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ABSTRACT

The central dogma in molecular biology postulated that ’DNA
makes RNA makes protein’, however this dogma has been recently
extended to integrate new biological activities involving small non-
coding RNAs, called sRNAs. Accordingly, an increasing attention
has been given to these molecules over the last decade and related
experimental works have shown a wide range of functional activ-
ities for these molecules. In this paper, we present rNAV (for rna
NAVigator), a new tool for the visual exploration and analysis of
sRNA-mediated regulatory networks. rNAV has been designed to
help bioinformaticians and biologists to identify, from list of thou-
sands of predictions, pertinent and reasonable sRNAs and target
candidates for carrying out experimental validations. We propose
a list of dedicated algorithms and interaction tools that facilitate
the exploration of such networks. These algorithms can be gath-
ered into pipelines which can then be saved and reuse over several
sessions. To support exploration awareness, rNAV also provides an
exploration tree view that allows to navigate through the steps of the
analysis but also to select the -sub-networks to visualize and com-
pare. These comparisons are facilitated by the integration of mul-
tiple and fully linked views. We demonstrate the usefulness of our
approach by a case study on Escherichia coli bacteria performed by
domain experts.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; J.3 [Computer Applications]:
Life and Medical Sciences—Biology and genetics

1 INTRODUCTION

The central dogma in molecular biology postulated that ’DNA
makes RNA makes protein’. More precisely, a first process called
transcription creates a mRNA (messenger RNA) copy from one spe-
cific region of the DNA molecule, called gene. Then, the mRNA is
used to synthesize a protein through a process called translation.
This dogma has been recently extended to integrate new biological
activities [33] involving, for instance, the small noncoding RNAs
(sRNAs). Accordingly, an increasing attention has been given to
these molecules over the last decade and related experimental works
have revealed a wide range of new functional activities for these
molecules [31, 39]. Among them, RNAs are involved in regulating
biological processes like transcription, translation, mRNA stabil-
ity and DNA maintenance or silencing [30]. Of particular interest,
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these molecules are known to rapidly modulate the cell behavior
and fitness according to environmental stimuli. The single-stranded
molecule structure of a sRNA allows some regions of its sequence
to form base-pairing with another RNA molecule [41]. That fold-
ing between one sRNA and its mRNA targets modify the structure
and the stability of mRNAs to positively or negatively regulate their
translation into protein or even their stability.

With the extraordinary increase in sequencing capacity through
new sequencing technologies (NGS), in combination with special-
ized mRNA enrichment and tiling array techniques [35, 40], many
prokaryotic transcriptomes (e.g. Escherichia coli or Bacillus sub-
tilis) have been explored and have revealed the existence of a
plethora of small regulatory RNAs. The identification/inference
of theses sRNAs functions, investigating their mRNA targets, im-
plies to carry out time-consuming and expensive experimental ap-
proaches. This is especially true for bacteria that are fastidious to
grow and have a highly divergent genome composition. Hence, the
bioinformatics community focuses on the design of fast and inex-
pensive in silico approaches to prioritize gene candidates before de-
signing an experimental protocol. However, the development of
these approaches is still challenging as classical bioinformatics ap-
proaches are often poorly efficient in term of sensitivity and the
number of false predictions can be consequent. To address this is-
sue and reduce the number of sRNA-mRNA interactions to inspect,
it is crucial to exploit biological knowledge through appropriate fil-
ters.

In this paper, we present rNAV, a visualization tool designed to
help bioinformaticians and biologists to identify, from list of thou-
sands of predictions, pertinent and reasonable sRNAs and their tar-
get candidates for carrying out experimental validations. We intro-
duce an integrative approach that fuses sRNA-mRNA relationships
with multi-purposed annotation databases. In other words, we pro-
pose to visually exploit the mRNA-target information to filter out
the false-positive predictions using:

• their functional activity when known

• the pairing region involved within the mRNA or the sRNA

• the neighborhood information in the entire network

Our combined approach, exploiting the information of interacting
duplexes, eases the task of characterizing the regulatory role of
newly discovered sRNAs. While some research has been done for
the visual mining of biological networks, like signaling network [5],
protein-protein network [18] or metabolic network [32] (for a re-
view see [27]) , there has been, to the best of our knowledge, no
previously published work on providing visual support for the pre-
diction of sRNA-mRNA interactions at a genome scale. Integration
of biological databases is currently one the main challenges in the
data mining community, and many works have focused on enrich-
ment analyses for driving the integration of multipurpose omics or



