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Abstract—Beam management (BM) protocols are critical for
establishing and maintaining connectivity between network radio
nodes and User Equipments (UEs). In Distributed Multiple Input
Multiple Output systems (D-MIMO), a number of access points
(APs), coordinated by a central processing unit (CPU), serves a
number of UEs. At mmWave frequencies, the problem of finding
the best AP and beam to serve the UEs is challenging due to a
large number of beams that need to be sounded with Downlink
(DL) reference signals. The objective of this paper is to investigate
whether the best AP/beam can be reliably inferred from sounding
only a small subset of beams and leveraging AI/ML for inference
of best beam/AP. We use Random Forest (RF), MissForest (MF)
and conditional Generative Adversarial Networks (c-GAN) for
demonstrating the performance benefits of inference.

Index Terms—6G, beam-manangement, L1-RSRP, missing-
values

I. INTRODUCTION AND SYSTEM MODEL

Massive multiple input multiple output (mMIMO) is one

of the enabling technologies for 5G and 6G systems where

a large number of antenna elements provide additional de-

grees of freedom to increase the throughput and provide

considerable beamforming gains for improving the coverage.

Beamforming concentrates the signal energy in a small angular

space. The beam management (BM) is defined as the process

of acquiring and maintaining a set of beams, which are

originated at the gNB and/or the UE and can be used for down-

link (DL) and uplink (UL) transmission and reception. BM

collectively encompasses initial beam alignment, monitoring,

and tracking, as well as recovering from beam failures making

it absolutely crucial for millimeter (mm) Wave communication

systems [1].

The BM framework in the current specifications includes

beam sweeping, beam measurement and reporting, beam in-

dication, beam failure detection and recovery [2]. The beam

measurement and reporting can be based on Synchronization

Signal (SS) blocks or channel state information RSs (CSI-

RSs). In D-MIMO, Reference Signal (RS) is transmitted in

each DL beam by the APs, sequentially in time. Link quality

(e.g., Layer 1 Reference Signal Received Power (L1-RSRP))

on each DL RS is measured and reported by UE. Finding

the best AP and beam (direction) requires measuring the DL

channel from all the APs using all the beams and becomes

resource-heavy, especially at mmWave frequencies due to a

large number of narrow beams at the APs. Our objective is

to investigate whether the best AP/beam can be inferred from

sounding the DL channel on only a subset of APs and beams,

with help of AI/ML.

Fig. 1: Analog beamforming in mmWave D-MIMO

Fig. 1 shows a D-MIMO with multiple APs (AP1, AP2,. . . ,

AP6) connected to a CPU and serving UE with analog beams.

Our main focus is on the beam measurement and reporting

operation where the DL RS is sent only from a subset of

beams from the APs and the UE provides the L1-RSRP for

the scanned subset. This work is related to the 3GPP Release

18 intra-cell spatial domain DL Transmit beam prediction.

There are M APs and N DL beams per AP resulting in

a set A containing a total of MN beams. UEs measures

on only a subset B of MN beams and reports the L1-

RSRP measurements to the network/CPU. Our objective is to

determine whether CPU can use only the available measure-

ments to predict the L1-RSRPs of all un-measured/missing

beams or top-K beams/APs using state of the art ML algo-

rithms. AI/ML algorithms can be used for beam prediction

in spatial and time domains to reduce overhead and latency

and improve beam selection accuracy. We demonstrate the
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performance of a classical ML model Random Forest (RF)

and its specialized version MissForest (MF) for dealing with

missing data. We also train a modern Deep Learning based

conditional-Generative Adversarial Networks (c-GAN). We

train these models for different cardinalities of the available

measurements and show the gains obtained making them

potential candidates for beam inference.

The rest of the paper is organized as follows. Section II

explains the beam inference and how the ML algorithms can

potentially be applied. In Section III, we describe RF, MF, and

c-GAN algorithms with their performances being discussed in

Section IV. Section V concludes the work.

II. BEAM INFERENCE AND SIMPLE ML ALGORITHMS

Fig. 2: Beam candidate inference

In the beam scanning framework, there can be two possible

approaches, namely “random search”, and “directed search”.

In the former, the UE provides the link quality report (L1-

RSRP) for the scanned subset of beams. The directed search

method consists of two phases, inference phase and the beam

selection phase for performing the directed scan. In Stage-1,

we infer the link quailities that were not measured from the

available measurements; using the beam candidate selection

algorithm then chooses a list of beam candidates for a Stage-

2 beam scan. One possible criterion is to scan k (e.g. k = 16)

beam candidates with highest quality metric Q (from the mix

of measured and inferred) and referred to as “top-k” method.

The combined link quality and beam candidate inference is

shown in Fig 2. The inference algorithm inputs the list of

beam candidates that are to be scanned where the DL RS is

transmitted and the UE reports the link qualities of the beams.

