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Hybrid Control of the Boost Converter: Robust Global Stabilization

Thomas A.F. Theunisse, Jun Chai, Ricardo G. Sanfelice, aid Maurice H. Heemels

Abstract—In this paper we consider the modeling and [4]-[9], and new perspectives on their control were progose
(robust) control of a DC-DC boost converter. In particular,  including time-based switching, state-event triggereutic,
we derive a mathematical model consisting of a constrained and optimization-based control.

switched differential inclusion that includes all possibé modes in thi tivated by th d of ¢ that
of operation of the converter. The obtained model is carefuy n this paper, motivated by the need or converters tha

selected to be amenable for the study of various important robustly adapt to changes in renewable energy systems, we
robustness properties. By exploiting this model we design consider the modeling and robust control of a DC-DC boost
a control algorithm that induces robust, global asymptotic converter. As a difference to previous models capturing onl
stability of a desired output voltage value. The guaranteed steady state modes of operation (see, e.g., [4], [5]), iadpi

robustness properties ensure proper operation of the conveer . .
in the presence of spatial regularization to reduce the highate by [9], we propose a model that includes all possible modes

of switching. The establishment of these properties is ensdd by ~ Of operation of the converter. Due to this, we guarantee
recent tools for the study of robust stability in hybrid systems. that both transient behavior and every possible state of

Simulations illustrating the main results are included. the system is captured by the model. Our proposed model
for the Boost converter consists of a switching differdntia

) ) inclusion with constraints. Using hybrid systems tools, we
The increasing number of renewable energy sources agf,qy the properties induced by a controller that triggers

distributed generators requires new strategies for thé-0pgiiches of the differential inclusion based on the value of
ation and management of the electricity grid in order 9, internal current and output voltage of the converter as
maintain or even to improve the power-supply reliability, e a5 on the value of the state of the controller (a logic
and quality. Power electronics play a key role in dIStrIkiJtevariable). We formally prove that the controller we employ,
generation and in integration of renewable sources into thev:-h follows the one first proposed in [5] and studied
electrical grid [1]. A recent challenge for these systemtiés ., gimylations therein, induces robust, global asymptotic
unavoidable variability of the power obtained from reneleab gopijity of a desired output voltage value. The robustness
resources, which, in turn, demands conversion technology,nerties guarantee proper operation of the converter in
that robustly adapts to changgs |n.the supphgs and demanﬂli% presence of spatial regularization to relax the rate of
One type of converter that is widely used in energy Con§Witching. The recently developed tools for robust stgbili

version is the DC-DC Boost converter. This c_onverter draws, hybrid systems form the enabling techniques to achieve
power from a DC voltage source and supplies power to @< important results [10]

load at a higher.DC voI.tage value. Different approaches have re remainder of the paper is organized as follows. After
been employed in the literature for the analysis and design py,qycing notation, the principles of operation of theoBb
such converters. Arguably, the most popular method used {8, arter are discussed and our mathematical model is pre-
control such converters is Pulse-Width Modulation (PWM)genteq in Sectiofilil. A switching control law is presented in

In PWM-based controllers, the switch in the circuit is tudne SectiorTll. In addition, also in Sectigalll, global asyrofic

on at the beginning of each switching period and is turned Ogtability for the closed-loop system is proven. The resoifts
when the reference value is lower than a certain carriea$ign,op stness are also presented in Sedfidn IIl. In Se€fidn IV
[2]. In [3], the two steady state configurations of the Citcuigjnjations are performed to illustrate our results. Final
are averaged, leading to a single differential equationeahod concluding remarks are presented in Secfin V.

More recently, a renewed interest in power converters-origi \otation: R” denotesi-dimensional Euclidean space, and
nated from the rise of switching/hybrid modeling paradigm$; qanotes the set of real numbeR,., denotes the set of

T. A. F. Theunisse, and W. P. M. H. Heemels are with the Cor@ystems nonnegative real numbe_rs’ i'RZO = [Ov OO) N denotes the
Technology group in the Department of Mechanical EngimggrEindhoven ~ set of natural numbers including 0, i.&,= {0,1,...}. B

University of Technology, P.O. Box 513, 5600 MB EindhovenheT denotes the closed unit ball in a Euclidean space centered at
Netherlands. Email: t. a. f. t heuni sse@t udent. t ue. nl, h iqin. Gi 5 05 d its b d Gi
w.p.mh. heemel s@ue. nl.  J. cha, and R . the origin. Given a ses, enotes its boundary. Given

Sanfelice are with the Department of Aerospace and Mechknica vectorz € R™, |xz| denotes the Euclidean vector norm.

