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Engineering Inertial and Primary-frequency Response for

Distributed Energy Resources

Swaroop S. Guggilam, Changhong Zhao, Emiliano Dall’Anese, Yu Christine Chen, and Sairaj V. Dhople

Abstract— We propose a framework to engineer synthetic-
inertia and droop-control parameters for distributed energy re-
sources (DERs) so that the system frequency in a network com-
posed of DERs and synchronous generators conforms to pre-
scribed transient and steady-state performance specifications.
Our approach is grounded in a second-order lumped-parameter
model that captures the dynamics of synchronous generators
and frequency-responsive DERs endowed with inertial and
droop control. A key feature of this reduced-order model is that
its parameters can be related to those of the originating higher-
order dynamical model. This allows one to systematically design
the DER inertial and droop-control coefficients leveraging
classical frequency-domain response characteristics of second-
order systems. Time-domain simulations validate the accuracy
of the model-reduction method and demonstrate how DER
controllers can be designed to meet steady-state-regulation and
transient-performance specifications.

I. INTRODUCTION

Power-system operational practices across a broad tem-

poral spectrum will need to be refashioned to acknowledge

and accommodate the increased integration of distributed

energy resources (DERs) and gradual displacement of fossil-

fuel driven generation [1]. In this paper, we focus on

time scales corresponding to inertial and primary-frequency

response. Frequency swings immediately following large-

signal generation- or load-side disturbances are conven-

tionally addressed exclusively with synchronous-generators’

mechanical inertia and their turbine governors. The increased

integration of DERs brings along the challenge of main-

taining system frequency with less rotational mechanical

inertia, but also offers the opportunity to exercise synthetic

inertial and droop control at time scales faster than that

possible with synchronous generators. While it is widely

recognized that DERs ought to provide frequency regulation

as part of ancillary services [2]–[4], there are—as of yet—a

limited number of system-theoretic methods to engineer the

frequency response in mixed DER-generator systems.

To address the problem outlined above, our approach pro-

ceeds as follows. Beginning with a detailed third-order model

adopted for individual generators (capturing rotor-angle, fre-

quency, and mechanical-power dynamics), and a second-

order model adopted for aggregations of DERs (capturing

DER bus-voltage angle and electrical-frequency dynamics),
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we develop a reduced second-order lumped-parameter model

that acknowledges all frequency-responsive devices and in-

cludes system frequency and the aggregated mechanical-

power-output of generators as states. This reduced-order

model retains DER synthetic-inertia and droop-control co-

efficients from the original model in closed form, so that

these parameters can be designed to meet transient and

steady-state regulation specifications for system frequency

by leveraging well-established notions pertaining to second-

order systems. While some facets of the resulting lumped-

parameter model are obvious in hindsight (e.g., net damping

is the sum of generator-droop, load-damping and DER-

droop constants, and net inertia is the sum of generator

mechanical inertia and DER synthetic inertia), the choice

of time constant for the state that captures the aggregated

turbine-governor dynamics is far from apparent. Leverag-

ing insights on the spectral properties of pertinent system

matrices, we outline an optimization problem to determine

this time constant. Serendipitously, we find that this is only

a function of individual synchronous-generator droop and

turbine-governor time constants and independent of the DER

control parameters. This allows us to decouple the model-

reduction method from the parameter-tuning process.

Related prior art can be broadly grouped into power-

system model reduction methods and system-theoretic efforts

to design DER synthetic-inertia and droop-control coeffi-

cients. Model-reduction methods for power systems is a

widely researched topic [5]. However, the dominant theme

here is the application of numerical techniques such as

selective modal analysis, balanced truncation, and Krylov-

subspace methods to detailed power-system dynamical mod-

els, which are perfectly known a priori. Typically, such

methods rely on myriad matrix manipulations and factoriza-

tions that challenge the development of analytical methods

to relate the parameters of the reduced-order model to those

of the original one. In the recent work in [6], a reduced-

order dynamical model for a balancing-authority area while

retaining original-system parameters was developed, but the

accuracy of the reduced-order model is not addressed. Unlike

these previous works, our proposed method: i) relates the

parameters of the reduced-order system to those of the orig-

inal one, ii) justifies the validity of the reduced-order model

based on spectral properties, and iii) rigorously bounds the

error between the reduced-order system and the original one.

