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Abstract— Flutter monitoring can be handled by tracking the
real time variations of the modal parameters of a specified civil
structure, be it a bridge or an aircraft. Previous algorithmic
attempts encompass automated batch identification and damage
detection through hypothesis testing. Both approaches appear
impractical, the first one because of computational time consid-
erations and the difficulty to select a windows length with the
best trade off between bias and variance, the second because of
the difficulty to obtain reference data set close to flutter regime.
Here, we investigate the capabilities of a sample wise recursive
Kalman filter–based gradient approach and compare it to its
particle filter counterpart.

I. INTRODUCTION

A critical problem for mechanical structures exposed to
unmeasured non stationary natural excitation (turbulence)
is an instability phenomenon also known as flutter. It is
formulated as the monitoring of the time varying com-
plex eigenvalues associated to the discretized linear system
corresponding to the monitored mechanical system. It has
already been investigated through batch identification modal
analysis using only output-only in-flight data has already
been investigated. See Mevel et al [1] for a case study of
monitored aircraft using subspace identification methods.

For improving the estimation of the parameters of interest,
the collection of frequency and damping coefficients, and
moreover for achieving this in real-time during flight tests,
one possible route is to resort to tracking algorithms.

Frequency and damping coefficients are monitored by
a recursive maximum likelihood (RML) procedure. The
considered tracking procedure is a special case of adaptive
algorithms where the gain is kept constant. The approxi-
mation of the associated score function is evaluated by a
joint particle approximation of the conditional law and its
derivative w.r.t. to the parameters (the tangent filter). Particle
filtering techniques [2] are simple to implement and have
many advantages in practice like robustness. Doucet & Tadic
[3], Guyader et al [4], and Caylus et al [5] already applied
these techniques to RML estimation. The problem presented
here was previously treated by Fichou et al [6] in a more
simple framework.

Particle approximation for health monitoring was already
proposed by Yoshida & Sato [7] in order to handle non–
Gaussian noise. Modal characteristics monitoring is also
considered by Ching et al [8]. In both cases authors use
a state augmentation approach by including the unknown

parameters in the state process. It seems preferable to directly
identify these parameters by a likelihood approach.

In a first part the structural health monitoring problem is
written in term of recursive maximum likelihood estimate
(RMLE) in a state–space model. Then a Kalman filter
expression of the score function is proposed together with an
alternate particle filter approximation. Last part is devoted to
a case study.

II. THE PROBLEM

A. Dynamical model and structural parameters

Let us consider observations sampled at a rate 1/δ

yk = LZ(k δ) (1)

of the state Z(t) of a n–degrees of freedom mechanical
system. These measurements are gathered through d sensors,
i.e. yk takes values in Rd. The matrix L indicates which
components of the state vector are actually measured, i.e.
where the sensors are located. The behavior of the mechan-
ical system is described by the following linear dynamical
system

M Z̈(t) + C Ż(t) + KZ(t) = σ ζ(t) (2)

where the (non measured) input force ζ is a non–stationary
white Gaussian noise with time-varying covariance matrix
Qζ(t). M, C, K are respectively the matrices of mass,
damping and stiffness.

Now let us describe the structural characteristics of the
system (2). The modes or eigenfrequencies µ and the asso-
ciated eigenvectors Φµ of the system (2) are solutions of

det[µ2 M + µC + K] = 0 ,
[µ2 M + µC + K] Φµ = 0 .

(3)

Then the mode–shapes are Ψµ = L Φµ. The frequency and
damping coefficients are

f = b
2π (Hz) , d = |a|√

a2+b2 ∈ [0, 1] (4)

with a = �(µ) and b = �(µ).

The monitored structure is defined by its modal charac-
teristics: the collection of frequencies, dampings and mode
shapes, as well as the covariances of the noises. The problem
is to follow the slow evolutions of the structural character-
istics of the mechanical system (2) by a recursive tracking



method, whose starting values will be defined as the output
of the data driven subspace method as described in Van
Overschee & De Moor [9, Fig. 3.13 p. 90].

The tracking algorithm will focus on the frequencies and
dampings, the mode shapes are assumed not to change
significantly during the monitoring in regard to the changes
in the eigenvalues. A change in the mode shapes would most
likely be a local change in the structure, thus will indicate
the presence of damage, whereas a change in the eigenvalues
can still occur without presence of damage and not affect
significantly the mode shapes (as for example the effect of
temperature on the stiffness of the structure).

B. State–space model and canonical parameterization

We rewrite the preceding system (1)–(2) as a linear state–
space model. Define

Xk
def=

[
Z(k δ)

Ż(k δ)

]

and F
def= eδA with A

def=
[

0 I
−M−1 K −M−1 C

]
∈ R2n×2n.