Domain problem/question Data/Task abstraction Visual Encoding/Algorithm/Interaction

P1 Analyse the entire regulatory net-
work

Provide a visualization of the net-
work

Nodelink diagram representation of the network

P2 Detection of regulatory (SIM or
DOR) motifs

Visualize node’s neighborhood ;
Detect common neighborhood of
nodes of the network

Suppport the visualization of neighborhood with our
dedicated Bring & Go interaction tool ; Provide
shortest paths algorithm and support extraction of
subnetwork of interest

P3 Exploitation of experts biological
knowledge (e.g. mRNAs name,
database, annotations)

Provide elementary filters based on
attributes

Provide filter/selection algorithm to filter out ele-
ments according to their name, annotations and/or
database including them

P4 Identification of evolutionary con-
strained regions, i.e. regions with
an high number of interactions

Identify nodes based on their adja-
cent edges information

Provide filter/selection algorithm to identify RNAs
according to their interacting regions ; For each
edge, show as label the interacting regions of its ex-
tremities ; Support selection of a RNA’s neighbor-
hood according to the region of interest ; Support
the visualization for a given RNA of the number of
interactions each base is involved in ; Provide a clus-
tering algorithm to group for each node its adjacent
edges and visually render it as a glyph

P5 Reproduce the analysis while mod-
ifying some parameters

Keep track of previous analysis
pipeline

Save/Reuse analysis pipelines

P6 Observe/Study/Compare different
filters and pipelines

Apply filters/pipelines several times
on the same -sub-network ; Detect
common elements in the resulting
subnetworks

Provide multiple linked views

P7 Very long analysis Keep track of previous analysis Import/update/save an exploration tree view to
give access to previous states of the analysis
within/across multiple sessions

Table 1: Questions/requirements for visual mRNA-targets identification with corresponding data/task abstractions and visual encodings, algo-
rithms and interaction tools

annotated data (for a review see [15]). However few of them in-
tegrate visualization approaches (for examples see [29]), and if
so they are dedicated to specific biological networks with a single
database (e.g. [3, 14, 23, 7, 21]). Keeping in mind that one of the
advantages of visualization is based on filtering processes to itera-
tively reduce the scope of the analysis, the integration of enriched
methods to incorporate as much biological knowledge as possible
is of great importance to drive more realistic analyses.

The remainder of this paper is structured as follows. In section 2,
we first introduce the network construction and then present the
underlying analytic process and requirements needed by our visu-
alization software to fulfill. We next describe rNAV, a new visu-
alization tool integrating all these requirements in section 3. We
then explain how rNAV helped our bioinformatician collaborators
to identify pertinent sRNA-mRNA interactions in the Escherichia
coli bacteria. Finally, we draw a conclusion and give directions for
future work in section 5.

2 GENOME-WIDE DETECTION OF SRNA TARGETS: DATA

GENERATION AND REQUIREMENTS

In this section, we first describe the prediction pipeline for the data
generation. We then describe the main biological questions and
related tasks, and we provide a list of requirements our tool try to
satisfy.

2.1 An integrative prediction pipeline to build regula-
tory RNA networks

The main objective of the prediction pipeline is to provide sRNA-
mRNA interaction networks that will guide biologists in prioritizing
gene and target candidates. As a first step, putative sRNA-mRNA
interactions are predicted and then additional functional informa-
tion are assigned to mRNAs molecules. To carry out this two
steps pipeline, we combined two well-known tools, respectively

IntaRNA [8] and DAVID [17, 16]. While IntaRNA supports the
detection of putative sRNA-mRNA interactions, DAVID [17, 16]
performs gene annotation enrichments using statistical approaches.

For a given organism, we first use as input sRNAs sequences (de-
rived from the results of RNA-Seq experiments), and the complete
list of mRNAs of the corresponding genome.

For computing the first level of predicted data, we choosed In-
taRNA [8] as it offers a good trade-off between specificity and sen-
sibility. This software integrates two algorithms for the detection
of putative interactions. While the first method has a O(n2m2) time
complexity (where n and m are the lengths of the two interacting
RNAs) and is not suitable for genome-wide predictions, the heuris-
tic version has a quadratic time complexity. To further improve
computation times, we developed a multi-core implementation of
this algorithm. At the end of this step, we have for each input sRNA
a collection of putative interacting mRNAs as well as the positions
of the sequences involved in these interactions.

