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Abstract

Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are ad-
versely affected by structured noise artifacts arising from head motion and physiological processes. Functional
connectivity estimates (Pearson’s correlation coefficients) were inflated for high-motion time points and for high-
motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed
artifacts. The degree of inflation was further increased for connections between nearby regions compared
with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated sev-
eral denoising methods: censoring high-motion time points, motion regression, the FMRIB independent compo-
nent analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for
global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substan-
tial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific ar-
tifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global
artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion partic-
ipants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates
from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to
address both types of motion-correlated artifacts was a combination of FIX and MGTR.

Keywords: artifact; denoising; fMRI; functional connectivity; Human Connectome Project; independent
component analysis; motion; resting state

Introduction

T HE HuMAN CoNNECTOME ProJecT (HCP) endeavors to
reveal variations in connectivity and their relationship to
behavior, function, and genetics in 1200 healthy partici-
pants (Van Essen et al., 2013). HCP advanced cutting-
edge pulse sequences to provide resting-state functional
magnetic resonance imaging (rffMRI) data with high spatial
and temporal resolution and whole-brain coverage (Ugurbil
et al., 2013). Nonetheless, HCP rfMRI data, like most
rfMRI data, are likely contaminated by artifacts resulting
from a number of influences, including head motion,
scanner-related issues, and physiological processes related
to cardiac, respiratory, and pCO, fluctuations. The intention

of the current work was to focus on artifacts correlated with
head motion and the effectiveness of methods designed to
reduce such artifacts.

Motion-correlated artifacts can bias our understanding of
functional networks and their relationship with individ-
ual and group difference variables (Power et al., 2012; Van
Dijk et al., 2012; Yan et al., 2013b). Prior studies using
lower resolution rfMRI data provided approaches to address
motion-correlated artifacts (Jo et al., 2013; Muschelli et al.,
2014; Satterthwaite et al., 2013), reviewed in Power and co-
workers (2015). These denoising strategies demonstrated
varying degrees of efficacy, but it is unclear whether they
will benefit higher resolution HCP rfMRI data to the same
degree.
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Indicators suggestive of motion-correlated artifact

In this article, we took four approaches to interrogate the re-
lationship between head motion and artifacts in rfMRI data
(c.f., Power et al., 2014): (1) intensity fluctuations in time series
data, (2) distance-dependent artifacts, (3) elevated differences
between low- and high-motion groups, and (4) relationships be-
tween head motion and resting-state functional connectivity
(rsFC) estimates. As in the existing literature, we expect
motion-correlated artifacts to take two forms: global effects
and spatially specific or distance-dependent effects.

Fluctuations in time series data. Power and colleagues
(2012, 2014) demonstrated that modest movements of the
head are associated with large blood oxygen level-dependent
(BOLD) signal changes across gray matter, white matter, and ce-
rebrospinal fluid voxels. Motion-correlated fluctuations in
BOLD signal appear quite complex: they may increase, de-
crease, or both before returning to baseline; they may fluctuate
across the whole brain (i.e., globally distributed), in some regions
more than others (i.e., spatially specific); and they may be brief
(Satterthwaite et al., 2013) or temporally extended (10 or more
seconds after motion ends) (Power et al., 2014). Some of these
BOLD fluctuations may directly result from motion, and others
may be motion-correlated artifacts due to physiological pro-
cesses time-locked to motion (e.g., yawning not only moves
the head but also changes heart rate and pCO, concentration).
Either way, the concern is that the motion-correlated artifact in-
fluences rfMRI data for all individuals on average, but more for
high-motion than low-motion individuals.

Distance-dependent artifact. ~Artifactual variance during
motion tends to be more similar for nearby voxels than dis-
tant voxels (see discussion in Power et al., 2015). This results
in correlations between head motion and rsFC estimates that
are higher for short-distance connections and lower for long-
distance connections (Satterthwaite et al., 2012). Censoring
(i.e., removing) high-motion time points reduces motion-
correlated artifact and usually decreases correlations be-
tween nearby parcels and increases correlations between
more distant parcels (Power et al., 2012, 2014).

Motion-group differences. Head motion during rfMRI
scans varies across individuals and may be confounded with
factors of interest, such as age (Power et al., 2012), attention-
deficit/hyperactivity disorder and impulsivity (Epstein et al.,
2007; Kong et al., 2014), and bipolar disorder and schizophre-
nia (Mamabh et al., 2013). Unfortunately, rsFC estimates also
appear biased in higher motion versus lower motion individu-
als and groups (Van Dijk et al., 2012). Differences between
groups that vary in head motion are apparent across the fre-
quency spectrum (Satterthwaite et al., 2013) and across anal-
ysis strategies (Power et al., 2015; Satterthwaite et al., 2012;
Yan et al., 2013b).

Quality control-rsFC plots. The relationship between indi-
vidual differences in head motion and rsFC estimates can also
be interrogated with quality control (QC)-rsFC plots: plots of
the correlation across participants between QC measures of
head motion during the scan and rsFC estimates. Previous inves-
tigations using QC-rsFC plots (Muschelli et al., 2014; Power
etal., 2014; Satterthwaite et al., 2013) show higher rsFC estima-

BURGESS ET AL.

tes in individuals with greater head motion. These increased
rsFC estimates exist across the whole brain (i.e., global), but to
a greater extent for short-distance connections (i.e., spatially spe-
cific). Although methods such as aCompCor (Muschelli et al.,
2014) and censoring (Power et al., 2014) reduce spatially specific
effects, they fail to substantially reduce global effects.