Engineering, University of Arizona 1130 N. Mountain Ave, Gjven a setX’ ¢ R" and a pOim’x c R”. the distance of
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was partially supported by the European 7th Framework Néiwaf uSe the notatioito to denote the closed convex hull of a set.
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I. INTRODUCTION



can derive constrained differential equations for each enod

g Ry Q. d}{ Conveniently, the equations for mode 2 and mode 4 can be
i, L + combined into a single mode, which with some abuse of
-l Zsl v, _L{@( R notation, we label as mode 2. Following circuit laws, the
E g c- constrained differential equations for each mode are given
in terms of (v, i, S) as follows:
Fig. 1. Schematic representation of a Boost circuit withddio S =0 1 1. S =1 1
1:q 20T TR Tt 2:9 T g
ZL:_ZUC+Z L =7
i.e., (v1,22,...,m) = [z],2q,...,2%]". A function « : i, >0, or (v < E, i, =0) ve >0
R>o — R>q is said to be of clas<C if it is continuous,
zero at zero and strictly increasing. It is said to be of class S =0
Ko if it is of class K and it is unbounded. A functiof : 3. Ve = —ﬁvc
R>o x R>g — Rx is said to be of clas& L if 3(-,t) is ") iL=0
of classK for eacht > 0 and 3(s, -) is nonincreasing and ve>E, i, =0

satisfieslim;_,, 5(s,t) = 0 for eachs > 0.
Therefore, the value of the switct determines whether
Il. MODELING the system is in mode 1/mode 8 & 0) or mode 2 § = 1).
In this section we describe the principles of operation oiote that it is possible that whe$ changesy. andi;, may
the DC-DC Boost converter. Afterwards, we present a hybridot be in the regions of viability in the subsequent mode,

system model, covering all possible system modes. in which casev. andiz, should be appropriately reset (e.g.,
o ) via consistency projectors mapping the state to the algebra
A. Principles of Operation conditions of the subsequent mode [7], [8], [11]). Although

The DC-DC Boost converter is shown in Figlie 1. Thea full model with resets can be derived, see [9], for prattica
Boost circuit consists of a capacitor an ideal dioded, a operation of the converter it is clearly undesirable thathsu
DC voltage source?, an inductorL, a resistorR, and an resets occur as they may damage the circuit. Therefore our
ideal switchS. The voltage across the capacitor is denotedontroller will allow S = 0 wheni; > 0, and S = 1
ve, and the current through the inductor is denotedThe only whenwv. > 0. Indeed, in Sectiofi IIzA, we propose
purpose of the circuit is to draw power from the DC voltaged controller that guarantees that after every switcly ofhe
source, and supply power to the load at a higher DC voltagigebraic conditions of the subsequent mode are satisfied.
value. This task is accomplished by first closing the switch For convenience, we define:= (v, i) and the algebraic
to store energy in the inductor, and then opening the switatpnstraints for the modes above in terms of sets as follows:
:o :Lanlsfe:jthat energy to the capacitor, where it is avhélale —{zeR?: i, >0 U{zeR? : v, <E, i, =0},

o the load.

The presence of switching elementsgnd .S) causes the My ={z R : v, >0},
overall system to be of a switching/hybrid nature. DepegdinM3; = {z € R* : v. > E,i;, = 0}
on the (discrete) state of the diode and of the switch, o

can distinguish four modes of operation [9]: Hence.s = ois only allowed when € M;UM; and 5 = 1

is only allowed whenz € M,. Using these restrictions, we
mode 1:(S =0,d=1) mode 2:(S=1,d=0) can derive a switched differential inclusion encompasaihg
mode 3:(S=0,d=0) mode 4:(S=1,d=1) the modes of operation derived so far.