From (2) we get

Xk+1 = F Xk + σ ζk (5)

where ζk
def=

∫ kδ

(k−1)δ
e(kδ−u) A d

[
0

dBu

]
and Bt

def=
∫ t

0
ζ(s) ds

is a Brownian motion. Hence ζk is a (discrete–time) white
Gaussian noise with covariance matrix∫ kδ

(k−1)δ e
(kδ−u) A

[
0 0
0 M−1 Qζ(u) (M−1)∗

]
e(kδ−u) A∗

du

which is approximated by δQζ
k with

Qζ
k

def=
[

0 0
0 M−1 Qζ(kδ) (M−1)∗

]
.

From (1) we get

yk = [L 0]Xk + ν vk (6)

where [L 0] ∈ Rd×2n and vk is a N(0,Qv
k) white Gaussian

noise which allows to take into account of the errors of
modeling and the measurement noise. We suppose that the
Hermitian matrix Qv

k is positive definite.

Let (λ,Φλ) be the eigenstructure of the state transition
matrix F , namely

det(F − λ I) = 0 , (F − λ I)Φλ = 0 . (7)

The parameters (µ,Φµ) in (3) can be deduced from the
(λ,Φλ)’s using eδ µ = λ and Φµ = Φλ. The frequency
and damping coefficients (4) are recovered from a discrete
eigenvalue λ through

a = 1
δ log |λ| , b = 1

δ arctan
[
�(λ)
�(λ)

]
.

Hypothesis: We suppose that F admits 2n pairwise complex
conjugate distinct eigenvalues λ1:n, λ̄1:n with associated or-
thonormal set of eigenvectors Φ1:n, Φ̄1:n (1). We also suppose
that these eigenvalues have modulus less than one.

1Notations: xT is the transpose of x, x̄ is the complex conjugate, x∗ is
the transpose/conjugate, |x| the modulus, j will denote

√−1.

It turns out that this collection of modes forms a very
natural parameterization for structural analysis. It is invariant
w.r.t. changes in the state basis of system (5)–(6). In other
words, the (λ,Φλ)’s form a canonical parameterization of the
eigenstructure (or equivalently the pole part) of that system.

1) Change of variables: Define

Φ def= [Φ1:n] , Ψ def= [Ψ1:n] , Λ def= diag(λ1:n) .

We introduce the following linear transformation

T
def= [Φ Φ̄] ∈ C

2n×2n ,

i.e. the matrix whose columns are the eigenvectors of F . It
is a unitary matrix, i.e. T −1 = T ∗. Then[

Λ (0)
(0) Λ̄

]
= T ∗ F T ∈ C

2n×2n .

Define also

H
def= [L 0] T = [L 0] [Φ Φ̄] = [Ψ Ψ̄] ∈ C

d×2n ,

Then after the change of variables

X̃k
def= T ∗Xk ,

the vector X̃k is of the form [ xk
x̄k

] and (5) reduces to

xk+1 = Λ xk + σΦ∗ ζk , ζk
iid∼ N(0, δQζ

k) .

Note that in practice we just have access to the mode shapes
matrix Ψ1:n and not to the eigenvectors matrix Φ1:n, so in
order to fully specify the state equation we suppose that the
covariance matrix Qζ

k is of the form [L 0]∗Qk [L 0] for a
given covariance matrix Qk. Hence wk

def= Φ∗ ζk is a white
Gaussian noise with covariance matrix Qw

k
def= δΨ∗Qk Ψ.

The observation equation (6) becomes

yk = Ψ xk + Ψ̄ x̄k + ν vk , vk
iid∼ N(0,Qv

k) .

Note that Ψx+ Ψ̄ x̄ = 2�{Ψx} is a linear operator.

2) The state/space system: One finally obtains the follow-
ing system

xk+1 = Λ xk + σ wk , wk
iid∼ N(0,Qw

k ) , (8)

yk = 2�{Ψ xk}+ ν vk , vk
iid∼ N(0,Qv

k) . (9)

In this model all parameters are assumed known, or pre-
viously estimated, except the eigenvalues matrix Λ def=
diag(λ1:n) and the noise intensities σ and ν. The mode
shapes matrix Ψ = [Ψ1:n], the sampling period δ, and
the covariance matrices Qk and Qv

k are given (then Qw
k =

δΨ∗Qk Ψ). From now on we suppose that Qv
k = I .

C. The RMLE procedure

Let Lk(θ) be the likelihood function of θ for the obser-
vations y1:k. We will see that the normalized log–likelihood
function �k(θ) def= 1

k logLk(θ) admits an incremental formu-
lation

�k(θ) =
1
k

k∑
l=1

rl(θ) .



Then the score function is

�̇k(θ) =
1
k

k∑
l=1

ṙl(θ)

and the RMLE procedure is

θk ← θk−1 + γk × ṙk(θk−1)

where γk is a non–increasing sequence of positive numbers.

In § III we present the Kalman filter–based approximation
of the score increment ṙk(θ) and in § IV its particle filter–
based counterpart. This last approximation, contrary to the
first one, is valid in the nonlinear/non–Gaussian case. These
procedures are applied to our problem in § V.

