
HAL Id: hal-04165179
https://inria.hal.science/hal-04165179v1

Submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

HeROfake: Heterogeneous Resources Orchestration in a
Serverless Cloud – An Application to Deepfake

Detection
Vincent Lannurien, Laurent d’Orazio, Olivier Barais, Esther Bernard, Olivier
Weppe, Laurent Beaulieu, Amine Kacete, Stéphane Paquelet, Jalil Boukhobza

To cite this version:
Vincent Lannurien, Laurent d’Orazio, Olivier Barais, Esther Bernard, Olivier Weppe, et al.. HeRO-
fake: Heterogeneous Resources Orchestration in a Serverless Cloud – An Application to Deepfake
Detection. CCGrid 2023 - IEEE/ACM 23rd International Symposium on Cluster, Cloud and Inter-
net Computing, May 2023, Bangalore, India. pp.154-165, �10.1109/CCGrid57682.2023.00024�. �hal-
04165179�

https://inria.hal.science/hal-04165179v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


HeROfake: Heterogeneous Resources Orchestration
in a Serverless Cloud – An Application to Deepfake

Detection
Vincent Lannurien∗‡, Laurent d’Orazio∗†, Olivier Barais∗†,

Esther Bernard∗, Olivier Weppe∗, Laurent Beaulieu∗, Amine Kacete∗,
Stéphane Paquelet∗, Jalil Boukhobza∗‡

∗b<>com Institute of Research and Technology, †Univ. Rennes, Inria, CNRS, IRISA.
‡ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest. France

Email: vincent.lannurien@ensta-bretagne.org,
{esther.bernard, olivier.weppe, laurent.beaulieu, amine.kacete, stephane.paquelet}@b-com.com,

{laurent.dorazio, olivier.barais}@irisa.fr, jalil.boukhobza@ensta-bretagne.fr

Abstract—Serverless is a trending service model for cloud
computing. It shifts a lot of the complexity from customers to
service providers. However, current serverless platforms mostly
consider the provider’s infrastructure as homogeneous, as well
as the users’ requests. This limits possibilities for the provider
to leverage heterogeneity in their infrastructure to improve
function response time and reduce energy consumption. We
propose a heterogeneity-aware serverless orchestrator for private
clouds that consists of two components: the autoscaler allocates
heterogeneous hardware resources (CPUs, GPUs, FPGAs) for
function replicas, while the scheduler maps function executions
to these replicas. Our objective is to guarantee function response
time, while enabling the provider to reduce resource usage and
energy consumption. This work considers a case study for a
deepfake detection application relying on CNN inference. We
devised a simulation environment that implements our model and
a baseline Knative orchestrator, and evaluated both policies with
regard to consolidation of tasks, energy consumption and SLA
penalties. Experimental results show that our platform yields
substantial gains for all those metrics, with an average of 35%
less energy consumed for function executions while consolidating
tasks on less than 40% of the infrastructure’s nodes, and more
than 60% less SLA violations.

Index Terms—deepfake, serverless, allocation, scheduling,
SLA, energy consumption, heterogeneous resources, workload
characterization, GPU, FPGA

I. INTRODUCTION

Serveless model. Serverless can be understood as both a
programming model, called Function as a Service (FaaS), and
a deployment model for the cloud. In such a model, developers
design their applications as a composition of stateless func-
tions which execution is event-driven [9]. Serverless services
free tenants from complex resource reservation as they are
designed to handle on-demand scaling requirements.

In the FaaS model, providers only bill customers according
to their actual resources usage [10]. They are fully responsible

This work was supported by the Institute of Research and Technology
b<>com, dedicated to digital technologies, funded by the French government
through the ANR Investment referenced ANR-A0-AIRT-07.

for deploying intelligent resource management and multiplex-
ing at a finer granularity to optimize Quality of Service (QoS)
metrics such as response time, energy consumption, etc.

Deepfake detection and serverless. The work presented
in this paper was part of a project (at the b<>com research
institute 1) aimed at deploying an energy efficient deepfake
detection service in a heterogeneous cloud. Deepfakes are
synthetic images, videos or speeches, digitally created to
mimic an existing person so as to mislead viewers. Deepfake
detection consists in training a neural network (CNNs) to
detect patterns of inconsistencies that are introduced in the
creation process.

The functions used by our deepfake application satisfy three
main characteristics for suitable serverless workloads [11]:
their execution can be made parallel (several independent
images and videos), they are stateless (pure transformation on
input data) and event-driven (launched after data upload).

Hardware heterogeneity in the cloud. Cloud infrastruc-
tures are more and more heterogeneous to fit the needs of data-
intensive applications such as machine learning model training
or big data analytics [12]. However, specialized processors and
GPUs are yet to be made available to customers in serverless
offerings [13]. Hardware acceleration should be decided by
the provider on a per-application or per-request basis.

State-of-the-art work shows that using such hardware in a
cloud setting provides substantial gains in execution time and
energy consumption [14], [15]. However, reference orchestra-
tors such as Kubernetes with Knative or OpenWhisk lack the
support for dynamic allocation of such hardware.

Performance challenge for serverless deployment. Due
to the transient nature of unreserved FaaS resources, latency,
throughput and continuity of service are hard to guaran-
tee [16], [17]. When applications do not receive incoming
requests, function sandboxes are destroyed instead of being
kept in an idle state. Then, when a new request arrives, the

1https://b-com.com/en

https://b-com.com/en


TABLE I
STATE OF THE ART WORK ON AUTOSCALING PLATFORMS

Serverless Target cloud platform SLA Hardware heterogeneity Resources usage Energy consumption Cost-aware

Swayam [1] ✗ Private (Azure, in-house) ✓ ✗ ✓ ✗ ✗
Pigeon [2] ✓ Private ✗ ✓ ✓ ✗ ✗
MArk [3] ✗ Public (AWS) ✓ ✓ ✓ ✗ ✓
ENSURE [4] ✓ Private ✗ ✗ ✓ ✗ ✓
Mampage et al. [5] ✓ Private ✓ ✗ ✓ ✗ ✓
Atoll [6] ✓ Private ✓ ✗ ✗ ✗ ✗
INFless [7] ✓ Private ✓ ✗ ✓ ✗ ✓
SMIF [8] ✓ Private ✓ ✓ ✓ ✗ ✗
Target solution ✓ Private ✓ ✓ ✓ ✓ ✓

provider has to (re)allocate resources and initialize functions
to deploy new sandboxes: this is called a cold start. Cold start
times are very penalizing for the application performance, they
may even dominate the total execution times [18].

Furthermore, in current commercial serverless offerings,
Service-Level Agreements (SLAs) are usually limited to auto-
mated retries (restarts) on failure, and FaaS providers generally
limit the execution time of serverless functions to a few min-
utes. The absence of QoS guarantees in commercial serverless
offerings prevents them from being more widely used [19].