When the system is in mode 1, in which the switch is opeR. Mathematical Model

(S = 0) and the diode is conducting & 1), the inductoris  |n this section, we define a mathematical model of the
charged by the input source, which, also offloads power Boost converter in which the differential equations in each
the resistor. In mode 2, in which the switch is closd< 1)  mode define the continuous dynamics. Since the vector field
and the diode is blockingd(= 0), the inductor is charged associated with mode 1 is

by the input source and the capacitor is offloading its charge

to the load. In mode 3, the capacitor offloads its charge to falz) = {
the load. Finally, mode 4, in which the switch is closed, the

diode is conducting and the voltage in the capacitor is zerand the vector field associated with mode 3 is

C

—%v,ﬁ— Lip :|
1 E
TVt T

hence only the inductor is charging. .
Using the ideal diode model with two modes, given by fo(z) = [ %C ¢ }
ig > 0, vyg = 0 (the conducting moded = 1) and

ig = 0, vg < 0 (the blocking moded = 0), we get four the resulting vector field folS = 0 is discontinuous. To
different modes with differeniS and d combinations. By establish robust asymptotic stability of the upcoming etbs
analyzing the evolution of,. andi, for these four modes, we loop system, a Krasovskii regularization of the vector field



will be performed following ideas in [12], [13ﬂ The system A. Control Law

constraints, namely it >0, letz* = (v,4}) and consider the control Lyapunov-
& € Fs(x) z € Mg @) function

o *\ T *
where S € {0,1} is the position of the switclf, and for V(z) = (z —a") Ple—a7)
0

eachS € {0,1}, Fs(z) is the Krasovskii regularization of P11 .

the vector fields and/g is the corresponding regularization where P = 0 po2 > 0. To derive the control law,

of the sets capturing the regions of validity for each modéve compute the inner product between the gradient/of

Solutions will be considered in the sense of Krasovskii [12]and the directions belonging to the (set-valued) nigpin

[13]. (. By analyzing the inner product of each configuration,

__Following [13], the regularization of\/s for S = 0 is for eachS € {0,1} andx € Ms we get, -

Mo = M{UM3 = {x € R? : i, > 0}, and forS =1 is vo(z) if S=0, z € My

—_ _ —_— V = —_—

M, = My = {x € R? : v. > 0}. Note that forz € Mj, f, ser%ii(z)w (2),€) m(z) if S=1, x € M

and f, reduce to .

= _EUC

fa(@) iL=0 { —1vc+ £

} where, for eachr € R?, functionsy, and~; are defined as

. 1 1,
WO(CE) = 2p11(Uc - 'Uc) (_EUC + EZL) —+

=0 N 9 . oy [~V +E
Then, the regularization of the vector fiefgl at eachr € M, p22(ir — i) I
is given by 1 E
Fo(z) := Q@fo(x + 0B) Y1(z) =1 2p11(ve — v7) <_EUC) + 2paa(ir — ZE)Z
>
{fa(2)} . if x€ My \ M The sign of the functionsy, 1 will be used to define a
= ﬁ){ :EUCE ’ { Rc Ve }} if x €M §tate-dependent switching control law assigning the obntr
TVt T 0 input S. Let
_1 1, _ - A, ={z eR? : v, =0", i =i} 3
A e (GeR s a-v—i) @
= —Tlet T L » ) _ define the isolated point to be stabilized, namely, the point
{=geve} x [-gve+ £, 0] if o€ My (ve,ir) = (v},4}). The following lemma establishes a
Since the vector field for mode 2 is given by property of functionsyo,y: that will be used in our stability
— Lo, result in Sectiof I1[-B.
hiz) = [ ? } Lemma 3.1: LetR, E, pi1,paz > 0, BL = 22 4* > F,
—~ *2
which is continuous, we have, for eache M/, that and ij = 7. Then, for eachu € R? \ A, there exists

S € {0,1} such that
Fi(@) = (@) @ Y ) <0 @
The model [(l) is a constrained switched differential in- To obtain a control law that does not result in sliding
clusion. This is a key difference with previous modelingmotions and is robust, following the idea in [5], we propose a
approaches (see, e.g. [4], [5]) where the third mode iegic-based control law that selects the input accordirip¢o
omitted. For this complete model, we propose a controllgurrent active input and the value of the state. To this etd, |
that induces robust, global asymptotic stability in thetnex; € {0,1} be a logic state indicating the value of the actual
section. As we will see, the hybrid systems approactnput S. The controller is defined so that switching gto
proposed here is the enabling tool to achieve this resut. TH — ¢ occurs only ify,(x) becomes zero. Then, whene
model will be used to synthesize a robust globally stalitizi R?\ A, and~,(z) = 0, by Lemmd 31y, _,4(z) < 0, which
switching control law. makes the closed-loop trajectory componengpproachA,,.
The closed-loop system is obtained wheis assigned tq,
Il. AROBUSTGLOBALLY STABILIZING namely,S = ¢. This leads to the hybrid systef given by
STATE-DEPENDENTSWITCHING CONTROL LAW .
. . o L Fy(z) | _
In this section, a switching control law for the model of { q } € [ 0 } 1F(z,q)  (z,9) €C
X

