
Improving Book OCR by Adaptive 

Language and Image Models

Abstract—In order to cope with the vast diversity of book content 
and typefaces, it is important for OCR systems to leverage the 
strong consistency within a book but adapt to variations across 
books.   In this work,  we describe a system that combines two 
parallel  correction  paths  using  document-specific  image  and 
language models.  Each model adapts to shapes and vocabularies 
within a book to identify inconsistencies as correction hypotheses, 
but relies on the other for effective cross-validation.  Using the 
open source  Tesseract  engine  as  baseline,    results  on  a  large 
dataset of scanned books demonstrate that word error rates can 
be reduced by 25% using this approach.

Keywords:  document-specific  OCR;  adaptive  OCR;  error 
correction

I.  INTRODUCTION

The  coming  of  digital  libraries  has  inspired  research 
interests  in building book adaptive OCR systems that  would 
work  across  a  large  diversity  of  content  and  typefaces.   In 
addition to training on an ever increasing amount of data, it has 
been  generally  accepted  that  the  strong  redundancy  and 
consistency within a large scan collection could be leveraged 
to improve system accuracy and robustness.  

Book adaptive OCR shares much similarity with speaker 
adaptation in speech recognition[5].  With a suitable choice of 
classifier architecture, parameters of a base book-independent 
model  can  be  adjusted  over   unlabeled  test  samples  under 
maximum  likelihood  or  MAP  criteria  using  EM  [7,10]. 
However, the approach is not  generally applicable to arbitrary 
classifiers.  

Modern  OCR  engines  often  adopt  a  learning-on-the-fly 
approach by selecting a set of  reliable decisions produced by 
the static classifier for retraining [8].  Adaptation can also be 
done as a postprocess by selecting reliable words to retrain a 
special classifier [2].   This approach depends critically on the 
success of selecting the correct words for adaptation.

Some research goes further by starting without any static 
shape classifier at all and seeks to automatically decode the text 
by exploring shape  clusters  and iteratively  propagating label 
assignment  driven  by  a  language  model[1,3].   These 
deciphering solutions are ideal for dealing with rare fonts that 
are atypical  of  any training samples,  but  are  insufficient  for 
achieving high precision performance on their own. 

The above methods can be characterized  as  image-based 
correction driven by a global language model.  The accuracy of 

these image-based adaptive methods hinges on the adequacy of 
the  underlying  language  model.   Limited  research  has 
simultaneously adapted  both the image and language models 
on a book.   Xiu & Baird[11]  minimize the global mutual-
entropy  between  an  image-based  iconic  model  and  a  word-
based  linguistic model to optimize whole book recognition. 
Unfortunately,  such a global optimization strategy converges 
slowly.

In this work, we combine both the image-based adaptive 
approach  and  language-based  correction  to  independently 
detect inconsistencies in the model for correction, but rely on 
cross-validation by the other model for verification.   This is 
motivated by the fact  that  many similarly shaped confusions 
such as m/rn, and 1/l/I are difficult to reliably separate across 
all fonts, but often easily distinguishable from context.  On the 
other hand, language-based correction would be ineffective in 
choosing  between  “black”  and  “blue”,  which  are  easily 
distinguishable  from  the  image.   The  goal  is  to  utilize  the 
strength of each model to resolve the most obvious confusions. 
In  addition,  we  allow  both  the  image  model  and  language 
model to adapt to the document to be more robust to  content 
and typeface diversity.   We demonstrate that the  document-
specific  language  and  image  correction  working  in  tandem 
improves  significantly  over  the  baseline  open  source  OCR 
engine Tesseract[8].  

II.  SYSTEM OVERVIEW

A. Design Motivation

Our system design was motivated by several key factors. 
First, the observation that most confusions are ambiguous only 
in image or in language suggests that a cross model verification 
would resolve the most obvious cases.  Instead of optimizing a 
global cost  function over the consistency and complexity of 
both image and language models  simultaneously,  we took a 
simpler but more efficient approach to let each correction path 
operate  independently,  coupled  only  loosely  by  cross-
validation.  

Secondly, while most research focuses on shape adaptation 
to  cope  with  variations  in  font  styles  and  scanning 
characteristics  driven by a global  static  language model,  we 
noticed  that  document  vocabularies  differ  significantly  and 
topic keywords are often unfairly demoted due to a low prior 
probability in the base distribution.  In order to handle the large 
diversity of book contents and typefaces, both the image model 
and language model must be adaptive.