III. KALMAN RMLE FOR A LINEAR SYSTEM

Consider the following linear system

xk+1 = F (θ) xk +G(θ)wk , wk
iid∼ N(0,Qw

k ) ,

yk = H(θ) xk + Σ(θ) vk , vk
iid∼ N(0,Qv

k) ,

The state process xk takes values in Cn, the observation
process yk in Cd. The state initial law is x0 ∼ N(x̄0,R0).
Initial condition x0, state noise wk and observation noise vk

are mutually independent.
Here θ ∈ R is an unknown real parameter: the derivative

w.r.t. this parameter will be denoted “∂θ” or “·” where there
is no ambiguity.

Suppose that the matrices F (θ) ∈ Cn×n, G(θ) ∈ Cn×n′
,

H(θ) ∈ Cd×n and Σ(θ) ∈ Cd×d′
are differentiable w.r.t. θ.

For every fixed θ, the conditional laws law(xk|y1:k−1) =
N(x̂θ

k− ,Rθ
k− ) and law(xk|y1:k) = N(x̂θ

k,Rθ
k) are given

recursively by the Kalman filter (see Part b in TABLE I).

A. Likelihood function

One expresses the law of the observations y1:k via the
innovation process

ı̂k
def= yk − Eθ[yk|y1:k−1] = yk −H(θ) x̂θ

k− .

Note that

Pθ(y1:k ∈ dy1:k) =
∏k

l=1 Pθ(yl ∈ dyl|y1:l−1 = y1:l−1)

and law(yk|y1:k−1) = N(H(θ) x̂θ
k− ,Sθ

k) where Sθ
k is the

covariance of the innovation process (see Part b in TABLE I).
We get

Pθ(y1:k ∈ dy1:k) =
∏k

l=1 g
θ
l (yl) dyl

where gθ
k(y) is the p.d.f. of the N(H(θ) x̂θ

k− ,Sθ
k) law. This

means that

rl(θ)
def= log gθ

l (yl) .

B. Score function

In order to calculate the score increment ṙk(θ), one sets
an auxiliary result. Consider the p.d.f. q θ(x) of the normal
law N(µ(θ),R(θ)) on Cn whose mean µ(θ) and covariance
matrix R(θ) > 0 are differentiable w.r.t. a scalar parameter
θ ∈ R. Then the two classical identities

∂θ log |R(θ)| = ∂θ|R(θ)|
|R(θ)| = trace

{
[R(θ)]−1 Ṙ(θ)

}
,

∂θ[R(θ)]−1 = −[R(θ)]−1 Ṙ(θ) [R(θ)]−1

a – initialization

θ (initial guess) x̂θ
0 = x̄0 Rθ

0 = R0

b – Kalman filter

x̂θ
k− = F (θ) x̂θ

k−1

Rθ
k− = F (θ) Rθ

k−1 F (θ)∗ +G(θ)Qw
k−1G(θ)∗

ı̂θk = yk −H(θ) x̂θ
k−

Sθ
k = H(θ) Rθ

k− H(θ)∗ + Σ(θ) Qv
k Σ(θ)∗

Kθ
k = Rθ

k− H(θ)∗ [Sθ
k ]−1

x̂θ
k = x̂θ

k− +Kθ
k ı̂

θ
k

Rθ
k =

{
I −Kθ

k H(θ)
} Rθ

k−

c – tangent Kalman filter

˙̂xθ
k− = F (θ) ˙̂xθ

k−1 + Ḟ (θ) x̂θ
k−1

Ṙθ
k− = F (θ) Ṙθ

k−1 F (θ)∗

+ Ḟ (θ) Rθ
k−1 F (θ)∗ + F (θ) Rθ

k−1 Ḟ (θ)∗

+ Ġ(θ) Qw
k−1 G(θ)∗ +G(θ) Qw

k−1 Ġ(θ)∗

˙̂ıθk = −Ḣ(θ) x̂θ
k− −H(θ) ˙̂xθ

k−

Ṡθ
k = H(θ) Ṙθ

k− H(θ)∗

+ Ḣ(θ) Rθ
k− H(θ)∗ +H(θ) Rθ

k− Ḣ(θ)∗

+ Σ̇(θ) Qv
k Σ(θ)∗ + Σ(θ) Qv

k Σ̇(θ)∗

K̇θ
k = Ṙθ

k− H(θ)∗ [Sθ
k ]−1 +Rθ

k− Ḣ(θ)∗ [Sθ
k ]−1

−Rθ
k− H(θ)∗ [Sθ

k ]−1 Ṡθ
k [Sθ

k]−1

˙̂xθ
k = ˙̂xθ

k− + K̇θ
k ı̂

θ
k +Kθ

k
˙̂ıθk

Ṙθ
k =

{
I −Kθ

k H(θ)
} Ṙθ

k−

− {
K̇θ

k H(θ) +Kθ
k Ḣ(θ)