Goals of the current study

In this study, we investigate the relationship between esti-
mated head motion and resting-state correlations in HCP
data. Using the procedures of Power and colleagues (2014),
we investigate BOLD fluctuations and distance-dependent
changes in correlations related to high-motion time points,
and report how group and individual differences in head motion
relate to differences in rsFC estimates. We investigated the ef-
ficacy of several denoising techniques, including motion re-
gression, censoring of high-motion time points, FMRIB
independent component analysis (ICA)-based X-noiseifier
(FIX) denoising, and mean grayordinate time series regression
(MGTR) (see the Mean grayordinate time series regression
section for more information).

Materials and Methods
Participants

This investigation evaluated rfMRI data from the HCP 500
Subjects Public Data Release. HCP participants were between
22 and 35 years of age at the time of recruitment and did not
have a documented history of psychiatric, neurological, or
medical disorders known to influence brain function. For a
more detailed description of inclusion and exclusion criteria
for HCP, see Van Essen and colleagues (2013).

The sample of participants included 183 participants (mean
age=29.11, standard deviation [SD]=3.55) divided into three
motion groups with 26 men and 35 women in each. (Information
about demographics and motion is presented in Table 1. See the
Selecting Motion Groups section in the Supplementary Data for
more details; Supplementary Data are available online at
www.liebertpub.com/brain). The three motion groups did not
differ with respect to age [F(2,180)=0.37, p=0.693], years of
education [F(2,178)=1.35, p=0.263], race [;{2(8) =3.79,
p=0.878], or ethnicity [;(2(2) =2.26, p=0.323]. By design, the
motion groups did differ with respect to the proportion of
high-motion time points in their scans [F(2,180)=232.79,
p=120x10"""] and mean framewise displacement (FD)
[F(2,180)=66.17, p=3.06x10"*2].

Image acquisition

Details of the MRI acquisition parameters for the HCP were
described elsewhere (Ugurbil et al., 2013). Structural T1-
weighted and T2-weighted images were collected at 0.7 mm
isotropic resolution. Whole-brain EPI acquisitions were ac-
quired on the 3T Siemens Connectome scanner: 32-channel
head coil, TR=720msec, TE=33.1 msec, in-plane FOV =
208 x 180 mm, 72 slices, 2.0 mm isotropic voxels, and multi-
band acceleration factor of 8 (Feinberg et al., 2010).

Overview of four types of preprocessed rfMRI data

We evaluated the reduction in motion-correlated artifacts
after FIX denoising (e.g., removing variance classified as
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TABLE 1. DEMOGRAPHIC AND HEAD MOTION
INFORMATION BROKEN DOWN BY MOTION GROUP

Motion groups

Low- Medium- High-
motion motion  motion

Age

Mean 29.43 28.92 28.98

SD 3.62 3.74 3.31

Min. 22 22 23

Max. 36 36 35
Gender

Men 26 26 26

Women 35 35 35
Race

Asian/Hawaiian/Pacific Is. 1 2 2

Black or African American 14 12 15

More than one 0 1 1

Unknown or not reported 2 1 0

White 44 45 43
Ethnicity

Hispanic/Latino 8 9 4

Not Hispanic/Latino 53 52 57
Education

Mean 15.082 14.750 14.550

SD 1.9519 1.7527 1.6917

Min. 11 11 12

Max. 17 17 17
Proportion of time points censored

Mean 0.1602 0.2333 0.3384

SD 0.0274 0.0210 0.0715

Min. 0.0792  0.2000 0.2658

Max. 0.1992 0.2650 0.6517
Mean FD

Mean 0.1187 0.1460 0.2157

SD 0.0217 0.0340 0.0727

Min. 0.0800 0.0800 0.1000

Max. 0.1800 0.2100  0.5000

Head motion, measured by mean FD or proportion of time points
censored, differs between groups. However, there are no statistically
significant differences among groups in age, gender, race, or ethnicity.

FD, framewise displacement.

noise by FIX) versus without FIX denoising, and after
MGTR versus without MGTR. Crossing these two factors
of interest yielded four types of preprocessed rfMRI data:
FIX, MPP, FIX+MGTR, and MPP+MGTR.

Preprocessing of HCP rfMRI data

The HCP FIX-denoising pipeline uses a gentle high-pass
temporal filter (using fslmaths with 2000 sec cutoff)), motion
regression (i.e., regression of 24 movement parameters: six
rigid -body motion parameters, their backward temporal de-
rivatives, and squares of those 12 time series), and applies a
nonaggressive regression based on ICA to remove variance
in noise components that was orthogonal to signal compo-
nents (Salimi-Khorshidi et al., 2014).

The inputs to our preprocessing stream were both mini-
mally preprocessed (MPP) and FIX-denoised rfMRI data
from the HCP 500 subject release. To ensure that comparisons
between MPP and FIX-denoised data primarily reflected dif-
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ferences due to nonaggressive regression of ICA noise compo-
nents, we preprocessed the MPP data using procedures similar
to the FIX-denoising pipeline, including the lenient high-pass
temporal filter (2000 sec cutoff) and motion regression, but
excluding the regression of ICA noise component variance.
Additional high-pass filtering (0.009Hz) was conducted
after regressing these confound time series (Carp, 2013).
(Additional details about the HCP Minimal Preprocessing
Procedures and HCP FIX-Denoising Procedures are provided
in Supplementary Data.)

