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Abstract
We define a first-order conditional logic in which conditionals, such as a —• 0, are interpreted as saying that nor-
mal/commonAypical objects which satisfy a satisfy 0 as well. This qualitative 'statistical' interpretation is achieved
by imposing additional structure on the domain of a single first-order model in the form of an ordering over domain
elements and tuples, a —* 0 then holds if all objects with property a whose ranking is minimal satisfy 0 as well.
These minimally ranked objects represent the typical or common objects having the property a. This semantics dif-
fers from that of the more common subjective interpretation of conditionals, in which conditionals are interpreted
over sets of standard first-order structures. Our semantics provides a more natural way of modelling qualitative sta-
tistical statements, such as 'typical birds fly', or 'normal birds fly'. We provide a sound and complete axiomatization
of this logic, and we show that it can be given probabilistic semantics.
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1 Introduction

Conditional logics have been the focus of much AI research in recent years because of their
important connection to default reasoning and belief revision. Most work on conditional logic
has concentrated on the prepositional case, for example [18,6,15,16]. First-order conditional
logics have received less attention, and there does not seem to be agreement on their formula-
tion. This is understandable given that first-order logic is considerably more expressive than
propositional logic. This additional expressivity requires one to deal with issues that do not
arise in the propositional case, such as the interaction between quantifiers and the conditional
operator.

The language of propositional conditional logics contains, in addition to the standard
Boolean operators, a binary conditional operator —K These logics are interpreted over a struc-
ture that consists of an ordered set S of standard propositional models. The formula a —• /?
is satisfied by such a structure if among standard propositional models in S that satisfy a, all
those that are minimal with respect to (abbreviated w.r.t.) the ordering satisfy /? as well. While
this is just a rough description, for instance, the ordering may be relative to each world or par-
tial, it captures the essence of the semantics. This semantics justifies an intuitive reading of
a —• /? as 'in the most normal a worlds, /? holds'.

A natural generalization of this idea to first-order conditional logic is to use a similar inter-
pretation over an ordered set of standard first-order models. There are various issues that this
interpretation raises. For instance, should the domain of all these models be the same? Or,
should constants be interpreted as rigid designators? Regardless of these choices, the essence
of the interpretation is the same, and as before, an informal reading of the conditional a —* /?
would be 'in the most normal a worlds, /? holds'. The main difference is that now, a and /?
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are part of a much richer language.
However, the structure of first-order models provides an alternative interpretation for con-

ditionals. Roughly, we can think of a first-order model as a collection of prepositional struc-
tures, each describing the properties of a single object within the domain (or more generally,
the properties of some particular tuple of objects). Thus, another possible interpretation of
first-order conditional logics is w.r.t. a single first-order structure that is supplemented with
an ordering over domain elements. Now, a —• /? is interpreted as saying that 'all objects in
the structure's domain that are normal w.r.t. the property a, satisfy /? as well'.

There are different manners in which one can enhance a first-order structure. In particular,
our choice of an ordering relation over the structure's domain is not the only one. For example,
Schlechta's work on defaults as generalized quantifiers [20], developed independently,1 adds
weak filters to a first-order structure to obtain an interpretation of defaults (or conditionals)
that is similar in flavour to ours. We discuss the view of first-order conditionals as generalized
quantifiers in Section 4 and Schlechta's work in Section 5.

The two approaches to first-order conditional logics outlined above closely resemble two
interpretations of probabilistic statements: the frequentist interpretation and the subjectivist
interpretation. While these interpretations have a long history, two recent works on proba-
bilistic logic brought them to the attention of the formal reasoning community in AI. Bacchus
[4] and Halpern [14] examine two types of statements about probabilities: statements about
subjective beliefs, such as 'the probability that Tweety flies is 0.9', and statistical statements,
such as '90% of birds fly'. They suggest that the first type of statement is naturally modeled
by a probability measure over a possible-worlds structure, while the second statement can be
interpreted by imposing a probability assignment over a single domain. The choice between
these interpretations is akin to the choice between the two possible interpretations of first-
order conditionals. Indeed, conditional sentences can be viewed as qualitative counterparts
of probabilistic sentences. This is a consequence of the probabilistic semantics of condition-
als provided by Adams [1] and by Goldszmidt and Pearl [13]. According to this semantics,
and depending on which interpretation of probabilities one chooses, a —• /? can be roughly
understood as a statement of subjective belief, i.e. 'in those a worlds I consider most likely, 0
is the case', or as qualitative statistical statements, i.e. 'in the actual world, most objects with
property a have property (3 as well'.

In this paper, we formalize this second, statistical interpretation of first-order conditional
logics. We interpret conditionals over a standard first-order structure to which we add an or-
dering over domain elements. More precisely, for every natural number n, there is a total
pre-order over the set of n-tuples of domain elements. A conditional of the form <p —•(*) i>
is interpreted as saying that all the minima] tuples c of length |x| that satisfy <p when c is sub-
stituted for x, must also satisfy rp under this substitution. A natural extension of this seman-
tics imposes restrictions on the possible pre-orders and on the relationship between pre-orders
of tuples of different lengths. We explore three variants of this semantics and show that the
most powerful of them can be given a probabilistic semantics akin to Goldszmidt and Pearl's
e-semantics [13].

Our work is closely related to Bacchus's work on representing statistical information in
first-order logic [4]. Our logic can be thought of as a qualitative counterpart to Bacchus's
quantitative approach. Indeed, the formof quantification we use resembles Bacchus' notation,
and some of our axioms can be viewed as qualitative counterparts of similar axioms that ap-
pear in his work. However, an important difference between the two logics is their expressive

1 The fundamental ideas of our work first appeared in [7].
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power. Bacchus's logic has numbers as objects in the language, and he allows quantification
over them, addition, multiplication, and other operations. Our counterpart of probabilities,
ranks, are not objects in the language, and we do not manipulate them within the logic.

We believe that making the distinction between the subject!vist and statistical (frequentist)
interpretations is as important in qualitative reasoning as it is important in quantitative reason-
ing. We regularly reason with qualitative statistical information and it is important to distin-
guish it from subjective beliefs. Qualitative statistical information summarizes our experience
in the world. For instance, rather then memorize various instances of flying birds and non-
flying birds, we may store our knowledge in the form of a qualitative statistical statement—
'common/typical birds fly'. Although this statement may give rise to subjective beliefs about
whether or not a particular bird flies, it is not about our subjective beliefs. It is a qualitative
assertion about the ratio of birds and flying birds or about the properties of prototypical birds,
and it should be interpreted accordingly.

Once the distinction between subjective and statistical conditionals is understood, it can
help us approach problems such as the lottery paradox. It is perfectly consistent to state that
typical/common tickets will not win the lottery, yet some ticket will win. This has been called
a paradox because in some subjective conditional logics, e.g. Delgrande's [9], the following
theory is inconsistent:

Vx(true —• ->Winner(x)) , true —*• BxWinner(x).

It is easy to see why this is the case. Interpreted subjectively, the first sentence says that in
our most normal worlds, all tickets will not win, while the second sentence claims that in our
most normal worlds a winner exists. This, of course, is a contradiction. Moreover, the first
statement does not seem to capture our information about lotteries. The statistical statement
that most tickets will not win the lottery is a more plausible one. More importantly, we see
that the two interpretations are fundamentally different.

Another example of a theory that is inconsistent under a subjective interpretation is the fol-
lowing:

Vx,y(Pe<(x,y) -> (Dog(y) V Cat(y)) , Vy(Pet(John,y) - (Snake(y))).

The subjective interpretation of this theory is that in our most normal worlds, everybody's
pets are either dogs or cats, while John's pets are snakes. But clearly, John is someone, so that,
based on the first sentence, his pets should be dogs or cats. A statistical interpretation makes
more sense here. Under such an interpretation, we would understand these formulas as saying
that most/typical people's pets are dogs or cats, but John's typical pets are snakes. As we shall
see, both statements are consistent under the qualitative statistical semantics we present.

In Section 2 we provide a formal account of the semantics of first-order statistical condi-
tional logic followed, in Section 3, by a description of a sound and complete axiomatization
of this logic. In Section 4, we look at different syntactic and semantic variants of this logic. In
particular, we show that our conditional logic can be given probabilistic semantics. We also
show that the conditional operator can be replaced by a class of quantifiers or alternatively, by
a set of new predicates. This latter formulation leads to a semi-standard first-order language
with a much simpler axiom system. We end with a discussion of the logic and its relation
with other work. The paper contains two appendices: Appendix A contains the proofs of the
theorems presented in the paper, and Appendix B contains a list of symbols. Throughout this
paper, we assume familiarity with the basic syntax and semantics of first-order logic.
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2 Language and semantics
We now proceed with a description of the language of statistical conditional logic, a language
which extends the language of first-order logic (FOL). This will be followed by a definition
of the language's formal semantics.

We assume the existence of an underlying first-order language C, containing (possibly infi-
nite) sets of predicate symbols P, constant symbols C, function symbols F, and variables V.
Our language, Cc consists of a set of well formed formulas (wff) defined below using P, C, F
andK.

DEFINITION 2.1

The set of well formed formulas of Cc is defined inductively as follows:

• Atomic formulas of Cc are wffs (an atomic formula is a predicate symbol with an appro-
priate number of terms).

• If (p and rp are wffs, then so are -up, <p =*• xp.

• If <p is a wff and x is a variable, then Vxy is a wff.

• If <p and V" are wffs then <p —••(«) H> is a wff.

We shall use the symbols V, A, <=> and 3 freely, with the understanding that they are defined
by -i, => and V. We shall use the shorthand x for a sequence of variables x\,..., xn for some
fixed n, when n is clear from the context. Notice that we use => to denote material implication
and a subscripted —• to denote conditionals.

Intuitively, the conditional <p —*(g) 4> can be read as saying that normal, or typical tuples
that can be substituted for x and have the property <p, have the property ip as well. Hence, in
this formula, the variables x are implicitly quantified by the conditional operator.

Let us consider a number of examples of wffs and their intuitive interpretation.
instructor{x, y) holds when x is y's instructor, like(x, y) holds when x likes y, and clear(x)
holds when x's lessons are clear.

1. instructor(x,y) -*(x,y) like(x,y). Here, x and y are implicitly quantified by the condi-
tional operator. This sentence can be read as 'normal instructor/student pairs are such that
the instructor likes her student'.

2. Vx(tns<ruc<or(x! y) —•(y) Hke(x,y)). Here x is universally quantified, while y is im-
plicitly quantified by the conditional operator. This sentence can be read as 'all instructors
like their normal (or typical) students'.

3. Vy(instructor(x, y) —*•(*) like(x, y)) can be read as 'all students are liked by their typi-
cal instructors'.

4. (instructor(x, y) —*(„) like(x, y)) —*-(x) clear(x) can be read as 'typically, instructors
who are liked by their typical students are clear'.