Shifting focus to literature on frequency-responsive DERs,

there is a wide body of work that focuses on DER-level

controller design for inertial and primary-frequency con-

trol [7]–[9]. However, limited attention has been devoted
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to relating synthetic-inertia and droop-control coefficients

to the post-disturbance system-wide dynamic frequency re-

sponse or steady-state frequency regulation. A few notable

exceptions to this general observation are the efforts in [10]–

[12]; however to simplify the analysis, the methods therein

adopt a constant-ramp-rate model for governors. A brute-

force optimization-based approach that leverages sensitivity

of frequency overshoot and damping ratio to engineer inertia

and damping constants is provided in [13]. This method

is based on explicitly computing the system eigenvalues,

and is not accompanied with a proof of convergence or

guarantee of scalability to larger networks. Finally, we bring

to attention the effort in [14] that addresses the tangentially

related problem of determining optimal locations in the

network to locate synthetic inertia. While we assume the

DER locations are fixed, once the aggregate inertial and

droop-control parameters are determined, we outline how

these could be optimally allocated between DERs to ensure

power sharing. This builds on our previous work which

focused on developing notions of participation factors for

allocating DER primary-frequency response [15].

The remainder of this manuscript is organized as follows.

In Section II we outline the dynamical models adopted for

the generators and DERs, and in Section III, we obtain the

reduced second-order model. The approach to design the

DER control coefficients and numerical simulations to vali-

date the model reduction and design process are outlined in

Section IV and Section V, respectively. Concluding remarks

and directions for future work are provided in Section VI.

II. PRELIMINARIES AND SYSTEM DYNAMICAL MODELS

In this section, we outline pertinent notation, and describe

the dynamical model for the generators and the frequency-

responsive DERs.

A. Notation

The spaces of N × 1 real-valued and complex-valued

vectors are denoted by RN and CN , respectively. The matrix

inverse is denoted by (·)−1, transpose by (·)T, and j :=
√
−1.

The magnitude of a complex scalar and cardinality of a

set is denoted by | · |. A diagonal matrix formed with

diagonal entries composed of entries of vector x is denoted

by diag(x); and diag{x, y} denotes a diagonal matrix with

entries of vectors x and y staked along the main diagonal.

The N × 1 vectors with all ones and all zeros are denoted

by 1N and 0N , respectively; and the N ×N identity matrix

is denoted by IN .

B. Transmission Network Model

We consider a classical power network model for the

transmission grid, which is represented by a graph, where

N is the set of buses, and E ⊂ N × N is the set of

transmission lines. A transmission line is denoted by (g, ℓ) ∈
E . Partition the set N = D ∪ G, where G is the set of buses

that are connected to conventional turbine-based generators

(high inertia) and D is the set of buses that are connected

to frequency-responsive DERs (or their aggregates). For

notational and expositional convenience, we assume that no

DERs are connected to generator buses, i.e., D∩G = ∅. (This

assumption can be easily relaxed at the risk of having to

contend with burdensome notation.) The set of neighbors of

bus g is defined as Ng := {ℓ ∈ N| (g, ℓ) ∈ E}. Transmission

line (g, ℓ) is modeled as a series reactance jxgℓ ∈ C \ {0}.

The branch flows Pgℓ, Qgℓ, are given by

Pgℓ = |Vg||Vℓ|x−1
gℓ sin(θg − θℓ),

Qgℓ = |Vg|2x−1
gℓ − |Vg||Vℓ|x−1

gℓ cos(θg − θℓ),
(1)

where |Vℓ| is the voltage magnitude and θℓ is the phase angle

at the ℓ bus.