Mean grayordinate time series regression

Our analyses utilized the connectivity informatics technol-
ogy initiative (CIFTT) dense time series files, which represent
the rfMRI time series for 91282 grayordinates (i.e., surface-
based vertices and subcortical voxels, constrained to gray
matter) [see Glasser et al. (2013) for more details about
CIFTI format]. Therefore, rather than global signal regres-
sion, we performed MGTR, computing the mean grayordi-
nate time series from the MPP or FIX data, then regressing
it and its backward derivative from each grayordinate.
Although the mean grayordinate time series reflects gray
matter only, MGTR seems a reasonable replacement for
global signal regression due to the strong average correlation
between the global signal and mean grayordinate time series
(r=0.94).

Using grayordinate plots to visualize
fluctuations in rfMRI data

Residual grayordinate plots (shown in grayscale) display
the time series after denoising. These reflect the nature of
rfMRI data going into rsFC estimation after each denoising
strategy. Difference grayordinate plots (shown in color) re-
flect BOLD fluctuations removed by each denoising strategy,
computed as the difference between the current stage and a
specified previous stage.

Both types of grayordinate plots display the time series
data across time points (columns) and grayordinates (rows).
Intensities are displayed as z-scores, standardized relative
to the mean and SD for that grayordinate. White or black val-
ues in the residual grayordinate plots and red or blue values
in the difference grayordinate plots reflect time points when
the BOLD signal for that grayordinate is relatively extreme
(greater than 2 SD from the mean). These values might influ-
ence correlation values strongly.

Censoring and its role in identifying
motion-correlated artifact

In analyses involving censoring, we explicitly deleted high-
motion time points from the time series before analysis. High-
motion time points were identified using a combination of FD
and DVARS (temporal Derivative, then RMS VARiance over
elementS) thresholds (as defined in the Defining High-Motion
Time Points: Framewise Displacement and DVARS section in
Supplementary Data), were defined from the original MPP
data, and were identical for each denoising strategy.

We censored high-motion time points not only as a strat-
egy to reduce motion-correlated artifacts but also as a
means to index any remaining artifact still correlated with
head motion. Previous evaluations showed changes in rsFC
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estimates after censoring high-motion time points (Power ¥ 2
et al., 2012, 2014; Yan et al., 2013a, 2013b). If motion- T §
correlated artifact is present, high-motion time points will 2 SS %E
distort rsFC estimates. If denoising removes motion- % JZ >
correlated artifacts entirely, then rsFC estimates involving 2 NS ED
high-motion time points will no longer be distorted, and L: (\Il (\Il =
will not differ from rsFC estimates involving only low- N g
motion time points. Therefore, comparing rsFC estimates &S §
for censored data (i.e., low-motion time points only) with S . =
rsFC estimates for uncensored data (i.e., low-motion and g - F E
high-motion time points) will identify motion-correlated ar- 5 =5 5
tifacts remaining after each denoising strategy. § %X =
P. 2 = 2 ED 5
arcellated connectomes g 2 ; E 8
Q 7]
Functional connectivity was evaluated in subsequent ana- = ! 3 §
lyses using full correlations (Pearson’s correlation coeffi- > 3 &
cients) between parcel time series extracted from CIFTI = 8 a
grayordinates. We utilized 333 cortical parcels from the Gor- S ¥ E = ::‘
don and colleagues (2014) parcellation because they have 3 KT* «?* T o E
higher functional homogeneity than several other published & x| 288 % g
parcellation schemes. We also added 19 subcortical parcels Z S| XXX | & N
from the group-average CIFTI atlas for a total of 352 parcels. © 2IRLR | @ &
.. . . <« town | 4 >
(Additional details about Parcellated Connectomes are in- o S |8 -
cluded in Supplementary Data.) Z g S
3| x £ g
AR plots display motion-correlated artifacts a a § E“
from high-motion time points g ¥ % é 8
. . . . = *FE 5 5
The influence of residual motion-correlated artifacts may = TTT S &
be revealed with AR plots—that is, the difference between i) § S22 g g
rsFC estimates derived from censored versus uncensored 2 § é é é g =
data. For each connection, rsFC estimates are computed 2 SEENE g
using the censored time series and the uncensored time se- S j" <\|‘ « | = g
ries. rsFC estimates are Fisher z transformed, averaged : § =
across participants, and converted back to Pearson’s r. The < & &b
difference between rsFC estimates (averaged across partici- = = §
pants) from censored and uncensored data is then plotted : % :% E Py =
as a function of the distance between parcels. o cToe |TE M
The slope of these AR plots may demonstrate distance- ? § S22 | £ § %
dependent effects, indicating that the residual motion-correlated S 3 é é é é s =
artifact differs for short-distance versus long-distance connec- 2 523 8 5 &
tions. A shift in the mean of the AR plots may indicate global g nns | 2 § 2
influences on rsFC estimates such that high-motion time : A 335 &
points increase correlations across all connections regardless Z % § '"ED z
of distance. g % 55 32
The mean AR and the linear relationship of AR with dis- : + Fo 25 3?
tance from a general linear model (GLM) will estimate the S < | oo | & § é
global and distance-dependent effects, respectively. How- 2 S| XXX |22 E
ever, because each parcel contributes to multiple rsFC obser- e = 223 "g’b% =
vations, rsFC observations are nonindependent. Statistical SXT 22a4 g
inference on the mean and slope is biased by nonindependent FTT |2 g S g
observations. However, the parameter estimates themselves 2oV g
are unbiased. After accounting or controlling for family £ %”*Qg
structure, participants provide independent observations to . _o§ Z%S 2
conduct valid statistical inference. s £g kY é
Therefore, we fit a GLM for each participant, predicting g& S| 25588
AR with an intercept t d adist t (i.e., Buclidean S o | 38% 8
: pt term and a distance term fucl S|lx g BELG
distance between parcels after mean centering). This yielded 3 5 E e $88%
independent observations of the mean and slope. Then, one- PI50T | 5 5 ‘3 E
sample t-tests determined whether those parameters were -% g% ) g %*Q.x»
different from zero in the high-motion group (Table 2) and g '% 2 E A 3 P I
in the low-motion group (Supplementary Table S1). RImMm<O =
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To estimate differences between two denoising strategies,
we computed the difference in AR values between two strat-
egies, then predicted those values using a GLM for each par-
ticipant with intercept and distance terms. The mean and
slope reflected the difference in global and distance-
dependent effects between the two strategies. Finally, one-
sample t-tests across high-motion (Table 2) and low-motion
(Supplementary Table S1) participants indicated whether the
means and slopes differed from zero.