Next, we extend the standard definition of free-variables to Cc-

DEFINITION 2.2

We define the variables of a term as follows:

• If t = v € V then var(t) = v.

• If t = f(t') then var(t) = var(t').

• Ut = c£C then var(t) = 0.
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The free variables of a wff ip (fv(VO) are defined inductively:

• If P(<!, . . . ,*„) is an atomic formula, then fv(P(ti,.. .,<„)) = U"=1var(ti).

• If ip and ij) are wffs, then f\(-«p)=f\((p) and fv(<p =>• V))=fv(v)U fv(V0-
• If ip is a wff and x is a variable, then fv(Vxip) = fv(<p) \ { i} .
• If ^ and V1 are wffs and x is a set of variables, then fv(y> —>-(j) V1) = [fv(^)Ufv(^)]\{i}.

In order to define our models, we need the following:

DEFINITION 2.3

R is a ranking function on D if .ft : D <-*• Q, where ft is a totally ordered set.

We interpret the language Cc over a class of structures consisting of first-order models
whose domain elements are ranked.

DEFINITION 2.4

A ranked first-order structure is a pair M=(M, R)

• M is a standard first order structure.
• R = {7Zn|n G N), where for each n, Rn is a ranking function on |M| n . 2

We shall use the shorthand notation (a, 6 ) = R ( C , d) for i?2((a, b)) = i?2((c, d)) (and simi-
larly for other relations). We shall also talk about minimal elements in |M| n , with the under-
standing that minimality is w.r.t. the ranking Rn.

DEFINITION 2.5

Let s : Vars i-c | |M|| be an assignment function. We define the notion of satisfiability of a
wff a under s in a ranked first-order structure M=(M., R) , written M (= a[s], as follows:

• If a is atomic then M ^ a[s] if M^= a[s].

• If a = ->0 then M (= a[s] if M ^ /?[«].
• If a = /? =• 7 then M \= a[s] ifM fc 0[s] or M \= y[s}.

• lfa = Vx(3\henM \= a if M \= a[s][%] for all a G |M|.
([s][5] is the same as s, except that it assigns d to x.)

• If a = (/3 —•(£) 7) then M f= a[s] if for each d G mtni(^) we have that .M f= 7[s][j],
where ming/3 is the set of minimal elements of the set {d € |M|'*' : M \= /?[«

That is, let B be the set of all tuples c such that /?(x) is satisfied when we substitute c for x.
P —*(«) T holds if all those tuples that are minimal members of B (w.r.t. R\t\) are such that
7 is also satisfied when they are substituted for x. For example, bird(x) —>(r) / ' l / (

x) would
be satisfied if all those domain objects in the extension of bird (often denoted by 6»rdM) that
are minimal w.r.t. R\, are also in / / j / M .

The set minsji can be empty even when 3xf3(x) holds (when the set B defined above con-
tains an infinite descending set of tuples.) However, we would like to exclude this case. Fol-
lowing [15], we consider only smooth rankings.

DEFINITION 2.6
R is smooth (w.r.t. M) if for all /? and x, {d G |M|'*' : M (= /?[|]} is empty, has a minimal
element, or equals |M|I*'. We define NS to be the class of smooth ranked structures.

2Recall that |M| is the domain of M.
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We follow the convention that conditionals of the form false —•(*) /? are always satisfied.
Also, notice that a conditional such as bird(Tweety) —*(x) fly(Tweety) holds iff the cor-
responding material implication, bird(Tweety) => fly(Tweety), holds. This is because the
satisfiability of bird(Tweety) and fly(Tweety) does not depend on s. Hence, bird(Tweety)
is satisfied under one assignment function iff it is satisfied under all assignment functions.

So far, we have not imposed any additional requirements on the functions Rn. However,
there are two properties which we consider quite natural for some interpretations of the rank-
ing R. The first requirement, permutation says that the ranking is indifferent to the order of
the elements in the tuple. In essence, this implies that the ranking is defined over bags (or
multi-sets) of domain elements, rather then over tuples. The second requirement, concatena-
tion, says that preferences are closed under concatenation. That is, if we prefer c over d and
c7 over d', then we prefer c o ? over do d'. The definition has two parts, one covering the case
of strict preference and another covering the case of non-strict preference.

Permutation and concatenation assert certain independence properties of the ranking R.
The former asserts that the ranking of a multi-set of objects is independent of their ordering,
while the latter relates the ranking of a tuple to the ranking of its components. We believe that
together, these properties imply that the ranking of a multi-set is a function of the rank of its
components (see Conjecture 4.5).

DEFINITION 2.7

A ranked structure M=(M, R) satisfies permutation if for every n £ N and for every per-
mutation ir over { 1 , . . . , n}, we have that Rn{di,... ,dn) = #„(</,(!),.. . ,d r(n)) . M sat-
isfies concatenation if Rn(c) > ^ ( d ) and •Rn(c') > 7?n(d'), then Rn(coc') > i ^ d o d ' ) ,
and if in addition Rn(c) > Rn(d) then Rn(co c') > Rn(dod').

EXAMPLE. 2.8

Consider \ language with three unary predicates: L, M, P. Individuals with the property L
(respecth -ly. M,P) are good in logic (resp. mathematics, physics). We shall loosely refer
to persosi-with the above properties as logicians, mathematicians, and physicists. We state
that L(x) —*-(x) M{x) and L(x) —>(x) ~>P(x) (i.e. logicians are normally good in math and
normally not good in physics). Consider the following model M: there are four individuals,
Alice, Bob, Craig, and Diane. They are ranked as follows: Alice is the most typical, Bob is
second, Craig is third, and Diane is fourth. The ordering over pairs, triplets, etc., is arbitrary.
LM = {Bob, Craig}, MM - {Bob},P^ = {Craig.Diane}. We see that M |= L(x) -*(x)

M(x) because the only minimal object with property L, Bob, has the property M. /A ^=
L(x) —*(x) ~1-P(:C) because all minimal objects with property L satisfy ->P. However, notice
that there is a logician, Craig, that is good in physics. Hence, A4 ^ V I ( L ( I ) => ->P(x)).
Also, notice that in M, normally, a person is not a logician, a mathematician, or a physicist
because Alice, the most typical person in the domain, is none of the above.

Now suppose we have an additional binary predicate W(x, y), with the intended mean-
ing that x is wealthier than y. Suppose we state that {L(x) A P(y)) —f(x,y) W(y, x). That
is, typical logician/physicist pairs are such that the physicist is wealthier than the logician.
We can constrain the ranking over pairs in M as follows in order to satisfy this assertion:
(1) (Alice.Bob), (Alice.Craig), and (Alice, Diane), (2) (Bob.Craig) and (Craig.Diane),
(3) (Bob.Diane), and (4) all other ordered pairs. If WM = {(Alice.Diane), (Diane.Craig),
(Craig.Bob), (Alice.Craig), (Alice3ob), (Diane.Bob)}, then M (= (L(x) A P(y)) ->(x,v)
W(y, x). This follows from the fact that the most typical logician/physicist pairs, namely
(Bob.Craig) and (CraigJDiane), are within the extension of W.

The ranking of pairs above does not satisfy the permutation property, e.g. (Alice.Bob) and
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(Bob,Alice) do not have the same ranking. Similarly, this ranking does not satisfy the con-
catenation property. For instance, (Bob.Diane) is less typical than (Bob.Craig), despite the
fact that Craig is more normal than Diane. A ranking (of bags) that satisfies both proper-
ties is the following: (1) {Alice,Alice} (2) {Alice.Bob} (3) {Alice.Craig}, {Bob3ob} (4)
{Alice J)iane},{Bob.Craig} (5) {Bob.Diane},{Craig,Craig} (6) {Craig.Diane}.

3 Axiomatization

This section describes a sound and complete set of axioms for the class NS. We use the fol-
lowing shorthand notation:

<*<*/? d^f - ( ( a V /?) - w - a )

Notice that a < j /? is read as 'some normal tuples w.r.t. the property a V f3 satisfy a ' , and
a <g /? is read as 'all normal tuples w.r.t. the property a V /? satisfy ->/?'. As we shall see, the
former implies that those tuples that are normal for /? are no more normal than those tuples
normal for a, while the latter implies that those tuples normal for a are strictly more normal
than those tuples normal for /?. For this reason, we use the < and < symbols.

The axiom schema for our logic are displayed in Figure 1.

—'•—- Modus Ponens

is the only inference rule in our logic.
Here are intuitive interpretations of these axiom schema.

Reflexivity—the normal a objects satisfy a . Hence, normal birds are a subset of the set of
birds.
Left Equivalence—normal objects for logically equivalent formulas have identical proper-
ties. Hence, objects can now be thought of as normal w.r.t. a set, or the property whose exten-
sion is that set.
Right Weakening & And—properties common to all normal objects for some formula are
closed under logical implication. Hence, if small birds normally have small beaks, then RW
implies that they normally have beaks. If they normally fly as well, then And implies that they
normally have small beaks and fly.
Cautious Monotony—if all normal objects for a satisfy /? then the normal objects for a are
also normal for a A /?. For example, if Tweety is a normal bird and normal birds fly, then
Tweety is a normal flying bird.
Or—the normal objects for aV0 are the union of normal objects for a and /?.
Rational Monotony—if normal objects of a are j , but some normal objects for a A (3 are not
7, then normal objects for a are not /?. For example, if normal birds fly, but it is not the case
that normal birds weighing over 50 kg fly, then normal birds weigh less than 50 kg.
Weakening—if all objects have the property /? then in particular, normal a objects satisfy /?.
Instantiation—the set of normal objects for a property is nonempty unless there are no ob-
jects with this property.
Renaming—invariance under renaming of the bound variables.
Interchange—if we have a pair of normal and universal quantifiers quantifying over disjoint
variables, then their order can be exchanged. For example, 'for any colour, normal children
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(3.1) All instances of FOL tautologies
(3.2) a —»-(f) a (Reflexivtty)
(3.3) Vy(a(y) O /?(»)) => ( (a — ( 1 ) 7) *> (/? — ( f ) 7)) (Left Equivalence)
(3.4) Vy(a(y) => /?(y)) => (7 — ( , } a ) ^ (7 - ^ 0 ) (Right Weakening)
(3.5) (a ->(j) /?) A (a —• (*) 7) => (a A /? - • ( , ) 7) (Cautious Monotony)
(3.6) (a -»( , ) /?) A (Q — ( J ) 7) => (a - ( i ) (/? A 7)) (And)
(3.7) (a - * ( f ) 7) A (/? —(irt 7) => ( (a V /?) -f ( e ) 7) (Or)
(3.8) (a —•(£) 7) A ->(a A p —•(*) 7) => a -+(«) ~^P (Rational Monotony)
(3.9) Vi/J =• a -+(S) /? (Universal Weakening)
(3.10)(a —f(j) /?) => ( 3 z a => 3 x ( a A £)) anstantlatlon)
( 3 . 1 1 ) ( a - • ( , ) / ? ) = > (a— ( f f ) /? ) [*] (Renaming)

