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Abstract
In this article, we propose an axiomatic characterization for ensconcement-based contraction functions, belief base functions
proposed by Williams. We relate this function with other kinds of base contraction functions.
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1 Introduction

The logic of theory change became a major subject in philosophical logic and artificial intelligence
in the middle of the 1980’s. The most important model, now known as the AGM model of belief
change, was proposed by Alchourrón, Gärdenfors and Makinson in [1]. The AGM model is a formal
framework to characterize the dynamics and state of belief of a rational agent. The beliefs of an
agent are represented by a set of sentences closed under logical consequence. The AGM model has
acquired the status of a standard model, and has been characterized in at least five different equivalent
ways: Postulates [1, 16], partial meet functions [1, 3], epistemic entrenchment [17, 18], safe/kernel
contraction [4, 23] and Grove’s sphere-systems [19].

One of the most important variants of the AGM model is to represent the beliefs of an agent by
a belief base, a set of sentences that is not (necessarily) closed under logical consequence.

Partial meet contraction and kernel contraction have been characterized for belief bases [19, 20, 23].
Mary-Anne Williams proposed a model of contraction based on an ‘ensconcement’[35, 37, 38], which
is closely related to epistemic entrenchment. In this article, we provide an axiomatic characterization
of ensconcement-based contraction functions.

2 Belief bases

In the AGM model, an individual’s belief state is represented by a belief set—a set of sentences that
is closed under logical consequences—and changes in belief are represented by operations on such
sets. Several formal models have been proposed for the contraction of belief sets. One alternative
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740 Axiomatic Characterization of Ensconcement-Based Contraction

framework for the representation of belief states is by belief bases—sets of sentences that are not
(necessarily) closed under logical consequence.

Several authors analysed the use of belief bases [6, 8, 15, 20, 22, 24, 28, 31, 34]. Among the
advantages of the use of that approach instead of using belief sets we can mention:

1. Belief bases have more expressive power: on the one hand, belief bases allow to distinguish
between basic beliefs and those which were inferred from them. For instance, if an agent believes
‘Paris is the Capital of France’, he also believes that ‘Paris is the Capital of France or the Moon
is a piece of cheese’. However, the agent believes in the latter belief ‘just because’ he believes
in the former. The ‘just because-sentences’ were studied by Fermé [9], Furhmann [15] and Rott
[31]. On the other hand, A={α,β} and B={α∧β} have the same logical consequences, and
consequently, generate the same belief set. However, the difference between A and B is not just
a ‘notational bondage’ that should be straightened out by some process of ‘articulation’ (Belnap
[5], cited by Rott in [31]).

2. Belief bases allow to represent resource bounded agents: ideal rational agents can have infinite
inferential power or infinite representation of belief. However, when we want to represent ‘real’
agents, we need to think of agents with bounded resources. The use of belief bases is one step
in this direction. For belief change in resource bounded agents see [34].

3. Using belief bases it is possible to distinguish between different inconsistent belief states
[20]: agents are, sometimes, inconsistent. However, this does not mean that all the
inconsistent agents have the same beliefs. The belief sets just recognize one inconsistent
belief set, that contains all the sentences of the language (for a work on local inconsistencies
in agents see [27]).

4. Belief sets are very large entities: for practical applications, we have to work on belief bases,
because the implications of any belief base may be an infinite (or an extremely large) set of
propositions. For instance, if α is in the belief set then so are both α∨β and α∨¬β for any β in
the language. Even if we restrict the belief sets to the sets with finite axiomatization, performing
changes is exponentially large. For example, if a belief set is simply Cn(α), to contract by α

implies to decide between (excluding one or both of) α∨β and α∨¬β for any β in the language.
For computer implementations, the use of belief bases is more suitable. For an overview of the
computational cost of performing changes in belief bases, see [29].

3 Contraction functions for belief bases

Formal preliminaries: We will assume a language L that is closed under truth-functional operations
and a consequence operator Cn for L. Cn satisfies the standard Tarskian properties, namely
inclusion (A⊆Cn(A)), monotony (if A⊆B, then Cn(A)⊆Cn(B)) and iteration (Cn(A)=Cn(Cn(A))).
It is supraclassical and compact, and satisfies deduction (if β ∈Cn(A∪{α}), then (α→β)∈Cn(A)).
A�α will be used as an alternative notation for α∈Cn(A), �α for α∈Cn(∅) and Cn(α) for Cn({α}).
Upper-case letters denote subsets of L. Lower-case Greek letters denote elements of L. Base
expansion is simply a set union, i.e. A+α=A∪{α}. A contraction of A with respect to α involves
removal of a set of sentences from A so that α is no longer implied.

