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Hybrid Control of the Boost Converter: Robust Global Stabilization

Thomas A.F. Theunisse, Jun Chai, Ricardo G. Sanfelice, and W.P. Maurice H. Heemels

Abstract— In this paper we consider the modeling and
(robust) control of a DC-DC boost converter. In particular,
we derive a mathematical model consisting of a constrained
switched differential inclusion that includes all possible modes
of operation of the converter. The obtained model is carefully
selected to be amenable for the study of various important
robustness properties. By exploiting this model we design
a control algorithm that induces robust, global asymptotic
stability of a desired output voltage value. The guaranteed
robustness properties ensure proper operation of the converter
in the presence of spatial regularization to reduce the highrate
of switching. The establishment of these properties is enabled by
recent tools for the study of robust stability in hybrid systems.
Simulations illustrating the main results are included.

I. I NTRODUCTION

The increasing number of renewable energy sources and
distributed generators requires new strategies for the oper-
ation and management of the electricity grid in order to
maintain or even to improve the power-supply reliability
and quality. Power electronics play a key role in distributed
generation and in integration of renewable sources into the
electrical grid [1]. A recent challenge for these systems isthe
unavoidable variability of the power obtained from renewable
resources, which, in turn, demands conversion technology
that robustly adapts to changes in the supplies and demands.

One type of converter that is widely used in energy con-
version is the DC-DC Boost converter. This converter draws
power from a DC voltage source and supplies power to a
load at a higher DC voltage value. Different approaches have
been employed in the literature for the analysis and design of
such converters. Arguably, the most popular method used to
control such converters is Pulse-Width Modulation (PWM).
In PWM-based controllers, the switch in the circuit is turned
on at the beginning of each switching period and is turned off
when the reference value is lower than a certain carrier signal
[2]. In [3], the two steady state configurations of the circuit
are averaged, leading to a single differential equation model.
More recently, a renewed interest in power converters origi-
nated from the rise of switching/hybrid modeling paradigms
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[4]–[9], and new perspectives on their control were proposed,
including time-based switching, state-event triggered control,
and optimization-based control.

In this paper, motivated by the need of converters that
robustly adapt to changes in renewable energy systems, we
consider the modeling and robust control of a DC-DC boost
converter. As a difference to previous models capturing only
steady state modes of operation (see, e.g., [4], [5]), inspired
by [9], we propose a model that includes all possible modes
of operation of the converter. Due to this, we guarantee
that both transient behavior and every possible state of
the system is captured by the model. Our proposed model
for the Boost converter consists of a switching differential
inclusion with constraints. Using hybrid systems tools, we
study the properties induced by a controller that triggers
switches of the differential inclusion based on the value of
the internal current and output voltage of the converter as
well as on the value of the state of the controller (a logic
variable). We formally prove that the controller we employ,
which follows the one first proposed in [5] and studied
by simulations therein, induces robust, global asymptotic
stability of a desired output voltage value. The robustness
properties guarantee proper operation of the converter in
the presence of spatial regularization to relax the rate of
switching. The recently developed tools for robust stability
in hybrid systems form the enabling techniques to achieve
these important results [10].

The remainder of the paper is organized as follows. After
introducing notation, the principles of operation of the Boost
converter are discussed and our mathematical model is pre-
sented in Section II. A switching control law is presented in
Section III. In addition, also in Section III, global asymptotic
stability for the closed-loop system is proven. The resultson
robustness are also presented in Section III. In Section IV,
simulations are performed to illustrate our results. Finally,
concluding remarks are presented in Section V.