The second stage aims to propose a functional annotation to each
sRNA on the basis of their putative mRNA targets. To do so, we
uses DAVID [17, 16], a single gene-term enrichment analysis soft-
ware. This approach takes as input the collections of mRNAs cor-
responding to each sRNA and calculates mRNAs sub-groups based
on the presence of a statistically significant over-represented anno-
tation. DAVID also offers the advantage to exploit several biologi-
cal knowledge databases to provide different annotation concepts:

• GO (Biological Process, Molecular Function and Cellular
Component) http://www.geneontology.org

• COG/KOG Ontology http://www.ncbi.nlm.nih.gov/COG/new

• SMART Domains http://smart.embl-heidelberg.de

• InterPro Domains http://www.ebi.ac.uk/interpro
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Figure 1: Screenshot of our software after few analysis steps. Panel (A) contains the visualization widget and interaction tools, here four
subnetworks are represented and our dedicated Bring & Go is used on an element. The neighborhood of that element is highlighted in all views.
Panel (B) contains the exploration tree view. In that tree, the root node corresponds to the orginal data and each time an algorithm is applied on
a node (i.e. a subnetwork), we create a son in the tree corresponding to the output of the algorithm. The exploration tree view is used to select
the -sub-networks to visualize in Panel (A). In Panel (C), one can see the list of available algorithms (top) categorized into Filter, Color, Layout

and Calculation and the algorithms pipeline editor (bottom). Saved algorithms pipelines can be retrieved from the Action list tab. Clicking on the
Run button will run all the algorithms of the pipeline editor on each visualized/selected -sub-network (from the exploration tree view).

• KEGG Pathways http://www.genome.jp/kegg

• UniProt Sequence Features http://www.pir.uniprot.org

• PIR SuperFamily Names http://pir.georgetown.edu/iproclass

For instance, KEGG annotations [20] are helpful to understand the
metabolic function of proteins that encodes for enzymes. An other
example is the Gene Ontology database [1] where biological infor-
mation associated to a gene is defined by a set of functional terms
related by relationships within a directed acyclic graph. For a group
of mRNAs related to a given sRNA, the over-represented biological
annotation might be considered as a putative sRNA’s annotation.
These annotations are thus not related to the sRNA but rather to
the combination of sRNA-mRNA interactions with an enrichment
score for significance of these annotations.

The data generated by the combination of IntaRNA and DAVID
tools are naturally modelized by a bipartite graph where the two sets
of nodes are respectively the sRNAs and the mRNAs. Two RNAs
are linked by an edge if and only if they were predicted as interact-
ing molecules. Edges of that graph, linking sRNAs and mRNAs, are
labeled with the annotations retrieved from various databases (e.g.
GO, KEGG or UniProt). Another information of utmost impor-
tance is given by the base-pairing region of the sequences involved
in each putative sRNA-mRNA interaction.

2.2 Domain problems and Requirements

Focusing on a very local level of the sRNA-mediated regulatory
network, Beisel and Storz [4] have suggested a classification de-
scribing regulatory motifs according to their topology but also their

biological impact for the cell. The SIM motif, required by a single
external perturbation, corresponds to one sRNA regulating several
mRNAs. Conversely, the DOR motif represents a coordinated re-
sponse of the cell to several stress conditions. It therefore involves
the regulation of mRNAs towards several sRNAs, and vice versa.
Moreover Modi et al [24] have modeled the sRNA-mediated reg-
ulatory network of Escherichia coli. They provided in addition to
their model, predictive metabolic information and identified sRNA-
centred clusters where interacting mRNAs showed an enriched an-
notation with a similar function. Co-evolution information might
also be exploited to predict functions of sRNAs. As evolution of
these regions may have been constrained, biologists believe them
to have an high number of interactions.

Based on discussions with our collaborators, we identified 7
main domain problems and questions, and formulated the corre-
sponding visualization requirements. Table 1 provides the domains
questions, task abstractions and the corresponding features our tool
integrates to fulfill these requirements.