} Rθ
k−

d – score increment

ı̃θk = [Sθ
k ]−1 ı̂θk

ṙk(θ) = − 1
2

trace
{
[Sθ

k ]−1 Ṡθ
k

} − 1
2

[̃ıθk]∗ Ṡθ
k ı̃

θ
k

+ �
{
[̃ıθk]∗

{
H(θ) ˙̂xθ

k− + Ḣ(θ) x̂θ
k−

}}

e – parameters update

θ ← θ + γk × ṙk(θ)

TABLE I

Kalman recursive maximum likelihood procedure.



applied to log qθ(x) give

∂θ log qθ(x) = − 1
2 trace

{
[R(θ)]−1 Ṙ(θ)

}
+ �

{{
x− µ(θ)

}∗ [R(θ)]−1 µ̇(θ)
}

− 1
2

{
x− µ(θ)

}∗ [R(θ)]−1 Ṙ(θ) [R(θ)]−1
{
x− µ(θ)

}
.

From this result the score increment is

ṙk(θ) = − 1
2 trace

{
[Sθ

k ]−1 Ṡθ
k

}
+ �

{{
yk −H(θ) x̂θ

k−
}∗ [Sθ

k ]−1

× {
H(θ) ˙̂xθ

k− + Ḣ(θ) x̂θ
k−

}}
− 1

2

{
yk −H(θ) x̂θ

k−
}∗ [Sθ

k ]−1 Ṡθ
k [Sθ

k ]−1

× {
yk −H(θ) x̂θ

k−
}
.

TABLE I page 3 presents the complete algorithm.

IV. PARTICLE FILTER RMLE FOR A NONLINEAR SYSTEM

A. The problem

Consider a state/observation process whose law depends
on an unknown parameter θ ∈ R. The state process x =
{xk}k≥0 takes values in Rn, it is Markovian with transition
kernel Qθ

k and initial probability law µ0,

Qθ
k(dx′|x) def= Pθ(xk+1 ∈ dx′|xk = x) , (10)

µ0(dx)
def= Pθ(x0 ∈ dx) . (11)

This process describes the evolution of a non observed
system. The observation process y = {yk}k≥1 takes values
in Rd. We suppose that (i) conditionally to the state process,
the observations yk are independent, and (ii) the observation
yk depends only on xk (yk is the observation of xk), i.e.

Pθ(y1:k ∈ dy1:k|x0:k = x0:k) =
k∏

l=1

Pθ(yl ∈ dyl|xl = xl) .

(12)

The law of the state/observation process (x, y) is now com-
pletely specified. We assume moreover that the conditional
law of yk given xk admits a density w.r.t. the Lebesgue
measure:

ψθ
k(y|x) dy def= Pθ(yk ∈ dy|xk = x) . (13)

Then the law of the process (x, y) can be expressed explicitly
according to the three basic terms (10), (11) and (13), see
§ IV-C. This situation corresponds to the following diagram

x0 xk−1

yk−1

xk

yk

xk+1

yk+1

Qθ
k−1 Qθ

k

ψθ
k−1 ψθ

k ψθ
k+1

The system depends on the parameter θ through the kernel
Qθ

k and the local likelihood function ψ θ
k. For simplicity we

suppose that the initial law does not depend on θ.

Here, like in Doucet & Tadic [3], we consider the case
where the Markov kernel Qθ

k admits a density w.r.t. the
Lebesgue measure

Qθ
k(dx′|x) = qθ

k(x′|x) dx .

The case of a Markov kernel without density was treated
in Guyader et al [4] and Fichou et al [6]. This hypothesis
is not required to establish the equations of the nonlinear
optimal filter but it simplifies the derivation of the tangent
filter.

Example: Consider a state–space model

xk+1 = fθ
k (xk) + σθ

w wk , wk ∼ N(0,Qw
k ) ,

yk = hθ
k(xk) + σθ

v vk , vk ∼ N(0,Qv
k) ,

where xk and yk take with values in Rn and Rd; wk, vk,
x0 are independent; x0 ∼ µ0; σθ

w and σθ
v are scalar positive

numbers. Here Qθ
k(dx′|x) = qθ

k(x′|x) dx′ and

qθ
k(x′|x) =

{
(2 π)n (σθ

w)2n |Qw
k |

}−1/2

× exp
{
− 1

2 (σθ
w)2

[x′ − fθ
k (x)]∗ [Qw

k ]−1 [x′ − fθ
k (x)]

}
,

ψθ
k(y|x) =

{
(2 π)d (σθ

v )2d |Qv
k|

}− 1
2

× exp
{
− 1

2 (σθ
v )2

[y − hθ
k(x)]∗ [Qv

k]−1 [y − hθ
k(x)]

}
.