C. Synchronous-generator Dynamics

Since we are interested in time scales pertaining to primary

frequency response, we model the dynamics of angular

position, frequency, and mechanical-power input for the gen-

erators in the network. In particular, for the g ∈ G generator,

we adopt the following third-order dynamical model:

θ̇g = ωg − ωs, (2a)

MG,gω̇g = Pm
g −DG,g(ωg − ωs) + Pg −

∑

ℓ∈Ng

Pgℓ, (2b)

τgṖ
m
g = −Pm

g + P r
g −RG,g(ωg − ωs). (2c)

Above, θg, ωg, and Pm
g are the dynamical states for rotor

electrical angular position, generator frequency, and turbine

mechanical power, respectively, for the g generator, and

ωs is the synchronous frequency. Furthermore, MG,g is the

inertia constant, DG,g is the load-damping coefficient, RG,g

is the inverse of the frequency-power speed-droop regulation

constant, τg is the turbine time constant, and P r
g denotes

its reference power setting (assumed to be constant since it

derives from secondary control). Finally, Pg is the injection

at bus g (negative, if we wish to model a constant power

load). The above model is widely used for studying power-

system dynamic phenomena at time scales pertaining to

primary-frequency response [6], [16]. Dynamics of automatic

voltage regulators and power-system stabilizers are typically

neglected for this regime, and the terminal voltage |Vg| is

fixed. For notational convenience, we define the following:

Pm := [Pm
1 , Pm

2 , . . . , Pm
|G|]

T, P r := [P r
1 , P

r
2 , . . . , P

r
|G|]

T,

MG := [MG,1, . . . ,MG,|G|]
T, DG := [DG,1, . . . , DG,|G|]

T,

RG := [RG,1, . . . , RG,|G|]
T, τ := [τ1, τ2, . . . , τ|G|]

T. (3)

D. Frequency-responsive DER Model

Assume the following model for the DERs connected to

buses d ∈ D:

θ̇d = ωd − ωs (4a)

MD,dω̇d = Pd −
∑

ℓ∈Nd

Pdℓ −DD,d(ωd − ωs). (4b)

The droop coefficient DD,d establishes the frequency re-

sponse of the DER at bus d, and the synthetic-inertia constant

MD,d determines the inertial response. If node d is a regular



load bus with no frequency-response DERs, then we simply

set DD,d = MD,d = 0. Furthermore, Pd denotes the net real-

power injection into bus d (constant, frequency-independent

real-power loads are incorporated into Pd). We neglect DER

capacity limits (to preserve analytical convenience), and DER

internal-controller dynamics (since these would be executed

at much faster time scales). The above model is appropriate

for aggregations of DERs in a setting where the frequency

at the feeder head (connected to the transmission network)

percolates down to all buses in the feeder [15], [17]. For

notational convenience, we define the following vectors:

MD := [MD,1, . . . ,MD,|D|]
T,

DD := [DD,1, . . . , DD,|D|]
T.

(5)

III. REDUCED SECOND-ORDER MODEL AND ACCURACY

In this section, we derive the reduced second-order model.

A. State-space Model

The following discussion assumes that the electrical dis-

tances between geographically different parts of the power

network are negligible, and therefore all the buses have the

same frequency even during the transient [18]. Extensions

to the case where this assumption may not hold (e.g., when

the network has multiple balancing areas or is composed of

weakly connected clusters) is part of ongoing effort. Assume

the system initially operates at the steady-state equilibrium

point with ωg = ωd = ωs, ∀g ∈ G, d ∈ D. Defining

∆ω = ωg − ωs = ωd − ωs, we get the following dynamics

from (2b) and (4b)

MG,g∆ω̇ = Pm
g −DG,g∆ω + Pg −

∑

ℓ∈Ng

Pgℓ, (6)

MD,d∆ω̇ = −DD,d∆ω + Pd −
∑

ℓ∈Nd

Pdℓ. (7)

Summing (6) over all g ∈ G, and (7) over all d ∈ D, we get

Meff∆ω̇ = 1T|G|P
m −Deff∆ω + Pload, (8)

where we define the effective inertia constant, Meff , and

effective damping constant, Deff , as

Meff := 1T|G|MG +1T|D|MD, Deff := 1T|G|DG +1T|D|DD, (9)

respectively. Going back to (8), Pload is the total electrical

load given by

Pload :=
∑

g∈G

(
Pg −

∑

ℓ∈Ng

Pgℓ

)
+

∑

d∈D

(
Pd −

∑

ℓ∈Nd

Pdℓ

)