QC-rsFC plots reveal residual distance-dependent
and global artifacts after censoring

For each pairwise connection, correlations were computed
across 183 participants between the value of the rsFC esti-
mate (after censoring) and the proportion of time points cen-
sored under the combined FD and DVARS criteria. These
QC-1sFC correlations were plotted as a function of distance
between the regions to examine whether distance-dependent
artifacts might be present in the rfMRI time series. At the
same time, QC-rsFC correlations that are elevated across
all distances are suggestive of global artifacts remaining in
the time series.

To determine the statistical significance of global and
distance-dependent effects in the QC-rsFC plots, we used a
similar approach to significance testing of the AR plots.
First, for each participant, a GLM predicted rsFC estimates
with intercept and distance terms, providing independent
estimates of the global (mean) and distance-dependent
(slope) effects. Second, to determine if individual differences
in head motion modulated global and distance-dependent
effects, group-level GLMs predicted the subject-level pa-
rameters with a QC term (i.e., head motion estimated by pro-
portion of time points censored after mean centering) and an
intercept. We estimated the significance of the global QC-
1sFC relationship by QC predicting the mean and the signif-
icance of the distance-dependent QC-rsFC relationship by
QC predicting the slope. We report these results separately
for censored data (Table 3) and uncensored data (Supple-
mentary Table S2).

To estimate differences between denoising strategies, we
computed the difference in rsFC values between two strate-
gies, then predicted those values for each participant using a
GLM with intercept and distance terms. The mean and slope
reflect the difference in global and distance-dependent ef-
fects between those two strategies. Then, we estimated
whether those parameters related to the degree of head mo-
tion (QC) across participants.
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Computing motion-group differences

We computed the percentage of significant motion-
group differences observed in the correlation matrices
after each denoising strategy. For a given rsFC estimate,
unpaired t-tests determined whether motion-group differ-
ences (e.g., between high- and low-motion groups) were
significant (see the Establishing Alpha Level for Testing
Motion-Group Differences section in the Supplementary
Data for more details). We reported the percentage of sig-
nificant motion-group differences across all connections,
and separately for short-distance (4.8—58.6 mm), medium-
distance (58.6-112.3 mm), and long-distance (112.3—
166.1 mm) connections.

For each denoising strategy, we used permutation testing
to determine whether the observed number of motion-
group differences was significantly greater than expected
by chance. The null distribution was estimated by permuting
motion-group labels across participants 10,000 times.

Results

Grayordinate plots display spatially specific
and global fluctuations

Figure 1 shows grayordinate plots from HCP participant
107422 from time points 600—1000 (4.8 min) of the rfMRI_
RESTI1_RL scan. This participant had below average head
motion, but features evident in these data are present across
the full sample of HCP participants.

Global and spatially specific artifact is evident in HCP
MPP rfMRI data before motion regression. The residual
grayordinate plot (Fig. 1A) prominently displays global fluc-
tuations as vertical bands that show similar sign (i.e., posi-
tive or negative) and magnitude across most grayordinates.
Some example time periods are indicated by green arrows.
Global fluctuations vary in duration, with some lasting
20 sec or more. Spatially specific fluctuations appear as hor-
izontal bands that varied in sign and magnitude across
grayordinates. Some examples are indicated by red and
blue arrows.