Problem statement – putting it all together. The problem
we try to solve in this paper is to determine how to automat-
ically and reactively scale heterogeneous hardware resources
in a cloud in adequacy with the application’s load and the
users’ QoS requirements, while keeping the cost in resources
and energy as low as possible for the provider. We consider a
deepfake application as a case study in our work.

State-of-the-art. Previous studies have explored the need
for an autoscaling platform that supports short-running tasks
comprised in applications such as Machine Learning as a
Service. Table I summarizes how these solutions differ from
the target platform we are trying to achieve, and section VI
provides further details. While many have established the need
for on-demand acceleration as a solution to guaranteeing func-
tion response time, none have measured the impact of leverag-
ing heterogeneous resources on dynamic energy consumption.
Furthermore, previous studies consider task consolidation as a
means to free resources for further computations – we argue
that such techniques open possibilities for the service provider
to apply power saving policies in private clouds. Finally, as
serverless platforms are general purpose and designed to be
highly configurable, our target solution should be cost-aware
to allow the provider to make configuration choices pertaining
to their own objectives.

Our contribution. We argue that opportunistically taking
advantage of hardware accelerators (GPUs and FPGAs) to
schedule deepfake detection tasks may allow cloud providers
to guarantee serverless tasks response time and achieve SLA
while reducing resource usage and energy consumption.

In this paper, we propose a full framework to deploy a
deepfake detection application on a serverless cloud. This
framework comprises an offline and an online phase. The of-
fline phase is used to characterize the performance and energy

behavior of the deployed heterogeneous hardware platforms.
The online phase consists of an autoscaling platform and a
scheduling strategy that make efficient use of (characterized)
heterogeneous hardware resources to achieve per-request SLAs
while reducing the energy consumption of the platform.

For this case study, we devised a simulation environment2

that models the infrastructure for a deepfake detection appli-
cation, run by the provider as a Software as a Service using
a serverless infrastructure.

Some performance figures. With our allocation and
scheduling policy, we were able to handle 50000 tasks in the
same makespan as Knative with less than 36% QoS penalties.
Our framework reduces energy consumption for the execution
of tasks by almost 35%, and provides the opportunity for
the provider to further reduce static power consumption by
consolidating tasks on less than 29% of the available nodes.

The paper is organized as follows: in a first section, we
describe the overall platform model for the project. Then, we
describe the execution platform and workload characterization
phase. In section 3 we describe the challenges of serverless
resource orchestration, our task model and the orchestrator’s
allocation and scheduling policies. Section 4 presents our
evaluation methodology and a discussion of the experimental
results. Section 5 gives details regarding state-of-the-art work
on autoscaling platforms. Finally, we conclude with some
perspectives for future work.

II. DEPLOYING DEEPFAKE DETECTION TASKS IN
SERVERLESS CLOUD

This section introduces our the used serverless platform
model and the overall project.

A. Platform model

We consider a deepfake detection system that is deployed as
a serverless application consisting of three stateless functions
that achieve inference tasks on input images. These images
are all RGB and 224 ∗ 224 pixels in size 3.

Figure 1 introduces the used platform, we differentiate be-
tween an offline (blue blox in the figure) and an online (green
box in the figure) phase. During the offline phase, we collect
metadata relative to tasks execution on the heterogeneous

2The simulator repository will be made publicly available.
3Note that videos are not yet considered in our project.



Fig. 1. Serverless deepfake detection platform, system overview

accelerators; during the online phase, we allocate resources
and schedule tasks.

Function invocation requests from the users are received on
the provider’s gateway and handled by the orchestrator. In our
model, a function invocation corresponds to a task. The user
selects one of the three provided models (ResNet50, VGG16
and VGG19, see Section III-B) and uses it to detect a possible
deepfake on a picture.

The cloud provider’s infrastructure is modeled as a set
of heterogeneous nodes (section II-A1) comprising various
combinations of platforms (section II-A2) that can execute
incoming tasks (section IV-B).

1) Nodes: A node is a server available in the service
provider’s infrastructure. In this work, we do not consider
storage and data locality. Input data are always provided via
file upload by the user at the time of their request. As such,
the only characteristic that defines a node in our infrastructure
model is the size of dedicated memory. A node consists of a
set of execution platforms defined hereafter.

2) Execution platforms: An execution platform is a hard-
ware processing unit available on a node. Each platform
consumes a quantity of energy in the ”idle” state expressed
in kilowatt-hour (kWh). When it starts executing a task,
it consumes additional energy characterized by the task’s
properties/type: it is then in an ”active” state. We differentiate
”idle” and ”active” time for each platform, so as to measure
resources usage. Platforms are characterized by a platform type
that encompasses the following parameters:

• Hardware type – CPU, GPU or FPGA;
• Price – the cost of acquisition of such a platform by the

cloud provider;
• Idle energy – the baseline energy consumption for the

platform when it is not running any task.
Task caching and cold start model. We consider a simple

task caching mechanism at platform-level, akin to a keep-alive
mechanism [20]. In our system, if a platform was previously
executing a task of type t, and a new task of the same type t
is scheduled on that same platform, then the cold start delay
will not be incurred. However, if that same platform were to

execute a task of different type tt, then the task will go through
a cold start before entering its execution phase. Finally, if
the platform was not previously allocated, the task will also
experience a cold start delay.

B. Overall project description

The b<>com research institute works on a project that aims
to deploy an application of deepfake detection on a private
cloud. Users submit a picture to the system and when their
request is fulfilled, they obtain a boolean value as a response.
The application targets different classes of users – some of
them can be media or authorities with high QoS requirements,
while others can be casual users tolerating a higher latency.

To differentiate between these classes of users, we propose
different levels of per-request SLA. Users with higher require-
ments will agree to pay a higher per-request price, however if
we fail to fulfill their request in the allotted response time, we
will consent to a discount – the higher the QoS level, the higher
the discount. Hence, there is a strong monetary incentive for
the provider to achieve QoS.

Offline phase. In our platform, the lifecycle of the applica-
tion starts during an offline phase with the developer providing
the code of their functions for different hardware architectures
1 . That code is stored in a function repository. Functions

are then deployed on a measurement node 2 where they are
run in order to generate metadata relative to the functions:
memory requirements, execution time, cold start time and
energy consumption for each function are written to a metadata
store 3 . The offline phase is is required to run once for a given
function on a given platform, it is described in Section III.

Online phase. When a user sends a request to the applica-
tion 4 , they provide an input picture and specify their desired
QoS level. The request is appended to a request queue 5 at
the orchestrator level. When the scheduler pops the request
from the queue, the metadata store is queried to retrieve the
appropriate function metadata 6 .