where j/ does not occur in a and (3
(3.12)Vj/(a —•(*) /?) « • (a ->(«) Vy/?) (Universal Interchange)

wheneveryn(fv(o)U£) = 0
(3.13)(a -»(S S) 0) O (a -»(?)e) P) (Permutation)
(3.14)(a <i /?) A (a ' <s p1) => ( (a A a') < * „ (/? A /¥)) (Weak-Concat)

where 5 n S = t, S n ^(o5 V /3') = B, y n fv(a V 0) = 8.
(3.15)(a < f (J) A (a ' <p /J7) => ( (a A a') < £ , c (/? A /?*)) (Strong-Concat)

where 5 n * = 0, S n fv(o* V /?') = d, y n fv(a V 0) = 0.
(3.16)(a A a' -*-(£,p) 7) => (" -•(*) («' ^(jf) l ) ) (Distribution)

where j n i = { J ( ^(o')- V ^ M 0 )
(3.17) a - > ( i ! , j , ) ( (a —(,) /?) =• /?) (Projection)

where y n £ = 0

FIG. 1. The axiom schema

can name that colour' if and only if 'normal children can name all colours'. This shows that
there are certain problems with the interpretation of the conditional a —»(j) /? as 'most as
are /?'. Indeed, it does not seem to be necessarily the case that if for any colour, most chil-
dren can name that colour, then most children can name all colours. As we show later on,
the 'most' interpretation can be justified to a certain extent via a probabilistic interpretation of
conditionals. However, this latter notion of 'most' may be better represented by the expression
'virtually all'.

The role of Axiom (3.12) in the proof of the completeness theorem is worth mentioning.
This axiom guarantees that the models we construct are smooth. Suppose that there is no
minimal rank for tuples satisfying a and that the domain is infinite. We can have a model
that satisfies Vy(a —•(*) /?), where for each domain element d there is some rank r<j such
that (1) there are elements e whose rank is lower than r j such that a[f] is satisfied, and (2)
(a ^- /?)£'j ] is satisfied iff c belongs to a rank lower than rj. If we construct the model so
that{r,j : a € | |M||} forms an infinite descending chain, the wff (a —••(r) Vy/?) will not be
satisfied.
Permutation—we can permute the variables bound by the conditional operator.
Weak-Concat—if tuples normal for a (resp. a ') are as normal as tuples normal for /? (resp.
P1) then tuples normal for a A a ' are as normal as tuples normal for /? A p1. Thus, if Alice is
a normal female and Bill is a normal male then (Alice.Bill) is a normal female-male pair.
Strong-Concat—similar to (3.14), only with strict inequality.
Distribution—we can minimize components separately. Suppose that members of all normal
female/male pairs look differently. Hence, it is true that given a normal female, all normal
males look different from her.
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Projection—provides another form of minimization by component. Suppose that (c, d) is a
normal pair w.r.t. the property a. If all objects that together with d are normal w.r.t. a satisfy
/?, then c should satisfy /? as well. That is, fixing d as one component of the pair, c should be
normal for a together with d if (c, d) is normal for a.

We can now state the following results:

THEOREM 3.1

Axioms (3.1H312) are sound w.r.t. the class NS.

THEOREM 3.2

Axiom (3.13) is sound wxt. the class of NS structures satisfying permutation and axioms
(3.14>—(3.17) are sound w.r.t. the class of NS structures satisfying concatenation.

THEOREM 3.3

For a countable language £ c , axioms (3.1M312) are complete with respect to the class NS.

The proof of the completeness theorem is rather long and appears in the Appendix together
with the other proofs. Our construction employs Henkin style witnesses (see [10]) which are
repeatedly added to the language in order to guarantee the existence of the non-normal objects
stipulated by the theory.

THEOREM 3.4

For a countable language Cc

1. Axioms (3.1)—(3.13)are complete w.r.t. the class of NS structures satisfying permutation.

2. Axioms (3.1)-(3.17)are complete w.r.t. the class of NS structures satisfying permutation
and concatenation.

4 Alternative formulations

We present a number of syntactic and semantic variants of our logic. First, we show that the
logic can be given probabilistic semantics, and then we show how different syntactic con-
structs can be used to replace the conditional operator.

4.1 Probabilistic semantics

The existence of probabilistic semantics for prepositional conditional logics has been pointed
out by a number of authors, for example Adams [1], Goldszmidt and Pearl [13], and Lehmann
and Magidor [16]. We claim that conditional first-order theories can be given probabilistic se-
mantics similar to that off-semantics [1,12]. The intuition behind this semantics is as follows:
suppose there is a probability distribution Pr defined over the domain of a first-order model
M, and let us abuse notation and write Pr(<p(x)) for Pr({d : M (= y(i)G]})- We would
like to say that a conditional ip —•(*) i> is satisfied by this model when Pr(ip(x)\(p(x)) is al-
most 1. That is, with high probability, any element that has the property ip, has the property
ip. In order to formalize this intuition we have to say what we mean by 'almost 1' and how we
would treat tuples of domain elements, as opposed to single domain elements. We resolve the
first question by using the ideas of Goldszmidt et al. [ 12] in their formulation of e-semantics.
Instead of looking at a single probability assignment, we look at a sequence of probability as-
signments and replace the requirement Pr(ip(x)\tp(x)) is 'almost' 1 with Pr(4>{x)\<p(x)) = 1
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in the limit. (An alternative approach is to use non-standard probabilistic measures, where 'al-
most' 1 means 'infinitesimally close to l',see[16].) We call this a parameterizedprobabilistic
model (PPF). The second problem can be solved by defining separate probability distributions
for each tuple size, much like our use of different rankings for different tuple sizes. A nicer
solution would be to use the probability distribution over the domain to induce a probability
distribution over tuples, i.e. Pr{(d\,.. .,dk)) — Pr{d\) • • Pr(dk). In that case, we say that
the PPF is strong. Unfortunately, our language is not strong enough to force such an inter-
pretation. However, we can obtain this condition by resorting to some form of w-consistency.
We conjecture that this property of w-consistency follows from regular consistency when the
theory is finite.

What follows is a formalization of the discussion above.

DEFINITION 4.1

A parameterized probabilistic first-order model (PPF) is a pair Mp = (M, P), where

• M is a standard first-order structure.
• P = {Prk : k G N), where Prk = {Pr* : n G N} is a sequence of probability

measures on *

Satisfiability of a formula ip in a PPF Mp is defined in the standard fashion, except for the
following case:

• MP \= /? - ( * ) 7 if Kmn-oo Prjf'({c : MP \= 7[f]} \{c:MP\= /?[f]}) = 1. (We
abbreviate this as lirrin^oo Pr(f\f3) = 1.)

That is, the conditional /3 —*(g) J is satisfied whenever the probability of the set of substi-
tutions for x under which /? A 7 is satisfied, given the set of substitutions under which /? is
satisfied, approaches 1.

We shall also need the following two properties:

DEFINITION 4.2

We say that a PPF Mp is smooth w.r.t. Cc if for every (possibly infinite) set B of wffs and
everywffa: if l im^oo Prn( /? |a) = 0 for every ^ G B thenlinin-oo Prn{\Jp€B /?|a) = 0.

We say that a PPF Mp is pointed if for all formulas a, /? G Cc limn—oo Prn(/? |a) exists.

We chose the term smooth because of its similarity to the smoothness requirement in the
context of our standard model: both conditions make Axiom (3.12) valid. The requirement
that the PPF be pointed is needed to ensure that Axiom (3.8) (Rational Monotony) will hold.

THEOREM 4.3

For a countable language L, axioms (3.1M312) are sound and complete w.r.t. the class of
smooth, pointed PPF models.

DEFINITION 4.4

A PPF is strong if for all k, n G N and for all <*i,..., dk G ||M||, we have that -Pr*((di , . . . ,

We conjecture the following:

CONJECTURE 4.5

Given a countable language L, for finite theories F, F has a model in NS satisfying permuta-
tion and concatenation iff F has a strong PPF model.
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While it is easy to define a ranked structure based on a PPF model, we have not been able to
prove the other direction.

We remark that Lehmann and Magidor[16] give a slightly different semantics to proposi-
tional conditional logics using non-standard probability measures. There is a strong corre-
spondence between non-standard reals and infinite converging sequences of reals. In fact, one
way of defining non-standard reals is by means of equivalent classes of converging sequences
of standard real numbers. Thus, we believe that the two methods are equivalent.

4.2 Syntactic variants

The syntax of our system of statistical conditionals can be changed to highlight different as-
pects of these conditionals. While we chose to use a formal language similar to that used in
conditional logics, we see two other possibilities.

As we mentioned earlier, the conditional <p —••(*) i> tells us something about the properties
of a subset of the objects that can be assigned to x such that <p is satisfied. Thus, it can be
viewed as a quantifier that is slightly weaker than the universal quantifier, but much stronger
than the existential quantifier. Indeed, [7] presents the logic of this paper in this form. Rather
than use conditionals, it uses normality quantifiers of the form Af% , where Afj quantifies over
all the most normal x satisfying (p. Thus, instead of <p —••(«) V"» o n e writes Affip. In fact, the
universal and existential quantifiers can be shown to be special cases of normal quantifiers
(and hence of conditionals). Instead of Vx->a we can write Ng false (or a —>(x) false).3

While the use of normality quantifiers presents only a slight syntactical variant to our condi-
tional language, one can take a completely different approach that has a much simpler axiom-
atization and gives a system that is much closer to standard first-order logic. This approach
is based on adding normality predicates, which are counterparts of McCarthy's abnormality
predicates [19]. In this approach we add a normality predicate for each wff <p and each sub-
set of variables free in <p. In principle this requires at least a countable number of additional
predicates in the language. However, any finite theory will refer only to a finite subset of these
predicates.

Formally, if £ is a first-order language, then £ ^ is the minimal extension of £ such that if
ip is a wff with free variables x\,...,xn a n d t i , . . . ,1* are terms then
Norma%^i;£~\ti,..., tk) is a wff, where *,-, , . . . , xih € { * ! , . . . , *»}.4

The intuitive reading of this formula is best illustrated by an example. To say that Alice
and Bob are a normal mother and son pair, we write: Normalx,y

 z'y (Alice, Bob). The
idea is that the subscript x, y (whose order is important) maps the terms to the appropriate free
variables in the wff Mother{x, y). Equivalently, we could write N ormaly iX

 er^z'v'(Bob,
Alice). These formulas are equivalent because in both Bob gets mapped to y and Alice
gets mapped to x. We can represent conditional statements, such as <p —+(x) ^P by writing

ormalfy\x)
( ) )

Formally, we can revise our definition of satisfiability within a ranked first-order structure
by replacing the clause on conditionals by:

• M \= Norma^W^Xu,..., tk)[s] if a ' ( x i ) , . . . , ? (*„) is in minXli...iX,<p{xu ...,

3 This is relaxed to Lewis'[18] notions of inner modality, corresponding to the normality quantifier.
* This formulation of the normality quantifier was suggested to me by Daniel Lehmann.
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where s1 is s\f^'''t'f'
1'] and s1 is its extension to the set of all terms.