3.1 Partial meet contraction

We can construct a base contraction function using remainder sets, i.e. maximal subsets of A that fail
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Axiomatic Characterization of Ensconcement-Based Contraction 741

to imply α:

Definition 1 [2]
Let A be a belief base and α a sentence. The set A⊥α (A remainder α) is the set of sets such that
B∈A⊥α if and only if:

• B⊆A
• B 
�α

• There is no set B′ such that B⊂B′ ⊆A and B′ 
�α

Definition 2 [1, 3]
Let A be a belief base. A selection function for A is a function γ such that for all sentences α:

1. If A⊥α is non-empty, then γ (A⊥α) is a non-empty subset of A⊥α.
2. If A⊥α is empty, then γ (A⊥α)={A}.

Definition 3 [1, 20]
The partial meet base contraction operator on A based on a selection function γ is the operator −γ

such that for all sentences α:

A−γ α=
⋂

γ (A⊥α)

Hansson characterized partial meet base contraction in terms of postulates:

Theorem 4 [20]
Let A be a belief base. An operator − on A is a partial meet contraction function for A if and only
if − satisfies

Success If 
�α, then A−α 
�α.
Inclusion A−α⊆A.
Relevance If β ∈A and β /∈A−α then there is some set A′ such that A−α⊆A′ ⊆A and α 
∈Cn(A′)

but α∈Cn(A′ ∪{β}).
Uniformity If it holds for all subsets A′ of A that α∈Cn(A′) if and only if β ∈Cn(A′), then

A−α=A−β.

Partial meet base contraction also satisfies other interesting properties as we can see in the following
observation:

Observation 5 [25]
Let A be a belief base and − an operator on A. Then:

1. If − satisfies inclusion and relevance, then it satisfies vacuity (If A 
�α, then A⊆A−α) and
failure (If �α, then A−α=A).

2. If − satisfies uniformity, then it satisfies extensionality (If �α↔β, then A−α=A−β).

3.2 Kernel contraction

In [23] Hansson introduced Kernel Contraction, a generalization of Safe Contraction [4]. It is based
on a selection among the sentences of a set A that contribute effectively to imply α; and on how to
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742 Axiomatic Characterization of Ensconcement-Based Contraction

use this selection in contracting by α. Formally:

Definition 6 [23]
Let A be a set in L and α a sentence. Then A⊥⊥α is the set such that B∈A⊥⊥α if and only if:




B⊆A
B�α

If B′ ⊂B then B′ 
�α

A⊥⊥α is called the kernel set of A with respect to α and its elements are the α-kernels of A.

Definition 7 [23]
Let A be a set of sentences. Let A⊥⊥α be the kernel set of A with respect to α. An incision function
σ for A is a function such that for all sentences α:

{
σ (A⊥⊥α)⊆⋃

(A⊥⊥α)

If ∅ 
=B∈A⊥⊥α, then B∩σ (A⊥⊥α) 
=∅

Definition 8 [23]
Let A be a set of sentences and σ an incision function for A. The kernel contraction −σ for A is
defined as:

A−σ α=A\σ (A⊥⊥α).

An operator − for a set A is a kernel contraction if and only if there is an incision function σ for
A such that A−α=A−σ α for all sentences α.

Hansson also provided an axiomatic characterization for kernel contraction:

Theorem 9 [23]
The operator − for a set of sentences A is a kernel contraction if and only if it satisfies success,
inclusion, uniformity and

Core-retainment If β ∈A and β /∈A−α then there is some set A′ such that A′ ⊆A and α /∈Cn(A′)
but α∈Cn(A′ ∪{β}).

Since core-retainment is weaker than relevance, it follows that, for belief bases, all partial meet
contractions are kernel contractions. There exist two more conservative types of kernel contraction:

A kernel contraction is smooth if and only if for all subsets A′ of A: if A′ �β and β ∈σ (A⊥⊥α) then
A′ ∩σ (A⊥⊥α) 
=∅ [23].