The scheduler then proceeds to try to schedule a task
(i.e. a function’s invocation) to fulfill the request. Tasks are
placed on already deployed function replicas 7 . Such replicas



TABLE II
EXECUTION PLATFORM CHARACTERIZATION

Platform Hardware type Price (MSRP) Idle energy
Intel Xeon ES-1620 v4 CPU 294 0.067

Nvidia GeForce RTX 2070 Super GPU 499 0.010
Xilinx Alveo U250 FPGA 7695 0.030

can either be containers or virtual machines, i.e. sandboxed
execution environments for the given function. Concurrently,
the autoscaler monitors the request queues in all the function
replicas 8 . The role of the autoscaler is to rightsize the
resources allocation with regard to the fluctuations in load on
each function. The designed scheduler and the autoscaler are
described in Section IV.

III. OFFLINE PHASE: MEASUREMENT AND METADATA
EXTRACTION

A. Execution platform benchmarks

As the usage of deep learning inference and energetic im-
pacts grow simultaneously in computing, the power efficiency
of the target devices becomes a major concern. The FPGA-
based acceleration boards are described as a relevant competi-
tor against the dominant GPU approach. Our study proposes a
benchmark, using convolutional neural network (CNN)-based
approaches for deepfake detection on CPU, GPU, and FPGA
technologies regarding power efficiency during inference time.
Our comparison includes power usage, inference speed, and
accuracy using traditional CPU and GPU processing against
FPGA. Those metrics are crucial for an efficient orchestration
on top of heterogeneous platforms.

The used CPU was a Intel Xeon CPU ES-1620 v4 (3.5
GHz) while the GPU was an Nvidia GeForce RTX 2070 Super
which can be used with the new versions of AI frameworks.
Therefore, both were compatible with TensorFlow, i.e the
platform used for inference. with regard to the FPGA, we
used the Alveo U250, a cloud computing card from Xilinx,
which is compatible with Vitis-AI [21]. The silicon processes
used for both devices are similar (12 nm for the GPU and 16
nm for the FPGA), but the GPU may get a slight advantage
in this benchmark for its more advanced silicon technology.

In order to carry out the inference on the FPGA, we used
Vitis-AI. At the time of this study, the latest available version
(v. 2.0) has been used. Vitis-AI proposes two methods for the
optimization of the models. The first one is the pruning, which
consists in a reduction of the complexity of the model by a
compression while removing some non-critical sections of the
tree. The second one is the quantization, where we convert the
32 bits floating weights into 8 bits integer. The latter method,
which is freely available, is the method we used to optimize
our model before the compilation, which converts our model
into DPU (Deep Learning Processing Unit) instructions.

B. Workload characterization

For the purpose of this study, three popular models have
been trained. The first one is based on residual networks

TABLE III
WORKLOAD CHARACTERIZATION

Task Memory (GB) Cold start (s) Execution time (s) Energy (mWh)
CPU GPU CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

ResNet50 1.3 3.3 1.232 2.340 9.952 0.124 0.024 0.009 3.11 1.7 0.5
VGG16 1.8 3.3 2.514 4.641 14.528 0.143 0.046 0.010 4.34 3.43 0.55
VGG19 1.9 3.4 2.559 4.641 14.758 0.167 0.048 0.012 5.16 3.58 0.65

Fig. 2. Inference time for one image with ResNet50, VGG16 and VGG19.

(ResNet50), which uses residual blocs and can be efficiently
trained [22]. The second one is VGG16 (VGG for Visual
Geometry Group), which uses only convolutions as blocks [23]
and the third one is VGG19, a variant of VGG16 with three
additional layers [24]. Those networks are trained on a GPU,
as training is not the subject of this study.

C. Performance measurements

As the FPGA acceleration card is intended to be more
efficient than a CPU or a GPU [25], making a comparison
of the inference time with these three technologies is a first
requirement to enable the comparison of the energy cost per
image. The performance evaluation in terms of execution time
was realized with the same 10,000 images for the three differ-
ent models. We built a two classes deepfake dataset, the real
ones from the CelebA dataset [26], and the fake ones generated
using a Generative Adversarial Network (GAN) [27]. The
quantization and compilation of the graph was performed with
Vitis-AI in order to run it on the FPGA. Only considering the
inference time, it turned out that on the three tested models
(ResNet50, VGG16 and VGG19), the FPGA is 13.08 to 13.79
times faster than the CPU but also 2.52 to 4.48 times faster
than the GPU (see Figure 2).

D. Energy consumption measurements

The instant power consumption measured during inference
is the overall consumption of the machine (including CPU,
memory, mainboard, and power supply) while performing
the inference. Measurements have been done using a power
distribution unit (PDU) (Raritan PX3-5190R) which is able to
monitor instant power and energy consumption of the server
(Dell Precision T5810). The results show that inference on
CPU yields the lowest instant power consumption. This result
is quite expected as the inference on GPU or FPGA also
includes power consumption from the CPU.

However, the sole instant power consumption does not
reflect the total cost advantage of each platform properly. The
execution time needed to process all the images must be con-
sidered. The relevant measurement is energy cost per image.



Fig. 3. Energy consumption of inference per image (mWh).

Fig. 4. Total cost of inference on selected devices over time.

The energy consumption has been measured in kilowatt-hour
(kWh) for the 10,000 images, then converted into milliwatt-
hour (mWh) per image. From that point of view, it is clear
that the FPGA is the most energy efficient with regard to the
execution time, consuming 6.2 to 6.9 times less than the CPU
and 3.3 times to 6.2 times less than the GPU (see Figure 3).

E. Discussion

The results of this benchmark show a clear advantage of
the inference on FPGA regarding performance and energy
efficiency. The gains in performance are significant, especially
with deep learning networks with higher complexity [28].
Computing resources based on servers equipped with FPGA
acceleration boards, instead of GPU acceleration boards,
would benefit from these advantages.

The raw energy consumption of the inference device does
not reflect the total cost of the solution. Indeed, one must also
include the cost of the equipment itself. This is a major point
in the comparison between GPU and FPGA, because there is a
price gap between the two technologies: the GPU (RTX 2070
Super) being used for this benchmark was introduced around
600C, while the FPGA (Alveo U250) is sold around 6000C.
The cost of the electric energy to perform the inference is very
low (we used the European average of 0.1833C per kWh as
proposed in [29]), compared to the initial cost of the device:
the runtime needed to benefit from the cost advantage of the
FPGA is in the order of several months of continuous opera-
tion. Figure 4 depicts cumulative cost (in euros) of the usage of
a server with either GPU or FPGA acceleration versus time (in
years). Our cost estimate includes the number of GPU needed
with their cost to equalize the FPGA performances and uses a
2x factor [30], to account for the total power consumption of

Fig. 5. Power usage breakdown for FPGA and GPU.

the infrastructure (mainly cooling and networking). The FPGA
can become a cost effective solution after a few months for
complex CNNs. For networks with lower complexity, the cost
advantage of the FPGA is reached after more than two years.