Using this notation, instead of the first 12 axiom schemas of NPC, we require only the fol-
lowing seven-axiom schema:

(i) All instances of FOL tautologies

(ii) 3ya(y)^3yNormal°(t\y)

(iii) Vy{Normalfe\y) =• a(y))

(iv) (« = /?)=• Vy(Normal°(s\y) = Normally))

(v) \fy(Norma&*W\y) z* (Norma#*\y) V Normal%(S\y)))

(vi) 3y(NormaltW(y) A

(vii) Normal°{s){y) =»

It is possible to weaken the system by replacing (vi) with

(vi') ^(Normalf*\y) => /?(y))

It may seem that this logic is more expressive than our conditional logic. We have shown
that beyond expressing conditionals it allows us to say of a particular object that it is normal.
However, we can say the same thing in our original language if it contains equality. To say that
Tweety is a normal bird we simply write: -<(bird(x) -+(r) ->(x = Tweety)). That is, it is not
the case that all normal birds are not Tweety. Hence, for a first-order language that contains
equality, we can show the following:

THEOREM 4.6

The axioms (i)—(vii) are sound and complete w.r.t. the class of NS structures.

5 Discussion
We presented a first-order conditional logic in which conditionals are interpreted as qualitative
statistical statements. Our main contributions are in pointing out this alternative interpretation
for conditionals, one that underlies much common-sense knowledge; in providing a formal
language for making such statements, including a sound and complete axiomatization; and in
pointing out its probabilistic semantics.

Our particular approach is motivated by the fact that people seem to possess much infor-
mation about typical, normal, or expected properties of objects; for example, birds typically
fly, the bus usually arrives on time, or physicists are usually good in math. In addition, people
seem to possess representations of prototypical objects. (See [21 ] for an interesting discussion
of prototypes and empirical studies of their use.) Much of this information is statistical in na-
ture: most birds we encounter fly, most times we wait for the bus it is on schedule, and most
physicists we know are good in math. However, most of this information is qualitative, rather
than quantitative. Our logic allows us to reason with such statements and our axiomatization
and semantics is intended to capture and model them.

Tversky [22] suggests a model of how prototypes are used. In Tversky's model the degree
of 'typicality' of an individual w.r.t. a class is determined by its distance from the prototype of
this class in the space of properties, where different properties can have a different influence
on this metric. While we do not claim that our model wholly captures the common-sense use
of prototypes—current theories of prototypes and their use are more involved than Tversky's
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model—an intuitive interpretation of our semantics is based on these ideas; namely, that ob-
jects in our model are ranked based on their similarity to the class prototype. Objects which
possess all the typical properties of class a are minimally ranked w.r.t. that class and they may
differ from each other on various properties to which the prototype is indifferent. The proto-
type itself is only implicitly specified as the set of properties common to all minimally ranked
objects of the class. Objects from class a that are not minimally ranked have some atypical
property, and the degree to which some property (3 is atypical w.r.t. class a is manifested by
the distance between the ranking of the most normal a objects versus the ranking of the most
normal a A /? objects.

Still, there are problems with logics of prototypes that our proposal suffers from. For exam-
ple, if Pi fora = 1 , . . . , 10 is atypical property ofclassa.it does not follow that /?i A- • A/?io
is a typical property of class a, although this conclusion is sanctioned by all systems which
have the And property. It remains to be seen whether a more satisfactory solution that does
not suffer from these problems exists. One possibility is to allow a richer structure in which
there are different rankings with respect to different properties.5 In that case, the And property
would not necessarily hold. However, it is not clear what relationship should hold between the
different rankings, and this approach deserves further study.

As we have seen, the conditional operator can be viewed as a quantifier. The idea of non-
standard quantification is not a new one. In [5] Barwise and Cooper define and treat the subject
of generalized quantifiers. Their treatment is very broad and general, having a linguistic aim.
The idea also appears in the field of model theoretic logic, but on a different level and with
different aims (for example, quantifiers that quantify over enumerable sets).

A closer approach is presented in Altham's work on formalizing the concept 'many' and
'nearly all' [2]. Altham adds a new quantifier M. In his approach ( M I ) F I (i.e. many z are
F) is satisfied, if at least n distinct individuals in the domain are F. Nearly all x are F (written
(Nx)Fx ), if fewer than n members of the domain are not F.

The choice of n that corresponds with the notion of many is different in different contexts,
e.g. compare the idea of many Christians to that of many Quakers. To overcome this Altham
introduces an infinite set of quantifiers { M l k £ N} , where (Mkx)Fx if at least k individ-
uals are F. With every predicate he associates an index that determines how many is many
(i.e. which k should be used to say many xs are ys). However, one cannot infer the index of
a wff from the indices of its subformulas, but only obtain bounds on its size (e.g. if the index
of a is k and of /? is j then the index of a V (3 is bounded below by the maximum of j and

*)•
Altham's approach is more quantitative than ours, actually counting the number of objects

with a given property. Our conditional operator is more flexible in that it leaves this number
unspecified and allows for interpretations that are different than those suggested by the notion
of many.

Perhaps the work most closely related to ours is Schlechta's work on defaults as general-
ized quantifiers [20]. Schlechta interprets defaults of the form 'birds normally fly' as saying
that 'most birds fly* or that 'the elements of a large or important subset of the set of birds
fly'. Hence, as in our logic, defaults (or conditionals) are interpreted w.r.t. a single first-order
model. Schlechta formalizes the notion of 'important subset' using a weak notion of a filter.
A filter w.r.t. a set A is a set of subsets of A that contains A, that is closed under the superset
relation and under intersections. Schlechta replaces this last property with the requirement of
non-empty intersections. Hence, Schlechta's semantics consists of a first-order structure sup-

5This was suggested to me by David Poole and an anonymous referee.
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plemented by weak filters that tell us for each set what its important subsets are. Schlechta
provides a sound and complete axiomatization for his logic.

Schlechta's work and our work attempt to formalize similar ideas, but they differ on a num-
ber of issues. Schlechta's language contains unary predicates only. Hence, it provides only a
limited formalization of first-order conditionals. Consequently, it is less expressive than our
logic and does not address issues such as the interaction between normal tuples of different
sizes. Schlechta's axiom system is weak and, consequently, more flexible. In fact, restricted
to unary predicates, our semantics specializes Schlechta's semantics, since rankings imple-
ment a (real) filter which, in turn, is a weak filter. Hence, we have formalized a more specific
approach to conditionals. Indeed, while our conditional operator can be given probabilistic
semantics as stating statements that are almost certainly true, one possible interpretation of
Schlechta's defaults is as stating facts that are true with probability greater than 0.5. Our more
specific semantics has the benefit of a simpler representation: whereas one must specify a fil-
ter for every subset of the domain in order to handle conditionals in Schlechta's logic, a single
ranking on the domain suffices in our case. Finally, it should be mentioned that Schlechta's
work is concerned with issues which we have not considered, such as specificity of defaults.

Delgrande [9] was the first to offer a first-order version of conditional logic. His language
is restricted to flat formulas, i.e. formulas in which conditionals are not nested. Delgrande
interprets his language over a set of possible worlds, all of which are models of first-order
logic with a common domain and valuation function (a function that assigns an individual to
each term). A conditional (p(t) —• rp(t) is satisfied if in the least exceptional worlds in which
(p(t) holds, rp(t) holds as well. This type of interpretation is characteristic of the subjective
approach. The model tells us what worlds the agent perceives as more reasonable, and condi-
tionals are interpreted as talking about the properties of the most likely worlds or scenarios.

Another approach to first-order conditionals is offered by Lehmann and Magidor [17]. Their
approach is somewhat different in motivation from the other approaches, and cannot be clas-
sified as distinctly subjective or statistical, but rather as a combination of both. Lehmann and
Magidor are interested in the study of nonmonotonic consequence relations. A consequence
relation is a function which, given a theory, returns the theory containing the consequence of
the original theory. In [17] Lehmann and Magidor look at consequence relations defined over
first-order theories. Their approach can be embedded in a conditional logic with the restriction
that conditionals are fiat, and that conditionals do not appear under the scope of a quantifier.
Thus, Vr(6ir<f(z) -> fly(x)) is not a wff, while (Vz6ird(z)) — (Vz//j/(z)) is a wff. This
approach extends their earlier work on propositional consequence relations [15, 16]. In par-
ticular they are interested in studying when quantifiers can be introduced or eliminated. For
instance, one rule they suggest is:

0-Intr)
dza —• dxp

The semantics Lehmann and Magidor provide for their theories takes the form of a par-
tial order over pairs of the form (M, / ) , where M is a standard first-order model, and / is a
function assigning a domain element to each variable. The conditional bird(x) —* fly(x) is
satisfied if in those minimal (M, f) pairs in which the object assigned to x by / has the prop-
erty bird, that object also has the property fty. Thus, the model can be viewed as saying what
models are most normal, but also what assignments to objects are most normal. While the
ordering over models fits the subjective approach, the fact that there is an ordering over the
assignment functions / is more in line with the statistical approach: if one fixes the model M,
the ordering over assignment functions can be understood as an ordering over infinite tuples
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of objects which is closer to the statistical approach. Motivated by the work of Lehmann and
Magidor, [7] uses such orders over assignment functions to define the semantics of statistical
conditionals.

Compared with these approaches, our approach provides a purely statistical interpretation
of conditional first-order logic, employing a general language that does not restrict us to flat
formulas, nor does it restrict the use of quantifiers.

In [11] Friedman et al. discuss a number of problems that arise in the logic of Delgrande
and in other formulations of first-order conditional logic. We mentioned these problems in
the introduction, and here we demonstrate our ability to deal with them. The first problem
arises when we substitute terms for universally quantified variable: in Delgrande's logic the
following is inconsistent:

Vx,y(Pet(x,y) — (Dog(y) V Cat(y)) , Vy(Pet(John,y) -> (Snake(y)).

This inconsistency stems from our ability to substitute John for the variable i in the first sen-
tence, obtaining a sentence that says that John's typical pets are dogs or cats. This contradicts
the second statement which says that John's pets are typically snakes (assuming, of course,
that snakes are not dogs or cats). In our language, in order to express similar information, we
would write Pet(x, y) -+(r,y) (Dog(y) V Cat(y)). That is, normally, a person's pet is either
a dog or a cat. Because this form of quantification is weaker than universal quantification,
substitutions for x or y are not allowed.