Notation: Rn denotesn-dimensional Euclidean space, and
R denotes the set of real numbers.R≥0 denotes the set of
nonnegative real numbers, i.e.,R≥0 = [0,∞). N denotes the
set of natural numbers including 0, i.e.,N = {0, 1, . . .}. B
denotes the closed unit ball in a Euclidean space centered at
the origin. Given a setS, ∂S denotes its boundary. Given
a vectorx ∈ R

n, |x| denotes the Euclidean vector norm.
Given a setK ⊂ R

n and a pointx ∈ R
n, the distance of

x to the setK is denoted by|x|K := infy∈K |x − y|. We
use the notationco to denote the closed convex hull of a set.
For l vectorsxi ∈ R

ni , i = 1, 2, . . . , l, we denote the vector
obtained by stacking all the vectors in one (column) vector
x ∈ R

n with n = n1 + n2 + . . . + nl by (x1, x2, . . . , xl),
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Fig. 1. Schematic representation of a Boost circuit with diode.

i.e., (x1, x2, . . . , xl) = [x⊤
1 , x

⊤
2 , . . . , x

⊤
N ]⊤. A function α :

R≥0 → R≥0 is said to be of classK if it is continuous,
zero at zero and strictly increasing. It is said to be of class
K∞ if it is of classK and it is unbounded. A functionβ :
R≥0 × R≥0 → R≥0 is said to be of classKL if β(·, t) is
of classK for eacht ≥ 0 andβ(s, ·) is nonincreasing and
satisfieslimt→∞ β(s, t) = 0 for eachs ≥ 0.

II. M ODELING

In this section we describe the principles of operation of
the DC-DC Boost converter. Afterwards, we present a hybrid
system model, covering all possible system modes.

A. Principles of Operation

The DC-DC Boost converter is shown in Figure 1. The
Boost circuit consists of a capacitorc, an ideal dioded, a
DC voltage sourceE, an inductorL, a resistorR, and an
ideal switchS. The voltage across the capacitor is denoted
vc, and the current through the inductor is denotediL. The
purpose of the circuit is to draw power from the DC voltage
source, and supply power to the load at a higher DC voltage
value. This task is accomplished by first closing the switch
to store energy in the inductor, and then opening the switch
to transfer that energy to the capacitor, where it is available
to the load.

The presence of switching elements (d andS) causes the
overall system to be of a switching/hybrid nature. Depending
on the (discrete) state of the diode and of the switch, one
can distinguish four modes of operation [9]:

mode 1:(S = 0, d = 1) mode 2:(S = 1, d = 0)
mode 3:(S = 0, d = 0) mode 4:(S = 1, d = 1)

When the system is in mode 1, in which the switch is open
(S = 0) and the diode is conducting (d = 1), the inductor is
charged by the input source, which, also offloads power to
the resistor. In mode 2, in which the switch is closed (S = 1)
and the diode is blocking (d = 0), the inductor is charged
by the input source and the capacitor is offloading its charge
to the load. In mode 3, the capacitor offloads its charge to
the load. Finally, mode 4, in which the switch is closed, the
diode is conducting and the voltage in the capacitor is zero,
hence only the inductor is charging.

Using the ideal diode model with two modes, given by
id ≥ 0, vd = 0 (the conducting mode,d = 1) and
id = 0, vd ≤ 0 (the blocking mode,d = 0), we get four
different modes with differentS and d combinations. By
analyzing the evolution ofvc andiL for these four modes, we

can derive constrained differential equations for each mode.
Conveniently, the equations for mode 2 and mode 4 can be
combined into a single mode, which with some abuse of
notation, we label as mode 2. Following circuit laws, the
constrained differential equations for each mode are given
in terms of(vc, iL, S) as follows:

1 :





S = 0
v̇c = − 1

Rc
vc +

1
c
iL

i̇L = − 1
L
vc +

E
L

iL > 0, or (vc ≤ E, iL = 0)

2 :





S = 1
v̇c = − 1

Rc
vc

i̇L = E
L

vc ≥ 0

3 :