B. Nonlinear filter

Define the nonlinear filter and the predicted nonlinear filter

πθ
k(dx|y1:k) def= Pθ(xk ∈ dx|y1:k = y1:k) ,

πθ
k−(dx|y1:k−1)

def= Pθ(xk ∈ dx|y1:k−1 = y1:k−1) .

We also use the notation πθ
k(dx) def= πθ

k(dx|y1:k), πθ
k−(dx) def=

πθ
k−(dx|y1:k−1) and ψθ

k(x) def= ψθ
k(yk|x). These conditional

densities can be recursively obtained through the classical
two steps procedure:

πθ
k−1 πθ

k− = πθ
k−1Q

θ
k−1 πθ

k = Ψθ
k[πθ

k− ]
prediction correction

(14)

where the prediction (linear) operator Qθ
k−1 and the cor-

rection (nonlinear) operator Ψθ
k, which act on the space of

probability measures, are defined by

πQθ
k−1(dx

′) def=
∫
Qθ

k−1(dx
′|x) π(dx) , (15)

Ψθ
k[π](dx) def=

ψθ
k(x) π(dx)
〈π, ψθ

k〉
(16)

where

〈π , ψ〉 def=
∫

Rn ψ(x)π(dx) .

Qθ
k is the transition kernel of the Markov chain xk and the

first step in (14) is the Chapman–Kolmogorov equation. The
second step in (14) is a Bayes formula. The initial condition
in (14) is πθ

0 = µ0.



C. Likelihood and score functions

According to the previous section, the joint law of the state
and observation processes is

Pθ(x0:k ∈ dx0:k, y1:k ∈ dy1:k)

= µ0(dx0)
∏k

l=1

{
ψθ

� (yl|xl) Qθ
l−1(dxl|xl−1)

}
dy1:k .

This proves that this statistical model is dominated and

Lk(θ) =
∫

x0:k
µ0(dx0)

∏k
l=1

{
ψθ

k(xl) Qθ
l−1(dxl|xl−1)

}
.

Note that

P
θ(y1:k ∈ dy1:k)

= Pθ(y1 ∈ dy1)
∏k

l=2 Pθ(yl ∈ dyl|y1:l−1 = y1:l−1)

=
∏k

l=1

∫
xl

Pθ(yl ∈ dyl|xl = xl) πθ
l−(dxl|y1:l−1)

=
∏k

l=1

∫
xl
ψθ

l (yl|xl) πθ
l−(dxl|y1:l−1) dy1:k

which leads to the other formulation

Lk(θ) =
∏k

l=1〈πθ
l− , ψ

θ
l 〉

so

rl(θ)
def= log〈πθ

l− , ψ
θ
l 〉

and the score increment is

ṙk(θ) = ∂θ log〈πθ
k− , ψθ

k〉

=
〈π̇θ

k− , ψθ
k〉+ 〈πθ

k− , [∂θ logψθ
k]ψθ

k〉
〈πθ

k− , ψθ
k〉

. (17)

D. Tangent filter

The definition of derivative π̇θ
k− of the nonlinear (predic-

tion) filter requires some attention. Let M(Rn) the set of
finite (signed) measures on (Rn,B(Rn)), M+

1 (Rn) that of
probability measures on (Rn,B(Rn)), and M0(Rn) that of
null mass. A measure µ on (Rn,B(Rn)) is said finite if
µ+(Rn) + µ−(Rn) < ∞ where µ± is the Hahn–Jordan
decomposition of µ. Here πθ

k− ∈ M1(Rn) then π̇θ
k− ∈

M0(Rn) and π̇θ
k− 	 πθ

k− . See Heidergott & Vázquez–
Abad [10] for details.

We now establish a recursive formulation for π̇ θ
k− and π̇θ

k.

1) Prediction step: The derivative Q̇θ
k−1 of the Markov

kernel Qθ
k−1 w.r.t. the parameter θ is

Q̇θ
k−1(dx

′|x) = ∂θq
θ
k−1(x

′|x) dx′
=

{
∂θ log qθ

k−1(x
′|x)} qθ

k−1(x
′|x) dx′ .

=
[
∂θ log qθ

k−1(x
′|x)]Qθ

k−1(dx
′|x) . (18)

Q̇θ
k−1 is a transition kernel onM0(Rn). Then, the derivative

of the nonlinear filter w.r.t. the parameter θ is

π̇θ
k− = ∂θ{πθ

k−1Q
θ
k−1} = π̇θ

k−1Q
θ
k−1 + πθ

k−1 Q̇
θ
k−1 . (19)

2) Correction step: One introduces DΨθ
k[π] ν ∈M0(Rn)

the derivative of the operator π 
→ Ψθ
k[π] at the point π ∈

M+
1 (Rn) in the direction ν ∈ M0(Rn)

DΨθ
k[π] ν def=

ψθ
k ν

〈π, ψθ
k〉
− 〈ν, ψ

θ
k〉

〈π, ψθ
k〉

ψθ
k π

〈π, ψθ
k〉
.