The previous analysis is valid in the situation where the
inference is always performed at full load. Indeed when
breaking down the power consumption of the GPU between
idle power and inference power, it is clear that the GPU is
able to dynamically scale its power usage with the intensity
of the processing. The FPGA on the other side seems to have
very limited power management. Once the DPU design is
loaded into the device, its power usage at idle remains very
high (see Figure. 5). Adding to the 38W of the FPGA board
power, there is indeed a residual 60W power consumption
when the DPU is idle. Even though further evolution of the
DPU implementation on the FPGA may fix this issue (like
reducing clock tree activity when idle), this has an impact
on the total cost and must be considered if the device is not
always used at full load. With only 12W of idle power, the
GPU is a better candidate when full-load device usage cannot
be guaranteed.

As the trend towards CNNs with more complexity contin-
ues [31], using the most efficient devices will become a major
challenge. The FPGA solution offers a new option to perform
inference. However, FPGAs are not a drop-in replacement for
GPUs yet: the compilation flow remains complex and time-
consuming. A trade-off between the flexibility of the GPUs
and the efficiency of the FPGAs will have to be made. The
next section discusses a first orchestrator that considers the
above-mentionned characterization for allocating and schedul-
ing heterogeneous resources.

IV. ONLINE PHASE: AUTOSCALING AND SCHEDULING

In this section, we formulate the problem that our contribu-
tion addresses, and give a detailed description of our model.
Finally, we present a formal description of our strategy for the
autoscaling of resources and scheduling of tasks.

A. Serverless resource orchestration challenges

Scheduling workloads in the serverless paradigm is a two-
fold problem: providers have to dynamically handle resource
allocation (i.e. managing resources pools when scaling the



number of replicas for an application) and job placement (i.e.
mapping tasks to existing replicas).

Increasing the replica count introduces a performance chal-
lenge: when a new replica is spun up, be it as a container or a
virtual machine, the execution sandbox has to go through its
initialization phase. This is called a ”cold start”

Commercial solutions such as AWS Lambda often avoid
the cold start problem by maintaining pools of pre-warmed
sandboxes [32]. These virtual machines (VMs) or containers
are started in anticipation and paused in a post-initialization
state. When activity resumes, incoming requests can be served
without suffering a cold start delay, at the expanse of resources
multiplexing on the provider side. While this solution allows
reducing, or even eliminating cold start delays, it takes a toll on
the provider’s resources multiplexing capacity [33] and raises
the total cost of ownership (TCO).

Furthermore, Machine Learning as a Service (MLaaS) appli-
cations exhibit highly fluctuating load [1], thus reinforcing the
argument that a reactive resource allocation strategy is neces-
sary to rightsize the infrastructure. However, as the execution
time of inference tasks is in the ballpark of hundredths to
tenths of a second, while the initialization time of sandboxes
can range between hundredths of a second to seconds [34],
we need a mechanism to avoid incurring huge latency costs
to the execution of functions.

Mission critical tasks require service level guarantees from
the provider. SLAs in cloud computing typically consist in
agreeing on a resource availability rate over time; if the
provider fails to meet this agreement, a discount is offered to
the customer. While this may work for reserved resources, we
can see that it does not make sense in the serverless paradigm.
The ability to guarantee task response time would allow a
serverless provider to achieve per-invocation SLAs [3].

A possibility to improve performance-cost ratios is to make
use of hardware accelerators. Despite being a costly investment
(see Figure 4), these devices can achieve important speedups
for parallel tasks (see Figure 2), thus improving function
response time, with a decreased cost in energy (see Figure 3).

B. Task model

Applications are composed of functions. A function execu-
tion is called a task. In this work, there are no dependencies
between these tasks: the application is made up of pure,
stateless functions. The events that trigger the execution of
a task arrive in the system at a random, bounded interval.
We formulate the hypothesis that a request always succeeds
and leads to the execution of a task (an instance of a function).
When a task has started its execution on its allocated platform,
it runs for the totality of its execution time. We do not consider
preemption or failures in this contribution: a task always
finishes its execution successfully, albeit its response time can
exceed its QoS requirements. We do not consider possible
interference between workloads on the same node [35].

We consider tasks that can indiscriminately be executed
on heterogeneous execution platforms. In the context of our
specific case study, implementation of the different functions

TABLE IV
NOTATION DICTIONARY

Notation Description

fN,P
A function f scheduled to run on a platform

P available on node N
QP QoS penalty
QD QoS deviation

WET Worst execution time
TT Task total time
WT Wait time
CST Cold start time
ET Execution time
EC Energy consumption
HP Hardware price
TC Task consolidation
Q Task queue on a replica

replicaCountf Size of the replica pool for a function f

replicaCountf,h
Size of the replica pool for a function f on

hardware type h

concurrencyf
Average number of in-flight requests for a

function f

concurrencyf,h
Average number of in-flight requests for a
function f on replicas of hardware type h

xf,h
Concurrency threshold for a function f on a

replica of hardware type h

scaleCostfN,P

Cost of creating a new replica for function f
on a platform P available on node N

schedCostfN,P

Cost of scheduling an execution of function f
on a platform P available on node N

has been done by hand for each platform; however, work
exists to allow automatic cross-compilation to heterogeneous
architectures [36], [37]. The following metadata have been
measured for each function, on each execution platform:

• Memory requirements – the quantity of memory (in GB)
allocated for the task;

• Cold start duration – the duration of sandbox initializa-
tion when running the task on a platform that does not
have the function in cache;

• Execution time – the expected duration of effective exe-
cution of the task, excluding its initialization phase;

• Energy consumption – the difference between idle and
active energy incurred by the execution platform when it
runs the task.

Equation 1 breaks down the expected response time for the
execution of a function f on a platform P on node N .

TT fN,P
= WT fN,P

+ CST fN,P
+ ET fN,P (1)

Where:
• WT fN,P

is the duration of the scheduling decision,
including the time spent by the user request in the queue;

• CST fN,P
is the duration of initialization for the function

invocation, including its potential cold start time;
• ET fN,P

is the execution time of the function on the
platform.

We propose different levels of QoS depending on users’
needs in terms of guarantees on execution time. Each level
of QoS presents a different duration deviation (noted QD in
Equation. 3) – a factor by which the worst execution time



for a function is multiplied to give an upper bound on the
execution time of this function for this QoS level.

Predicted function execution time is always based on the
worst execution time (noted WETf ), e.g. a task’s execution
time when scheduled on the execution platform showing the
least level of performance for said function:

∀ (N,P ), WETf = maxETN,P (2)

After a task is scheduled on an execution platform, it will
go through its total time of execution described in equation 1.
The task deadline is computed by multiplying the function’s
worst response time (as expressed in equation 2) by the QoS
duration deviation associated to the user’s request’s QoS level.
Equation 3 shows that we set a boolean value QPfN,P

for each
function invocation if the tasks misses its deadline.

QPfN,P
= TTfN,P

·QDfN,P
> WETf (3)

C. Autoscaling strategy

In a serverless platform, the autoscaler has the responsibility
to allocate hardware resources for function executions. For any
function, an autoscaler can allocate n replicas. The number of
replicas for a given function at any moment determines the
concurrency level.