S = 0
v̇c = − 1

Rc
vc

i̇L = 0
vc > E, iL = 0

Therefore, the value of the switchS determines whether
the system is in mode 1/mode 3 (S = 0) or mode 2 (S = 1).
Note that it is possible that whenS changes,vc andiL may
not be in the regions of viability in the subsequent mode,
in which casevc and iL should be appropriately reset (e.g.,
via consistency projectors mapping the state to the algebraic
conditions of the subsequent mode [7], [8], [11]). Although,
a full model with resets can be derived, see [9], for practical
operation of the converter it is clearly undesirable that such
resets occur as they may damage the circuit. Therefore our
controller will allow S = 0 when iL ≥ 0, and S = 1
only when vc ≥ 0. Indeed, in Section III-A, we propose
a controller that guarantees that after every switch ofS, the
algebraic conditions of the subsequent mode are satisfied.

For convenience, we definex := (vc, iL) and the algebraic
constraints for the modes above in terms of sets as follows:

M1 = {x ∈ R
2 : iL > 0} ∪ {x ∈ R

2 : vc ≤ E, iL = 0},

M2 = {x ∈ R
2 : vc ≥ 0},

M3 = {x ∈ R
2 : vc > E, iL = 0}

Hence,S = 0 is only allowed whenx ∈ M1∪M3 andS = 1
is only allowed whenx ∈ M2. Using these restrictions, we
can derive a switched differential inclusion encompassingall
the modes of operation derived so far.

B. Mathematical Model

In this section, we define a mathematical model of the
Boost converter in which the differential equations in each
mode define the continuous dynamics. Since the vector field
associated with mode 1 is

fa(x) =

[
− 1

Rc
vc +

1
c
iL

− 1
L
vc +

E
L

]

and the vector field associated with mode 3 is

fb(x) =

[
− 1

Rc
vc

0

]

the resulting vector field forS = 0 is discontinuous. To
establish robust asymptotic stability of the upcoming closed-
loop system, a Krasovskii regularization of the vector field



will be performed following ideas in [12], [13].1 The system
will take the form of a switched differential inclusion with
constraints, namely

ẋ ∈ FS(x) x ∈ M̃S (1)

whereS ∈ {0, 1} is the position of the switchS, and for
eachS ∈ {0, 1}, FS(x) is the Krasovskii regularization of
the vector fields and̃MS is the corresponding regularization
of the sets capturing the regions of validity for each mode.
Solutions will be considered in the sense of Krasovskii [12],
[13].

Following [13], the regularization of̃MS for S = 0 is
M̃0 = M1 ∪M3 = {x ∈ R

2 : iL ≥ 0}, and forS = 1 is
M̃1 = M2 = {x ∈ R

2 : vc ≥ 0}. Note that forx ∈ M3, fa
andfb reduce to

fa(x)
∣∣∣
iL=0

=

[
− 1

Rc
vc

− 1
L
vc +

E
L

]

fb(x)
∣∣∣
iL=0

=

[
− 1

Rc
vc

0

]

Then, the regularization of the vector fieldf0 at eachx ∈ M̃0

is given by
F0(x) :=

⋂

δ>0

cof0(x+ δB)

=





{fa(x)} if x ∈ M1 \M3

co

{[
− 1

Rc
vc

− 1
L
vc +

E
L

]
,

[
− 1

Rc
vc

0

]}
if x ∈ M3

=





{[
− 1

Rc
vc +

1
c
iL

− 1
L
vc +

E
L

]}
if x ∈ M1 \M3

{− 1
Rc

vc} ×
[
− 1

L
vc +

E
L
, 0

]
if x ∈ M3

Since the vector field for mode 2 is given by

f1(x) =

[
− 1

Rc
vc

E
L

]

which is continuous, we have, for eachx ∈ M̃1, that

F1(x) = {f1(x)} (2)

The model (1) is a constrained switched differential in-
clusion. This is a key difference with previous modeling
approaches (see, e.g. [4], [5]) where the third mode is
omitted. For this complete model, we propose a controller
that induces robust, global asymptotic stability in the next
section. As we will see, the hybrid systems approach
proposed here is the enabling tool to achieve this result. The
model will be used to synthesize a robust globally stabilizing
switching control law.