If ν 	 π and ν(dx) = �(x)π(dx) then

DΨθ
k[π] ν =

{
�− 〈Ψθ

k[π], �〉} Ψθ
k[π] .

Moreover, one has

∂θΨθ
k[π] =

{
∂θ logψθ

k − 〈Ψθ
k[π], ∂θ logψθ

k〉
}

Ψθ
k[π]

= DΨθ
k[π]([∂θ logψθ

k]π) .

Finally

π̇θ
k = ∂θ

{
Ψθ

k[πθ
k− ]

}
= DΨθ

k[πθ
k− ](π̇θ

k− ) +
{
∂θΨθ

k[π]
}∣∣∣

π=πθ
k−

= DΨθ
k[πθ

k− ](π̇θ
k− + [∂θ logψθ

k]πθ
k−) .

Hence we can prove recursively that the tangent filter is
absolutely continuous w.r.t. the nonlinear filter, i.e. π̇ θ

k− 	
πθ

k− and π̇θ
k 	 πθ

k . Let

�θ
k−(x) def=

dπ̇θ
k−

dπθ
k−

(x) , �θ
k(x) def=

dπ̇θ
k

dπθ
k

(x) .

This leads to

π̇θ
k =

{
�θ

k− + ∂θ logψθ
k − 〈πθ

k, �
θ
k− + ∂θ logψθ

k〉
}
πθ

k .

(20)

3) Score increment: Expression (17) becomes

ṙk(θ) = 〈πθ
k, �

θ
k− + ∂θ logψθ

k〉 (21)

which is exactly the centering term in (20).

The joint nonlinear/tangent filters is summarized in TA-
BLE II.

E. Particle approximation

We describe the simple “bootstrap” particle approxima-
tion. Suppose that at time k − 1 we have particle approxi-
mation of the nonlinear and tangent filters

πθ
k−1 � πN

k−1
def= 1

N

∑N
i=1 δξi

k−1
,

π̇θ
k−1 � π̇N

k−1
def= 1

N

∑N
i=1 ρ

i
k−1 δξi

k−1
.

Note that
∑N

i=1 ρ
i
k−1 = 0, i.e. π̇N

k−1 ∈ M0(Rn). The idea
of this approximation is to assure that π̇N

k−1 	 πN
k−1, indeed

�N
k−1(ξ

i
k−1)

def=
dπ̇θ

k

dπN
k−1

(ξi
k−1) =

∑
i′:ξi′

k−1=ξi
k−1

ρi
k−1∑

i′:ξi′
k−1=ξi

k−1
1

(22)

for i = 1 · · ·N and �N
k−1(x) = 0 if x ∈ {ξi

k−1; i = 1 · · ·N}.



a – initialization

πθ
0 = µ0 π̇θ

0 = 0

b – prediction [see (15) and (18)]

πθ
k− = πθ

k−1Q
θ
k−1

π̇θ
k− = π̇θ

k−1Q
θ
k−1 + πθ

k−1 Q̇
θ
k−1

c – correction [see (16) and (20)]

πθ
k = Ψθ

k[πθ
k− ]

π̇θ
k =

{
�θ

k− + ∂θ logψθ
k − 〈πθ

k, �
θ
k− + ∂θ logψθ

k〉
}
πθ

k

here �θ
k− = dπ̇θ

k−/dπ
θ
k−

d – score increment [see (21)]

ṙk(θ) = 〈πθ
k, �

θ
k− + ∂θ logψθ

k〉

TABLE II

The joint nonlinear/tangent filters.

1) Prediction/sampling step: From (15),

πN
k−1Q

θ
k−1(dx

′) = 1
N

∑N
i=1Q

θ
k−1(dx

′|ξi
k−1) .

We use the approximation

Qθ
k−1(dx

′|ξi
k−1) � δξi

k−
(dx′)

where ξi
k− ∼ Qθ

k−1(dx
′|ξi

k−1) (independently). Hence

πN
k− = 1

N

∑N
i=1 δξi

k−
where ξi

k− ∼ Qθ
k−1(dx

′|ξi
k−1) . (23)

From the tangent filter prediction (19) and (18)

π̇N
k−1Q

θ
k−1(dx

′) + πN
k−1 Q̇

θ
k−1(dx

′)

=
∫
Qθ

k−1(dx
′|x) π̇N

k−1(dx)
+

∫
Qθ

k−1(dx
′|x) [∂θ log qθ

k−1(x
′|x)] πN

k−1(dx)

= 1
N

∑N
i=1

{
ρi

k−1 + ∂θ log qθ
k−1(x

′|ξi
k−1)

}
×Qθ

k−1(dx
′|ξi

k−1) .