In Knative, the number of replicas for a given function
(equation 4) depends on the moving average load for a
function, i.e. the average number of in-flight requests for the
function on a 60 second window (in-system concurrency per
function). It is bounded by a concurrency threshold per replica,
i.e. the maximum number of requests queued in a function’s
replica at any moment [38].

replicaCountf =
concurrencyf

xf
(4)

This sizing mechanism allows allocating CPUs under Kna-
tive, in reaction to changes in the current state of concurrency
in the system. The main contribution of the autoscaler we
propose is to upgrade the Knative in order to take into account
the heterogeneity of the execution platforms.

Simple Knative mechanism does not hold when the infras-
tructure consists of a variety of execution platforms. Indeed,
such platforms exhibit various levels of performance, energy
consumption and cost. This has a consequence on the number
of replicas the provider has to deploy on these platforms:
for a given level of application load, heterogeneous replicas
will be able to handle different numbers of tasks in the same
makespan. For our platform to handle heterogeneity in the
underlying infrastructure, we propose a per-function and per-
hardware type replica count as in equation 5.

replicaCountfh =
concurrencyfh

xfh
(5)

An autoscaling decision can introduce opportunity costs in
the system: hardware accelerators are scarcely available as
compared to CPUs, and allocating them for a given function at
a given time will make them unavailable for further computa-
tions. In order for the autoscaler to decide when it is relevant
to allocate such accelerators, it has to be cost-aware.

In order to determine the concurrency threshold per replica
xf,h for a function f on hardware type h (e.g. GPU and
FPGA), we fixed the concurrency threshold per replica on
CPUs to xf,c = 100 as it is the default value in Knative [39].
Then, we used the measurements from the offline phase (ta-
ble III) to establish a composite ratio (including performance,
energy, platform price) as described in equation 6. In our
policy, we chose to favor response time by setting kET = 2

3 ,
kEC = 1.5

6 and kHP = 0.5
6 . For example, for the function

ResNet50 (described in table IV-B), task queues in replicas are
sized to 100 for CPUs, 489 for GPUs and 1292 for FPGAs.

xf,h = xf,c · (kET · ETfc

ETfh

+ kEC · ECfc

ECfh

+ kHP · HPfc

HPfh

) (6)

When the concurrency threshold for a function is exceeded
in the queues of replicas on a given hardware type, the
autoscaler will proceed to scale up the function: a new replica
will be spun up to handle further user requests.

Allocation starts with the complete list of nodes available
in the infrastructure. First, we build a subset of the available
nodes, called suitable nodes. Given the memory requirements
we measured for each function, we eliminate nodes that
currently do not have enough memory available to run a replica
for the function. Each replica deployed on a node’s execution
platform consumes the total quantity of memory required by
the function type. If the node is out of memory, its execution
platforms cannot be used to deploy any more replica.

In order to select the type of resource to allocate for this
replica, the autoscaler minimizes the cost function given in
equation 7. In our policy, as for the autoscaling, we chose to
favor total task execution time by setting kTT = 2

3 , kEC = 1.5
6

and kHP = 0.5
6 . Depending on which hardware is available in

the pool at scale up time, the autoscaler will favor creating a
new function replica on the platform that will execute the task
in the lowest total time, including cold start, with the lowest
energy consumption and the lowest price.

scaleCostfN,P
= kTT · TT fN,P

+kEC · ECfN,P

+kHP ·HP fN,P

(7)

On the contrary, when concurrency for a function falls
beneath the threshold on a given hardware type, the autoscaler
will employ a best effort policy and tries to deallocate any
replica with an empty task queue on said hardware type. If a
replica does have an empty task queue, it will be released into
the available platforms pool, and the memory it was allocated
on the node will be freed.



The different weights (k) used in equations 6 and 7 can be
modified by the provider to customize the allocation policy
according to different priorities.

D. Scheduling strategy

Workload characterization is instrumental to performance
prediction, as it can guide scheduling decisions that lead to the
fulfillment of QoS requirements [40]. Our scheduling strategy
relies on tasks metadata as described in section IV-B. Building
knowledge about serverless tasks is achieved during an offline
phase on our platform, as code is pushed to the provider’s
registries ahead of actual execution [41].

In Knative, the scheduler handles incoming tasks in a FIFO
fashion. To manage the different levels of QoS requirements,
we propose that our scheduler pops tasks from the gateway
queue by earliest deadline first. We compute the task deadline
by using its worst execution time on the platform using equa-
tion 2, and multiplying it by the allowed duration deviation set
by the QoS level. After the task execution, we will check if we
missed its deadline and set the associated penalty accordingly,
as described in equation 3.

We iterate on the function’s replicas to fetch and predict the
following metrics based on task metadata:

• potential penalty: we compute the length of the platform’s
queue and check whether the task’s deadline will be
missed, as described in equation 3;

• energy consumption: we retrieve the offline measure-
ments to establish the dynamic energy consumption for
this task on the platform;

• task consolidation: we compute the length of the plat-
form’s task queue Q by summing the total times of all
queued tasks, as described in equations 8 (queue length)
and 1 (task total time).

lenQN,P =
∑

TTfN,P
(8)

These values are normalized to fit in a weighted cost func-
tion described in equation 9. We used kQP = 2

3 , kEC = 0.5
6

and kTC = 1.5
6 (same as for the autoscaler). The scheduler

then minimizes that cost function for all replicas (N,P ) (i.e.
node and execution platform).

schedCostfN,P
= kQP ·QPfN,P

+kEC · ECfN,P

+kTC · TCfN,P

(9)

If the scheduler cannot find an available replica to execute
the task, it will be pushed back to the gateway’s task queue.
This will increase in-system concurrency for the function,
nudging the autoscaler into allocating another replica on
relevant hardware.

V. EVALUATION

A. Experimental setup

We used measurements from the evaluation of three dif-
ferent machine learning models (see table III). These models
have been implemented on three different execution platforms
(see table II) explained in section III.

These data served as input for a simulator we built using
SimPy [42]. The simulator follows the system model described
in sections II-A1, II-A2, IV-B.

We measured cold start delays for our case study appli-
cations, see table III. It appears that execution times are
dominated by cold start delays, making adequate resource
allocation a stringent requirement to comply with SLAs.

In the performance evaluation part, we compare two au-
toscalers:

• HeROfake (HRO) – Our heterogeneity-aware, metadata-
based resource allocator;

• Knative (KN) – We modeled the Knative autoscaler
behavior to the best of our knowledge.