III. A R OBUST GLOBALLY STABILIZING

STATE-DEPENDENTSWITCHING CONTROL LAW

In this section, a switching control law for the model of
the Boost converter in (1) is proposed. We establish that this
control law induces a robust and global asymptotic stabil-
ity property. Besides that, we determine various robustness
properties of the closed-loop system.

1A Krasovskii regularization of this vector field is used due to the fact that
the discontinuity occurs on a set of measure zero. A Filippovregularization
would not account for discontinuities on such sets.

A. Control Law

Given a desired set-point voltagev∗c > 0 and current
i∗L > 0, let x∗ = (v∗c , i

∗
L) and consider the control Lyapunov-

function

V (x) = (x− x∗)⊤P (x− x∗)

whereP =

[
p11 0
0 p22

]
> 0. To derive the control law,

we compute the inner product between the gradient ofV

and the directions belonging to the (set-valued) mapFS in
(1). By analyzing the inner product of each configuration,
for eachS ∈ {0, 1} andx ∈ M̃S we get ,

max
ξ∈FS(x)

〈∇V (x), ξ〉 =

{
γ0(x) if S = 0, x ∈ M̃0

γ1(x) if S = 1, x ∈ M̃1

where, for eachx ∈ R
2, functionsγ0 andγ1 are defined as

γ0(x) =: 2p11(vc − v∗c )

(
−

1

Rc
vc +

1

c
iL

)
+

2p22(iL − i∗L)

(
−vc + E

L

)

γ1(x) =: 2p11(vc − v∗c )

(
−

1

Rc
vc

)
+ 2p22(iL − i∗L)

E

L

The sign of the functionsγ0, γ1 will be used to define a
state-dependent switching control law assigning the control
input S. Let

Ax = {x ∈ R
2 : vc = v∗c , iL = i∗L} (3)

define the isolated point to be stabilized, namely, the point
(vc, iL) = (v∗c , i

∗
L). The following lemma establishes a

property of functionsγ0, γ1 that will be used in our stability
result in Section III-B.

Lemma 3.1: LetR,E, p11, p22 > 0, p11

c
= p22

L
, v∗c > E,

and i∗L =
v∗

c
2

RE
. Then, for eachx ∈ R

2 \ A, there exists
S ∈ {0, 1} such that

γS(x) < 0 (4)

To obtain a control law that does not result in sliding
motions and is robust, following the idea in [5], we propose a
logic-based control law that selects the input according tothe
current active input and the value of the state. To this end, let
q ∈ {0, 1} be a logic state indicating the value of the actual
input S. The controller is defined so that switching ofq to
1 − q occurs only ifγq(x) becomes zero. Then, whenx ∈
R

2 \Ax andγq(x) = 0, by Lemma 3.1,γ1−q(x) < 0, which
makes the closed-loop trajectory componentsx approachAx.
The closed-loop system is obtained whenS is assigned toq,
namely,S = q. This leads to the hybrid systemH given by

[
ẋ

q̇

]
∈

[
Fq(x)
0

]
=: F (x, q) (x, q) ∈ C

[
x+

q+

]
=

[
x

Gq(x)

]
=: G(x, q) (x, q) ∈ D

(5)

where

C =
{
(x, q) : x ∈ M̃0, γ0(x) ≤ 0, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ1(x) ≤ 0, q = 1

}



D =
{
(x, q) : x ∈ M̃0, γ0(x) = 0, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ1(x) = 0 q = 1

}

and

Gq(x) =

{
{1} if q = 0, γ0(x) = 0
{0} if q = 1, γ1(x) = 0

The flow mapF of the hybrid systemH is constructed by
stacking the mapFS (with S = q) of (1) and zero, while
the flow set enforces the constraints in (1) as well as those
of the switching mechanism of the proposed controller. In
this way, the continuous evolution ofx is according to (1)
under the effect of the proposed controller, whileq does not
change during flows. The jump mapG is such thatx does not
change at jumps andq is toggled at jumps, while the jump
set enforces the jumps of the controller within the constraints
of (1).