Again let Qθ
k−1(dx

′|ξi
k−1) � δξi

k−
(dx′) so that

π̇N
k− = 1

N

∑N
i=1 ρ

i
k− δξi

k−

with

ρi
k−

def= ρi
k−1 + ∂θ log qθ

k−1(ξ
i
k− |ξi

k−1) .

This approximation π̇N
k− is not of null mass, it will be

“centered” in the correction step.
Again �N

k−(x) can be computed like in (22), but almost
surely the particle positions ξ i

k− are all distinct, so we have

�N
k−(ξi

k− ) = ρi
k− , i = 1 · · ·N .

2) Correction/resampling step: Plugging the approxima-
tion (23) in (16) gives exactly

Ψθ
k[πN

k− ] =
∑N

i=1 ω
i
k δξi

k−

where
ωi

k
def= Ψθ

k(ξi
k−)/

∑N
i′=1 Ψθ

k(ξi′
k− ) .

The resampling step is the following: we multiply/discard
particles {ξi

k−}i=1:N according to the high/low weights
{ωi

k}i=1:N , i.e. ξi
k = ξ

s[i]
k− where s[i] is the resampling

mechanism associated with the weights {ω i
k}i=1:N . The

updated particle approximation is then

πN
k = 1

N

∑N
i=1 δξi

k
with ξi

k = ξ
s[i]
k− (24)

and s is the resampling scheme associated with {ω i
k}i=1:N .

Substituting πθ
k in (20) by its approximation (24) gives

exactly
π̇N

k = 1
N

∑N
i=1 ρ

i
k δξi

k

where (2)

ρi
k = �θ

k−(ξi
k) + ∂θ logψθ

k(ξi
k)− centering term

= ρ
s[i]
k− + ∂θ logψθ

k(ξs[i]k− )− centering term. (25)

This last centering operation ensures that π̇N
k ∈M0(Rn).

3) Score increment: Approximation (24) in (21) leads to

rN
k (θ) = 〈πN

k , �
θ
k− + ∂θ logψθ

k〉
= 1

N

∑N
i=1

{
ρ
s[i]
k− + ∂θ logψθ

k(ξs[i]k− )
}

which is exactly, like noticed in § IV-D.3, the centering term
of (25).

The joint particle approximation of the nonlinear/tangent
filters is summarized in TABLE III.

V. APPLICATION

In (8)–(9) there are two alternate parameterizations. The
first one is in terms of real/imaginary part of the λ’s (7)

θ
def= (α1:n, β1:n, σ, ν) ∈ R

2n × R
2
+ (26)

where αp
def= �(λp) and βp

def= �(λp) for p = 1 · · ·n. The
second one is terms of frequency/damping coefficients (4)

θ
def= (f1:n,d1:n, σ, ν) ∈ R

n
+ × (0, 1)n × R

2
+ . (27)

If the behavior of the filter is quite equivalent in both
parameterizations, the second is much simpler to use for the
tuning of the parameters of the RMLE procedure.

Kalman filter formulation

Practical implementation of the algorithm describes in § III
requires some adaptations. To prevent the degeneracy of the
innovation covariance matrix it is necessary to reinforce the
diagonal terms if Sθ

k in Part b of TABLE I.

2“αi = βi − centering term” means that αi = βi −
∑N

i′=1 βi′



a – initialization

θ (initial guess)

ξi
0 ∼ µ0(dx) (independently)

ρi
0 ← 0

b – mutation

ξi
k− ∼ Qθ

k−1(dx
′|ξi

k−1) (independently)

b – weights evaluation

ωi
k ← ψθ

k(ξi
k−)/

∑N
i′=1 ψ

θ
k(ξi′

k−)

ρ̃i
k ← ρi

k−1 + ∂θ log qθ
k−1(ξ

i
k− |ξi

k−1) + ∂θ logψθ
k(ξi

k−)

b – selection

s sampling mechanism based on {ωi
k}i=1:N

ξi
k ← ξ

s[i]

k− and ρ̃i
k ← ρ̃

s[i]
k

c – score increment

ṙN
k (θ)← 1

N

∑N
i=1 ρ̃

i
k and ρi

k ← ρ̃i
k + ṙN

k (θ)

d – RMLE iteration

θ ← θ + γk × ṙN
k (θ)

TABLE III

The joint particle approximation of the nonlinear/tangent filters and the

RMLE iteration.

Particle filter formulation

Introduce the function

Υθ
k(x, x′) def= log qθ

k(x′|x) + logψθ
k(x)

which appears in Part b of TABLE III. We compute the
derivative of Υθ

k w.r.t. each component θp of the parameter
for p = 1 · · · 2n+ 2.