the Boost converter ii{1) is proposed. We establish that thi [ (5)

control law induces a robust and global asymptotic stabil- .
ity property. Besides that, we determine various robustnes 4

properties of the closed-loop system. where

N } = [ eoa) ] = G(r.q) (r.q)€D

1A Krasovskii regularization of this vector field is used dogtte fact that
the discontinuity occurs on a set of measure zero. A Filipgmularization —~
would not account for discontinuities on such sets.



D= {(%CI) rx € Mo, v(z) =0, ¢= }U hybrid system# is given by a hybrid arg) satisfying the

) ~ P dynamics of?. A solution ¢ to # is said to becomplete
{(x’ q): @ €My, miz)=0¢g= } if dom ¢ is unbounded andhaximalif there does not exist
and another pair¢’ such that¢ is a truncation of¢’ to some
. - - proper subset oflom ¢’. For more details about solutions to
Gy(z) = {1} it g =0, (z) =0 hybrid systems, see [10].
4 {0} if ¢g=1, y1(x)=0

) _ Proposition 3.2: (Properties of solutions) For eaghe
The flow mapF of the hybrid systen¥{ is constructed by ~ D, every maximal solutiony = (z,¢) to the hybrid

stacking the mapFs (with S = q).Of (@ and zero, while systen = (C, F, D, G) in ) with x(0, 0) = ¢ is complete.
the flow set enforces the constraints[ih (1) as well as thosé ) . .
of the switching mechanism of the proposed controller. In O#rhgoalhls to show that. the sqlutlorxsto H |n”45) atr)le
this way, the continuous evolution af is according to[{l) sue t at the compact setin @ is gsympto.t!ca y gta &
under the effect of the proposed controller, whildoes not To this end,_we employ the following stability notion for
change during flows. The jump ma&pis such that: does not general hybrid systems [10].
change at jumps ang is toggled at jumps, while the jump  Definition 3.3 (Stability): A compact set C R" is said
set enforces the jumps of the controller within the constsai t0 be
of (). « stableif for eache > 0 there exist9 > 0 such that each
Some sample contour plots and switching boundaries solutionx with |x(0,0)|4 < ¢ satisfies|x(¢,7)|a < e
~4(x) = 0 of the proposed controller or a particular set of  for all (¢,5) € dom y;

parametersa* = (7, 3.27), E = 5V, R = 39, ¢ = 0.1F, « attractiveif there existsu > 0 such that every maximal
L =0.2H, p11 = £, p22 = £) are shown in Figurgl2. solutionx with |x(0,0)|4 < u is complete and satisfies
liIn(t,j)edom X,t+j—o00 |X(t7])|A = O,
5 5 » asymptotically stabléf A is stable and attractive;
4 ot 4 ) « globally asymptotically stablé the attractivity property
A T : . holds for every point irC' U D.
o 2,’9 VLL A ’ / The following result on the structural properties Hfin
) // e () is key for robust stability, see [10].
. oy /\ . ~— Lemma 3.4: The closed-loop systéingiven by(B) sat-
L S isfies the hybrid basic conditions, i.e., its dq{@, F, D, G)
_ is such th
\ o) (A1) C and D are closed sets;
i o A (A2) F: R" = R" is outer semicontinuous and locally
i — bounded, and”'(z) is nonempty and convex for all€
2 / C;
1

(A3) G : R™ — R™ is continuous.

6 s 10 Using these conditions, we are now ready to show the
following theorem, which states global asymptotical dibi
of the compact setd for the closed-loop systerH.