An instance of a similar problem is the lottery paradox. We know that most tickets do not
win the lottery, but there is a winning ticket. The theory:

Vx(irue —• ->Winner{x)) , true —* 3xWinner(x)

is inconsistent in Delgrande's logic and Friedman et al. overcome this problem using the prop-
erties of plausibility spaces. However, if we use statistical conditionals to represent similar
information we obtain the following theory:

true —*•(!) ->Winner{x) , 3xWinner(x).

It is easy to construct an NS model of this theory.
Indeed, in many cases, the information we have about the world is best interpreted as rough,

qualitative statistical statements and should be modelled accordingly. If we are careful to
make the distinction between subjective and statistical information, we can prevent some of
the above pitfalls. However, it is important to note that the lottery paradox still possess a chal-
lenge to the subjective approach: it is not unreasonable to argue that the following (subjective)
statement is consistent: 'For every given ticket, I believe that that ticket will not win the lot-
tery. Yet, I believe that some ticket will win the lottery*. It seems that these statements, again,
correspond to the following theory:

Vz(true —• -iWinner(x)) , true —* 3xWinner(x)

with conditionals interpreted subjectively. Only now, we have made this challenge more crisp
because it is not conflated with statements such as 'most tickets will not win the lottery'.

Our logic does suffer from a number of weaknesses. On the technical side, it would be nice
to do away with the smoothness requirement, especially in the context of the probabilistic se-
mantics. This may not be too difficult, since this restriction has been overcome in the propo-
sitional case [6].6 On the more pragmatic side, the fact that we cannot substitute terms for

8 The situation in the first-order case is slightly more complicated because of the existence of quantifiers.
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variables bound by the conditional operator also means that we cannot conclude fly(Tweety)
from bird(x) —*(x) fly(x)- That is, although we know that most/normal birds fly, we have no
mechanism to deduce that Tweety is one of these normal birds. This is not surprising, since we
cannot conclude that Tweety flies given a statistical statement such as '99% of all birds fly'.
In order to handle this we would need additional nonmonotonic machinery. For instance, one
would like to deduce that an object satisfying a formula is normal for that formula unless the
opposite is known, i.e. Tweety is a normal bird unless we can prove otherwise. Such deduc-
tions are not possible within our logic, which is a monotonic formalism.

The problem we just alluded to is a fundamental problem at the heart of statistical reasoning:
Given statistical information, what is it that we should believe about particular individuals?
That is, if we know that 99% of birds fly, what should we believe about Tweety. The problem
we are facing now is simply the qualitative counterpart of this old problem. Recently, Bacchus
et al. [3] have proposed a solution to this problem in the quantitative case, i.e. they suggest a
method for moving from statistics to beliefs. At this stage it is not clear whether their ideas
can be used to solve the qualitative version of this problem, and this remain an important chal-
lenge. This paper did not attempt to resolve this question. However, it supplies a necessary
first step to the resolution of this problem by making explicit the distinction between statistical
and subjective conditionals and by supplying a logic for reasoning about statistical statements.
We believe that a natural next step is to provide a semantically appealing logic that combines
both statistical and subjective conditionals, using which the relationship between both types
of information can be studied.
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A Proofs
• The proofs of some of the lemmas and derived rules appearing in this section have been lifted to the first-order case

from similar proofs appearing in Lehmann and Magidor's [16]. To acknowledge this, we have marked each such
claim with (LM*).

• We observe that the proof of the deduction theorem trivially generalizes to our logic, and hence we will (implicitly)
allow ourselves to use it in our proofs.

• We shall use = > to denote meta-level implication. As before, object-level implication is denoted by =>.

Some additional derived rules
(A.I) -,{a ->(,) 0) => 3x(a A -./?)

PROOF. Assume ->32(a A ->0). This is equivalent to V2(-ior v/3). Using (3.9) we have ->or —>•(,) (->a V/3). By
Reflexlvlty or —•(j) a. Using (And), we have a —•(,) ((-^a v/3) A a). Using (R.W.), we now have a —>(t) /3 .I

(A2) -.(or — ( I ) 0) => 3s[(a A -./?) A ((a — ( i ) 7) => (a =• T ) ) ]

PROOF. WE will show that the negation of the consequence, 3x[(or A -./?) A ((or —*(i) 7) =J> (a => 7))] implies
that a —•(!) 0- The negation of the consequence is logically equivalent to Vi[->o V/?v( (a —•(!) 7)Aor A - ^ ) ] .
By following the steps taken in the proof of A.I, we get a —*(i) [0v((a ~*(t) 1) A or A-17)]. Reasoning by cases,
suppose that a —"-(i) 7, using And (conjoining 7 to the consequence of the conditional) and a few PC deductions
we get a —*(±) 0- Alternatively, if ->(a —*(i) 7), then using (3.9) we have a —'(1) -•(or -+(i) 7). As in the
previous case, using (And) and a number of PC deductions we can deduce or —*(t) 0- B

(A.3) -.(or ->•(,) 0) A (a - • ( ! ) 7) => 3x(a A 7 A ->0)

PROOF. By A. 1 it is enough to show that
(-.(a—•(,)/?) A or -*(!) 7) => ->(o - • ( ! ) (-17 V/3)), but this is equivalent to

(o -+(j) (-n V 0) A a —>(i) 7) => (a —>( j) 0) which we get using And and R.W.. I

(A.4) 3 x a ( x ) = > a r ^ ( j ) V j / ( 7 ( r , v ) V - . ( a - . ( 1 ) 7 ( 2 , S 7 ) ) ) (C n (x U fv(o)) = 0).
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PROOF. First, notice that the following schema is derivable:

First, (or —•(,) 7)v->(o —••(,) 7) is an instance ofanFOL tautology. Next, notice that ip -*(x) v i s derivable from
<p using (3.9) (because from <p we get V£v> using FOL). Hence, we have that (a -+(*) T ) V ( O —*(X) ->(a —*(j) 7))-
Using Right Weakening on both disjuncts, we obtain (a -*(x) (7 v ->(or -*(x) ~f))- Assuming ( j / n f = 8)
and using FOL, we obtain V5(o —*(x) (7 V -.(a —*(x) 7)))- Assuming in addition {? n fv(or) = 8, we obtain
a —••(*) Vy(7 v ->(or —>(i) 7)) , using Interchange. The result then immediately follows. I

(A.5) (a A 0) — ( ± ) 7 =» a - ( l ) (/? ^ 7) (LM*)

PROOF. Using R.W. we derive (a A p) - * ( I ) 7 =>• (o A P) -+ ( i ) (/3 =>• 7) .
Using Refleirvlty and R.W., we obtain (o A ->P) -* ( j) (/? =• 7).
Hence, (o A /3) — ( I ) 7 r- (a A p) — ( I ) (/3 =• 7) A (a A ^3) — ( I ) (/3 => 7) •
Using Or we now have (a A P) - » ( l ) 7 I- (a A (/? V ->/3)) -» ( f ) (/3 => 7).
We conclude by L.E. I

(A.6) ((a V P) - ( i ) -./?)=• (a - ( J ) - .0) ( t M * )

PROOF, (Q V ^) - * ( I ) (a V /3) implies that (o V 0 ) - » ( I ) ^ H ( o V /?) - • ( , ) (o A -.0) (by And).
Thus (or V P) -* ( 1 ) - . ( 3 h ( o V /?) - • ( , ) o (by R.W.). Using CM. one gets that ((or V p) -^ t ) ->/3) =>

(((a V /3) A a) —*(i) ->/3). Using (LJ£.) the consequence in this implication implies a —*(x) -<P. B

(A.7) (a -+(,) false) => ((a A 0 ) - > ( j ) false) (LM*)

PROOF. We have that a —•(!) false » a ^ ( j ) / 3 A - i / 3 and using R.W. we obtain or —•(») false t- a —•(*) /S-

Using CM. we now have a -*(i) false A a —*(i) /3 H (or A /3) —>(i) false. I

(A.8) ( o v / 3 v 7 ) — ( I ) (-.a A-./3)l-(/?V 7 ) — ( l ) - , / 3 (LM*)

PROOF. By ReBexivity we have I- (a v /} v 7) -*(j) (a v /3 v 7) and by R.W.
(a V P V 7) - * ( i ) (^o A -,/?) I- (or V p V 7) - ( I ) -,a.
Applying And and then R.W. we have (av pvy) -> ( J ) (->a A -.^) I- (o V/3V7) - • ( ! ) ( / 3 v 7 ) .
Again, by Reflexlvfty and R.W^ we have (o v /9 v 7) -> ( , ) (- .Q A -./?) I- (o v /3 v 7) - + ( i ) -./3.
Using CM. one obtains:
(o v /3 V 7 ) - > ( t ) (-ia A-i/3) h ((o V/3 V7) A (^ V 7 ) ) - • ( , ) - i / 3 and L.E. gives us the desired result I

(A.9) (a V P) — ( i ) -.or h (or V p v 7) — ( I ) ^o (LM*)

PROOF. From PC, we have (or v p) ^X) ->o h (a v ;3) —•(,) ->o.
By Reflexlvlty we have h (7 A -ior) —>(i) (7 A --or)
and using R.W. we have I- (7 A ->o) —*(i) -•<».
Using Or we have (orV/9) -+(,) -10 I- ((or V/3) V (7A-10)) —>•(!) ->Q) .Since (a V/3) V (7 A ->a) is logically

equivalent to (o; V p V 7) , by applying LJE. we have the desired result. I

In what follows the notation Px (or p when x is clear from the context) will be used to denote the set {c 6
|M|I*I : M \= /3[f]}. We will use the letters f,g to refer to tuples of domain elements (i.e. members of | M | n ) and

the following notation: M \=j a d= M |= o[J] (where | / | = \x\).7

THEOREM 3.1

Axioms (3.1H3.12) are sound wxt. the class NS.

PROOF. • (3.1) is inherited from standard PC due to the identity of the definition of satisfaction with respect to wffs
of the form-io, or A/? andVxor. The same applies to Modus Ponens.

7Recall that | / | stands for the cardinality of | / | . Unfortunately, when M is a first-order structure, |M| stands for
the domain of M. However, this is the only exception.
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• (3.2H3.8) arc all easily proven as in the prepositional case (e.g. see [15,16]). For instance, consider(3.5): suppose
that M \= (or —•(!) P) A (a —•(») 7) . Thus, all minimally ranked tuples satisfying a satisfy p. Clearly, all
minimally ranked tuples satisfying or A p satisfy p. We conclude that the minimally ranked tuples of d and of
oAJ3 are the same. Consequently, since M ^ a —•(») 7, they must satisfy 7.

• (3.9) is also trivial.

• (3.10) Immediate from definition.

• (3.11) Immediate.