Υθ
k(x, x′) = Const− n

2 log σ
− 1

2 σ2 [x′ −Λx]∗ [Qw
k ]−1 [x′ −Λx]

− d
2 log ν − 1

2 ν2 |yk −�(Ψx)|2 .
Hence, for p = 1 : 2n

∂θpΥθ
k(x, x′) = 1

2 σ2 [∂θpΛx]∗ [Qw
k ]−1 [x′ −Λx]

+ 1
2 σ2 [x′ −Λx]∗ [Qw

k ]−1 [∂θpΛx]

so that

∂θpΥθ
k(x, x′) = 1

σ2 �
{
[∂θpΛx]∗ [Qw

k ]−1 [x′ −Λx]
}

∂σΥθ
k(x, x′) = − n

2 σ + 1
σ3 [x′ −Λx]∗ [Qw

k ]−1 [x′ −Λx] ,

∂νΥθ
k(x, x′) = − d

2 ν + 1
ν3 |yk −�(Ψx)|2 .

RMLE implementation

For each component θp of the parameter, the RMLE
iteration used in practice is

θp ← θp +
{γ
k

+ γmin
}
× ∂θprk(θ)

∣∣
[−rmax

p ,rmax
p ]

where

∂θprk(θ)
∣∣
[−rmax

p ,rmax
p ]

def= ×{∂θprk(θ) ∧ rmax
p } ∨ (−rmax

p ) .

The gain decreases toward a minimal positive value in order
to track the possible evolutions of the parameters. In addition,
the size of the gradient steps is limited.

A case study

The results presented in this paper are based on some
simulated data. The numerical values are representative of
the first two modes of a real civil structure, and more, the
parameter values were estimated on the structure using a
batch subspace identification procedure.

Looking at two modes allows us to study parameter vari-
ations, which are characteristic of the flutter problem, which
drives the application we are interested in. The parameter
variations include frequencies crossing and abrupt changes
in the damping. Those scenarios are illustrated in Fig. 1.
Notice that, whereas we know what change scenarios we
can expect from the frequency and damping in term of trend
and amplitude, the associated eigenvalues variations have no
real physical meaning.

The algorithm was preliminary initialized with some
guessed starting values, then the filter was computed for a
few hundred samples to initialize the tracking algorithm with
correct estimates for the filter, then the tracking algorithm
was processed on the time varying data.

The data samples were simulated with a sampling rate of
128Hz. The estimation plots are displayed with time (in sec.)
on the x–coordinate. The simulated changes include for the
first mode a slow increase in the frequency as well as a slow
decrease in its damping value and for the second mode a
slow decrease of the frequency and a abrupt increase in the
damping.

Let n = 2 and d = 4.
• mode 1 : λ1 = 0.9832823 + j 0.1520823, d1 =

0.032818, f1 = 3.1261001

ψ1 =
[−0.110149857

0.003170271−0.238437343
0.011789335

]
+ j

[−0.001391672
−0.000642400

0.002764028−0.000028845

]

• mode 2 : λ2 = 0.9765406 + j 0.1905859, d2 =
0.0261820, f2 = 3.9265001

ψ2 =
[−0.005535022
−0.116521290
−0.010837860
−0.219088797

]
+ j

[−0.000479459
−0.000719393
−0.000364371

0.005224397

]

Looking at Fig. 1, we plot both estimated and true
variations for both frequencies and dampings. The two fre-
quencies are crossing each other. Nonetheless both frequency
estimates stay very close to their expected value, whereas the
damping estimates do exhibit worse behavior, but still react
to the small changes in their nominal values. As expected, the
algorithm has more problems to react to an abrupt change
(see damping d2) than a progressive change (see damping
d1). Considering the variations in the damping, it would
be wise to associate a detection procedure to the tracking
algorithm to decide whether the damping has changed or
not.
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Fig. 1. Kalman RMLE procedure: monitoring of the frequency and dam-
ping parameters (fi;di), i = 1, 2 (true value: dashed line).

Looking at Fig. 2, one can see that the large variations in
damping d2 do reflect in a bad estimation for α2, whereas
the slightly large variations in damping d1 in Fig. 1 can not
be inferred from the estimation of α1 and β1 in Fig. 2. This
pleads in favor of parametrization (27).

VI. PERSPECTIVES

We have investigated the merits of both Kalman and
particle filtering for structural health monitoring. The current
case study is a simulation experiment, where it is expected
that both methods will give similar results as seen in Fichou
et al [6] on a simpler example.

It appears that frequency/damping parameterization (27)
yields to an algorithm much simpler to tune than using
the alternate parameterization (26). Moreover focusing on
eigenvalues hide the uncertainties on the damping, which
may be badly estimated whereas the associated eigenvalue
estimation does not exhibit large variations.

The final paper will investigate the merits of both methods
on a real non stationary aircraft structure where the simple
“nonlinear” formulation of the particle filter may be more
robust with respect to non stationary changes in the geometry
of the excitation, where modes may be non excited for a short
period of time.
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Fig. 2. Kalman RMLE procedure: monitoring of the eigenvalues αi =
�(λi) and βi = �(λi), i = 1, 2 (true value: dashed line).
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