Spatially specific artifact is reduced by motion
regression and FIX denoising

In some cases, spatially specific noise was isolated to a
small proportion of grayordinates, but extended over several
time points. These manifest as rows of higher or lower inten-
sity (red arrows in Fig. 1A). These are reduced by motion re-
gression (red arrow in Fig. 1F) and FIX denoising (red

TABLE 3. RELATIONSHIP OF HEAD MoOTION (QC) WITH THE MEAN AND SLOPE OF THE RESTING-STATE
FuncTioNAL CONNECTIVITY—DISTANCE RELATIONSHIP

MPP FIX Change due to FIX
Denoising strategy Mean Slope Mean Slope Mean Slope
Before MGTR 0.3272%** —0.0549* 0.1940%** —0.0450%* —0.1332%%* 0.0099
After MGTR 0.0296%** —0.0731%** 0.0084* —0.0246 —0.0212%** 0.0485%*
Change due to MGTR —0.2975%%* —0.0182 —0.1856%** 0.0205*

See the Materials and Methods section for more details regarding how these relationships were computed. Slopes are expressed as change
in QC-rsFC relationship per 100 mm, roughly reflecting the difference between average short-distance and long-distance connections.

**%p<0.001, **p<0.01, *p<0.05.
QC, quality control; rsFC, resting-state functional connectivity.
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G IcA denoising

D mpp+mGTR

E Fix+MGTR

60 00 60 000

FIG. 1. Nature of blood oxygen level-dependent fluctuations in HCP data, and aspects removed by each denoising stage:
Five residual grayordinate plots (in grayscale on left) show rfMRI data after each denoising stage: (A) MPP before motion
regression, (B) MPP after motion regression, (C) FIX, (D) MPP+MGTR, and (E) FIX+MGTR. Four difference grayordinate
plots (in color on right) show variance removed by specific denoising steps (estimated by subtracting the current preprocess-
ing stage from a specified prior stage): (F) motion regression (A, B); (G) ICA denoising (B, C); (H) MGTR (B-D); and (J)
ICA denoising plus MGTR (B-E). For each grayordinate plot, columns reflect time points and rows reflect grayordinates.
Intensities are z-scored (across time, separately for each vertex) and range from —2 to +2. The top panel on both sides
shows FD (red), with horizontal lines marking FD=0.2 mm (suggested as a censoring threshold by Power et al., 2014)
and FD=0.39 mm (current study threshold for FD). MGT (black lines) and DVARS (blue lines) are derived from data
after each denoising strategy. The horizontal line in (A) corresponds to the DVARS censoring threshold of 4.9 arbitrary
MR units. Green arrows indicate time periods displaying the global artifact, which manifests as similar effects across
space and occurs across most grayordinates. Spatially specific artifacts, which manifest as dissimilar effects across space,
are indicated by red arrows (instances that occur at few grayordinates) and blue arrows (instances that occur across most
grayordinates). FD, framewise displacement; FIX, FMRIB ICA-based X-noiseifier; HCP, Human Connectome Project;
ICA, independent component analysis; MGTR, mean grayordinate time series regression; MPP, minimally preprocessed;
rfMRI, resting-state functional magnetic resonance imaging.

arrows in Fig. 1G), resulting in reduced noise in the residual
grayordinate plots (red arrows in Fig. 1B, C). In other cases,
spatially specific artifact was evident at specific time points,
but showed effects that varied in sign and magnitude across
grayordinates. This spatially specific artifact is evident in the
variance removed by motion regression (Fig. 1F, blue ar-
rows) and FIX denoising (Fig. 1G, blue arrows). Despite
the artifact being removed by these strategies, the residual
grayordinate plots show clear global fluctuations left behind
by both motion regression (Fig. 1B) and FIX denoising
(Fig. 10).

Global fluctuations are slightly reduced by FIX denoising,
but dramatically reduced by MGTR

FIX denoising appeared to target some time points that ex-
hibit global fluctuations (Fig. 1G, green arrows). Some of
these global fluctuations occurred after spikes in DVARS or
FD, but others did not. FIX denoising results in a reduction in
the magnitude of global fluctuations, but FIX rfMRI data still
show substantial global fluctuations (Fig. 1C, green arrows)
in the grayordinate time series. However, MGTR dramatically
reduced or eliminated the global fluctuations (Fig. 1D, H).
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Combining FIX denoising and MGTR reduced both
spatially specific and global fluctuations

The above results suggest that FIX denoising and MGTR
have different types of effects on motion-correlated fluctua-
tions in the rfMRI data. The differences are most easily ob-
served in the difference grayordinate plots, where it appears
that combining FIX denoising and MGTR controls both spa-
tially specific fluctuations and global fluctuations in those
data (Fig. 1J).

AR plots reveal distance-dependent and global artifacts

Within the high-motion group, AR plots show both distance-
dependent (spatially specific) and global artifacts. Censoring
high-motion time points elucidates distance-dependent artifact
present in MPP rfMRI data (Fig. 2A), confirmed by a statisti-
cally significant slope as a function of distance (Table 2). In
the FIX rfMRI data (Fig. 2B), censoring appears to reduce

A MPP timeseries

0 20 40 60 80 100 120 140 160

Euclidean Distance (mm)

0.08

0.06 |-

With MGTR

120 140

0 20 40 60 80

100 160
Euclidean Distance (mm)

Delta-R plots: High motion group
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both global and distance-dependent artifacts, as indicated by
a statistically significant mean and slope related to distance
(Table 2). The reduction in distance-dependent artifact due
to censoring is visually evident in AR plots from MPP+MGTR
and FIX+MGTR data (Fig. 2C, D). However, both the mean
and slope of the AR effect were statistically different from
zero in MPP+MGTR and FIX+MGTR data (Table 2).