=
∑

g∈G

Pg +
∑

d∈D

Pd. (10)

The second equality follows from the fact that since we

consider a lossless transmission network (1):
∑

g∈G

∑

ℓ∈Ng

Pgℓ +
∑

d∈D

∑

ℓ∈Nd

Pdℓ = 0.

Furthermore, collecting copies of (2c) ∀g ∈ G, we can write

diag(τ)Ṗm = −Pm + P r −RG∆ω. (11)

We combine (8) and (11) into the following standard state-

space model:

ẋ = Ax+Bu. (12)

The state vector and input, x, u ∈ R|G|+1, and system

matrices, A,B ∈ R|G|+1×|G|+1 are given by

x = [∆ω, (Pm)T]T, u = [Pload, (P
r)T]T, (13)

A =

[ −DeffM
−1
eff M−1

eff 1T|G|
AR Aτ

]
, B = diag{M−1

eff ,−Aτ},

where

Aτ = −diag(τ)−1, AR = AτRG . (14)

With the state-space model in (12) in place, we now develop

a second-order model under the assumption that the values

of the turbine-governor time constants are similar.

B. Reduced Second-order Model

Consider the following reduced second-order model to

capture the frequency dynamics:

ẋred = Aredxred +Bredured. (15)

The state vector and input, xred, ured ∈ R2, and system

matrices, Ared, Bred ∈ R
2×2 are given by

xred = [∆ωred, P
m
red]

T, ured = [Pload, P
r
red]

T, (16)

Ared =

[
−DeffM

−1
eff M−1

eff

−RG,effτ
−1 −τ−1

]
, Bred =

[
M−1

eff 0
0 τ−1

]

where τ > 0 is a model parameter (we comment more on

this shortly and outline an optimization-based approach to

determine it in Section III-D), and

P r
red = 1T|G|P

r, RG,eff = 1T|G|RG . (17)

When τg = τℓ, ∀g, ℓ ∈ G, it is straightforward to show that

with the choice τ = τg and ∆ω(0) = ∆ωred(0); ∆ω(t) =
∆ωred(t), ∀ t ≥ 0. Indeed, the reduced-order model above

is conceptualized starting from this observation and under

the assumption that in practice the turbine-governor time

constants are similar in value [19]. We show next that when

the turbine time constants are not the same, the error in

∆ωred(t) and ∆ω(t) can be rigorously upper-bounded.

C. Accuracy of Reduced-order Model

We derive an upper bound on the difference between

∆ωred(t) and ∆ω(t) for the general case when not all turbine

time constants are equal. In order to accomplish this, we find

it useful to define the following auxiliary dynamical system:

ẋ = Ax+Bu. (18)

The state vector, x ∈ R|G|+1, and system matrices, A,B ∈
R|G|+1×|G|+1 are given by

x = [∆ω, (P
m
)T]T, u = [Pload, (P

r)T]T, (19)

A = ΓA =

[ −DeffM
−1
eff M−1

eff 1T|G|
AR Aτ

]
, (20)

B = ΓB = diag{M−1
eff ,−Aτ},



where

Γ = diag{1, τ−1diag(τ)}, (21)

Aτ = −τ−1I|G|, AR = AτRG . (22)

Suppose the initial conditions for the system (18) are picked

to match those of (12), i.e., x(0) = x(0). The reduced-order

model in (15) can be derived from the one in (18) with the

choice Pm
red = 1T|G|P

m
and P r

red = 1T|G|P
r. Furthermore,

with the initialization ∆ωred(0) = ∆ω(0), and Pm
red(0) =

1T|G|P
m
(0), it follows that ∆ωred(t) = ∆ω(t), ∀t ≥ 0.