A kernel contraction is relevant if and only if for all β ∈σ (B⊥⊥α), there is an X such that
(B\σ (B⊥⊥α))⊆X ⊆B, X 
�α and X ∪{β}�α [10].

Theorem 9 (cont.)
• [23] − is smooth if and only if it also satisfies:

Relative Closure A∩Cn(A−α)⊆A−α.

• [10] − is relevant if and only if it also satisfies relevance.
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Axiomatic Characterization of Ensconcement-Based Contraction 743

3.3 Ensconcement

Mary-Anne Williams [35, 37, 38] defines an ensconcement relation on a belief base A as a transitive
and connected relation � that satisfies the following three conditions:1

(�1) If β ∈A\Cn(∅), then {α∈A :β ≺α} 
�β.

(�2) If 
�α and �β, then α≺β, for all α,β ∈A.

(�3) If �α and �β, then α�β, for all α,β ∈A.

(�1) says that the formulae that are strictly more ensconced than α do not (even conjointly)
imply α. Conditions (�2) and (�3) say that tautologies are the most ensconced formulae. Given an
ensconcement relation, a cut operator is defined by:

cutA(α)={β ∈A : {γ ∈A :β �γ } 
�α}

Lemma 10 [36]
If α∈A, cutA(α)={β ∈A :α≺β}.

The previous lemma says that when α is an explicit belief, its cut is the subset of A such that its
members are strictly more ensconced than α. Other interesting properties of cut are:

Lemma 11
(a) If �α, then cutA(α)=∅.
(b) If 
�α,cutA(α) 
�α.
(c) If A 
�α,cutA(α)=A.
(d) If β �α, then cutA(α)⊆cutA(β).
(e) If �α↔β, then cutA(α)=cutA(β).
(f) If α�β, then cutA(β)⊆cutA(α).
(g) If α≺β, then cutA(α)�β and cutA(β) 
�α.
(h) If α≺β, then cutA(α∧β)=cutA(α).
(i) If β =� α, then cutA(α∧β)=cutA(α)=cutA(β).
(j) If cutA(α)�β, then cutA(α∧β)=cutA(α).
(k) If cutA(α) 
�β, then cutA(α∧β)=cutA(β).

We can define a base contraction operator − using the cut operator:

Definition 12
LetAbe a belief base and � an ensconcement relation. Then − is an Ensconcement-Based Contraction
Function if and only if:2

β ∈A−αif and only ifβ ∈Aand either (i)α∈Cn(∅)or (ii)cutA(α)�α∨β

Related Works: Besides epistemic entrenchment, we found in the belief change literature, other
approaches related with ensconcement. On the one hand, in quantitative formalism, Dubois and Prade
[7, Sec. 2.5] remarked that a possibility or a necessity measure is no more than a preorder on logical

1 α≺β means α�β and β 
�α. α=� β means α�β and β �α.
2Note that condition (ii) requires that cutA(α)�α∨β instead of the more intuitive condition cutA(α) � β. Mary-Anne

Williams calls a contraction based on this alternative condition ‘Brutal Theory Base Contraction’. Brutal Theory Base
Contraction is closely related to Severe Withdrawal [30], whereas Ensconcement-Based Contraction is closely related to
AGM contraction.
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744 Axiomatic Characterization of Ensconcement-Based Contraction

sentences. Spohn [33] defined a model of ordinal conditional functions where the order is determined
by the level of implausibility of their negations. On the other hand, in qualitative formalism, Rott [30]
presented the E-bases, a preference relation that provides a canonical representation of an epistemic
entrenchment and a belief base. Williams [38] pointed out that the E-bases approach is equivalent
to the ensconcement approach. For a discussion about quantitative versus qualitative formalism see
[14, Sec. 1].

4 Axioms for Ensconcement-Based Contraction Functions

In this section, we are going to investigate the postulates that characterize the Ensconcement-Based
Contraction Functions. The following postulates are well-known in the belief revision literature:
Success, Inclusion,

Vacuity If A 
�α, then A⊆A−α,
Extensionality If �α↔β, then A−α=A−β,

Conjunctive Factoring A−α∧β =



A−α or
A−β or
A−α ∩ A−β

The question that arises here is what is the postulate that characterizes the notion of ‘minimal
change’ in ensconcement. We propose the following postulate:

Disjunctive Elimination If β ∈A and β /∈A−α then A−α 
�α∨β.
It is important to note the relation between disjunctive elimination and other postulates:

Observation 13
Let A be a belief base and − an operator on A that satisfies disjunctive elimination. Then − satisfies:

Relative Closure A∩Cn(A−α)⊆A−α.