L/

Ve

Fig. 2. Contour plots of (upper-leftyo, (upper-right)y;, and (lower) the

switching boundaries, (z) = 0, whenz* = (7,3.27), E = 5V, R = 3, Theorem 3.5: Consider the hybrid systémin (E) with
¢=0.1F L =0.2H, p11 = §, andpzz = %. ¢,L, R, E > 0. Given a desired set-point voltage and current
ve

(vi,i7), wherev? > E andi; = 5, then the compact set

B. Properties of closed-loop system A=A, x {0,1} (6)

Solutions to the closed-loop systek can evolve con- .
tinuously and/or discretely depending on flow and jumps 9lobally asymptotically stable fok.
dynamics. Following [14], we treat the number of jumps as More importantly, since the hybrid closed-loop system in
an independent variablg next to the usual time and we (B) satisfies the hybrid basic conditions (see Lenima 3.4)
parameterize the hybrid time ki, j). Solutions to hybrid and the set4d is compact, then, using [10, Theorem 7.21]
systems?# are given in terms of hybrid arcs and hybridwe have that4 is robustly asymptotically stable. We now
inputs on hybrid time domains. Hybrid time domains are

subsetsE of R~y x N that, for each(T J) c E. E N 2A set-valued mapS : R® = R™ is outer semicontinuoust = € R™
’ ’ ' if for each sequencdz;}°, converging to a point: € R™ and each

= ; J-1 i=1
([0, 7] x {O, .1, ..J}) can be v_vntten asJ;, (It tj+1],5) sequencey; € S(z;) converging to a poiny, it holds thaty € S(z);
for some finite sequence of tim@s=tq < t; < t5... <tj;. see [15, Definition 5.4]. Given a séf C R™, it is outer semicontinuous

A hybrid arc ¢ is a function on a hybrid time domain that, relative to X if the set-valuejd mapping f_rorﬁf‘ to R™ defined byS(ag)
for z € X and{ for x ¢ X is outer semicontinuous at eache X. It is

for ?aChj eEN ¢t~ qS(t,j) is abSOIUIely Cont.inuous on locally boundedif, for each compact sef’ C R™ there exists a compact
the interval{t : (¢,j) € dom¢ }. Then, a solution to the setk’ C R™ such thatS(K) := UzecxS(z) C K'.



have completed the control design and formally establishemmpact setX C R?, there existsp® > 0 guaranteeing
a key closed-loop stability property, in particular, wesled the following property: for eactp € (0, p*] every solution
that the basin of attraction i€ U D. It is worth noting x = (z,¢) to H” with x(0,0) € K x {0,1} is such that its
that, in addition to pertaining to simpler models (ignoringe component satisfies

mode 3) as mentioned before, previous literature lacks thef:v(t Ma, < B(|2(0,0)| 4., t4j)+e V(¢ j) € domx. (7)
] .Am = ] z ) ] .

characterization of the basin of attraction. ) )
The property asserted by Theorém]3.6 will be illustrated
C. Robustness to spatial regularization numerically in Sectiof TV-B.

For system[(5), we have robustness to general perturba- IV. SIMULATION RESULTS

tions, but we only present results about spatial regulaoiza . . . .
) .In this section, we present several simulation results.
here due to space constraints. When the system reaches'gits

desired steady state using the controller in Se¢tion]INveBy rst, the closed-loop System is ;lmulated for the |deall
o . . . case. Due to undesirable chattering, the spatial regelariz
fast switching may occur. To alleviate this problem, spatia

b e ai . )

reqularization is performed to the closed-loop systnfat sy_stem?—[ is simulated next. The simulations are performed
. I using E = 5V, R = 39, ¢ = 01F, L = 0.2H,

the controller level). More precisely, and~; are modified <

by using a constant factgr, with p € R>. The regularized and P = (2) L w unless noted otherwise, within the

system will be denoted &*, and its flow map is given by |gyerip EQUATIO?NSTOOLBOX [16].

the same equation %, i.e., . )
A. Simulating the closed-loop system

{ r } € { Fq(gx) ] (x,q) € C, The results for initial conditionsy = (0,5) and zy =
4 (5,0) for the closed-loop systerftt are shown in Figure
where, now, the flow set is replaced by [@. As can be seen, the solutions converge from both initial

— conditions to the set.
Cp={(z.): v € My, 70(x) < p, g =0} U

{@a:aed, n@ <p g=1f

Furthermore, the jump map is given by
I+ = X

gt € Gy(7)

where, now, the jump set is replaced by

DP :{(l',q) SN S MOa VO(CE) =P, 4= O}U
— Fig. 4. Simulation results for the closed loop systékh with initial
{(x,q) cxe M, n(x)=p, ¢g= 1} conditionszg = (0,5), go = 1 andzo = (5,0), go = 0, and where
S is only drawn for the simulation usingy = (5, 0).