Since ∆ωred(t) = ∆ω(t), ∀t ≥ 0, and since the sys-

tem (18) has the same dimension as the original system (12),

it is algebraically and analytically convenient to study (18)

(instead of (15) directly) as compared to (12). We note that

if not all the entries of τ are identical, then the trajectories

generated by (18) and (12) do not match. Nonetheless, if

the eigenvalues of A and those of ΓA are close, then we

would expect x(t) and x(t) to be close, and hence ∆ω(t)
and ∆ωred(t) to be close. We utilize the 2-norm of the matrix

E := A−A = (Γ− I|G|+1)A (23)

as a measure of closeness of eigenvalues of A and A, and

building on this, we derive an upper bound to the difference

between ∆ω(t) and ∆ωred(t) that is proportional to ‖E‖2.

With this final goal in mind, we will find the following

lemma useful.

Lemma 1: Suppose the matrix A in (12) is Hurwitz and

diagonalizable. There exists a δ > 0, such that if ‖E‖2 =
‖(Γ− I|G|+1)A‖2 < δ, then the matrix ΓA is Hurwitz.

Proof. Diagonalize matrix A as A = PΛP−1. By the theory

of perturbation bounds for eigenvalues and eigenvectors [20],

and the definitions in (23), we have that

ΓA = A+ E = (P + g(E)) (Λ + h(E)) (P + g(E))−1 ,

where g(E) ∈ C
|G|+1×|G|+1, and h(E) ∈ C

|G|+1×|G|+1 is

a diagonal matrix. Furthermore, g(E) = h(E) = O(‖E‖2),
which implies that

‖g(E)‖2 = ‖h(E)‖2 → 0 as ‖E‖2 → 0. (24)

From (24), we can conclude that there exists a sufficiently

small δ > 0 such that when ‖E‖2 = ‖(Γ− I|G|+1)A‖2 < δ,

the eigenvalues of A = ΓA, i.e., the diagonal entries of the

diagonal matrix Λ+h(E), have strictly negative real parts. �

Leveraging the result of Lemma 1, we now bound the

error between ∆ωred(t) and ∆ω(t).

Theorem 1: Consider the dynamical system (12) (with

a matrix A that is diagonalizable and Hurwitz) and the

reduced-order counterpart (15). Suppose the initial conditions

for the two dynamical systems at time t = 0 are such that

∆ωred(0) = ∆ω(0), and Pm
red(0) = 1T|G|P

m(0). There exist

δ, k, λ > 0, such that if ‖(Γ− I|G|+1)A)‖2 < δ, we get that

∀t ≥ 0,

|∆ω(t)−∆ωred(t)| < δ
k

λ
sup

0≤s≤t

(
‖x(s)‖2 + ‖A−1Bu(s)‖2

)
.

(25)

Proof. Consider the dynamics of ∆x(t) := x(t) − x(t),
which, given the models in (12), (18), and the definitions

in (23) can be expressed as

∆ẋ = ΓA∆x+ (Γ− I|G|+1)ẋ, ∆x(0) = 0|G|+1. (26)

With a Hurwitz matrix ΓA (see Lemma 1), and treating ẋ
as an exogenous input to the system in (26), we can write

its solution as

∆x(t) =

∫ t

s=0

eΓA(t−s)(Γ− I|G|+1)ẋ(s)ds. (27)

Since ΓA is Hurwitz, there exist k, λ > 0 such that we can

bound [21]

‖eΓA(t−s)‖2 ≤ ke−λ(t−s), ∀ 0 ≤ s ≤ t. (28)

From (27) and (28), we can write

‖∆x(t)‖2 ≤
∫ t

s=0

ke−λ(t−s)

· ‖(Γ− I|G|+1)(Ax(s) +Bu(s))‖2ds

≤ k

λ
‖(Γ− I|G|+1)A‖2

· sup
0≤s≤t

(‖x(s)‖2 + ‖A−1Bu(s)‖2). (29)