If − also satisfies inclusion then it satisfies:
Failure If �α then A−α=A.

By means of Disjunctive Elimination we can characterize Ensconcement-Based Contraction
Functions:

Theorem 14
Let A be a belief base. An operator − of A is an ensconcement-based contraction on A if and only if it
satisfies success, inclusion, vacuity, extensionality, disjunctive elimination and conjunctive factoring.

Due to Observation 13 every ensconcement-based contraction function satisfies failure and relative
closure.

Observation 15
An ensconcement-based contraction function − on A does not, in general, satisfy uniformity.

5 Ensconcement and minimal change

As we showed, ensconcement-based contraction satisfies vacuity, failure and relative closure. Vacuity
guarantees the minimal change (i.e. to do nothing) when the sentence to be contracted is not implied
by the original belief base. Failure [11], means that when instructed to do the impossible (to contract
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Axiomatic Characterization of Ensconcement-Based Contraction 745

a tautology), the minimal change is to do nothing. Relative closure was introduced in [23] and ensures
that original beliefs that are implied by the contracted set are not gratuitously removed.

In the previous section, we mentioned that disjunctive elimination is the postulate that characterizes
the notion of minimal change in ensconcement-based contraction. In its original formulation (where
the precondition is the same as in core-retainment and relevance), the consequence A−α 
�α∨β

appears as a negative condition. However, if we reformulate the postulate as

If β ∈A and A−α�α∨β,then β ∈A−α,

we can see the postulate as a condition for a sentence β ‘to survive’ the contraction process. If we
reformulate relative closure as

If β ∈A and A−α�β, then β ∈A−α,

we can see relative closure as a weaker version of disjunctive elimination, that requires that the
original beliefs that are implied by the contracted set should be elements of the contracted set.

In belief bases, disjunctive elimination is a weaker condition than relevance:

Observation 16
Let A be a belief base. Then relevance implies disjunctive elimination.

In [31], Rott points out that ensconcement-based contraction gratuitously loses independent
beliefs with a low priority in the belief base, as we see in the following example:

Example 17
Let α and β be logically independent sentences and let A={α,β,β →δ}. Let � be an ensconcement
on A such that β ≺α≺β →δ. Let − be the ensconcement-based contraction for A based on �.
Hence A−α={β →δ}, and β was lost.

This happens because, in general, core-retainment fails for ensconcement-based contractions.
We note also that even if an ensconcement-based contraction satisfies core-retainment it may not
satisfy relevance:

Observation 18
Let A be a belief base and − an operator on A. Then core-retainment and disjunctive elimination do
not imply relevance.

The difference between relevance and disjunctive elimination disappears if A is a belief set.

Observation 19
Let A be a belief set and − and operator on A that satisfies inclusion and vacuity. Then disjunctive
elimination implies relevance.

6 Maps between different base contraction functions

Mary-Anne Williams demonstrated that an ensconcement-based contraction can be related to an
AGM contraction function:

Observation 20 [36]
For every ensconcement-based contraction − on a belief base A there is an AGM contraction ÷ on
the corresponding belief set Cn(A) (that satisfies the basic and supplementary postulates for belief
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Partial Meet
Contraction

Relevant Kernel
Contraction

Smooth Kernel
Contraction

Ensconcement-based
Contraction

Basic related-AGM
Base Contraction 

Kernel
Contraction

Figure 1. Map among different kinds of base contraction functions

set contraction) such that for all sentences α:

A−α= (Cn(A)÷α)∩A

We can generalize this result just for the basic postulates:

Observation 21
Let A be a belief base. Let − be an operator on A. Then − satisfies success, inclusion, vacuity,
extensionality and disjunctive elimination iff there exists some basic AGM contraction ÷ for Cn(A)
such that

A−α= (Cn(A)÷α)∩A

We will call − a basic related-AGM base contraction.

Due to Observations 5, 13 and 16, it follows that every partial meet contraction is a basic related-
AGM base contraction. With this remark we can construct the actual map of the base contraction
functions as shown in Figure 1.