Our evaluation extends to four schedulers:
• HeROfake (HRO) – Our cost-aware scheduler that mini-

mizes SLA violations, energy consumption and resource
usage;

• Knative (KN) – Knative selects a platform on the most
available node [4]. Execution platforms are sorted by
in-flight requests count. The platform with the shortest
queue is selected;

• Random Placement (RP) – Tasks are assigned a random
execution platform;

• Bin Packing First-Fit (BPFF) – Tasks are consolidated
on the minimum number of execution platforms. While
an execution platform has enough memory available for
incoming tasks, it is systematically chosen until it runs
out of memory; then, a new platform is selected. BPFF is
likely to be the scheduling policy for AWS Lambda [43]

We designed a two-step performance evaluation based on
simulations:

• Comparison against baselines (figure 6): in this part, we
compared our HeROfake combination of autoscaler and
scheduler (HRO-HRO) to: (1) full-featured Knative au-
toscaler and scheduler (KN-KN), (2) Knative autoscaler
with BPFF scheduler (KN-BPFF), (3) Knative autoscaler
with RP scheduler (KN-RP);

• Impact of HeROfake components on the overall
performance (figure 7): here we discuss the individual
impact of each of the autoscaler and the scheduler. To do
so, we devised different strategies: (1) using HeROfake
autoscaler with Knative scheduler, and (2) using Knative
autoscaler with HeROfake scheduler, and we compared
those strategies with full featured HeROfake and Knative.

The naming of each scenario in these figures consists of two
parts divided by a dash symbol. The first part corresponds
to the allocation policy; the second part corresponds to the
scheduling policy (for example, HRO-KN means we used



(a) Task consolidation (based on the unused node
count)

(b) QoS violations (based on tasks with missed
deadline)

(c) Dynamic energy consumption (in kWh)

Fig. 6. Evaluation 1 – Comparison against baselines

(a) Task consolidation (based on the unused node
count)

(b) QoS violations (based on tasks with missed
deadline)

(c) Dynamic energy consumption (in kWh)

Fig. 7. Evaluation 2 – Impact of HeROfake components on the overall performance

the HeROfake autoscaler in conjunction with the Knative
scheduler).

For each of the combinations of autoscaler and scheduler
policies, we ran the experiment on a synthetic workload
scenario consisting of 50000 tasks (user requests). Tasks are
assigned a random type (ResNet50, VGG16 or VGG19) and
a random QoS level (high, medium, low) following a uniform
distribution, with QoS duration deviations respectively set to
2, 3 and 4.

Weights for the concurrency level (equation 6) have been
set to kET = 2

3 , kEC = 1.5
6 and kHP = 0.5

6 . Weights for
the scale up decision (equation 7) have been set to kTT =
2
3 , kEC = 1.5

6 and kHP = 0.5
6 . Weights for the scheduling

decision (equation 9) have been set to kQP = 2
3 , kEC = 0.5

6
and kTC = 1.5

6 .

B. Experimental results

1) Comparison against baselines: Tasks consolidation.
Figure 6a shows that our combination of autoscaler and
scheduler achieves the highest number of unused nodes. Under

Knative’s autoscaler, the BPFF scheduler ensures the best
consolidation, but that policy still needs more than three times
the nodes we need with our policy. We can see that our
scheduler comes second best at task consolidation, with almost
70% of nodes left unused – a negligible degradation compared
to HRO-BPFF.

Service Level Agreements. Figure 6b shows that HRO-
HRO performs the best in terms of QoS violations, with 35%
of tasks missing their deadlines. This is a huge improvement
with regard to the Knative results, where tasks miss their
deadlines more than 99% of the time: the delay introduced
by the reactive allocation of resources cannot be compensated
in time using only CPUs.

Energy consumption. Figure 6c shows that our policy, with
the HRO autoscaler and scheduler working in conjunction,
consistently performs the best in terms of dynamic energy
consumption. This is obviously because we allocate hardware
accelerators; however, during our evaluation, the makespan
for our scenario is similar under Knative and HRO policies



(around 13.5 minutes). The BPFF scheduling policy also
performs the worst in terms of execution time, as it maximizes
the task queues in execution platforms, thus yielding the worst
results in terms of energy consumption.

2) Impact of each component: Tasks consolidation. Fig-
ure 7a shows that HRO-HRO performs the best at task
consolidation, leaving just under 70% of the available nodes
unused, while Knative’s scheduler under our autoscaling policy
only achieves 40% of unused nodes. This result is expected, as
Knative’s scheduler employs a Least Connected policy. We see
mediocre consolidation results for KN-HRO, but for a different
reason: this is because our scheduler tries to minimize QoS
violations and spreads the task across all the allocated CPUs.

Service Level Agreements. Figure 7b shows that our
scheduler performs the worst when executed in conjunction
with Knative’s autoscaler. This is because our scheduler tries
to minimize penalties: when given only CPUs to work with,
it will behave similarly to Knative’s scheduler and spread
tasks across theses CPUs to limit QoS violations. However,
our scheduler under the Knative autoscaler still manages to
keep QoS violations at around 50% of tasks, showing that
there is room for improvement even when deploying inference
tasks on CPUs only. Note that during our evaluation, the
Knative autoscaler gave the worst results regarding cold starts
frequency (6.5 more under KN-HRO than under HRO-KN).

Energy consumption. Figure 7c shows that energy con-
sumption is always lower when using our autoscaler, which
can allocate hardware accelerators. However, our scheduler
used with Knative’s autoscaler yields the worst results in
terms of energy consumption. This is again the result of the
scheduler trying to minimize penalties and spreading task
across a maximum number of CPUs.

VI. STATE OF THE ART

Previous work focused on autoscaling platforms for the
deployment of short-lived tasks, comprised in applications
exhibiting unpredictable load patterns. Table I summarises how
these contributions differ from our target platform.

Some of these contributions attempted to achieve SLA with
unreserved resources [1], [3], [5], [6], [44]–[46]. Among these
contributions, some focus on the use of additional hetero-
geneous hardware resources to accelerate workload execu-
tion [2], [3], [7]. They often require overcommitting resources
to make use of hardware acceleration, e.g. by relying on
reserved AWS instances that provide access to GPUs [3],
using a pool of pre-warmed containers [2], or even proactively
provisioning nodes to meet user-defined function deadlines [6].
These interesting solution however may fall short in terms of
resource usage and would incur additional energy consumption
in a private cloud.

Furthermore, some authors focus on homogeneous infras-
tructures [1], [4]–[7]. Those studies could hardly fit the
private cloud setting we target, where resources are usually
transient and heterogeneous. Also, some of these contributions
propose task models that do not cover user-defined, per-
request SLA [2], [4]. Finally, some of these contributions are

performance-oriented rather than cost-oriented which is crucial
in our cloud context [1], [2], [6], [8].

In spite of power being one of the topmost part of the
total cost of ownership (TCO) in a datacenter – sometimes
exceeding the cost of buying hardware [20] – to the best of
our knowledge, none of these contributions cover the impact
of dynamic allocation and dynamic placement on energy
consumption, nor do they consider energy consumption as a
QoS metric. This is a serious limitation, as optimizing for task
consolidation opens possibilities for throttling and powering-
off policies that can have a major impact on a datacenter’s
energy efficiency [47].

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced HeROfake, our framework for
the deployment of short-lived, interactive deepfake detection
tasks on a private, heterogeneous serverless cloud.