Recognizing that

|∆ω(t)−∆ω(t)| = |∆ωred(t)−∆ω(t)| ≤ ‖∆x(t)‖2,
and under the constraint ‖(Γ− I|G|+1)A)‖2 < δ, we get the

bound in (25). �

D. Selecting an Appropriate τ

Given the bound in Theorem 1 that depends on ‖(Γ −
I‖G‖+1)A‖2, evidently, a good choice for τ would be:

τ = argmin
τ̂≥0

‖(Γ(τ̂ )− I|G|+1)A‖2, (30)

where Γ(τ̂ ) := τ̂−1diag{τ̂ , diag(τ)}. Serendipitously, we

find that

‖(Γ(τ̂ )− I|G|+1)A‖2 = ‖(Γ̃(τ̂ )− I|G|)Ã‖2,
where

Γ̃(τ̂ ) := τ̂−1diag(τ), Ã := [AR Aτ ], (31)

with Aτ = −diag(τ)−1 and AR = AτRG (see (12)). This

is because the first row of the matrix (Γ(τ̂ )− I|G|+1)A has

all entries equal to 0. Therefore, in lieu of solving (30), we

solve instead

τ = argmin
τ̂≥0

‖(Γ̃(τ̂ )− I|G|)Ã‖2. (32)

This is an important point to emphasize since the matrix

Ã does not depend on the effective damping and inertia

constants (Deff and Meff ): the terms that we wish to design to

engineer the primary-frequency and inertial response of the

system. With the choice (32), we see that the reduced-order

model in (15) is fully specified, and we can move on to the

design process leveraging the analytical simplicity afforded

by the second-order system.



IV. DESIGNING INERTIA AND DAMPING COEFFICIENTS

In order to tune parameters Meff and Deff in the combined

transmission and distribution systems modeled by (12) to

achieve desired transient characteristics in system frequency

deviations, we make use of the reduced second-order system

in (15). Particularly, we consider the s-domain transfer func-

tion from Pload to ∆ωred, which was shown to approximate

the actual frequency deviation ∆ω in Theorem 1. This input-

output relationship is easily obtained from (15) as

∆ωred(s)

Pload(s)
=

k(s+ a)

s2 + 2ζωns+ ω2
n

=: H(s), (33)

where

k = M−1
eff , a = τ−1, (34)

ωn =

√
RG,eff +Deff

τMeff
, ζ =

1

2

Meff + τDeff√
τMeff(RG,eff +Deff)

.

A. Steady-state Frequency Regulation

Suppose the specifications call for a steady-state regulation

of Rreg for primary-frequency response. In particular,

Rreg =
∆Pload

∆ω⋆
, (35)

where ∆Pload is the (step) change in load from the

pre-disturbance synchronous-steady-state equilibrium and

∆ω⋆ = limt→∞ ∆ω(t) is the permissible steady-state de-

viation in frequency from ωs. From (33), we get

Rreg = lim
s→0

H(s)−1 =
ω2
n

ka
= Deff +RG,eff . (36)

Given a specification on Rreg, and assuming that the genera-

tor damping coefficients are specified (collected in the vector

DG) the DER-side damping coefficients (i.e., entries of the

vector DD) should be picked to satisfy

1T|D|DD = Rreg −RG,eff − 1T|G|DG . (37)

Notice that (37) establishes a constraint on the sum of

DER damping coefficients. There are many possibilities to

disaggregate this sum into individual values DD,d. Let us

Fig. 1. One-line diagram of test case. Synchronous generators are at
buses G = {1, 2}, and frequency-responsive DERs are at buses D =
{3, 4}. Frequency-independent loads at buses 3 and 4 are denoted by
(P load

3 , Qload
3 ) and (P load

4 , Qload
4 ).

suppose that we are interested in ensuring power sharing in

proportion to ratings. In particular, in the post-disturbance

equilibrium, we want the ratio of the change in real-power

output from DER d to its real-power rated value P rated
d to be

the same for all DERs. This can be ensured with the choice

DD,k

DD,ℓ

=
P rated
k

P rated
ℓ

, k, ℓ ∈ D. (38)

B. Transient Frequency Dynamics

With Deff determined to meet the steady-state frequency

regulation requirement, the only tunable parameter remaining

in (33) is Meff . We can tune this parameter to engineer

the desired transient performance. Given the transfer func-

tion (33), we can readily solve for Meff that guarantees a

prescribed value of damping, ζ, or natural frequency, ωn.

