewed so far is mostly based on ASL with
nonslice-accelerated 2D EPI and 3D GRASE image acquisi-
tions. High temporal resolution is particularly important for
rs-fMRI applications of ASL, and recently, simultaneous
multislice or multiband (MB) imaging has been attempted
in ASL perfusion MRI, showing promise. MB techniques
can be used to simultaneously acquire multiple slices using
composite RF pulses (Feinberg et al., 2011; Kim et al.,
2013; Li et al., 2014). Compared with standard 2D EPI-
based ASL, MB-EPI ASL can reduce T1 relaxation of the ar-
terial label, improving spatial coverage and resolution with
little SNR penalty. MB-EPI may also overcome the limita-
tion of 3D GRASE in terms of spatial blurring caused by
the T2 relaxation during the long readout window. However,
as an EPI technique, MB-EPI still suffers from geometric
distortion and signal dropout from field inhomogeneity ef-
fects, especially at high and ultrahigh magnetic fields.
Recently, a novel scheme was proposed for achieving
high-fidelity distortion-free quantitative perfusion imaging
by combining pCASL with MB-Turbo-FLASH (TFL) read-
out at both 3 and 7 T using the CAIPIRINHA technique (con-
trolled aliasing in parallel imaging results in higher
acceleration) (Wang et al., 2015). A comparison between
MB-TFL and conventional EPI images is shown for 3 T
(Fig. 10a, b) and 7 T (Fig. 10c, d). In particular, MB-TFL

pCASL benefits from the additional use of BS to improve
temporal SNR and minimize signal fluctuations (Fig. 10e,
f). Therefore, MB-TFL pCASL with BS potentially offers
the best alternative to 3D GRASE pCASL for perfusion-
based rs-fMRI studies. A potentially even more appealing
yet ambitious approach would see an integration of pCASL
3D acquisition and MB strategies for simultaneous multislab
imaging to achieve high spatial and temporal resolutions for
perfusion-based rs-fMRI.

Summary

ASL has experienced significant development in the past
decade and its application has been rapidly expanding.
While the majority of current ASL applications are confined
to quantitative CBF mapping, several new avenues of appli-
cation are rapidly emerging in assessing resting-state brain
function. ASL is a powerful technique that offers multiple
measures of brain function simultaneously. However, its ap-
propriate application relies on an understanding of the physi-
ology of the brain system being probed. In this review, we
demonstrate the expanding role of ASL in neuroimaging ap-
plications, notably in investigating resting-state FC and
CBF-BOLD coupling dynamics. While there remain techni-
cal challenges, ASL shows great promise in mapping the
neurovascular and functional health of the resting brain, par-
ticularly as its versatile and noninvasive nature often make

FIG. 10. Slice-accelerated ASL acquisition for high temporal resolution [Figure adapted with permission from Wang et al.
(2015)]. Shown here are sample CBF maps acquired using (a, c) multiband turbo FLASH (MB-TFL) with a slice acceleration
factor of 5 and (b, d) using a standard 2D EPI readout. The CBF maps in (a, b) were acquired at 3 T and those in (c, d) were
acquired at 7 T. Shown in the line plots are root-mean-square (RMS) of the raw image intensity difference between each
image volume and the time series mean without (e) and with (f) background suppression for a multiband ASL scan at 3
T. These results demonstrate the advantage of using slice-accelerated ASL acquisition and the importance of background
suppression. Color images available online at www.liebertpub.com/brain
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ASL the method of choice in the expanding realm of aging
and clinical research.
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