Some sample contour plots and switching boundaries
γq(x) = 0 of the proposed controller or a particular set of
parameters (x∗ = (7, 3.27), E = 5V, R = 3Ω, c = 0.1F,
L = 0.2H, p11 = c

2 , p22 = L
2 ) are shown in Figure 2.
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Fig. 2. Contour plots of (upper-left)γ0, (upper-right)γ1, and (lower) the
switching boundariesγq(x) = 0, whenx∗ = (7, 3.27), E = 5V, R = 3Ω,
c = 0.1F, L = 0.2H, p11 = c

2
, andp22 = L

2
.

B. Properties of closed-loop system

Solutions to the closed-loop systemH can evolve con-
tinuously and/or discretely depending on flow and jump
dynamics. Following [14], we treat the number of jumps as
an independent variablej next to the usual time and we
parameterize the hybrid time by(t, j). Solutions to hybrid
systemsH are given in terms of hybrid arcs and hybrid
inputs on hybrid time domains. Hybrid time domains are
subsetsE of R≥0 × N that, for each(T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) can be written as∪J−1

j=0 ([tj , tj+1], j)
for some finite sequence of times0 = t0 ≤ t1 ≤ t2... ≤ tJ .
A hybrid arcφ is a function on a hybrid time domain that,
for each j ∈ N, t 7→ φ(t, j) is absolutely continuous on
the interval{t : (t, j) ∈ domφ }. Then, a solution to the

hybrid systemH is given by a hybrid arcφ satisfying the
dynamics ofH. A solution φ to H is said to becomplete
if domφ is unbounded andmaximal if there does not exist
another pairφ′ such thatφ is a truncation ofφ′ to some
proper subset ofdomφ′. For more details about solutions to
hybrid systems, see [10].

Proposition 3.2: (Properties of solutions) For eachξ ∈
C ∪ D, every maximal solutionχ = (x, q) to the hybrid
systemH = (C,F,D,G) in (5) with χ(0, 0) = ξ is complete.

Our goal is to show that the solutionsχ to H in (5) are
such that the compact setA in (3) is asymptotically stable.
To this end, we employ the following stability notion for
general hybrid systems [10].

Definition 3.3 (Stability): A compact setA ⊂ R
n is said

to be

• stableif for eachε > 0 there existsδ > 0 such that each
solutionχ with |χ(0, 0)|A ≤ δ satisfies|χ(t, j)|A ≤ ε

for all (t, j) ∈ domχ;
• attractiveif there existsµ > 0 such that every maximal

solutionχ with |χ(0, 0)|A ≤ µ is complete and satisfies
lim(t,j)∈domχ,t+j→∞ |χ(t, j)|A = 0;

• asymptotically stableif A is stable and attractive;
• globally asymptotically stableif the attractivity property

holds for every point inC ∪D.

The following result on the structural properties ofH in
(5) is key for robust stability, see [10].

Lemma 3.4: The closed-loop systemH given by(5) sat-
isfies the hybrid basic conditions, i.e., its data(C,F,D,G)
is such that2

(A1) C andD are closed sets;
(A2) F : Rn

⇉ R
n is outer semicontinuous and locally

bounded, andF (x) is nonempty and convex for allx ∈
C;

(A3) G : Rn → R
n is continuous.

Using these conditions, we are now ready to show the
following theorem, which states global asymptotical stability
of the compact setA for the closed-loop systemH.

Theorem 3.5: Consider the hybrid systemH in (5) with
c, L,R,E > 0. Given a desired set-point voltage and current
(v∗c , i

∗
L), wherev∗c > E and i∗L =

v∗

c
2

RE
, then the compact set

A = Ax × {0, 1} (6)

is globally asymptotically stable forH.