One of the aims is to generalize the methodology of [4, 24] to
entire networks, our tool therefore needs to support the visualiza-
tion of the whole network (P1 in Table 1). Then, to perform similar
analyses, bioinformaticians have to first focus on few RNAs to in-
vestigate, and second to combine topology information (P2 in Ta-
ble 1) with biological knowledge (P3 in Table 1). Dedicated selec-
tion/filtration algorithms have to be integrated to extract elements
of interest based on topology (e.g. the shortest paths between two
RNAs) but also on biological knowledge to initiate the exploration
and/or to validate the resulting motifs. Concerning co-evolution
information (P4 in Table 1), the detection of such regions can be



achieved by identifying regions with an high number of interac-
tions. It requires to visualize the interacting regions for single edge
as well as the number of interactions for each base of a RNA. To
further facilitate the identification of such regions, we also propose
a clustering algorithm which groups for each RNA its putative in-
teractions according their interacting regions. Problems P5 and P6
are due to the reproducibility and the exploratory aspect of such
analyses. In order to reproduce an analysis pipeline while modify-
ing parameters, it is important to support their edition and the reuse
of these pipelines. Modifying the parameters may produce different
results that need to be compared. At last, carrying out such a long
analytic process at once can be tedious (P7 in Table 1) and may
require multiple analysis sessions. To remind the user his previous
analysis steps, it is thus necessary to keep track of them.

Category Description

Filter Provides methods to filter out uninteresting el-
ements / to select elements of interest; Selec-
tion/Filtration can be done using interacting re-
gions, RNAs names, shortest path between node
RNAs, number of putative interactions on a sin-
gle RNA, ...

Coloration Provides nodes/edges color mapping according
to input data (e.g. sRNA/mRNA, p-values asso-
ciated to edges) or according to graph measures
(e.g. degree, betweenness centrality, ...)

Layout Provides algorithms to lay out the graph; In-
cludes force directed methods (GEM [11] and
FM3 [13]), circular layout algorithm as well as
dedicated hierarchical drawing algorithms

Calculation Provides graph theoretical measures like degree,
betweenness centrality [10] and excentricity [6] ;
Provides a clustering algorithm to classify inter-
actions of each individual RNA.

Table 2: The four different categories of algorithms integrated in rNAV
and a short description.

3 RNAV SOFTWARE

In this section, we present rNAV, a visualization sotware that is ded-
icated to the visual exploration of the sRNA-mediated regulatory
network generated by a combination of experimental/predictive
data. rNAV has been developed in C++ with the Tulip frame-
work [2]. It can therefore take full advantage of the the Tulip plu-
gins management system and its list of features can be extended if
necessary.

3.1 Network visualization

As mentioned above, the input of rNAV is a list of sRNA and mRNA
as well as putative interactions linking them. In that data, we can
distinguish two sets of elements: the set of all mRNAs and the set
of all sRNAs. An intuitive data modeling is therefore a bipartite
graph modeling where the two sets of elements correspond to the
two types of RNAs. In addition, our predictive pipeline provides
enriched annotations for the putative interactions. In Panel (A) of
Figure 1, one can see nodelink diagram views on the Escherichia
coli K12 network. In each view, sRNAs are represented by green
squircles while mRNAs are represented by yellow circles. Edges
labels (respectively nodes labels) allow to show the enriched an-
notations (respectively RNA names). However labels can be used
to display any other input information, like the p-values associated
to the putative interactions or the interacting regions. Furthermore,
nodes sizes and nodes labels sizes can be interactively modified to
fit them with the current layout of the network (see Section 3.2).

3.2 Algorithms and analysis pipelines

To answer the domain questions or problems (P2, P3 and P4 in
Table 1), rNAV provides a list of algorithms. To simplify the access
to the differents algorithms, we classified them into four categories:
Filter, Coloration, Layout and Calculation. The four categories can
be accessed by clicking on the corresponding button on top of the
algorithms widget (see top of Panel (C), Figure 1).

Filter: These algorithms allow to perform both selection and
filtration. Each of these algorithms can either select the elements of
interest or it can filter the other elements out. The default behaviour
of that category is to filter out all elements that are not of interest. In
Figure 1 Panel (C), one can see a cisors icon which means that run-
ning the algorithm will filter out uninteresting elements. Clicking
on that icon turns it into a select icon which means that elements
will only be highlighted in the visualization.