Once Meff has been determined according to the desired

transient performance of (33), we design MD,d for individual

DERs d ∈ D with a design philosophy that is similar to how

the DD,d terms were obtained from Deff in Section IV-A. To

this end, suppose that we are interested in ensuring power

sharing that is proportional to individual DER power ratings.

At any time t ≥ 0, we want the ratio of the change in

active-power output from DER d for inertial response to its

power rating P rated
d to be the same for all DERs. This can

be ensured with the choice

MD,k

MD,ℓ

=
P rated
k

P rated
ℓ

, ∀k, ℓ ∈ D. (39)

V. NUMERICAL SIMULATION RESULTS

Consider the 4-bus transmission system shown in Fig. 1

with synchronous generators at buses G = {1, 2} and

frequency-responsive DERs at D = {3, 4}. The model

parameters and power-flow states corresponding to the pre-

disturbance steady state are listed in the appendix. Unless

otherwise specified, voltage magnitudes are in per unit (pu)

with a 4.8 [kV] base, and power values are also in pu

with a 23 [MVA] base. To validate the second-order model

in (15) and design process in Section IV, pertinent time-

domain simulation results are compared with a differential

algebraic equation (DAE) model simulated in Power System

Toolbox (PST) [22]. In addition to the model introduced in

Section II-C, the PST DAE model also considers lossy lines,

voltage-regulator dynamics, and a detailed two-axis machine

model. Furthermore, DER-connected nodes are represented

as PQ buses in the power-flow solution, and DERs are mod-

eled as frequency-sensitive negative loads. (This conforms to

the fact that state-of-art DERs are grid following devices.)

We will find that the simulation results validate the modeling

assumptions in deriving the state-space model in (12) and the

ensuing model-reduction method (15).

A. Accuracy of the Reduced-order Model

Accuracy of the reduced second-order model is established

with time-domain simulation results (for two choices of τ
including the one suggested in (32)) and examining the poles

and zeros of the load-step to frequency-deviation transfer

function of the original and reduced-order models.



Fig. 2. Error in reduced-order frequency-deviation dynamics for two
different choices of τ .

1) Choice of τ : In Fig. 2, we plot the relative error be-

tween the electrical frequency deviation (from synchronous

frequency) from the model (12), ∆ω(t) and the frequency

deviation resulting from the reduced-order model, ∆ωred(t).
The observed frequency deviations result from a 0.02 [MW]

step change in the load, P load
3 , at bus 3. The two trajectories

shown in Fig. 2 correspond to cases for which the reduced-

order system in (15) is simulated with τ picked as: i) the

average of the turbine time constants of generators 1 and 2
(red trace), and ii) the solution to (32) (blue trace). Clearly,

the choice of τ in (32) serves as a more suitable proxy for the

turbine time constant of the aggregated governor dynamics.

2) Transfer Functions: In Fig. 3, we plot the poles and

zeros of the transfer functions from load disturbance to

frequency deviation for the original model (12) in blue, and

the reduced second-order model (15) in red (in which case,

we refer to the transfer function in (33)). The following

observations are in order:

� Increasing Deff (with Meff held constant) perturbs the

complex-valued poles predominantly along trajectories

associated with constant natural frequency.

� Increasing Meff (with Deff held constant) perturbs the

complex-valued poles predominantly along trajectories

associated with constant damping ratio.

� Zeros are independent of Deff and Meff values in both

models (this is evident for the reduced-order model

from (34)). Furthermore, real-valued poles of the orig-

inal model (predominantly attributable to the governor

dynamics) are not perturbed significantly.

� Most importantly, complex-valued poles corresponding

to the reduced second-order model are close to those

of original model with τ chosen by solving (32) over a

wide range of Deff and Meff .