More importantly, since the hybrid closed-loop system in
(5) satisfies the hybrid basic conditions (see Lemma 3.4)
and the setA is compact, then, using [10, Theorem 7.21]
we have thatA is robustly asymptotically stable. We now

2A set-valued mapS : Rn
⇉ R

m is outer semicontinuousat x ∈ R
n

if for each sequence{xi}∞i=1
converging to a pointx ∈ Rn and each

sequenceyi ∈ S(xi) converging to a pointy, it holds thaty ∈ S(x);
see [15, Definition 5.4]. Given a setX ⊂ R

n, it is outer semicontinuous
relative toX if the set-valued mapping fromRn to R

m defined byS(x)
for x ∈ X and∅ for x 6∈ X is outer semicontinuous at eachx ∈ X. It is
locally boundedif, for each compact setK ⊂ Rn there exists a compact
setK ′ ⊂ R

n such thatS(K) := ∪x∈KS(x) ⊂ K ′.



have completed the control design and formally established
a key closed-loop stability property, in particular, we showed
that the basin of attraction isC ∪ D. It is worth noting
that, in addition to pertaining to simpler models (ignoring
mode 3) as mentioned before, previous literature lacks the
characterization of the basin of attraction.

C. Robustness to spatial regularization

For system (5), we have robustness to general perturba-
tions, but we only present results about spatial regularization
here due to space constraints. When the system reaches its
desired steady state using the controller in Section III-B,very
fast switching may occur. To alleviate this problem, spatial
regularization is performed to the closed-loop systemH (at
the controller level). More precisely,γ0 andγ1 are modified
by using a constant factorρ, with ρ ∈ R≥0. The regularized
system will be denoted asHρ, and its flow map is given by
the same equation asH, i.e.,

[
ẋ

q̇

]
∈

[
Fq(x)
0

]
(x, q) ∈ Cρ,

where, now, the flow set is replaced by

Cρ =
{
(x, q) : x ∈ M̃0, γ0(x) ≤ ρ, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ1(x) ≤ ρ, q = 1

}

Furthermore, the jump map is given by

x+ = x

q+ ∈ Gq(x)
(x, q) ∈ Dρ,

where, now, the jump set is replaced by

Dρ =
{
(x, q) : x ∈ M̃0, γ0(x) = ρ, q = 0

}
∪

{
(x, q) : x ∈ M̃1, γ1(x) = ρ, q = 1

}

and

Gq(x) =

{
{1} if q = 0, γ0(x) ≥ ρ

{0} if q = 1, γ1(x) ≥ ρ

The new switching boundaries for a particular set of parame-
ters (x∗ = (7, 3.27), E = 5V, R = 3Ω, c = 0.1F,L = 0.2H,
p11 = c

2 , p22 = L
2 , andρ = 2) are shown in Figure 3.
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Fig. 3. Switching boundaries with spatial regularization whereρ = 2, using
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p22 = L
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.

Theorem 3.6: Under the assumptions of Theorem 3.5,
there existsβ ∈ KL such that, for eachε > 0 and each

compact setK ⊂ R
2, there existsρ∗ > 0 guaranteeing

the following property: for eachρ ∈ (0, ρ∗] every solution
χ = (x, q) to Hρ with χ(0, 0) ∈ K × {0, 1} is such that its
x component satisfies

|x(t, j)|Ax
≤ β(|x(0, 0)|Ax

, t+j)+ε ∀(t, j) ∈ domχ. (7)

The property asserted by Theorem 3.6 will be illustrated
numerically in Section IV-B.

IV. SIMULATION RESULTS

In this section, we present several simulation results.
First, the closed-loop systemH is simulated for the ideal
case. Due to undesirable chattering, the spatial regularized
systemHρ is simulated next. The simulations are performed
using E = 5V, R = 3Ω, c = 0.1F, L = 0.2H,

and P =

[
c
2 0
0 L

2

]
, unless noted otherwise, within the

HYBRID EQUATIONS TOOLBOX [16].