• (3.12) Assume .M (= Vf(o -* ( B ) P) and that { x n y = 0 and fv(a-) n x = 0}.
Then, for each J 6 | | M | | , M \= a — ( B ) /?[*].
This implies that for each 5 in M it is the case that for every / 6 |Af |'*l minimal in a, M \=f /?[}].
Therefore M J= or ->(B) Vr/3.
The other direction is as easy. I

THEOREM 3.2

Axioms (3.13) is sound wj.t the class of NS structures satisfying permutation, and axioms (3.14)—(3.17) are sound
wxL the class of NS structures satisfying concatenation.

PROOF. First, we show that axiom (3.13) is sound w.r.t. the class of NS structures satisfy ing permutation.

Assume that permutation holds and that ->(or —•(J,I) P) is satisfied. Thus, there is some minimal c o d that

satisfies o[^'j] and &*** not satisfy ^["'j]- This implies that or A ~"/3[̂ '*] is satisfied. Moreover, d o c must be a

minimal tuple to satisfy Q[J ' B ] , otherwise, we use \he permutation property to show that cod is not a minimal element

satisfying a[*'j]. Therefore, ->(o —*(i,g) P) holds as well.
Next, we show that axioms (3.14>—(3.17) are sound wxt. the class of NS structures satisfying concatenation.
(3.14) Assume that concatenation holds in the model. Notice that a <i (3 is satisfied in M iff the minimal rank

of tuples in d is no higher than thai of tuples in p. Thus, the sentence (a <» P) A (a' < j P') is satisfied only if
the minimal tuples in a are no higher than the minimal tuples in 0 and the minimal tuples in a' are no higher than
the minimal tuples in P'.

Next, notice that if co c* is minimal in (a A a') and the conditions on the variables in Axiom (3.14) are satisfied,
then 5 is minimal in a and c1 is minimal in a': clearly, S satisfies a and € satisfies a'. If some I satisfies a and is
ranked lower than c, then using concatenation, we will have a tuple satisfying a A a' whose rank is lower.

It is now easy to obtain die soundness of Axiom (3.14): let Z be minimal in d andc' minimal in a'. We know that
S o £* must be minimal in a A a'. (Otherwise, another tuple that is ranked lower than So c' is minimal in this set,
and as we have seen this implies that either £ is not minimal ford, ore' is not minimal fora'.) If <Jis minimal in 0
and i' is minimal in /?', then we know that d o <? is minimal for/3 f\p', and that Sis ranked no higher than Jand
mat £' is ranked no higher than 1'. Consequently, concatenation implies that c o c* is ranked no higher than & o i',
which is what we had to prove.

(3.15) Similar to (3.14).
(3.16) Suppose that M\= a f\a' —f(i,j) 7. »e must show that M [= a —»(j) (a' —•( j) P).
Choose some Jnormal for a and let i' be any tuple normal foro'R] and assume that a A or —»(i,y) 7 We must

show that (Jo J' is in 7. We notice that because £ U fv(a') = 0 &' is in fact normal for or'.

Given our assumptions, to show that Jo d' £ 7, it is sufficient to prove that i o 5! is minima] in (a A a'). Let
Jot? be minimal in (a A a'). As we have argued above, given the restrictions on the free variables of a and or'and
on x and y, this implies that c is minimal in d and that i' is minimal in a'. However, d cannot be ranked higher than
5, and similarly, d' cannot be ranked higher than S1. Hence, by concatenation, d o d' cannot be ranked higher than
JoJ*, and must therefore be minimal in (a A or').

(3.17) First, suppose that Jos ' is minimal*^ ind. From concatenation, we get that £ must be minimal* in or[*,].

Thus, if (a —>•(,) j3)[£'*,] then all minimal* tuples in a[*,] satisfy /8[*,]. In particular, we have that £ in /?[*,]. I

THEOREM 3.3

For a countable language Cc, axioms (3.1 M3.12) are complete with respect to the class NS.
Before we start the proof, we mention that we will need a syntactic notion of substitution. We will use the same no-

tation as in the case of the (semantic) assignment function, but which one is intended would be clear from the context.
The definition will be identical to the one used in first-order logic, where basically, o[J] says that we must substitute
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the constant c £ Cc forall those instances of x in the wff a, where x appears free in a. SoAfan(x)[J] = Man(c),
butAfan(x) —•(») Ta//(x)[J] is Man(x) —*(i) Tall(x). Thus, syntactic substitution defines a mapping from
Cc to CC-

PROOF. Let Cc be a countable language and t a consistent set of closed wffs in Cc • We shall build a model M s.t.

(such that) M \= t . We shall construct the model in w stages. Each stage will deal with one negated conditional

- ( a - ( * ) 0)-
At each stage we will define five sets L n , r n , F n . E n and E". We initialize Lo. ro .Fo andEo as follows:

• Lo = Cc-
i To 3 T, is a maximal consistent set of closed wffs. (We remark that consistency is defined as usual and if T is

maximal consistent, then for all a 6 L we have a G T or ->a £ F.)

• F o = 0.

• E o is an enumeration of pairs of wffs in Lo denned as {{a,(3) | -•{a -<•(,) P) £ To}.

• E° = Eo.
DEFINITION A.I

A t y p e r ( x i , . . . ,xit) in the variables x i , . . . , xj, is a maximal consistent set of formulas of L in these variables. *

Assume that we have denned L n , r n , F n , E n and E n . Let {a,p) be the (n + l)th pair in the enumeration
E " . Define NC(cr)* = { 7 1 ( 0 - > ( I ) 7) G Tn and |x| = Jb} and let T be a type in the variables £ with respect
to r n tn L n (i.e. containing Tn). such that N C ( a ) J U {-•P} C r.

LEMMA A.2

Such a type T exists

PROOF. We must show that r n u {->/?} U NC(a)* is consistent. We shall prove that
r n 1- 3x(-./3A7i A . . . A 7 m ) for any finite subset {•yi,---, 7m} C NC(o) J .
We know that a —>(j) 71, • • •, a —>(j) 7 m £ F n . Therefore by using And we obtain a —>(j) (71 A . . . A7 n ) €
F n (by maximal consistency). (or,/3) G Ej for some j < n = * -1(0 —*(j) P) € Tn (by definition of Ej).

By A.2 and Tn ' s maximal consistency wehave3x(-i/3 A 71 A . . . A 7 m ) 6 Tn- B

We can now define the (n + l)th stage in our construction.
• L n + 1 = l n u c o

n + 1 , ^ + 1 c ^ 1 wherecS,+ 1 $ L n forall m < k.

• F n + i = r,,UT[ n
0^, l r

 n '+*~' «+ 1] where we have assumed xo , . . . ,x*_i are the variables occurring in

T.

. F n + 1 = F n u / n ° + 1 where / » + 1 = ( c j + 1 , . . . , c ^ J ) .

• E n + i is an arbitrary enumeration of pairs (a',f}') s.t. (or' A/3') e L n+i \ L n and-i(o' —>(j) /3') 6 r n + i .

• E n + 1 is the enumeration obtained by using Cantor's diagonalization method to order the elements of Eo, •. •,
E n + i -

Define L = ( J l n , T = ( J r n , F = | j F n . It is clear that T is maximal consistent in L, because each of the
r n is maximal consistent in L n for each n € N and the union itself is consistent (since Tn C T n +i) .

LEMMA A.3
1. For each F-consistcnt wff a we have a tuple j a 6 F such that | / ° | = |x| and for any 7 s.L a —'•(j) 1 € I \ we

have that 7 [* ] £ T.
We shall call }a normalt for a .

2. For each o and 0 s.t ->(a —•( j ) P) £ T, we have some / that is normalj for a such that -<0[^] £ T.

PROOF. Ifo isr-consistentthen-i(o —•(!) -*<*) € T, otherwise by Reflodvity and And one has a -*(t) false e
F => V£-ior £ r , contradicting a's F-consutency.
Therefore, it is enough to prove the second part of the lemma.
There exist some n s.L a,p e L n \ L n . i and due to our construction process, this means -1(0 —>(i) P) G
T n \ T n _ i . The fact that -*(a - » ( i ) ^ ) £ Tn implies that (o,^> £ E n . Therefore, there exists some m > n
s.t. we have chosen to deal with the pair (a, P) in the mth stage.

'This definition is from [8].
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LEMMA A.4

/ £ is normal for a and ->0[^a ] £ T.

PROOF. By the construction process we know that ->0[^a ] £ r m C T , and that for each 7 s.t.

or —••(*) 7 £ r m _ i , we have -y[^a ] £ F m C T. Assume S is such that a —•(*) S £ T \ r m . Therefore there

exists some k > m s.t. or —•(*) 6 £ Tk \ Tk-i. This means that S = S'(£, £) where £ £ L* \ L m . But we

know by virtue of o[*o ] £ Tm that 3£a £ r n (because Tn is maximal consistent and 3£a £ L n ) . By A.3 we

know that (a - + ( i ) v | (S ' (x ,y) V -.(a - > ( I ) S'(x,y)))) £ Tn too.

Therefore, Vy(5'(x,v)v-.(a—•(*) 5'(x,6)))[yO ] £ r m . By substitution (of FOL) and maxima] consistency,

we know S'(£,i) V -.(or —•(*) S'(x,c))[^a] is in r m , and by maximal consistency and the fact that ->(or -••(*)

S'(£, c)) $ Tk we know that S'(£, £)[*„ ] £ Tk C T. •

This proves the whole lemma. I

We can now define our model M = ( M , R ) .
• M is the standard FOL structure defined by the standard part of T (as in [10]).

• R = {i?n |n £ N} where Rk is a ranking function over ||Af||* that we will now construct
Fix some integer n. We will now construct the ranking Rn. The construction is identical for every n.

DEFINITION A.5

Let S be the set of all r-consistent wffs (both open and closed), fix some ordered set of n (different) variables £ and
let n £ S x S where aV.0 iff -.(or V 0 -*(*) -.0) £ T.