The following example illustrates the differences in the outcomes of the various contraction
operators considered:3

Example 22
Let α, β and δ be logically independent sentences and let

A={α,α∨β,α↔β,δ}.
Using the definitions of ⊥⊥ and ⊥ we obtain:

A⊥⊥(α∧β)={{α,α↔β},{α∨β,α↔β}}
and

A⊥(α∧β)={{α,α∨β,δ},{α↔β,δ}}
We can define an ensconcement �, incision functions σ1, σ2 (smooth) and σ3 (relevant), and

a selection function γ on A:

3This example is a modified version of [10, 26].
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Axiomatic Characterization of Ensconcement-Based Contraction 747

≺:δ≺α↔β ≺α≺α∨β, then cutA(α∧β)={α,α∨β}.
σ1(A⊥⊥(α∧β))={α∨β,α↔β}
σ2(A⊥⊥(α∧β))={α,α↔β}
σ3(A⊥⊥(α∧β))={α↔β}
γ (A⊥α)={{α,α∨β,δ}}
We can define different contraction functions:

A−≺ (α∧β)={α,α∨β}
A−σ1 (α∧β)={α,δ}
A−σ2 (α∧β)={α∨β,δ}
A−σ3 (α∧β)={α,α∨β,δ}
A−γ (α∧β)={α,α∨β,δ}

• −≺ is an ensconcement-based contraction but not a kernel contraction, neither a partial meet
contraction (since δ 
∈A−≺ (α∧β), this violates core-retainment and relevance).

• −σ1 is a kernel contraction but not a smooth kernel contraction (since α∨β 
∈A−σ1 (α∧β),
this violates relative closure).

• −σ2 is a smooth kernel contraction but not a relevant kernel contraction (since α 
∈A−σ2 (α∧β),
this violates relevance).

• −σ3 is a relevant kernel contraction and a partial meet contraction.

• −γ is a partial meet contraction and a relevant kernel contraction.

7 Conclusions and future works

We found an axiomatic characterization for ensconcement-based contraction and we defined a new
contraction operator (basic related-AGM). With these results we extended the maps among different
kinds of base contraction functions.

Regarding the significance of the result, the purpose of this article was not to analyse if
ensconcement-based contraction is a suitable kind of contraction or not. Our purpose was to provide
more tools that allow to compare different kinds of base contraction functions. Up to now, there was
not a way to compare the ensconcement-based contraction with other approaches, except by means
of examples. The axiomatic characterization provides a good tool to understand the behaviour of
these functions and a metric to compare with other axiomatizations/postulates. Finally, this article
can be used as a first step to discover the axiomatic characterization of related works.
In the near future we intend to analyse the following open questions:

• How to use the relationship A−α= (Cn(A)÷α)∩A for other contraction functions like Levi
contraction, Semi-Contraction or Severe Withdrawal (for an overview of these functions see
[12, 13, 32]).

• How to extend the results for belief bases of partial meet contraction and kernel contraction
for supplementary postulates.

• How to elucidate the relation among different kinds of supplementary postulates for belief
bases.
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Appendix: Proofs

A.1 Proof of Lemma 11

(a), (b), (c) and (d) follow trivially from the definition of cut. (e) follows trivially from (d). If �β,
then (f)–(k) follow trivially from (a) and (e). Let 
�β:

(f) Let α�β and δ∈cutA(β). α�β implies that α, β ∈A. We have to show that δ∈cutA(α). Since
δ∈cutA(β), from the definition of cut it follows that β ≺δ. Then, by transitivity, we obtain α≺δ,
hence δ∈cutA(α).

(g) Let α≺β. According to the definition of cut, β ∈cutA(α). Hence cutA(α) � β. To conclude that
cutA(β) 
�α it is enough to notice that, from (f ) we have cutA(β)⊆cutA(α), and that (b) gives us that
cutA(α) 
�α.

(h) By previous (d) it follows that cutA(α)⊆cutA(α∧β). For the other direction, let α≺β and
δ∈A such that δ 
∈cutA(α). Due to (f) it follows that δ 
∈cutA(β). Then, according to the definition
of cut, {µ∈A :δ�µ}�α and {µ∈A :δ�µ}�β, from which it follows that {µ∈A :δ�µ}�α∧β.
Hence δ 
∈cutA(α∧β).