Once the reports are received, the beam with the best quality

is chosen for future DL transmissions. The overall stages can

be pictorially represented as in Fig 3.

Fig. 3: Stages of Directed Search

The ML algorithm is trained using full measurements over

time. In the later stage, the missing inputs are masked and the

ML algorithm needs to learn to input missing values. Data is

provided by UEs in different positions. A supervised learning

algorithm (classifer or regressor) is used for infering the best

beam. The data for training and testing was generated using

a real 3D map and a ray tracing channel model. There are

two possible methods for infering the beam candidates in ML

namely direct inference of beam candidates corresponding to

classification and imputing missing measurements followed by

beam selection corresponding to regression.

III. EXPLORED METHODOLOGIES

We explored both the supervised as well as the unsupervised

approaches for performing Stage 2 of the beam candidate

inference wth different experimental approaches leading to

varying performances. In the unsupervised method, we used

the autoencoder (AE) framework [3], where the network is

trained on complete data and tested on incomplete data.

The AE obtained compressed representation of the L1-RSRP

values across UE positions and it was expected that they

reproduce the patterns despite some values missing. However,

the performance was unsatisfactory and is not presented here.

In supervised learning, we can either obtain a direct in-

ference (classification) or imputing + selection (regression).

Missing Data is quite prevalent in statistical analysis, and

the imputation of missing values is a significant step in

data analysis. In order to take care of missing values, there

are a lot of techniques, from simple mean/median/mode to

more sophisticated methods. The classification performance

is tested with FeedForward Neural Network (FFN), RF, MF,

and Generative Adversarial Networks (GANs). Training is

executed on the complete data containing missing values and

testing is on the incomplete one. With the imputing + selection

approach, we demonstrate the exceptional performance of RF

and MF whereas the other algorithms perform poorly.

A. Random Forest (RF)

RF [4] for data imputation is an exciting and efficient way

of imputation, and it has almost every quality of being the best

imputation technique. RFs are capable of scaling to significant

data settings, and are robust to the non-linearity of data and

efficient in handling outliers. RFs can handle both numerical

and categorical data. On top of that, they have a built-in feature

selection technique. These distinctive qualities of RFs can

easily give it an upper hand over KNN or any other methods.

RFs are created from a large number of decision tree

predictors, such that each tree is built by training on a random

data set sampled independently but from the same distribution.

After a large number of trees is generated, they vote for the

most popular class. RFs are based on the idea of Bagging [5],

which involves perturbing and combining, i.e., building a

model from a randomly sampled data set from the same

distribution and then combining the models. The main effect

of bagging is to reduce variance or instability. The total error

of a predictor can be expressed in terms of the bias error,



variance error and irreducible error. Unstable classifiers such

as decision trees characteristically have high variance and a

low bias error. Hence, by applying Bagging on decision tree

algorithms, the variance error is reduced.

Tree-based models yield good predictions, with much less

computational cost. It has been found in [6] that tree based

approaches like RFs and XGBoost outperfom Deep Learning

methods on tabular data. Though Deep Learning methods have

proven to perform very well on image, text data, their superi-

ority in tabular data is unclear. RFs shows good performance

on both real and categorical data, not requiring any scaling of

the data which is important for Deep Learning methods.

B. Miss Forest (MF)

MF [7] is arguably the best imputation algorithm to be

used if precision is required and used as a benchmark for

non-parametric imputation methods. It is implemented in R

language in the missForest() package. and the steps are:

Step-1: Missing values are filled by the mean of respective

columns for continuous, and mode for categorical data.

Step-2: Dataset is divided into two parts: training data

consisting of the observed variables and the other is missing

data used for prediction. Training and prediction sets are fed

to RF, and the predicted data is imputed at appropriate places.

After imputing all the values, one iteration gets completed.

Step-3: Step-2 is repeated until a stopping condition is

reached. The iteration process ensures that the algorithm

operates on better quality data in subsequent iterations.

Step-4: Stopping condition can be either the sum of squared

differences between the current and previous imputation in-

creases or a specific iteration limit is reached. Usually, it takes

5− 6 iterations to attribute the data well.

In most common datasets and for different levels of miss-

ingness, MF outperformed other algorithms in some cases

reducing the imputation error by more than 50%. The reason

for the multiple iterations is that, from iteration 2 onwards, the

RFs performing the imputation will be trained on better and

better quality data that itself has been predictively imputed.

C. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [8] are a type

of generative model which approximate the data generating

distribution by generating realistic samples. GANs consist of a

generator which takes random noise as input and produces re-

alistic samples and a discriminator which learns to distinguish

between generated and real samples. Although, they provide

a very powerful modeling framework, GANs lack the ability

to provide fine-grained control over the outputs. Conditional

GANs (c-GANs) [9] have been proposed to endow GANs

with a context variable providing more control over generated

samples. A c-GAN with a generator G and a binary discimi-

nator D have the objective function: minGmaxD V (D,G) =
Ex∼Pd

logD(x|c) + Ez∼Pz
log(1 − D(G(z|c)|c)), where Pd

denotes the distribution over the actual data, Pz denotes the

distribution of the generated data, c is a context which acts

as a conditional. Figure 4 provides an end-to-end view of the

proposed c-GAN to fill out the masked beam measurement

values. The masked measurement values are passed to the gen-

erator. It uses the unmasked values as context and transforms

the latent space to fill the masked values. The disciminator

then tries to predict whether the generated values are real

values given the unmasked array of measurements. Both the

generator and discriminator are fully connected feed-forward

networks. The generator uses a latent dimension of 100 and

has 4 linear layers with the first and last having 128 hidden

units and the middle 2 having 256 hidden units. Each layer has

a LeakyReLU activation. The output layer is a fully connected

layer with 320 units. The discriminator has 3 hidden layers

with 64 units each followed by a LeakyRelu activation. The

generator is pre-trained in a self supervised way using the

unmasked data for 50 epochs with an Adam optimizer with a

learning rate of 1e-3 and a smooth L1 loss. The full GAN is

trained for 200 epochs with an Adam optimizer with a learning

rate of 1e-5.

Fig. 4: Architecture of the proposed c-GAN.

Fig. 5: Comparison of CDF plots of L1-RSRP between

top-k predictions and ideal ones

IV. PERFORMANCE EVALUATION

In this section, we explore the performance of RF and MF

for data generated using a real 3D map with APs at fixed



Fig. 6: Relative performance at different percentiles: absolute difference in L1-RSRP values.

Fig. 7: CDF of predicted L1-RSRP with MF for 95% masking

random data with oversampling

locations and UEs at different positions and a ray tracing

channel model. Experiments were done on two datasets: one

where the UEs are operating with an omnidirectional antenna,

and the other where the UEs are equipped with a directional

antenna with 9 dB gain and are oriented randomly in horizontal

plane. Different random orientations of the UEs during training

and testing phase may make the inference of best AP/beam

more challenging. It is of interest to quantify the performance

penalty incurred by random UE orientation, as UEs will have

directional antennas and be randomly oriented in practical

deployments.

A. Performance Evaluation measures

One useful way of evaluating performance would be to

compare the link quality metric (in our case, L1 - RSRP) of

the actual best beam to link quality metric of the best beam

from the set of best beams suggested by the ML algorithm

(subset of beams in Stage 2 in Fig. 3). To clarify: the subset

at Stage 2 may or may not contain the actual best beam.

Therefore, the L1-RSRP of best beam among Stage 2 beams

may or may not be equal to the L1 - RSRP of the actual best

beam. If the RSRPs are different, it would be beneficial if the

RSRP of best beam in Stage 2 is at least close to the RSRP of

actual best beam. This would mean that there is only a small

performance penalty in choosing the best beam suggested by

ML as opposed to doing an exhaustive search.

We can visually judge a predictor’s performance by com-

paring the cumulative distribution function (CDF) of the true

best L1-RSRP values with that of the L1-RSRP values of the

best beam from Stage 2. Another way of presenting the same

metric is to calculate the difference (in dB) between the true

best L1-RSRP values with that of the L1-RSRP values of the

best beam from Stage 2.

Figure 5 illustrates the performance study with an example

where the heat-maps have the different APs on the X-axis

and the the different beam indices for each of the APs on the

Y -axis. Lighter shades indicate higher L1-RSRP values. The

heat map on the left shows the predicted L1-RSRP values

and the corresponding best indices. The heat map on the

right shows the true L1-RSRP values, the maximum value

and the true value at the predicted position. The CDF curves

are for the true L1-RSRP values and the L1-RSRP values at

the predicted indices and smaller the distance between the

curves, better is the performance. Our goal is to obtain an



acceptable performance with minimal readings and to predict

the best index position or the best L1-RSRP value from the

available options. If we predict the top-k indices, obtain the

corresponding readings and then use the best among these

k positions, we would desire that the estimated best value

approaches the true best L1-RSRP value. This is illustrated

in Figure 5 with k = 4. The heat-maps on the left and right

show the predicted top 4 positions/their values and the true best

values for the predicted positions respectively. The CDF curves

are for the true best L1-RSRP values and for the predicted

top-1, 2, 4, 8 and 16 beams. By plotting the CDF, we obtain

an estimate of the deviation between the predicted and ideal

L1-RSRP values. Increasing k causes the CDF of predicted

values to approach the CDF of the ideal L1-RSRP value.