Dar-Shyang Lee
Google Inc.

dsl@google.com

Ray Smith
Google Inc.

rays@google.com



As is the case with all adaptive systems, the question is how 
to decide which answers are reliable enough to adapt on and 
how to use that information to improve the model.   The overall 
control strategy and system components are described next.

B. System Control

Our system consists of two analogous correctional  paths, 
one image-based and one language-based, shown in Fig.1.  In 
the former, similar-shaped fragments are considered to be the 
same class.  Therefore, shapes that look more similar to clusters 
with a different label than to clusters with the same label are 
suspicious. The conflicts can be resolved by consulting other 
similarly-shaped clusters.  The shape clusters and labels should 
also be consistent when expanded to larger context to include 
their neighboring symbols.

A  similar  approach  could  be  applied  to  language-based 
correction.    Word  tokens  which  are  spelled  the  same, 
independent  of  surrounding  punctuation  marks  and  surface 
forms,  are  considered  the  same  class.    This  token,  when 
evaluated across all occurrences in contexts, should have the 
highest likelihood.   Out-of-vocabulary tokens are considered 
suspicious and evaluated across all instances to find if a more 
likely  answer  exists.   This  could  generate  valid  spelling 
corrections but also false hypotheses in ambiguous linguistic 
context.  Each instance of correction is evaluated by the image 
model to reject those obvious mismatches.

After verification, the accepted changes are updated in the 
output file and document models.  The language model gets a 
new  list  of  verified  words,  and  the  image  model  needs  to 
update the shape clusters.  The specific corrections made are 
also accumulated to keep track of common confusions.  It is 
obvious that this process is iterative by nature and there could 
be many variants of the exact sequence.  We have found that 
the exact sequence of operations (eg. synchronous update of all 
changes on both models) does not make a big difference.  In 
addition, although we were able to get additional improvements 
through  more  iterations,  most  of  the  performance  gain  was 
realized in the first iteration. 

C. System Components

The  image  model  is  composed  of  a  static  (base)  shape 
model and a dynamic (adaptive) model.  The base shape model 
is usually trained on labeled data for a large number of fonts 
and serves as the baseline for all books, whereas the adaptive 
model relies on unsupervised learning to construct  document-
specific templates.  For the purpose of our discussion, the base 
model is  the OCR engine, which could be invoked to make 
general shape classification.  The adaptive model is constructed 
by clustering character shapes grouped by labels assigned by 
the  base  model.   By  exploring  the  cluster  structure  and 
comparing  characters  with  their  neighbors,  we  can  identify 
inconsistencies  between  labels  and  shapes.   As  mentioned, 
there  has  been  much  research  on  performing  this  type  of 
adaptation to correct  the labels, but our shape model has the 
unique feature of utilizing shapes of bigrams as well as shapes 
of individual characters, which helps to correct  segmentation 
errors  made  by  the  original  OCR engine.   We  rely  on  the 
language model to verify if a correction is warranted.

The language model is  analogous to the image model in 
many ways.   It  also consists  of  a  static  base  model  and an 

adaptive document (cache) model.  The base model is trained 
on all  the data for  the language (or  sub-collection),  and the 
cache model is constructed from the somewhat dubious labels 
produced by OCR.  The reason for using a cache model is that 
vocabularies vary greatly from book to book.  A single base 
model often unfairly penalizes against topic-specific words that 
appear with high frequency in a book.  In our case, the base 
model  is  a  large  word  n-gram  model  with  back-off  to  a 
character  n-gram model for out-of-vocabulary (OOV) words. 
The cache model is constructed from high confidence words 
and words that have been verified by the base language model 
and image model.  For each questionable word, we evaluate all 
its  occurrences  in  context  jointly  to  identify  potential 
corrections.  These hypotheses are then verified by the image 
model to determine if they are accepted.

Figure 1. Proposed system of two parallel correction paths based on 
document-specific image and language models.

III.  IMAGE-BASED CORRECTION

Construction of the Adaptive Image Model has two phases: 
shape clustering and shape classification.