Coloration: rNAV provides a list of color mapping algorithms.
These mappings can be done on network nodes (i.e. the RNAs) as
well as on the edges (i.e. the putative interactions). Among them,
one can colorize the elements (nodes and edges) according to input
data such as the p-value associated to the putative interactions or the
type of RNA (sRNA and mRNA). In addition, the coloring can be
done according to simple theoretical measures like node’s degree,
betweenness centrality [10] or centrality [6].

Layout: As rNAV uses nodelink diagrams representation of
the network, we obviously need to provide graph drawing algo-
rithms. Our software supports four layout algorithms, two of them
are force directed and are called Efficient and Fast in the graphic
interface and correspond to the GEM [11] and the FM3 [13] algo-
rithms. We also provide a dedicated hierarchical drawing algorithm
and a basic circular drawing one.

Calculation: These algorithms allow to compute simple
however useful graph theoretical measures like degree, between-
ness [10] or centrality [6]. In addition we also support, for each
RNA, the clustering of its putative interactions. That clustering
groups putative interaction according to the regions these interac-
tions happen. To do so, we first compute the Jaccard’s index [19]
where the input for comparing two interactions is the region where
these interactions happen. Then the MCL clustering [42] is per-
formed to group similar interactions, i.e. according to the involved
regions of the sequences.

Given the list of available algorithms, running an algorithm re-
sults in a modification of either the element color, selection, posi-
tioning or in the removal of elements. Each time an algorithm is run
on a graph, we maintain user’s mental map by smoothly animating
the transition between the input and the ouput graph representa-
tion. For instance, when a Filter algorithm is applied to filter out
elements, then we turn their colors to a fully transparent ones and
finally remove them from the visualization.

To extract interesting candidates from the list all the putative
interactions, the user often needs to perform several and succes-
sive filters (P5 in Table 1). rNAV supports the edition of algorithm
pipelines as an ordered sequence of algorithms of any category (bot-
tom of Panel (C) in Figure 1). In that sequence, the output of an al-
gorithm is the input of the next one. For a reproducibility purpose,
our tool also supports saving of algorithms pipelines. These saved
pipelines are then reachable from the Action list button in the user
interface (see top of Panel (C) in Figure 1).

3.3 Exploration awareness and multiple sessions anal-
ysis

As mentioned above, the exploration of the entire network can be
fastidious and may even require an analysis over multiple sessions
(P7 in Table 1). Our software has therefore to help the user to
remember his previous analyses. This is achieved by a combina-
tion of features developed in rNAV. First of all, based on the work



(a) (b) (c)

Figure 2: Different steps of our dedicated Bring & Go [25] interaction tool. (a) When the mouse pointer is over a RNA, an augmented display
emphasizes its neighborhoods. (b) Clicking on that RNA set it as focused and its neighbors are all laid at the same distance, (c) finally the
neighbors are uniformly laid out on that circle while preserving the order of the neighbors to avoid edge crossings and maximize the area
available to show annotations.

of Shrinivasan and van Wijk [37], we propose an exploration tree
view (see Panel (B) of Figure 1). The root node of the tree is as-
sociated to the entire network. When running an algorithm on a
-sub-network associated to a node u of the tree, we add a new child
to u corresponding to the output of the algorithm. To help the user
to remember the algorithms which lead to a given state, the user
can add information to each node of the exploration tree (by de-
fault, the information is the name of the corresponding algorithm).
That information can then be modified by double-clicking on the
exploration tree node. Running a pipeline of algorithms creates a
new branch in the tree where each node of the branch correspond to
an algorithm of the pipeline.

Then, to support multiple sessions analysis, the user can save
the current state of his analysis. In particular, rNAV can save the
network as well as all the exploration tree. During the next ses-
sions, the user will be able to access each graph corresponding to
each node of the exploration tree. Multiple sessions analysis is also
eased by saving algorithms pipelines as the user can then reuse the
same algorithms pipelines and their parameters as they were during
a previous sessions.

3.4 Interaction tools

(a) (b)

Figure 3: Selection of RNAs according to their interacting regions
with our dedicated Bring & Go [25] interaction tool. Once a node of
interest have been clicked, the user can select a region of interest (a)
or, if the interactions have been clustered, selectable rectangles are
used to show up the corresponding interacting regions (b).

First of all, rNAV provides classical zoom and pan and box se-
lection interaction tools to support usual exploration of graph.