(i) From (d) we obtain cutA(α)⊆cutA(α∧β) and cutA(β)⊆cutA(α∧β). Let β =� α. cutA(α)=
cutA(β) follows immediately from (f). By the same arguments used in (h) we can prove that for δ∈A
such that δ 
∈cutA(α) it follows that δ 
∈cutA(α∧β).

(j) Let cutA(α∧β) 
=cutA(α). Due to (d) it follows that cutA(α)⊂cutA(α∧β). Let δ∈cutA(α∧
β)\cutA(α). Then {γ ∈A :δ�γ } 
�α∧β and {γ ∈A :δ�γ }�α. For all ε∈cutA(α) it follows that
{µ∈A :ε�µ} 
�α. Then cutA(α)⊆{γ ∈A :δ�γ }. Then, since {γ ∈A :δ�γ } 
�β we can conclude
that cutA(α) 
�β.

(k) Let cutA(α∧β) 
=cutA(β). Due to (d) it follows that cutA(β)⊂cutA(α∧β). Let δ∈cutA(α∧
β)\cutA(β). Then {γ ∈A :δ�γ } 
�α∧β and {γ ∈A :δ�γ }�β. Then {γ ∈A :δ�γ } 
�α, from which
it follows that {γ ∈A :δ�γ }⊆cutA(α). Hence cutA(α)�β.

A.2 Proof of Theorem 14

From Ensconcement-based Contraction to Postulates:

Success Let 
�α and assume by reductio that A−α�α. Then it follows by compactness that there
exists a finite subset of A−α, A′ ={β1,...,βk}, such that A′ �α. Then it follows from the definition
of − that cutA(α)�α∨βi, i=1,...,k. Then cutA(α)�α∨(β1 ∧β2 ∧ ...∧βk)�α. Hence cutA(α)�α.
Contradiction by Lemma 11 (b).

Inclusion Trivial.
Vacuity Let A 
�α and let β ∈A. By Lemma 11(c) it follows that cutA(α)=A, from which it follows

that cutA(α)�α∨β, hence, according to the definition of −, β ∈A−α.
Extensionality Let �α↔β. Then cutA(α)=cutA(β), and the rest follows trivially.
Disjunctive Elimination Let β ∈A and β /∈A−α. Then it follows from the definition of − that

cutA(α) 
�α∨β. Assume by reductio that A−α�α∨β. Then compactness yields that there exists a
finite subset of A−α, A′ ={β1,...,βk}, such that A′ �α∨β. It follows from the definition of − that
cutA(α)�α∨βi, i=1,...,k. Then cutA(α)�α∨(β1 ∧β2 ∧ ...∧βk)�α∨β. Hence cutA(α)�α∨β.
Contradiction.
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Conjunctive Factoring If �α∧β trivial from the definition of −. Let 
�α∧β. We will prove by
cases:

1. cutA(α)�β: Then by Lemma 11(j) cutA(α∧β)=cutA(α). We will prove by double inclusion
that A−α∧β =A−α. Let γ ∈A−α∧β. It follows from the definition of − that γ ∈A and cutA(α∧
β)� (α∧β)∨γ , then cutA(α∧β)�α∨γ . Hence cutA(α)�α∨γ , from which we can conclude that
γ ∈A−α.

For the other inclusion, let γ ∈A−α. Then it follows from the definition of − that γ ∈A and
cutA(α)�α∨γ . Then cutA(α∧β)�α∨γ . cutA(α)�β yields cutA(α)�β∨γ , then cutA(α∧β)�β∨
γ . Hence cutA(α∧β)� (α∧β)∨γ . From the definition we can conclude that γ ∈A−α∧β.

2. cutA(β)�α: Due to the symmetry of the case, it follows that A−α∧β =A−β.
3. cutA(α) 
�β and cutA(β) 
�α: It follows by Lemma 11 (k) that cutA(α∧β)=cutA(α)=cutA(β).

Let γ ∈A−α∧β. According to the definition of −, γ ∈A and cutA(α∧β)� (α∧β)∨γ iff cutA(α∧
β)�α∨γ and cutA(α∧β)�β∨γ iff cutA(α)�α∨γ and cutA(β)�β∨γ iff γ ∈A−α and γ ∈A−β.