A. Simulating the closed-loop system

The results for initial conditionsx0 = (0, 5) and x0 =
(5, 0) for the closed-loop systemH are shown in Figure
4. As can be seen, the solutions converge from both initial
conditions to the setA.
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Fig. 4. Simulation results for the closed loop systemH with initial
conditionsx0 = (0, 5), q0 = 1 and x0 = (5, 0), q0 = 0, and where
S is only drawn for the simulation usingx0 = (5, 0).

Though not formally established in this paper, the closed-
loop system is robust to slowly varying parameters. To
illustrate this, a simulation is performed with a dynamically
changing set pointx∗. Initially, x∗ = (7, 3.27), but when a
neighborhood of this value is reached, we linearly increase
x∗ from (7, 3.27) to (10, 6.67). This simulation is shown in
Figure 5. As it can be seen, the Boost converter follows the
reference well and eventually reaches a neighborhood of the
final x∗.

B. Simulating the spatially regularized closed-loop system

Now, the spatially regularized closed-loop systemHρ is
implemented. The results for initial conditionsx0 = (0, 5),
q0 = 1 andx0 = (5, 0), q0 = 0 are shown in Figure 6.

To validate Theorem 3.6, more simulations are performed
in order to find a relationship between the spatially reg-
ularization parameterρ and ε in Theorem 3.6. From the
simulation results shown in Table I, the relationship between
ρ and ε, specifically, for x∗ = (7, 3.27), can now be
approximated as

ε ≈ 0.9ρ (8)

http://www.u.arizona.edu/~sricardo/index.php?n=Main.Software
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Fig. 5. Simulation results with initial conditionsx0 = (0, 5), q0 = 0,
when x∗ linearly changes from(7, 3.27) to (10, 6.67), where the black
and green curves denote the switching boundaries forx∗ = (7, 3.27) and
x∗ = (10, 6.67), respectively.
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Fig. 6. Simulation results for the spatially regularized closed loop systemHρ

with ρ = 0.5 for initial conditionsx0 = (0, 5), q0 = 1 andx0 = (5, 0),
q0 = 0, and whereS is only drawn for the simulation usingx0 = (5, 0).

TABLE I

SIMULATION RESULTS FOR DIFFERENT VALUES OFρ.

ρ limt+j→∞ vc(t, j) limt+j→∞ iL(t, j) ε ε/ρ
0.01 6.993 3.261 0.0090 0.90
0.05 6.974 3.241 0.0365 0.73
0.1 6.944 3.211 0.0790 0.79
0.5 6.719 2.991 0.3936 0.78
1 6.422 2.707 0.8046 0.80
2 5.721 2.072 1.7502 0.88

As it can be seen, the larger the spatial regularization (larger
ρ) the larger the error will be. Eventually, whenρ becomes
too large, the controller may not be able to stabilize the
desired pointx∗.

V. CONCLUSIONS

In this paper, a hybrid system approach for control of the
Boost converter is presented. First of all, a switched system
with discontinuous right-hand side for all the modes is
obtained. For this model, a suitable Krasovskii regularization
is determined, leading to a switched differential inclusion
with constraints, after which a control design procedure is
proposed. By formalizing the whole control setup in the
hybrid systems framework of [10] and establishing important
basic properties of the control scheme, various important
stabilization and robustness properties can be derived, in
particular robust global stability of a set point(v∗c , i

∗
L). To

the best of our knowledge, no such a characterization was
published before for this circuit. Using the proposed control
law, we showed how to systematically deal with spatial
regularization to reduce the switching rate of the converter.
Multiple simulations are performed to illustrate the different

properties (e.g., stability, and robustness properties) of the
closed-loop system.
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