We also implemented a dedicated interaction tool to fit with the
tasks of our users (P2 and P4 in Table 1). That interaction tool, in-
spired from the Bring & Go of Moscovich et al. [25], allows to ef-
ficiently visualize the neighborhood of a given RNA (see Figure 2).
The basic of the original method is to bring the neighbors of a node
of interest and then clicking on one of these neighbors changes the
focus to that clicked node (go step).
In rNAV, the annotation information is of upmost importance, we
therefore modified the layout of the neighbors to ensure all edges
labels to be readable (see Figure 2). Instead of laying out the neigh-
bors on several concentric circles indicating the relative distances,
we decided to lay them out on a single one (see Figure 2.(b)). As we
preserve the direction of the neighbor positions, some node overlaps
can occur. These overlaps are removed during that step which lay
the neighbors on the circle in a regular manner (see Figure 2.(c)). To
preserve as much as possible the user mental map, we ensure dur-
ing that animation that no edge crosses another. This is achieved
by keeping the order of the neighbors around the focus node un-
changed during the animation.

Another important information is the regions of the focused RNA
which interact with other RNAs (P4 in Table 1). Indeed, a region
interacting with many other RNAs may be considered as an evolu-
tionary constrained region. That interaction tool therefore supports,
for each base of that focused RNA, the visualization of the number
of interactions each of its bases are involved in. That information
is displayed as a curve inside a new glyph we have designed (see
in Figure 3.(a)). In case where interactions have been clustered
(see section 3.2), then the resulting clustering is displayed with that
glyph. Each cluster is represented by a colored rectangle spanning
the region of the corresponding interactions. Even if the MCL algo-
rithm produces a partition of the putative interactions, the regions
of interactions of these clusters can overlap. In that case, we ensure
the visibility of each cluster by reducing the height of its box by
the number of its overlapping clusters (see Figure 3.(b)). The last
feature of that interaction tool is the selection within the glyph it-
self. The user can either select neighbors of the focused RNA using
a box selection on the glyph or by simply clicking on one of these
boxes once the interactions have been clustered (see Figure 3).



3.5 Multiple/linked views

To compare the results of different filters or of different filter pa-
rameters (P6 in Table 1), rNAV supports multiple and linked views.
The visualized -sub-networks are selected by the user in the explo-
ration tree. Using the Ctrl key and clicking on an exploration tree
node, the user can add or remove the view on the corresponding
-sub-network.

As mentioned above, all displayed views are linked. In particu-
lar, any interaction on a view will affect the others. Selecting ele-
ments with the box selection tool in one view will also select these
elements in all the views (if present in the corresponding networks).
When using the pan and zoom interaction tool to navigate within a
given view, the user can focus on a particular subset of RNAs. In
that case, we compute the set of RNAs of interest and automatically
perform a combination of pan and zoom as defined by van Wijk and
Nuij [43] to focus in the other views on the same RNAs (again if
these RNAs are present in these views). Finally, any action per-
formed with de dedicated Bring & Go interaction tool (focus, bring
or go) impacts the other views as well. For instance, in Figure 1,
the focus has been set on a RNA of the bottom right view and the
corresponding neighborhood is highlighted in the three others.

4 USE CASE: ANALYSIS OF Escherichia coli BACTERIA

To demonstrate the usefulness of rNAV, we experimented the soft-
ware for the analysis sRNA regulatory network of Escherichia coli
K12. This bacteria, easily cultivable under laboratory conditions, is
a bacterial model organism that has been extensively analyzed over
the last decades. Whereas transcription factors are presents in this
bacteria, several publications have demonstrated the crucial role
carried out by sRNA regulation. An interesting hypothesis relies on
the benefit gained by the cell from sRNA regulation. Hence, sRNA
synthesis needs less energy than protein synthesis and may allow
the cell to quickly adapt itself to an external stressful condition.
Moreover, such type of regulation has been recently pointed out by
several publications when bacterial cells have to increase their sur-
vival behavior during a stressful situation (for a review see [39]).
Recent experimental works have led to the discovery of 85 sRNAs
in Escherichia coli K12. We collected the experimental validated
sRNA data from [28] to predict, for each of them, their potential
mRNA targets, by using our prediction protocol (described in sec-
tion 2). First, the Escherichia coli K12 sRNAs have been requested
using IntaRNA versus the complete mRNAs list of Escherichia coli
K12 (4142 mRNAs) to predict potential targets (downloaded from
the EMBL database, accession number: U00096). We generated a
regulatory network with 60346 edges modeling the predictive inter-
actions between the 85 sRNA and 4142 mRNA nodes. Considering
the lack of specificity given by IntaRNA, we then further analyzed
the predictions by adding enriched annotations using DAVID. At
last, we exploited rNAV to guide the data analysis by taking into
account multi-purpose types of biological constraints.