We evaluated differences in AR between denoising strate-
gies to determine whether those denoising strategies might re-
duce distance-dependent and global artifacts. Neither the
difference between FIX and MPP rfMRI data nor the differ-
ence between MPP+MGTR and MPP rfMRI data showed sig-
nificant distance-dependent or global AR effects (Table 2).
One might assume that this indicates that neither denoising
strategy removes motion-correlated artifacts. However, the
high variability of the MPP rfMRI data might have reduced
our sensitivity to the effects of FIX and MGTR. Consistent
with this hypothesis, the difference between FIX+MGTR

FIX timeseries

B 0.1 r

0.08
0.06
0.04
0.02

0

Ar

-0.02

=0.04

-0.06 |

-0.08

0 20 40 60 80 100 120 140 160 180

Euclidean Distance (mm)

0.08
0.06 |
0.04
—
<

-0.04

-0.06 |

0 20 40 60 80 120 140 180

Euclidean Distance (mm)

100 160

FIG. 2. Censoring high-motion time points reveals spatially specific and global shift artifacts in AR plots: Red cloud (and
white loess fit line) shows effects of censoring high-motion time points on rsFC estimates in the high-motion group, plotted as
the function of distance between parcels being correlated. Black cloud (and gray loess fit) shows positive control (censoring
equal number of randomized time points). Range of AR (y-axis) from 0.1 to —0.1, following Power and associates (2014).
Panels show effects of censoring on average rsFC estimates from high-motion group for (A) MPP, (B) FIX, (C)
MPP+MGTR, and (D) FIX+MGTR time series data. Analogous plots for the low-motion group are in Supplementary

Figure S1. rsFC, resting-state functional connectivity.
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and FIX rfMRI data is significant for the mean term, and the
difference between FIX+MGTR and MPP+MGTR is signifi-
cant for both the mean and slope. These findings are consistent
with our interpretation of grayordinate plots that MGTR re-
duces global fluctuations and that FIX reduces spatially spe-
cific fluctuations as well as global fluctuations. The results
were similar for low-motion participants (Supplementary
Fig. S1 and Supplementary Table S1).

QC-rsFC plots reveal residual distance-dependent
and global artifacts after censoring

We investigated the relationship between rsFC estimates
and individual differences in estimated head motion (Fig. 3
and Table 3). The MPP rfMRI data show both global and
distance-dependent relationships between rsFC estimates
and the amount of motion during the scan, even after censor-
ing, supported by the fact that head motion is significantly re-
lated to both the mean and slope as a function of distance.
FIX denoising resulted in a statistically significant reduction

A MPP timeseries

-0.3 |

No MGTR
QC-RSFC: Proportion Scrubbed

0 20 40 60 B0 100 120 140 160
Euclidean Distance

With MGTR
QC-RSFC: Proportion Scrubbed

0 20 40 60 80 100 120 140 160
Euclidean Distance
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in the relationship of head motion with the mean, but head
motion still modulated both the mean and slope in FIX
data. MPP+MGTR data showed a larger reduction in the re-
lationship between head motion and the mean compared with
MPP data, but again head motion still modulated both the
mean and slope in MPP+MGTR data. For FIX+MGTR
data (after censoring), the global relationship with head mo-
tion was still statistically significant, although at its lowest
level, but the distance-dependent relationship with head mo-
tion was eliminated. Global and distance-dependent effects
were significantly reduced in FIX+MGTR data relative to
both FIX data and MPP+MGTR data. These effects were
similar for uncensored data (Supplementary Fig. S2 and Sup-
plementary Table S2).

Substantial differences exist between motion groups
and are primarily reduced by MGTR

Consistent with prior work (Power et al., 2014), the
observed number of differences between the low- and

FIX timeseries

0.4

QC-RSFC: Proportion Scrubbed 3

-0.4

-0.5 . s s . . y
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Euclidean Distance

O
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QC-rsFC plots: all participants (rsFC estimates after censoring)

FIG. 3. QC-rsFC plots show the correlation across participants between the rsFC estimates after censoring and degree of
head motion (quantified by proportion of time points censored using the combined FD and DVARS criteria). The QC-rsFC
relationship is plotted for each of the 61,776 connections as a function of the distance between parcels for (A) MPP, (B) FIX,
(C) MPP+MGTR, and (D) FIX+MGTR time series data. Analogous plots for uncensored data are in Supplementary
Figure S2. QC, quality control.
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TABLE 4. PERCENTAGE OF CONNECTIONS SHOWING MOTION-GROUP DIFFERENCES AT o.=0.000242

Uncensored (%)

Censored (%)

Denoising Distance

strategy bin Low vs. High Med. vs. High Low vs. Med. Low vs. High Med. vs. High Low vs. Med.