From Postulates to Ensconcement-based contraction:

Let − be an operator to A that satisfies success, inclusion, vacuity, extensionality, disjunctive
elimination and conjunctive factoring. In order to prove that − is an ensconcement-based contraction
we must prove that there exists a relationship � such that � satisfies (�1)–(�3) and such that

(ebc) A−α=
{ {β ∈A :cutA(α)�α∨β} if 
�α

A otherwise
where cut is defined in terms of �.

Let � be defined as follows:

α�β iff




A−α∧β 
�α

or
�α∧β

(�1) Let γ ∈A\Cn(∅) and assume by reductio that H ={α∈A :γ ≺α}�γ . Using our construction
γ ≺α means that A−α∧γ �α, 
�α∧γ and A−α∧γ 
�γ . 
�α∧γ is redundant, then H ={α∈A :
A−α∧γ �α and A−α∧γ 
�γ }. It follows by conjunctive factoring that A−αi ∧γ =A−γ for each
αi ∈H. Then H ={α∈A :A−γ �α and A−γ 
�γ }. Hence by success, inclusion and relative closure
H =A−γ . Success contradicts H �γ , since A−γ 
�γ .

(�2) Let 
�α and �β. Due to success it follows that A−α∧β 
�α∧β, then A−α∧β 
�α. Then
α�β. Since �β, then A−α∧β �β and due to 
�α∧β it follows that β 
�α. Hence α≺β.

(�3) Let α, β ∈A. Let �α and �β. Then �α∧β. Hence α�β.
(ebc) We will prove by cases:
1. �α. Follows trivially by failure.
2. 
�α

2.1 A 
�α. Vacuity yields A−α=A. On the other hand (by Lemma 11 (c)) cutA(α)=A, from which
it follows that {β ∈A :cutA(α)�α∨β}=A.

2.2 A�α.
2.2.1 α∈A. We will first replace ≺ in cutA(α) by our construction:

Due to Lemma 10
cutA(α)={δ∈A :α≺δ}
cutA(α)={δ∈A :α�δ and δ 
�α}
cutA(α)={δ∈A :A−α∧δ 
�α and A−α∧δ�δ}

it follows by conjunctive factoring that A−α∧δ=A−α. Then (since, by success, A−α 
�α)
cutA(α)={δ∈A :A−α�δ},
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hence by relative closure and inclusion,
cutA(α)=A−α

Replacing in (ebc):
β ∈A−α iff β ∈A and A−α�α∨β,

that trivially follows from inclusion and disjunctive elimination.
2.2.2 α 
∈A. First, we will construct A′ =A∪{α} and let �′ such that for all β, γ in A, β �′ γ iff

β �γ , α≺′ β if cutA(α∧β) 
=cutA(β), β ≺′ α if cutA(α∧β) 
=cutA(α) and α=� β if cutA(α∧β)=
cutA(α)=cutA(β). Let cut′A′ (α) be defined in terms of A′ and �′. Due to the previous proof 2.2.1, we
will prove this case by proving that {β ∈A :cutA(α)�α∨β}={β ∈A′ :cut′A′ (α)�α∨β}. To do that
we must prove (a) �′ is an ensconcement and (b) Cn(cutA(β))=Cn(cut′A′ (β)). Part (a) is trivial. For
part (b) we have that cut′A′ (β)={δ∈A′ : {γ ∈A′ :δ�′ γ } 
�β}={δ∈A∪{α} : {γ ∈A∪{α} :δ�γ } 
�β}.
If α 
∈cut′A′ (β) it follows that cut′A′ (β)=cutA(β). If α∈cut′A′ (β) it follows that {γ ∈A′ :α�γ } 
�β,
from which it follows that α 
�β. Then β ≺α, hence (by Lemma 11 (g)) cutA(β)�α, from which it
follows that Cn(cutA(β))=Cn(cut′A′ (β)).

A.3 Proof of Observation 15

Counterexample: Let A={α∧β,α∨γ,γ } and let � be an ensconcement on A such that γ ≺α∧
β ≺α∨γ . Then cutA(α)=cutA(β)={α∨γ }. γ ∈A−α, since cutA(α)�α∨γ , but γ /∈A−β, since
cutA(β) 
�β∨γ . Hence uniformity fails.