('rv Q) € Dpv

and
G () = { {1} @f q=0, y(z)>p Though not_formally established in th_is paper, the closed-
a {0}y if g=1, y(z)>p loop system is robust to slowly varying parameters. To

illustrate this, a simulation is performed with a dynamiigal
%hanging set point*. Initially, z* = (7,3.27), but when a
neighborhood of this value is reached, we linearly increase
x* from (7,3.27) to (10,6.67). This simulation is shown in
Figure[B. As it can be seen, the Boost converter follows the
reference well and eventually reaches a neighborhood of the

The new switching boundaries for a particular set of param
ters @¢* = (7, 3.27), E =5V, R = 3Q, ¢ = 0.1F, L = 0.2H,
pi1 = £, pa2 = £, andp = 2) are shown in Figur]3.

Yo =0
6 n=9 final z*.
iLy B. Simulating the spatially regularized closed-loop syste
2\\——//"—\ Now, the spatially regularized closed-loop systéti is
implemented. The results for initial conditiong = (0, 5),
% s 4 s s 10 qo = 1 andzg = (5,0), go = 0 are shown in FigurEl6.
ve To validate Theorerf 3.6, more simulations are performed

Fig. 3. Switching boundaries with spatial regularizatiohenep = 2, using  iN order to find a relationship between the spatially reg-
(z* = (7, 3.27), E =5V, R=3Q, c=0.1F, L = 0.2H, p11 = §, and  ularization parametep and ¢ in Theorem36. From the
P22 =3 simulation results shown in TaHlk |, the relationship bemwe
p and e, specifically, forz* = (7,3.27), can now be
Theorem 3.6: Under the assumptions of Theofen] 3.approximated as
there existsG € KL such that, for eacke > 0 and each e~ 0.9p (8)


http://www.u.arizona.edu/~sricardo/index.php?n=Main.Software

Fig. 5. Simulation results with initial conditionsg = (0,5), go = 0,

when z* linearly changes from(7,3.27) to (10, 6.67), where the black

and green curves denote the switching boundaries:foe (7,3.27) and
z* = (10,6.67), respectively.

ve g

GO 0.5 1 15 2
irS

GO 0.5 1 15 2

S L LLLO MR
0
-1

0 0.5 1 15 2

t [sec]

Fig. 6. Simulation results for the spatially regularizedseld loop systeri{”
with p = 0.5 for initial conditionszo = (0,5), go = 1 andzg = (5,0),
go = 0, and whereS is only drawn for the simulation usingo = (5, 0).

TABLE |
SIMULATION RESULTS FOR DIFFERENT VALUES ORp.

14 hmt+]‘*>oo v_c(tyj) hmt+]‘~>oo E(tuj) € €/p
0.01 6.993 3.261 0.0090 || 0.90
0.05 6.974 3.241 0.0365 || 0.73
0.1 6.944 3.211 0.0790 || 0.79
0.5 6.719 2.991 0.3936 || 0.78

1 6.422 2.707 0.8046 || 0.80

2 5.721 2.072 1.7502 || 0.88

As it can be seen, the larger the spatial regularizatiogélar

properties (e.g., stability, and robustness propertiéghe
closed-loop system.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

[0

[10]

(11]

p) the larger the error will be. Eventually, whenbecomes [12]
too large, the controller may not be able to stabilize thﬁ3]

desired point:*.

V. CONCLUSIONS

[14]

In this paper, a hybrid system approach for control of the
Boost converter is presented. First of all, a switched syste[15)

with discontinuous right-hand side for all the modes is
obtained. For this model, a suitable Krasovskii regulditra
is determined, leading to a switched differential inclusio

with constraints, after which a control design procedure is
proposed. By formalizing the whole control setup in the
hybrid systems framework of [10] and establishing impadrtan
basic properties of the control scheme, various important
stabilization and robustness properties can be derived, in

particular robust global stability of a set poifit}, 7). To

the best of our knowledge, no such a characterization was

published before for this circuit. Using the proposed caointr

law, we showed how to systematically deal with spatial
regularization to reduce the switching rate of the converte

Multiple simulations are performed to illustrate the diéfat
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