MPP All 22.02%** 0.13%* 0.04* 12.27%%* 0.11* 0.04*
Short 23.9]%** 0.23%* 0.05 13.90%*:* 0.17* 0.04
Medium 21.35%** 0.09%** 0.04 11.55%%*%* 0.08%* 0.05
Long 21.23%%* 0.09 0.04 12.21%%* 0.11 0.03

FIX All 14.23%%* 0.19* 0.04 12.07%** 0.12%* 0.08*
Short 16.77%** 0.24 % 0.04 14.00%** 0.11* 0.06
Medium 14.20%** 0.19* 0.03 12.03%** 0.13* 0.09*
Long 8.64%** 0.14 0.05 7.98##* 0.08 0.08

MPP+MGTR All 0.44#%* 0.03%#* 0.01 0.20%** 0.02 0.03
Short 0.90%** 0.04 0.01 0.28%** 0.02 0.03
Medium 0.49%#%* 0.03 0.01 0.16%* 0.01 0.03
Long 0.51%* 0.01 0.01 0.26 0.01 0.03

FIX+MGTR All 0.38#%* 0.05* 0.02 0.28*#%* 0.04 0.02
Short 0.40%%* 0.03 0.01 0.27%* 0.03 0.01
Medium 0.36%** 0.06* 0.03 0.28%*#* 0.05* 0.03
Long 0.46%%* 0.04 0.01 0.347%** 0.00 0.01

The percentage is reported for all connections, and separately for short-, medium-, and long-distance connections. The statistical signif-
icance is determined through permutation testing; significance level is indicated by asterisks.

*#%p <0.001, **p<0.01, *p<0.05.

high-motion groups was inflated strongly above chance in
the MPP rfMRI data (Table 4). Both censoring high-motion
time points and FIX denoising reduced the number of
motion-group differences slightly, but the number of motion-
group differences was still substantially elevated. In contrast,
MGTR dramatically reduced the number of differences be-
tween high- and low-motion groups, although not to chance
levels, for both MPP+MGTR and FIX+MGTR rfMRI data.

Discussion

The current study evaluated the presence of the motion-
correlated artifact in HCP rfMRI data and its removal by
some common denoising strategies. Consistent with prior
work (Power et al., 2014; 2012; Satterthwaite et al., 2013;
Van Dijk et al., 2012), the current results suggest two sepa-
rate classes of motion-correlated artifacts: global and spa-
tially specific. The denoising strategies we tested differed
in efficacy for these two classes. Consequently, a combina-
tion of methods—such as FIX denoising to reduce the spa-
tially specific artifact and MGTR to reduce the global
artifact—will be necessary to effectively address motion-
corrected artifacts.

Denoising strategies had differential effects
on motion-correlated artifacts

Motion regression, censoring, and FIX denoising seemed to
have the largest effect on the spatially specific artifact. The
grayordinate plots revealed that motion regression strongly af-
fected some grayordinates, but did not affect others at all, and
the sign of the effect varied across grayordinates. Censoring
high-motion time points demonstrated a distance-dependent
reduction in the AR plot for MPP rfMRI data. FIX reduced
the distance-dependent artifact, as indexed by the comparison
of FIX+MGTR versus MPP+MGTR data in the AR and QC-
1sFC plots.

On the other hand, evidence of global artifact was only re-
duced substantially by MGTR. Global artifacts manifested as
vertical bands in residual grayordinate plots, influences of
high-motion time points across all distances in AR plots, and
relationships between motion estimates and rsFC estimates
across the entire brain in QC-rsFC plots. These global effects
were significantly reduced for FIX+MGTR data compared
with FIX data.

Motion-group differences were reduced by FIX and by
censoring. However, these reductions were relatively mod-
est. They did not appear more strongly for short-distance
connections, as might be expected from a reduction in spa-
tially specific artifacts. In contrast, MGTR reduced motion-
group differences substantially across all distance bins.
This pattern suggests that the bulk of motion-group differ-
ences resulted from globally distributed artifact, as opposed
to spatially specific artifact.

FIX denoising seems to primarily address spatially spe-
cific artifacts while doing less to address global artifacts. Per-
haps that should not be surprising. First, as with many other
ICA-based denoising methods, FIX denoising uses spatial
ICA algorithms that maximize the spatial independence of
components. Consequently, global noise variance is less
likely to be isolated into a separate component and removed
by ICA denoising. Temporal ICA algorithms may be more
likely to identify global components (Smith et al., 2012),
which subsequently might be classified as noise. Second,
the HCP FIX-ICA-denoising pipeline applies nonaggressive
denoising, regressing only the portion of noise variance or-
thogonal to signal components. Nonaggressive denoising
may not remove global noise that is shared across signal
and noise components (Smith et al., 2013).

Censoring appears to reduce spatially specific artifacts.
However, the significant slope of the QC-rsFC relationship
for MPP and MPP+MGTR data suggests that censoring did
not eliminate distance-dependent artifacts as reported in
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previous studies. We postulate that the reduced efficacy of the
censoring procedure in HCP rfMRI data might result, in part,
from increased noise variance in the FD and DVARS motion
estimates, as discussed in the Supplementary Data.

Potential influences of physiological noise
in HCP rfMRI data

The rfMRI time series from many HCP participants con-
tain periodic fluctuations in signal intensity across the
brain. These are visible as evenly spaced global bands in
the grayordinate plots, resulting in periodic fluctuations in
the mean grayordinate time series (cf., center of Fig. 1A).
One intriguing question is whether some portion of this
motion-correlated global artifact might be physiological in
origin. Head motion and physiological artifact may be cou-
pled if respiratory movements directly cause head motion
(e.g., yawning, sneezing, deep breathing, or sighing), if bal-
listocardiographic forces directly cause head motion, or if ef-
fort exerted while moving the head and body in the scanner
results in breath holding or change in heart rate.