A.4 Proof of Observation 16

Let β ∈A and β 
∈A−α. Then by relevance there is some set A′ such that A−α⊆A′ ⊆A and α 
∈
Cn(A′) but α∈Cn(A′ ∪{β}), from which it follows by deduction that β →α∈Cn(A′). Hence (due to
α 
∈Cn(A′) ), α∨β 
∈Cn(A′).

A.5 Proof of Observation 18

Counterexample: (Assume that core-retainment and disjunctive elimination are satisfied for all δ 
=
α). Let A={β,γ →α,γ ∧(β →α)}. Let A−α={γ →α}. Disjunctive elimination is satisfied since
A−α 
�α∨β and A−α 
�α∨(γ ∧(β →α)). To show that core-retainment is satisfied for β let A′ =
{γ ∧(β →α)} and for γ ∧(β →α) let A′ ={γ →α}. However, relevance fails for β.

A.6 Proof of Observation 19

Let β ∈A and β 
∈A−α. Then it follows by disjunctive elimination that A−α 
�α∨β. By deduction
(A−α)+¬β 
�α, from which it follows that (A−α)+¬β∨α 
�α. Let B= (A−α)+¬β∨α. Due to
β ∈A and β 
∈A−α vacuity yields that A�α. From inclusion A−α⊆A. Hence (by monotony) we
have B⊆A+¬β∨α=A. Since B 
�α, and B+β �α, we conclude that − satisfies relevance.

A.7 Proof of Observation 21

(For this proof we assume that the reader is familiar with the AGM contraction functions).
(⇐) Let ÷ be an operator on Cn(A) that satisfies the basic AGM postulates (closure, success, vacuity,
inclusion, recovery and, extensionality), and let − be such that A−α=Cn(A)÷α∩A.
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Success, inclusion, vacuity and extensionality follow trivially from the definition. For disjunctive
elimination let β ∈A and β 
∈A−α. Then (by closure) Cn(A)÷α 
�β, from which it follows by
recovery that Cn(A)÷α�¬α∨β. Then it follows by success and vacuity that Cn(A)÷α 
�α∨β.
Hence A−α 
�α∨β.

(⇒) Let − be an operator on A that satisfies success, inclusion, vacuity, extensionality and
disjunctive elimination and let ÷ defined as follows:

Cn(A)÷α=Cn


A−α∪


 ⋃

βi∈A

α→βi







We must prove: (i) that ÷ is a basic AGM contraction function, (ii) that ÷ satisfies
A−α=Cn(A)÷α∩A.

(i) Closure follows trivially from the definition. Success and extensionality follow trivially from the
definition and −success and −extensionality respectively. Vacuity follows from −vacuity and from
(
⋃

βi∈Aα→βi)⊆Cn(A). Inclusion follows from −inclusion and from (
⋃

βi∈Aα→βi)⊆Cn(A). For
recovery let γ ∈Cn(A) and γ 
∈Cn(A)÷α, we must prove that α→γ ∈Cn(A)÷α that follows trivially
from our definition of ÷.

(ii) We must prove that A−α=Cn(A−α∪(
⋃

βi∈Aα→βi))∩A. We will prove by double inclusion.
Let γ be a sentence. If �γ →α, trivial by success. Let 
�γ →α. For one side let γ ∈A−α. Then by
inclusion γ ∈A and the rest follows trivially. For the other side let γ ∈Cn(A−α∪(

⋃
βi∈Aα→βi))∩A.

Then γ ∈A and γ ∈Cn(A−α∪(
⋃

βi∈Aα→βi)) from which it follows (due to
⋃

βi∈Aα→βi �¬α∨γ

and
⋃

βi∈Aα→βi 
�α∨γ ) that A−α�α∨γ . Hence by disjunctive elimination γ ∈A−α.

Received December 2007

 at M
ount A

llison U
niversity on July 13, 2015

http://logcom
.oxfordjournals.org/

D
ow

nloaded from
 

http://logcom.oxfordjournals.org/

	An Axiomatic Characterization of Ensconcement-Based Contraction
	1 Introduction
	2 Belief bases
	3 Contraction functions for belief bases
	4 Axioms for Ensconcement-Based Contraction Functions
	5 Ensconcement and minimal change
	6 Maps between different base contraction functions
	7 Conclusions and future works