LEMMA A.6

H is transitive. (LM*)

PROOF. We have to show that
- . ( (aV/3)—(,) -.a) A -.((/9 V 7) — ( I ) -./3)h -.((or V 7) —(*) - .a) . This is equivalent to ((orV7) — ( t )

-.a)A-.((/3V7) -•(*) -.0) h ((aV0) -•(*) - . Q ) . ByA.8 we have (aV7 -•(*) -.or) h (QV/3V7 -•(*) -.a).By
contraposition on A.7 we have ->((/3 V 7) —>•(*) -./3) h ->((o V 0 V 7) ->•(*) -.(or V /?)). By (RM.) we obtain
((o v 7) -••(*) ->Q) A ->((y3 v 7) —HJ) -./3) h (((a v /3) A (a v 0 v 7)) —•(*) -ior), which of course impUes
the desired result. m

LEMMA A.7

For each a, 0 £ S, either aR0 or 0V.a . (LM*)

PROOF. Suppose alf.0 and 0Tjt.a . Then we have ((or V 0) -*(t) ->o) A ((a V 0) —>•(*) ->/3) £ T. By And
and Reflexrvity we have ((a V 0) -»(*) -.0) A -./3 A (a V 0) £ T. Therefore, ((o v 0) —•(*) false) £ T.
Using A.6 this implies that (((or v ^ ) A/3J!—•(*) false) £ T, and using I^E. one has 0 -+(*) false £ T. Using
Instantiation we have 3S0 =>• false £ T. Consequently, VS-./9 £ T implying /3 ^ S. •

LEMMA A.8

If otV.0 then for any / normal* for a s.t. 0[l] £ I \ / i s normal* for /3 . (LM*)

PROOF. Suppose aU0 , f is normal* for a, and 0[*] £ T. Let 0 -+(*) 7 £ T. We must show that 7[*] £ T.
It is sufficient to prove that (a —•(*) (0 ^ 7)) £ F , because / is normal* for a . But by L-E. we have
0 -*(*) 7 •" (aV/3)A/3 -•(*) 7. By A.4 we have (o V 0) -f( l) (/3 => 7) £ I \ aV.0 impues that
-.(or v ^ —'(*) -'or) £ F , and RM. implies that (a v 0) A a —•(*) (/? —• 7) 1 giving us the desired result by
use of L^. . I

DEFINITION A.9

a ~ 0fora,0 £ Si

We can conclude from the previous lemmas that ~ is an equivalence relation. We denote the equivalence class of a
by a, we will denote the set of equivalence classes by E. The relationship H on formulas induces an ordering over
equivalence classes in E defined below.

DEFINITION A.10

• a = {7 £ S : a ~ 7} ,
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a < /3 iff aH0,

fi < /3iff<5 <

The previous lemmas imply that < is a strict total order on E.

LEMMA A. 11

lfa,/3 6 Sand/3 < fithen 0—(S) ->a. (LM*)

PROOF. /3 < a implies aVJ0 which implies (a V 0 -+(s) "•<*)• By A.2 we have that 0 -+(*) ->a.

LEMMA A. 12

Let a,/? e S. If there exists some / € F such that / is normal* fora and 0[^] £ T , then/3 < 5 . (LM*)

PROOF. If so, then ->(a -»(*) ->/3). By Lemma A.ll a j . 0.

We can now define R (actually « „ ) . Let | / Q | = | f f"| = | / | = | s | = n.
• If / " . a " £ F t h e n / a < R 5 " iff fi</3\

• If / 6 F, g £ F \ F then f<R9-

• If both f,g £ F \ F then / = R 3.
R is well denned because Lemma A.12 implies that if f = gp (i.e. / was constructed as normal* for or and g
was constructed as normal* for 0 and they are identical) then a = /?. Also, notice that Axiom (3.11) implies that
the choice of the variables £ in the definition of normal* does not matter, and that different rankings obtained using
different sets of variables will be identical.

DEFINITION A. 13

We say that / satisfies* a , written / p=* Q iff Q[y] € T. We say that / is minimal* for a iff / F=J a an^
g ^=* a implies that / < R . S . When * is clear from the context we will simply say that / satisfied a or that / is
minimal for a and write / p= a.

LEMMA A.14

If / is minimal for 0, then f6H (LM*)

PROOF. Suppose / is minimal for a, therefore / (= a which implies a 6 S. This means that there is a normal*
function g for or in F (by construction of F). Therefore, f<ng and hence, / £ F. I

We conclude that any minimal function is normal for some wff.

LEMMA A.15

Let / 6 F be normal for a. Then / is minimal in 0 iff / p= P and @ = a. (LM*)

PROOF. First, assume / is minimal in p. Because / is normal for a and / (= P we have (by Lemma A.12) that
p < S. Since 0 G S, we have some g 6 F (by construction of F), s.t g is normal for p. By minimality of / in/5,
we have / < R 5 . This, by definition of R means ft •£ a implies ft = S.

For the other direction, assume/? = a and/ =̂ p. Assume g £ F is normal for -rand g < f. Therefore, ^ < S
which implies 7 < p. By Lemma A.ll , 7 —•(*) ~<P and thus, g (p. I

LEMMA A.16

Let a £ S. or has a minimal element. (LM*)

PROOF. Let g £ F be any tuple normal for a. Since 3 \=a and a = <5, we have by Lemma A.I S that 0 is minimal
in a. However, 5 < @, hence^ < / . •

LEMMAA.17
If g £ F is normal for a and minimal in 0, then g is normal for/3 . (LM*)

PROOF, g u minimal in p. Therefore by Lemma A.I 5, /3 = 5 and hence, aHp. We also have diat g is normal for
a and g\=- P- Therefore (by Lemma A.8), g is normal for p. I
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Note that g € F => 3a € S s.t. g is normal for a . Because Lemma A.1S tells us that if g is minimal for a it is
in F, we can conclude that if g is minimal for a then g is normal for a.

Proof of completeness theorem: We now show that M \= t. Since our original set of wffs f C T, this is
enough. By induction on the structure of a € F we show that A) )= a # a £ T. We have implicitly assumed
that {=}£ L. The generalization to languages containing equality proceeds as in the Henkin's proof for standard
first-order logic. (Details of that proof can be found in most texts on mathematical logic. Enderton's [10] is a good
choice.) There are a number of cases we must consider, but because we basically augmented Henkin's proof to deal
with the conditional operator, the standard steps are conducted as in Henkin's proof. Hence we only mention the
additional steps that are required here.
• a is an atomic formula, a negation (a = ->/?) or an implication (or = 0 ^ 7). We proceed as in Henkin's

completeness proof for FOL (see [10] (pp. 132-133)).

• a = Vr/3. To follow Henkin's proof we need to extend the substitution lemma to our language, and to use the
following lemma:
LEMMA A.18

For each wff v>(x) 6 L we have some c € L s.L ->Vxv> —> -«p\!£\ G I".
PROOF. Assume -iVxc? € T. =>• 3x-i<p £ T. = > -.<? £ S (the set of r-consistent wffs). Hence,
-I(-I<^ —•(!) <p) £ F. Otherwise, using 3x-iv 6 r and (3.10) we would conclude false. Therefore, at some
stage in the construction we must have added a constant£ such that ->v[f ] 6 T. I
The generalization of the substitution lemma is straightforward since the conditional operator behaves much like
the universal quantifier.

• a = (0 —•(!) 7). First, assume that/3 —*(!) 1 G T. if 0 £ S we know by Lemma A.2 that 3 / £ F normal for
0 . By Lemma A.17 we know that for any j g F minimal in 0, it is the case that g is normal for 0 . Hence, for
allg £ 0 that are minimal in 0. we have that 7[J] 6 T. By the inductive hypothesis M |= 7[|][»]. We conclude
thatvM (= 0 ->(t) 7. \fp$ Sthen M |= /3 -* ( ± ) 7 trivially.
Assume now that 0 -*(t) 1 & I". By maximal consistency -i(/J —*(i) 1) 6 T. This implies (by A. 1) that 0 6 S.
Lemma A.3 shows that there exists / 6 F normal for 0, s.t. ->*t[*] G T. Lemma A. 15 implies that / is minimal
in 0. This implies (by using the inductive hypothesis to show that M. (= -17[?][»]) that M | t 0 —>(i) ~y[i].

=^M*=-(P -( ,) 7)[*].
Finally, we note that in order to imitate Henkin's proof we need to establish the semantic and syntactic equivalence

of alphabetic variants. The syntactic equivalence is proven using Axiom (3.11) (Renaming) for the case of normally
quantified wffs. The semantical equivalence follows from soundness. I

THEOREM 3.4

For a countable language Cc

1. Axioms (3.1 )-(3-13) are complete w.r.t. the class of NS structures satisfying permutation.

2. Axioms (3.1)—(3.17) are complete w.ri. the class of NS structures satisfying permutation and concatenation.

PROOF. 1. Suppose that £ o i\s normal^ fora(2,5). Fust, we show that do cis normal*^ (ora(y,£). We
know that a{S, x)[*'*] € T. Ifo(j/,£) —(,,P) 0(v,S) then by (3.13) and (3.11) we get a(S, 5) —(,,„) 0(S,$).

Because 2 0 J is normal*^ for a(x, J/) we have 0(x, j/)[*'*] £ T. This, in turn, implies that 0(jj, 2)[Jj'*] G F.

Next, we show that a(y,x) ~ a(x, 5). If (a(x, y) V 0(5 ,£)) —•(J,S) ->o(x, y), then using (3.11) and (3.13)
we obtain (o(£, j/) V a(5 ,x) ) —•(*,(>) ->o(C, £). Which using And results in a contradiction to RefkxJvity.

Since c o efts normal*^ for o(£, y), and J o e is normally fora(y, x), their rank must be identical.
If S o i is not normal for any formula, then it has some rank which is higher than any other rank, as does i o C.
2. Fust, we modify the construction of the ranking described earlier in the proof of Theorem 3.3. Inthatproof,

we said that if / , g g F t h e n / = R f l . We now redefine R (actually fln) as follows: le t | / | = \g\ = \fa\ = |p"| =
n.
• If fa,gp G F t h e n / Q < R f l 0 ifffi < $.

• If / G F, g € F \ F then f<ng

• If both / , g 6 F \ F then let Jt be the number of domain elements comprising / that are normal for some formula
and let m be the number of domain elements comprising g that are normal for some formula:
- i f f c > n t h e n / < a 3 ;
- if it = n then / = R 5 ;
- iffc < nthen/ > R g.
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The relevant lemmas remain unchanged. We now show that the model obtained satisfies concatenation. (Proof of
permutation remains unchanged.)

Fust, we prove the following claim:

CLAIM A.19

If So J is normal for some wff a then there is some wff for which £ is normal.

PROOF. We claim that £ is normal for a [?J]. Suppose thai a —*(t) ~/\%\ € F, we have to show that T { * ' | ] 6 F. From

Axiom (3.17) we have that a —>(»,s) ((a —•(*) 7) =>• 7)) € F. We know that co Jis normal for a and therefore,

(o —<-(±) T ) => 7[*'J] e F. Thus, if a —>•(,) 7[*'J] € F, we are done. But this is equivalent to a -*(i) 7[Jj],

since i is already bound in a —•( j) 7 by the conditional. (See our discussion of syntactical substitution before the

proof of Theorem 3.3.) I

Notice that the converse also holds.

CLAIM A.20

I f e e F d g F then 5o J e F.