The well characterized small RNA gcvB was first investigated,
as more than 10 targets have been experimentally validated in
the Salmonella genome. A comparative analysis between a gcvB
Salmonella mutant and a wild Salmonella strain have shown a vari-
ation in the expression of more than 70 genes. Regarding these
results, Sharma and Storz [36] have suggested the involvement of
gcvB in the regulation of more than 1% of the Salmonella genes
and the ability to play the role of a strong pervasive regulator. A
gcvB secondary structure composed of five stems and two single
strand regions (namely R1 and R2) was proposed by Sharma et
al [34]. Both regions R1 and R2 are interacting with mRNAs. For
the R1 region, experimental works have shown the gcvb regulatory
role with seven mRNAs involved in the peptide transport or/and the
acid stress response [34, 26]. Concerning the second region (R2),
three targets have been validated so far [36, 9]. In regard of these
biological informations about the Salmonella genome and the pres-

Figure 4: Illustration of the gcvB sRNA hub analysis. Panel (A) de-
picts the analysis process that was applied to the regulatory network,
while (B)-(D) are screen captures of the different filtering steps. On
Panel (A), for each filtration step, the resulting number of target can-
didates is shown within a blue rectangle. On panel (B), a graphical
representation of the number of gcvB targets, according to their inter-
acting localizations on the sRNA (given by the x-axis). The highest
values of the curve delimit two sRNA regions that correspond to the
R1 and R2 regions, proposed for the Salmonella gcvB sRNA. Panels
(C) et (D) are computed by selecting R1 and R2 through the curve
on Panel (B).

ence of the gcvB sRNA in the Escherichia coli K12 genome, the
two following questions have been addressed with rNAV:

1. Can we transpose what is experimentally known from one
genome to a relative one? (i.e. from Salmonella to Es-
cherichia coli)

2. Can we expand the previous gcvB target list by exploiting bi-
ological knowledge of multiple targeting features?

To answer both questions, we have carried out the following
data-driven bioinformatics approach which combines experimen-
tal Salmonella knowledge with predictive results compiled for Es-
cherichia coli K12 (Panel (A), Figure 4). First, we focused on a
subnetwork by selecting the name of the sRNA of interest, gcvb in
the present case, as well as its direct neighborhood. Second, we
applied several combinations of filters and interactions:

• A constrained interval for the mRNA interacting region was
set: sRNAs may regulate the translation of mRNAs by com-
peting with ribsosome on its mRNA fixation region, usually
ranged in an interval of positions of (-20,+10) regarding the
position of the initiation codon of the mRNA.

• We then selected, using the dedicated Bring & Go interac-
tion tool, regions of the gcvB strand and filtered out from
gcvB neighborhood, mRNAs not interacting on one of these
regions. The evolutionary conservation of one sRNA region
interacting with multi-targets is a feature that has been already
exploited. In that case, two regions were identified, the first
one from the position 52 to 98 and the second one from the po-
sition 121 to 178 (see Panel (B), Figure 4). These regions cor-
respond respectively to the R1 and R2 strand regions and have
been already identified for 10 validated targets. From both of
them, exploiting the specific selection tool, two branches were
created in the exploration tree.



• Two additional filters were applied to filter out targets accord-
ing to their annotations in the KEGG and the Gene Ontol-
ogy databases. The first filter aimed at selecting pathways
involved in amino acid transport and two-component system
(see Panel (C), Figure 4 for the R1 region). The second one
involved the Gene Ontology database by requiring specific an-
notations related to the same biological processes (see Panel
(D), Figure 4 for the R2 region).

Exploiting this procedure, two prioritized lists of target candidates
have been proposed for the two interacting regions onto gcvB (R1
and R2), with respectively 37 and 18 mRNAs. These two gene lists
come from the combination of two filters (specific enriched anno-
tations from GO and KEGG) after removing redundant candidates
that were found with both databases. The filters that we have ap-
plied satisfy several constraints that may help to easily argue their
selection for experimental validations. Among them, it is notewor-
thy that the R1 and R2 regions in the Salmonella genome are ob-
servable on the Escherichia coli K12 gcvB as most of the mRNA
candidates are interacting on both regions (Panel (B), Figure 4).