A. Shape Clustering

First, individual component shapes are extracted using class 
labels and bounding boxes generated by the OCR engine.  Each 
word  image  identified  by  the  OCR  engine  is  processed  to 
enhance the greyscale image by auto-inversion to make the text 
black,  and  contrast  enhancement  to  use the full  8-bit  range. 
Individual and adjacent pairs of characters (the  clips) are cut 
out of the cleaned word image, using the bounding boxes from 
OCR, for clustering.

Each class label and size (to within a couple of pixels) is 
handled  separately  by  Shape Clustering.  A feature  vector  is 
constructed with the pixel locations in the clip as dimensions. 
Since the clips are of slightly different sizes, all pixel locations 
are computed relative to the centroid of the clip. The clips are 
clustered  using  a  kd-tree-based  hierarchical  agglomerative 
clustering  (KDHAC).   The  KDHAC  pivots  a  different 
dimension of the input feature vector at each level in the tree, 
but in this application, the number of dimensions far exceeds 
the number of levels that will be needed in the kd-tree, so the 
dimensions  are  sorted  by  decreasing  standard  deviation.
To  minimize  compute  time,  clips  that  are  very  close  to  an 
existing tree node are held at that node, and not pushed down 
into the tree.



Both Shape Clustering and Shape Classification require a 
distance metric between two images or two cluster means. The 
metric  is  based  on  template  matching,  but  a  simple  sum of 
squares of greyscale differences is inadequate, since edges of 
strokes may not be perfectly aligned, and yet it is desirable to 
distinguish  ‘i’  from  ‘í’.  The  distance  metric  penalizes 
differences that occur in areas with a low gradient, and with 
one of the greyscale values near black or white. 

B. Shape Classification

All clusters are initially labeled as type Master. All clusters 
are then compared to all other clusters of the same class label, 
that  have  more  samples,  and  if  the  distance  is  less  than  a 
threshold,  the  type  of  the  smaller  cluster  is  changed  to 
Dependent (of the Master). The Dependent clusters then follow 
the fate of their assigned Master.

Figure 2. Results of shape cluster calssification.  Master, Reject and 
Dependent clusters are colored green, red, transparent, respectively.

Each Master cluster is now compared to each Master cluster 
with  more  samples,  but  with  a  different class  label.  If  the 
distance is less than a threshold, then the smaller cluster is re-
typed as Reject, and will be subject to possible correction. Fig. 
2 shows the result of this operation. The top row shows the 
clusters  of  ‘di’  sorted  by  frequency,  and  colored  green  for 
Master, red for Reject, and no color for Dependent. The second 
row shows the nearest  Master of ‘di’ for the cluster directly 
above,  and the  third row shows the nearest  Master  of  class 
other than ‘di’ The three clusters of ‘di’ that are actually ‘th’ 
are marked Reject.

Note  with  the  inclusion  of  bigrams,  correction  of  most 
segmentation errors is achieved without having to reconsider 
the  character  segmentation  everywhere.  Also  this  ‘di’->’th’ 
correction  is  obvious  with  bigrams  due  to  the  match  with 
another  bigram.  With  only  unigrams,  there  would  not  be  a 
match to either of the ‘d’ or ‘i’ individually. With bigrams, on 
the other hand, even quite complex segmentation errors can be 
corrected, as shown in Fig.3.

Figure 3. An example of before-and-after image-based correction.

The inclusion of bigrams also introduces a new problem. 
Bigrams and unigrams may disagree over whether a character 
should  be  corrected.  Such  disagreements  are  resolved  by 
allowing the bigrams to overrule the unigram cluster type. For 
each Master unigram cluster, if a sufficient proportion of the 
samples  are  included  in  a  Reject  bigram  cluster,  then  that 
unigram  cluster  is  also  marked  Reject.  Conversely  if  the 
majority  of  samples  in  a  Reject  unigram  clusters  are  in  a 
Master bigram cluster, then the unigram cluster in re-typed as 
Master.