We presented the two phases that make up this framework:
an offline phase during which we characterize execution plat-
form performances and task requirements; and an online phase
during which we dynamically allocate resources and schedule
tasks to run on those platforms.

Experimental results show that while total task execution
time in HeROfake is similar to vanilla Knative, we achieve
more than 60% reduction in QoS penalties; tasks are consol-
idated on less than 40% of the infrastructure’s nodes, with
77% execution platforms left unused; and dynamic energy
consumption is reduced by 35% as compared to Knative.

The inclusion of video handling in the framework is an inter-
esting challenge, as it would introduce dependencies between
tasks. Function executions would not be stateless anymore,
resulting in the necessity to tackle the problem of intermediate
data storage in a serverless infrastructure.

We also intend to extend the simulator with a parser so as to
be able to use real datacenter traces as input scenarios, instead
of using synthetic workloads only.

REFERENCES

[1] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B.
Brandenburg, “Swayam: Distributed autoscaling to meet SLAs of
machine learning inference services with resource efficiency,” in
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.
Las Vegas Nevada: ACM, Dec. 2017, pp. 109–120. [Online]. Available:
https://doi.org/10.1145/3135974.3135993

[2] W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon: A dynamic and efficient
serverless and FaaS framework for private cloud,” in 2019 International
Conference on Computational Science and Computational Intelligence
(CSCI). Las Vegas, NV, USA: IEEE, Dec. 2019, pp. 1416–1421.
[Online]. Available: https://doi.org/10.1109/CSCI49370.2019.00265

[3] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting cloud
services for cost-effective, SLO-aware machine learning inference
serving,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19). Renton, WA: USENIX Association, Jul. 2019, pp. 1049–
1062. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/zhang-chengliang

[4] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “ENSURE: Efficient scheduling and autonomous
resource management in serverless environments,” in 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). Washington, DC, USA: IEEE, Aug. 2020, pp. 1–10.
[Online]. Available: https://doi.org/10.1109/ACSOS49614.2020.00020

https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1109/CSCI49370.2019.00265
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://doi.org/10.1109/ACSOS49614.2020.00020


[5] A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware
dynamic resource management in serverless computing environments,”
in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). Melbourne, Australia: IEEE,
May 2021, pp. 483–492. [Online]. Available: https://doi.org/10.1109/
CCGrid51090.2021.00058

[6] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency
serverless platform,” in Proceedings of the ACM Symposium on Cloud
Computing. Seattle WA USA: ACM, Nov. 2021, pp. 138–152.
[Online]. Available: https://doi.org/10.1145/3472883.3486981

[7] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and K. Li,
“INFless: A native serverless system for low-latency, high-throughput
inference,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. Lausanne Switzerland: ACM, Feb. 2022, pp. 768–781.
[Online]. Available: https://doi.org/10.1145/3503222.3507709

[8] J. Cho, D. Z. Tootaghaj, L. Cao, and P. Sharma, “SLA-driven ml
inference framework for clouds with heterogeneous accelerators,” in
Proceedings of Machine Learning and Systems, vol. 4, 2022, pp.
20–32. [Online]. Available: https://proceedings.mlsys.org/paper/2022/
file/0777d5c17d4066b82ab86dff8a46af6f-Paper.pdf

[9] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Commun. ACM, vol. 64, no. 5, p. 76–84, apr 2021.
[Online]. Available: https://doi.org/10.1145/3406011

[10] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A Berkeley view on serverless
computing,” CoRR, vol. abs/1902.03383, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383

[11] K. Owens, “CNCF WG-Serverless whitepaper v1.0,” Cloud Native
Computing Foundation, Tech. Rep., 2018.

[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of the Third ACM Symposium
on Cloud Computing, ser. SoCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2391229.2391236

[13] A. Khandelwal, A. Kejariwal, and K. Ramasamy, “Le Taureau:
Deconstructing the serverless landscape & a look forward,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. Portland OR USA: ACM, Jun. 2020, pp. 2641–
2650. [Online]. Available: https://doi.org/10.1145/3318464.3383130

[14] T.-A. Yeh, H.-H. Chen, and J. Chou, “KubeShare: A framework to
manage GPUs as first-class and shared resources in container cloud,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 173–184.
[Online]. Available: https://doi.org/10.1145/3369583.3392679

[15] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “GPU-NEST:
Characterizing energy efficiency of multi-GPU inference servers,” IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 139–142, 2020.
[Online]. Available: https://doi.org/10.1109/LCA.2020.3023723

[16] E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG cloud group’s vision on the performance challenges
of FaaS cloud architectures,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering.
Berlin Germany: ACM, Apr. 2018, pp. 21–24. [Online]. Available:
https://doi.org/10.1145/3185768.3186308

[17] J.-E. Dartois, H. B. Ribeiro, J. Boukhobza, and O. Barais, “Cuckoo:
Opportunistic MapReduce on ephemeral and heterogeneous cloud
resources,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). Milan, Italy: IEEE, Jul. 2019, pp. 396–403.
[Online]. Available: https://doi.org/10.1109/CLOUD.2019.00070

[18] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada: Interactive
data analytics on cold data using serverless cloud infrastructure,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. Portland OR USA: ACM, Jun. 2020, pp.
115–130. [Online]. Available: https://doi.org/10.1145/3318464.3389758

[19] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and

solutions,” in 2011 International Conference on Cloud and Service
Computing. Hong Kong, China: IEEE, Dec. 2011, pp. 1–10. [Online].
Available: https://doi.org/10.1109/CSC.2011.6138522

[20] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 732–794, 2016. [Online]. Available: https:
//doi.org/10.1109/COMST.2015.2481183

[21] Xilinx. (2022) Vitis-AI. [Online]. Available: https://github.com/Xilinx/
Vitis-AI

[22] T. Liu, M. Chen, M. Zhou, S. S. Du, E. Zhou, and T. Zhao,
“Towards understanding the importance of shortcut connections in
residual networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/7716d0fc31636914783865d34f6cdfd5-Paper.pdf

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[24] S. Sukegawa, K. Yoshii, T. Hara, K. Yamashita, K. Nakano,
N. Yamamoto, H. Nagatsuka, and Y. Furuki, “Deep neural networks
for dental implant system classification,” Biomolecules, vol. 10, no. 7,
2020. [Online]. Available: https://www.mdpi.com/2218-273X/10/7/984

[25] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison
of FPGA, GPU and CPU in image processing,” in 2009 International
Conference on Field Programmable Logic and Applications, 2009,
pp. 126–131. [Online]. Available: https://doi.org/10.1109/FPL.2009.
5272532

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” 2014. [Online]. Available: https://arxiv.org/abs/1411.7766

[27] O. Giudice, L. Guarnera, and S. Battiato, “Fighting deepfakes by
detecting GAN DCT anomalies,” Journal of Imaging, vol. 7, no. 8,
2021. [Online]. Available: https://www.mdpi.com/2313-433X/7/8/128

[28] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and
P. H. Jones, “Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels,” in 2019 IEEE International
Conference on Embedded Software and Systems (ICESS), 2019, pp.
1–8. [Online]. Available: https://doi.org/10.1109/ICESS.2019.8782524

[29] Eurostat. (2022) Electricity prices for non-household consumers.
[Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/
index.php?title=Electricity price statistics#Electricity prices for
non-household consumers

[30] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States data
center energy usage report,” Lawrence Berkeley National Lab, Tech.
Rep. LBNL–1005775, 1372902, Jun. 2016.