A second analysis has been carried out by focusing on the rpoS
mRNA as a starting point. The main objective of this investigation
was to analyse a DOR motif where a mRNA can be regulated by
several sRNAs, i.e. when the cell needs to coordinate an answer to
several stress sources. The rpoS mRNA has been reported to encode
for a major stress sigma factor which is involved in stressful condi-
tions. Furthermore 4 regulating sRNAs have been reported to base-
pair the 5′ region of rpoS mRNA [22]. Using rNAV, we selected the
rpoS sub-network and compiled, with the clustering algorithm, the
groups of targets according to their interacting positions. The in-
teraction clustering provided 3 clusters represented by colored rect-
angles in Panel (A) of Figure 5. We selected the UTR overlapping
region cluster to interactively emphasize the corresponding inter-
acting sRNAs (Panel (B), Figure 5). After analysing it, we noticed
the presence of 3 out of the 4 experimentally validated sRNAs, as
well as 3 new putative interacting sRNAs (rydB, rybA and tp2), for
which there is no known targets [28]. Interestingly, these 3 sRNAs
are presents in the 27 genome shigella-coli clade like the 4 already
validated ones. This feature follows the Gottesman et al hypoth-
esis [12, 38] where sRNAs sharing targets are more likely to be
conserved in the shigella-coli clade as they may be derived from a
common sRNA ancestor.

5 CONCLUSION

While RNA-Seq technologies provide an increasing number of non
coding RNA sequences for different bacteria, in silico studies of
their functional activities is still challenging. Indeed such studies
require the use of bioinformatics tools dedicated to the prediction
of potential mRNA targets, and these tools are known to provide
a prohibitive number of false-positive candidates. In this paper, we
presented rNAV, a new visualization software designed for the anal-
ysis of sRNA-mediated regulatory networks. rNAV allows experts
to drive bioinformatics analysis while exploiting the complete or
pertinent sub-part of the network. Its features are designed to guide
the analysis by integrating multi-purposed biological knowledge in
order to help experts to explore hypotheses. rNAV allows to explore
large sRNA-mediated regulatory network by gradually reducing the
scope of the study. Providing appropriate filtration algorithms is
therefore one of the key features of rNAV. Exploiting enriched an-
notations, rNAV allows to identify pertinent sRNA candidates as
well as reasonnable putative interacting mRNAs. Using this in-
formation, bioinformaticians can then determine sRNA’s functional
activities to be confirmed by experimental validations. rNAV also
integrates a dedicated Bring & Go interaction tool to highlight a
given RNA’s neighborhood in the whole network but also to visu-
ally identify the evolutionary conserved interacting regions of that
RNA.

Figure 5: Illustration of the rpoS mRNA hub analysis. sRNA nodes
are represented as green circles and mRNA nodes are in yellow cir-
cles. Panel (A) represents the rpoS subnetwork and the visualization
of the clustering algorithm for grouping potential base-pairing sRNAs.
Each group are represented by a colored rectangle and one can uses
this representation to carry out a selection to define a pertinent sub-
network. Panel (B) depicts the subnetwork of the sRNAs interacting
with the 5′ region of rpoS.

We applied our software to the analysis of the Escherichia coli
K12 sRNA-mediated regulatory network to address two issues.
First, we exploited biological known features for the gcvb sRNA
to expand its list of mRNAs targets, in accordance to their involve-
ment in amino acid transport and its potential pervasive regulatory
function as suggested for Salmonella. Second, we focused on a pu-
tative mRNA hub, identified as a transcription factor, and exploit
rNAV to argue the proposition of 3 new interacting sRNAs.

An interesting direction for future work is to integrate new bio-
logical constraints from future experimental research work, that is
facilitated by the modular implementation of rNAV. In rNAV, we
consider as input data the regulatory network together with the in-
teracting regions and the enriched annotations. Another direction
is to give more flexibility to the user and to allow the import of
all these data separately, and on demand, retrieve annotations from
DAVID for instance. Last direction is to support the comparison
of different organisms’ networks. Such comparisons can be done
according to different concepts, for instance, biological knowledge
(e.g. functional annotations) or topological information.
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