B. Achieving Desired Performance Specifications

With the reduced-order model validated, we apply the

ideas outlined in Section IV to design the DER synthetic-

inertia and droop-control parameters. To this end, consider

the trajectories in the top pane of Fig. 4. Dashed traces

correspond to simulations from the reduced-order model,
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Fig. 3. Poles and zeros of the transfer functions from load disturbance
to frequency deviation for the original model (12) (blue), and the reduced
second-order model (15) (red) as Deff and Meff are varied.

Fig. 4. (top) Transient frequency dynamics and steady-state frequency
regulation is improved with DERs. Dashed (red and blue) lines are generated
by simulating the second-order model, and solid lines are obtained from the
PST simulation. Analytically computed steady-state frequencies are shown
in dashed black lines. (We design for Rreg = 0.4644 and ζ = 0.7.)
(bot) Power outputs of DERs illustrate proportional sharing for inertial and
primary-frequency response. (P rated

3 /P rated
4 = 1/3.)

while solid traces correspond to those obtained from PST. For

both, at time t = 0, a step increase of 0.02 [MW] is applied

to the load, P load
3 , at bus 3. Trajectories in red correspond

to the case where the DERs do not participate in frequency

response (i.e., DD,d = MD,d = 0, d ∈ {3, 4}.) Compared

to this base case, we show the frequency response (due to

the same load increase) with the DER synthetic-inertia and

droop-control parameters designed for a frequency regulation

Rreg = 0.4644 and ζ = 0.7 (traces in blue). Specifically,

requiring Rreg = 0.4644 sets Deff = 0.0738, and requiring

ζ = 0.7 fixes Meff = 0.0111. Notice that the chosen value

of ζ yields a damped response with a lower frequency nadir.

Furthermore, the steady-state frequency deviation from syn-



chronous frequency is also significantly reduced. Trajectories

generated from the second-order model match those obtained

from the PST simulation. (This is noteworthy, given that the

PST model considers lossy lines, voltage-regulator dynamics,

and a detailed two-axis machine model.)

With Deff and Meff chosen, the damping-constant and

synthetic-inertia values for individual DERs are picked based

on (38) and (39), respectively. Power outputs of the two

DERs are shown in the bottom pane of Fig. 4. Notice that

the DERs indeed share the load increase in proportion to

their power ratings (P rated
3 /P rated

4 = 1/3) across time scales

pertinent to inertial and primary-frequency response.

VI. CONCLUDING REMARKS & DIRECTIONS FOR

FUTURE WORK

We proposed a framework to engineer synthetic-inertia and

droop-control parameters for distributed energy resources

(DERs) so that the system frequency in a network composed

of DERs and synchronous generators conforms to prescribed

transient and steady-state performance specifications. Our

approach was developed by formulating a lumped-parameter

reduced second-order model for frequency dynamics. This

allowed us to systematically design the DER inertial and

droop-control coefficients leveraging classical frequency-

domain response characteristics of second-order systems. As

part of ongoing efforts, we are extending the method to cover

networks composed of multiple balancing areas.

APPENDIX

The synchronous frequency, ωs = 2π60 [radsec−1]. All

values are reported in per unit unless otherwise noted. The

generator damping coefficients are: DG,1 = DG,2 = 0.0434,

inertia constants are: MG,1 = MG,2 = 0.1302 [sec], droop

coefficients are: RG,1 = 0.217 and RG,2 = 0.0868, turbine

time constants are τ1 = 4 [sec] and τ2 = 10 [sec], reference

power values are P r
1 = 0.0109, P r

2 = 0.0043, Qr
2 = 0.0061

and Qr
2 = 0. Frequency-independent loads at buses 3 and

4 are denoted by (P load
3 = 0.0217, Qload

3 = 0.0065) and

(P load
4 = 0.0087, Qload

4 = 0). The rated power outputs

of the DERs are P rated
3 = 0.25 and P rated

4 = 0.75. The

transmission line parameters are given by y12 = 0.5 +
j10, y13 = 0.5 + j5, y14 = 1 + j5, y23 = 0.5 + j5, and

y34 = 1 + j5.
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