[31] A. Elhassouny and F. Smarandache, “Trends in deep convolutional
neural networks architectures: A review,” in 2019 International
Conference of Computer Science and Renewable Energies (ICCSRE),
2019, pp. 1–8. [Online]. Available: https://doi.org/10.1109/ICCSRE.
2019.8807741

[32] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless
computing: Current trends and mitigation strategies,” in 2020
International Conference on Omni-layer Intelligent Systems (COINS).
Barcelona, Spain: IEEE, Aug. 2020, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/COINS49042.2020.9191377

[33] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” in 9th Biennial Conference on Innovative
Data Systems Research, CIDR 2019, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings. www.cidrdb.org, 2019. [Online].
Available: http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[34] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and
safer) than your container,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 218–233. [Online].
Available: https://doi.org/10.1145/3132747.3132763

[35] J.-E. Dartois, J. Boukhobza, A. Knefati, and O. Barais, “Investigating
machine learning algorithms for modeling SSD I/O performance for
container-based virtualization,” IEEE Transactions on Cloud Computing,
vol. 9, no. 3, pp. 1103–1116, Jul. 2021.

https://doi.org/10.1109/CCGrid51090.2021.00058
https://doi.org/10.1109/CCGrid51090.2021.00058
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3503222.3507709
https://proceedings.mlsys.org/paper/2022/file/0777d5c17d4066b82ab86dff8a46af6f-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/0777d5c17d4066b82ab86dff8a46af6f-Paper.pdf
https://doi.org/10.1145/3406011
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/3318464.3383130
https://doi.org/10.1145/3369583.3392679
https://doi.org/10.1109/LCA.2020.3023723
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1109/CLOUD.2019.00070
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1109/CSC.2011.6138522
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/COMST.2015.2481183
https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI
https://proceedings.neurips.cc/paper/2019/file/7716d0fc31636914783865d34f6cdfd5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7716d0fc31636914783865d34f6cdfd5-Paper.pdf
http://arxiv.org/abs/1409.1556
https://www.mdpi.com/2218-273X/10/7/984
https://doi.org/10.1109/FPL.2009.5272532
https://doi.org/10.1109/FPL.2009.5272532
https://arxiv.org/abs/1411.7766
https://www.mdpi.com/2313-433X/7/8/128
https://doi.org/10.1109/ICESS.2019.8782524
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers
https://doi.org/10.1109/ICCSRE.2019.8807741
https://doi.org/10.1109/ICCSRE.2019.8807741
https://doi.org/10.1109/COINS49042.2020.9191377
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.1145/3132747.3132763


[36] E. Horta, H.-R. Chuang, N. R. VSathish, C. Philippidis, A. Barbalace,
P. Olivier, and B. Ravindran, “Xar-Trek: Run-time execution migration
among FPGAs and heterogeneous-ISA CPUs,” in Proceedings
of the 22nd International Middleware Conference. Québec city
Canada: ACM, Dec. 2021, pp. 104–118. [Online]. Available:
https://doi.org/10.1145/3464298.3493388

[37] Y. Zha and J. Li, “When application-specific ISA meets FPGAs: A
multi-layer virtualization framework for heterogeneous cloud FPGAs,”
in Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 123–134. [Online]. Available:
https://doi.org/10.1145/3445814.3446699

[38] T. Knative Authors. (2022) Knative – Autoscaling. [Online]. Available:
https://github.com/knative/serving/tree/main/docs/scaling

[39] ——. (2022) Knative – Configuraing concurrency. [Online].
Available: https://knative.dev/docs/serving/autoscaling/concurrency/
#soft-versus-hard-concurrency-limits

[40] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on
resource management in serverless computing environments: Taxonomy
and future directions,” ACM Computing Surveys, p. 3510412, Jan.
2022. [Online]. Available: https://doi.org/10.1145/3510412

[41] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload
at a large cloud provider,” in Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX
ATC’20. USA: USENIX Association, 2020, p. 14. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[42] T. SimPy. (2022) SimPy. [Online]. Available: https://simpy.readthedocs.
io/

[43] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, Jul. 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[44] M. Handaoui, J.-E. Dartois, J. Boukhobza, O. Barais, and L. d’Orazio,
“ReLeaSER: A reinforcement learning strategy for optimizing utilization
of ephemeral cloud resources,” in 2020 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE, 2020,
pp. 1–8.

[45] M. Handaoui, J.-E. Dartois, L. Lemarchand, and J. Boukhobza, “Sala-
mander: A holistic scheduling of MapReduce jobs on ephemeral cloud
resources,” in The 20th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2020, pp. 320–329.

[46] S. Yalles, M. Handaoui, J.-E. Dartois, O. Barais, L. d’Orazio, and
J. Boukhobza, “RISCLESS: A reinforcement learning strategy to guar-
antee SLA on cloud ephemeral and stable resources,” in 2022 30th Eu-
romicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), 2022, pp. 83–87.

[47] N. Chaurasia, M. Kumar, R. Chaudhry, and O. P. Verma,
“Comprehensive survey on energy-aware server consolidation
techniques in cloud computing,” The Journal of Supercomputing,
vol. 77, no. 10, pp. 11 682–11 737, Oct. 2021. [Online]. Available:
https://doi.org/10.1007/s11227-021-03760-1

https://doi.org/10.1145/3464298.3493388
https://doi.org/10.1145/3445814.3446699
https://github.com/knative/serving/tree/main/docs/scaling
https://knative.dev/docs/serving/autoscaling/concurrency/#soft-versus-hard-concurrency-limits
https://knative.dev/docs/serving/autoscaling/concurrency/#soft-versus-hard-concurrency-limits
https://doi.org/10.1145/3510412
https://www.usenix.org/conference/atc20/presentation/shahrad
https://simpy.readthedocs.io/
https://simpy.readthedocs.io/
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1007/s11227-021-03760-1

	Introduction
	Deploying Deepfake Detection Tasks in Serverless Cloud
	Platform model
	Nodes
	Execution platforms

	Overall project description

	Offline phase: measurement and metadata extraction
	Execution platform benchmarks
	Workload characterization
	Performance measurements
	Energy consumption measurements
	Discussion

	Online phase: Autoscaling and scheduling
	Serverless resource orchestration challenges
	Task model
	Autoscaling strategy
	Scheduling strategy

	Evaluation
	Experimental setup
	Experimental results
	Comparison against baselines
	Impact of each component


	State of the Art
	Conclusion and Future Work
	References