The relative importance of the predictions for the L1-RSRP

values is an important metric since accurate predictions are

required only for the most prominent values. We show the

absolute difference between the ideal L1-RSRP value and the

best value from the top-k predicted beams at various per-

centiles in Figure 6 to demonstrate the relative performance.

We provide additional results/discussions in the next section.

B. Model performance

We seek to find the minimum number of readings required

to identify the index with minimum absolute difference be-

tween predicted L1-RSRP and the ideal value for a given

UE position. Each L1-RSRP value to be measured has an

associated time/feedback that should be minimized. RF and

MF use x measurements and obtain estimates of the top-

k candidates. Predictions for the k candidates are combined

with the available (x +k) measurements and the best beam is

chosen. Our objective is to determine the best combination of

(x, k) that gives acceptable estimates of the best beam and

its quality level. So, we mask a certain percentage of the

available data, use the remaining unmasked data along with

the unmasked data and study the performance of RF and MF

models with different masking percentages.

In order to generate additional data with masking at different

beams in each UE position, we oversample the original data

by a certain amount for training the RF and MF models. With

oversampling = 10, each row in the data is repeated 10 times

with masking at different random points on each row but with

the same masking percentage. The goal is to enlarge the dataset

and obtain more data for training and test and to improve the

insights. Fig 7 shows the CDF plot with oversampling and

95% masking for different top k candidates. It is clear that as

k increases, the respective CDF approaches the CDF of the

ideal L1-RSRP.

Figures 8 - 13 provide the CDF plots for different masking

percentages with RF and MF models. In addition, the plots

also show the absolute difference in L1-RSRP values between

the true best beam and top-k, k = 1, 2, 4, 8, 16 predicted

candidates. We could observe that the CDF plots of the top-

k candidates approach the true CDF as k increases and the

absolute difference between predicted and ideal value stays

below 5 dB in all the cases. The results from our c-GAN

are shown in Figure 15. The deviations from the c-GAN are

slightly larger than both RF and MF, but the GAN is expected

to scale better with data size and novel model architectures.

To compare the distribution of the true best RSRP from

the 3 distributions generated by each of our proposed ap-

proaches we use the 1-Wasserstein(1-W) distance, originat-

ing from Optimal Transport theory [10]. Intuitively, given

2 probability distributions, the 1-W distance measures the

work required to transform one distribution into the other.

It overcomes the drawbacks of entropy based measures like

the Kulback-Leibler(KL) and Jensen-Shannon(JS) divergence;

it also accounts for the geometry of the underlying space

which is an important consideration for comparing probability

distributions. We report our results in Table I. The RF and

MF outperfom the c-GAN consistently for all top-K beams

selected. However, the pairwise differences between RF and

MF are smaller than those with RF/MF and c-GAN.

An additional aspect is to determine the kind of data to

train the RF and MF models for yielding the best results,

i.e., what should be the percentage of masked data on which

the models should be trained to give decent performance

while retaining robustness to different masking on test data.

Figure 14 provides results when RF model is trained on 80%
masked data but tested with varying masking percentages

and different top-k beams. For instance, with 93% masking,

the estimates of the top-10 beams are used for plotting the

CDF and absolute differences. A random sampling with top-

32 beams is also shown in the plot demonstrating that the

performance gap reduces with higher values of k.

V. CONCLUSION

We studied the beam prediction in the beam management

framework for overhead and latency reduction where measure-

ments are available only for a subset of the beams from the

APs, and demonstrated high beam prediction accuracy with

Random Forest and MissForest algorithms. We also trained a

Deep Generative adversarial network, whose performance was

affected by the limited data available. However, we expect the

model to have superior performance with a larger dataset size.

The study can be extended where we can build an initial model

that can be dynamically updated based on the environment.

The positions of the APs can be used as a priori information

by the UE to determine the beam scanning activity. In practical

scenarios, beams with azimuth angles pointing towards the

horizon will occur more often than beams with other azimuth.

It will be interesting to explore the ability of RF/MF/GAN

models to predict the uncommon beams and to visualize their

performance on such rare events. We can also design an

explainable model for understanding the prediction of L1-

RSRP values and best beams or a causal model for determining

the beam scan.
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Fig. 10: CDF of predicted L1-RSRP with RF for random data

Fig. 11: CDF of predicted L1-RSRP with RF for random data

Fig. 12: CDF of predicted L1-RSRP with MF for 80% masking normal data



Fig. 13: CDF of predicted L1-RSRP with MF for 95% masking random data

Fig. 14: CDF of predicted L1-RSRP with RF with different masking on test data

Fig. 15: CDF of predicted L1-RSRP with c-GANs with 95% masked data
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