PROOF. Let £ be normal for a and J normal for̂ J, we claim that £ o J is normal for a A p. (We must take care to
make fv(a) and fv(/3) disjoint.) This follows from Axiom (3.16). Suppose that a A (3 —•(j.j) 7 £ F. Hence, we
have that a —•(*) {P -*(j) 7) € F. Because c is normal for a, we have that 0 —*(p) 1u\ G F. Because J i s
normal for /9 (and free-varO3)n fv(a)= 0) we have that -y[*'J] £ F. I

Suppose that £ < R Jandc' < R J', we must show that (£ o £*) < R ( J o J') and that if £<RJthen (£0

JJ
First, suppose that either d or J' are not normal for any formula. Hence, by Claim A. 1, neither is Jo J' normal for

any formula. If both c and £* are normal for some formula, then by Claim A.2, we are done. Otherwise, if the ranks
of 5 and c1 and those of d and d' are the same, we immediately get that the ranks of (Soc*) and (Jo J') are identical,
because the number of domain elements in each that are normal for some formula must be the same. If this is not the
case, w.l.o g, £< R<J. This implies that the number of normal domain elements in £ is greater than the corresponding
number for d. Since S1 <n. J', the number of normal domain elements in c' is greater or equal to the number of
normal domain elements in 3!. Consequently, this number in 6 o e* is greater than in d 0 3!.

Next, assume tJiat both & and 1' are normal for some wff. We know that if / < R g and g is normal for some
wff a then / £ F. This follows from the definition of < R . Hence, by definition of F, there is some wff for which
/ is normal. Therefore, we know that all of 5, c*, J, i' are normal for some wff. We continue the proof under this
assumption.

Let a be such that £ is normal* for a , and let £* be normalp for a'. Let P be such that J is normal* for P , and
let d' be normalp for p. We claim that £ o 51 is normalj,p for a A a' and that Jo d' is normally for P A /?' . This
easily follows from (3.16), as we have shown in Claim A.2 above.

We must now show that (a A a')Tl(p A /?'). This easily follows by using (3.14).
The stronger relation follows from Axiom 3.15. I

THEOREM 4.3

For a countable language L, axioms (3.1M3.12) are sound and complete w.r.L the class of smooth, pointed PPF
models.

PROOF. Soundness is easily verified. For Axioms (3.2M3.8) the proof proceeds as in the corresponding proof for
c-semantics. The pointedness property is needed for Axiom (3.8) which contains a negated conditional. Axioms
(3.9)-(3.11)are immediate. The only slightly problematic case is Axiom (3.12) for which the smoothness condition
is needed. First, suppose that Vy(o —•(*) P)- To show that or —*(i) Vj//3 we need to show that PT(3§->/3|a) = 0
in the limit. However, from Vj/(or -+(*) P) it follows that for every possible assignment £ to j/ , Pr(->/3[J]|o) = 0
in the limit. Since the existential can be viewed as an infinite disjunction over these possible assignments, the result
follows by smoothness. The other direction is immediate and does not require smoothness.

Recall that we assume no relation between the probability distributions defined on different tuple sizes of domain
elements (i.e. the probability over singletons and pairs is unrelated). Therefore, whatever construction we use to
construct the probability distribution on one tuple size can be used for any other tuple size. Therefore, we shall con-
centrate on the construction of a probability distribution over (single) domain elements.
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Let F be some consistent theory. From Theorem 3 3 we know that this theory has a model M containing a count-
able number of objects (this follows from the construction of the model). First, we enumerate the elements of this
model's domain. This will also induce an enumeration of the domain elements within each rank. We will now con-
struct a sequence of probability distributions, PT\ , P r j , . . . , such that for each m G N, Prm will assign positive
probability only to a subset of the domain containing the elements of the m most normal ranks. These distributions
will always observe the constraint that the probability of each domain element conditional on the set of elements in
its rank is equal to 1/2* if it is thefcth element of its rank and there is an infinite number of elements in this rank. If
there is a finite number of elements in a rank, all of them will be equi-probable.

It remains to define the probability ofeach rank in each of P r i , P r 2 In Prn we set the probability of the
most likely rank to be /?„. We set the probability of all other ranks among the n most normal ranks to be (1 / n ) of the
probability of the previous rank. Pn is chosen so that the probabilities of these ranks assigned positive probability sum
up to 1. All other ranks are assigned probability 0. From now on we ignore pn since it is irrelevant to the conditional
probabilities, in which we are interested.

Notice that this construction has the following property. Let c be some domain object and let A be the set of all
domain objects ranked higher than c. Then limn—oo Pr(A\A u {c}) = 0. To see this, suppose that Prn(c) -
1/2*/?, where p is the weight ofe's rank and k is a constant. But, Prn(A) < P • £ 2 " _ : ^-

We must now show that this PPF models F. First, suppose that tp —*(*) i f e P . This means that in M all minimal
elements satisfying <p satisfy i> as well. Suppose that the conditional probability of the minimal elements satisfying
ip wj.t. their entire rank is r . Notice that this value is fixed and positive for all P r t > 1 < t < oo. Since any element
satisfying <j> A -it/>mustbe in a higher rank, we have that Prn(->ip\tp) < 2 r / n . Thuslimn—oo P '"(-•V'lv) = 0.

Suppose now that tp —>(x) 4> $. T. This means that in the minimal rank of elements satisfying ip there is one
satisfying t/>. The conditional probability of this element wit . its rank is some fixed r > 0. We have that

PTn(-'il'\v>) = Prn(->tl>\minxip) • Prn(minx<p\<p) > r •

(where mini<P are those minimal elements satisfying ip). Thus, limn—oo Pr(%l)\ip) = r > 0.
Finally, we have to show that our models are smooth and pointed. To see that the model is smooth, suppose that

for some wffo linin—oo P r n ( / 3 | a ) = 0 for every p in some set of wffs B. By our construction, for this to be
the case, the minimal element with property (3 A a for any /? 6 B is ranked higher than the minimal elements with
property a. Hence, that is true for the set of all elements with some property in { /?AQ| /3 6 B}. By our construction,
the probability of this set of elements among the set of elements with property a approaches 0 in the limit.

In order to see that the model is pointed, we must show that if a,P 6 Cc thenlimn—«> Prn(p\a) exists. Let
A be the set of elements with property a and B be the set of elements wirh property o A / J , and let mA, mB be
the respective set of minimal elements in A and B. From our construction it is clear that limn—oo Prn{B\A) =
l im n _oc Prn(mB\mA). It is easy to see that our construction guarantees that this limit exists. I

THEOREM 4.6

The axioms (iHvii) are sound and complete WXL the class of N S structures.

PROOF. This proof relies on the expressive equivalence of Cc in£jv discussed in Section 4.2 under the assumption
that both languages contain equality. For the completeness theorem this requires extending our completeness theorem
to such languages. Once we add the appropriate first-order axioms for equality, our Henkin-style proof proceeds much
in the same manner. As in the standard case, what is obtained is a model in which equality really only stands for an
equivalence relation. But by moving into a model in which the object! are these equivalence classes instead of the
original objects (the quotient structure), we obtain the desired representation. See [10] for additional details.

Completeness-We have seen that we can encode the conditionals of CQ in Cfj. That is, we can express in Cfj
statements that are satisfied in a smooth ranked structure iff the conditional statement is satisfied. Hence, if we show
that we can derive from these seven axioms sentences that are equivalent to Axioms (3.1M3.12), we can conclude
that any theory that is consistent wxL OMvii) will also be consistent wxt. axioms (3.1M3.12) in its Cc form. By
our completeness theorem, this implies that it has a model. Since the definition of satisfiability coincides in both
models (that is the conditions under which a Cc sentence is satisfied are identical to the conditions under which the
equivalent CN sentence is satisfied), we know that this is a model of our original theory.

(3.1) Identical to (t).

(3.2) Translated, we have

^ )

which is exactly (Hi).
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(3.3) Translated, we have

V6(a(S) O (S(y)) => (VaKNormol° (P)(i) =*• 7 ( £ ) ) O Vx(Normalf-s){£) =• 7(2))) .

Hence, it is sufficient to show that:

Vff(a(») «• P(y)) =• (VSfJVorma/^'^S) •» Normal*8)(i))).

But this is precisely (t'ti).

(3.4) Translated, we have

This is valid in POL. (Recall that Normal^ is treated as a predicate name.)

(3.5) Using FOL, we get that 3y(./Vorma/J^(5)) implies that (vi) ^ (in1). Next, we observe that 3yor($)
implies that (tt) A (vi) => (tW'). Since it u easy to show that -<3(a implies the same, we conclude that
(it) A (vi) => (vi') is provable.

Given the above, we show the relation between (vi') and cautious monotony (3.5). Assume that Vy(7Vorma/j
(v) => P(v))- Hence

Vv(Norma/;A y 9 (* )(v) =• Normal^ (v)).

Thus,giventhatVi/fJVorma/^'^C) => 7(y)),weobtainVy(7Vorma/°A/3(I)(5) =» 7(5))- Thisuequiv-
alent to the translation of (3.5).

(3.6) Immediate.

(3.7) This easily follows using (v).

(3.8) Translated, we have:

Ha) => 7(5)) A-^y(Norma^Apll){H) => 7(5))]

=> Vy(Normal?x\y) =• -./?(5)).
First, notice that the second conjunct in the antecedent of the implication implies that SjjNormal^ ' (y") asd
3yAforma/j ( I ) A / 9 ( I ) A"''7 ( I )(S). This follows using (ii) and (i). Next, notice that using (vi), mis lame con-
junct implies that VC(iVorma/° ( I ) A / ' ( I ) A '"' ( i )(y) => Normal^ ($)). Reasoning by cases, h U suffi-
cient to show that if the antecedent is false we get a contradiction. Hence, suppose that 3y(Normalf1'(y)A
0(5)). Using (vi) this implies that Vy(JVorma/£(I)A/9(1)(y) => Normal^ (y)). Together with the first
conjunct of the antecedent this is inconsistent (since we can show that there exists an individual under which
both 7 and -17 hold).

(3.9) Is a tautology of FOL.

(3.10) Follows from (it).

(3.11) Follows from (vii).

(3.12) Follows from the fact that V i , y ( o ( i ) => P(x,y)) =» Vr(a ( i ) =>• Vy/3(x,y)).
Soundness—It is easy to see that all axioms schema are valid in all NS structure*. I
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B Notation

Ha)
M
M

a
MP

0*
M\=,c
NC(a)k

n

} normal* for a
S

a
E
s

concatenation operator
the language
free variables of a
model
first-order structure
the domain
the cardinality of tuple / , x
set of ranking functions
parameterized probabilistic first-ordeT model
-.((or V /?) — ( i ) - .a)
(a V 0) - ( I ) -./J

M |= «[•]
{7 = (a - ( j ) 7) G T,, and |£| = k}
7[*] G T whenever a — ( J ) -y £ T
set of F-consistent wffs
-.(Q V P — ( I ) -.a) 6 T
a72/3 and /371a
{7 e S : a ~ t}
{a : a € S}

a < ^ and a'/jJ

«[?] e r
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