Interestingly, the global artifact in HCP rfMRI data
(Fig. 1A) and other rfMRI data (Power et al., 2014) seems
to lag head motion by 10-20sec. It has also been shown
that the respiratory artifact has a response function that ex-
tends across a similar time frame (Birn et al., 2008; Chang
and Glover, 2009). Respiration modulates BOLD signal
across the entire brain, but that modulation is stronger in so-
matosensory, motor, and visual cortices than other brain re-
gions (Birn et al., 2006; Wise et al., 2004). Compared with
other areas, these regions show stronger correlations both
with global signal (Fox et al., 2009) and with individual dif-
ferences in head motion (Pujol et al., 2014; Yan et al.,
2013a). These patterns could indicate that changes in respi-
ration are frequently accompanied by head motion and that
these respiration changes may ultimately be a core driver
of global artifact in the BOLD signal. This hypothesis should
be tested directly in future work.

Disadvantages of unmitigated global artifact

Concerns have been raised regarding global signal regres-
sion (e.g., Murphy et al., 2009; Saad et al., 2012; Scholvinck
et al., 2010), which may also apply to MGTR. However, we
argue that a major underaddressed concern in the literature is
that unmitigated motion-correlated artifacts can be mistak-
enly attributed to meaningful individual or group differences.
Researchers are rightly concerned about reducing sensitivity
to individual and group differences by inadvertently discard-
ing a signal. Nonetheless, we argue that it is critical to fully
address motion-correlated artifacts when researching indi-
vidual and group differences that covary with head motion.

If head motion is correlated with one’s variable of interest,
any motion-correlated artifact that is retained can be mistak-
enly attributed to that variable of interest. Denoising strate-
gies that are too lenient could result in features similar to
motion-correlated artifacts—such as distance-dependent cor-
relations and globally increased correlations—being attrib-
uted to a wide variety of clinical, developmental, and
psychological group differences. Unfortunately, the publica-
tion bias in scientific literature (Franco et al., 2014) may
make it relatively easy to report significant correlations
resulting from motion-correlated artifacts, but harder to re-
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fute such findings with correlations that are not significant
after denoising. Therefore, we lean toward being more con-
servative with denoising to avoid contaminating the litera-
ture with artifactual findings.

In our opinion, time series denoising methods such as
those investigated here are strongly preferred to leaving be-
hind unmitigated motion artifacts in rfMRI data. In the cur-
rent study, the denoising methods were chosen to target and
remove specific aspects of time series variance that have
been linked to artifacts previously in the literature (Birn
et al., 2006; Friston et al., 1996; Wise et al., 2004) and em-
pirically in the data (Power et al., 2014; Salimi-Khorshidi
et al., 2014). Importantly, if rsFC estimates no longer corre-
late with individual and group differences after these time se-
ries denoising methods, it indicates that those variables only
related to aspects of the time series that were removed by the
denoising methods. If individual or group differences
resulted entirely from aspects of the time series previously
linked to artifacts in the literature, it leads to substantial
doubt that those differences might be neural in origin.

To adequately address global artifacts while avoiding the
drawbacks associated with global signal regression or
MGTR, additional research is needed to identify denoising
strategies that eliminate global artifacts related to head motion
and physiological processes. For example, CompCor (Beh-
zadi et al., 2007; Chai et al., 2012) uses white matter and cere-
brospinal fluid signal as confound regressors to address
motion and physiological artifacts without removing neural
signal or inducing anticorrelations. However, Muschelli and
colleagues (2014) (Supplementary Fig. S1) found increased
correlations between FD and rsFC estimates across the brain
after using CompCor, suggesting that the residual global arti-
fact confounded with individual differences in head motion.
Numerous other approaches (c.f., Yan et al., 2013c, for exam-
ple) exist, where participant-level motion estimates are treated
as covariates in group-level and individual difference analy-
ses. These approaches may reduce the influence of global ar-
tifact on those analyses. However, because these approaches
regress out variance from the rsFC estimates rather than the
time series, they may be less capable of separating motion-
correlated artifacts from meaningful individual differences
confounded with motion.

After denoising HCP data with FIX+MGTR, we still ob-
served a greater number of motion-group differences than
expected by chance. It is possible that these motion-group
differences reflect differences between the high- and low-
motion participants in neural activity related to factors that
might influence head motion, such as alertness, anxiety,
and cognition. We believe that a comparison of within-
participant motion effects versus between-participant motion
effects may help to resolve this question. However, it is crit-
ical that future studies carefully equate the degree of head
motion in within-participant with between-participant analy-
ses to which they are being compared.

Conclusion

rfMRI data with high spatial and temporal resolution are avail-
able to the public from The HCP (http://humanconnectome.org).
Although cutting-edge technological advances have led to
many improvements, HCP rfMRI data still are affected by ar-
tifacts correlated with head motion and other physiological



MOTION-CORRELATED ARTIFACTS IN HCP rrMRI DATA

effects. An evaluation of artifactual changes in BOLD signal
intensity suggests that the presence of spatially specific and
global artifacts correlated with head motion. Several denoising
techniques—including FIX-ICA denoising, motion regression,
and censoring high-motion time points—primarily address
spatially specific artifacts. However, these strategies leave
substantial differences between rsFC estimates from high- and
low-motion individuals. In contrast, MGTR primarily addresses
global artifacts, and substantially reduces rsFC differences be-
tween high- and low-motion individuals. Consequently, a
combination of denoising strategies that captures both spatially
specific and global aspects of motion-correlated artifacts will be
necessary for productive analysis of HCP rfMRI data.
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