C. Hypotheses Verification

When  the  language-based  correction  path  generates  a 
hypothesis, it needs to be validated by the image model before 
the change is accepted.  The change is first decomposed into a 
set  of  atomic  operations  such  as  symbol  insertion/deletion, 
case-folding,  space  insertion/deletion,  or  substitution.   For 
example, a correction from “fmanCial” to “financial” would 
result in a substitution {m→in} and a case-folding {C→c}.  A 
substitution change is  acceptable  if  the sample  m is  from a 
small cluster or if its distance to the nearest in cluster is below 
a  threshold.   To  verify  a  case-folding  change,  we  use  the 
bounding box profile relative to its neighboring symbols and 
the cluster distance between C and c.  Similar rules are defined 
for each type of modification.  A change is accepted if none of 
its constituent operations is rejected.  It is not the goal to find a 
perfect  solution  for  reconciling  confidence  scores  between 
these two models, but simply to reject unlikely changes based 
on  image features.  

IV.  LANGUAGE-BASED CORRECTION

The  organization  and  functionality  of  the  language 
correction  path  is  analogous  to  the  image  path.   Treating 
normalized  word  tokens  as  a  cluster,  all  occurrences  of  the 
same token are evaluated together in context in an attempt to 
find any alternatives that would result in higher likelihoods.  If 
an  alternative  is  found,  each  instance  is  then  individually 
evaluated  against  both  the  language  and  image  model  to 
determined if the correction should be accepted.

A. Adaptive Language Model

Our base language model consists of word n-grams with 
backoff  to  character  n-grams  for  out-of-vocabulary  terms 
trained on a large web corpus.  Since a book typically contains 
tens  of  thousands  of  words  with  a  significantly  different 
distribution, especially  on  content keywords such as  proper 
nouns or topic indicators, it is important to augment with an 
adaptive cache model. 

Considering  that  the  goal  is  to  remedy  the  low  prior 
probability of content keywords in the base model, we used a 
simple word frequency table as the cache model.  The model is 
initialized to be empty, and words are added to the model by 
one of three criteria.  The first source is the OCR engine.  If the 
word is marked as a dictionary word by the engine or has really 
high confidence,  it  is  accepted  into the model.   The second 
source is the base language model. Any word that is verified by 
the base word model (with no correction hypothesis) is added. 
To address the situation of content keywords which are not in 
the base model, we also include high frequency OOV (out-of-
vocabulary) words which have no viable alternative from the 
language model and have high confidence.  We compute the 
frequencies  of  these  words  relative  to  the  total  number  of 
words in the book.

There  are  several  ways  to  combine  the  base  and  cache 
model,  such as  weighted  average  or  maximum entropy.  We 
found simply taking the max worked better than other more 
complicated weighting schemes.  If a token has an entry in the 
cache  model with a  higher prior,  this overrides  the the base 
model probability P(w)=max{Pcache(w), Pbase(w)}. Although this 
does not correctly adjust the conditional probabilities when we 

      



evaluate likelihood of a bigger context containing w, adjusting 
the prior alone seems to be quite effective.

B. Hypotheses Generation

In order to identify potential errors, we would like to isolate 
words or segments which have low likelihood according to our 
model.   In  addition,  we  also  want  to  generate  a  correction 
candidate that is more likely than the current label.  In order to 
do this effectively, we consider all occurrences of each OOV 
word  w in their respective context jointly. More precisely, let 
Ci(w) be a window of n=7 words centered at the ith instance of 
w,  we want  to  find  the  most  likely word  label  q given  the 
recognition output w and its context Ci(w),

qi
* = argmaxq P(q|w,Ci(w))

     ~argmaxq logP(w|q,Ci(w))+logP(q,Ci(w))

where P(q,Ci(w)) is the language model likelihood for a given 
context, and P(w|q) is the noise channel embodying confusion 
probabilities[4],  which  we  assume  to  be  independent  of 
neighboring words.  Using Viterbi  search,  we could find the 
most likely candidate qi

* in a given context. If qi
*=w, it means 

there  is  no  better  answer  than  current  label.   Repeating  the 
process for each context would produce candidates q1

*..qN
*.

Unfortunately, since our cache model is not integrated with 
the  base  model,  neither  the  calculation  of  the  likelihood 
P(q,Ci(w)) nor the Viterbi search would correctly account for 
the  adjustment.   Consequently,  the  model  would  unfairly 
penalize a word that has a higher prior than in the base model, 
and would be less likely to find the word as the top alternative 
during  search.   We  approximate  this  using  a  log-linear 
formulation,  where  the  likelihoods  are  essentially  computed 
separately then summed together.

qi
*= argmaxq { α (logPbase(w|q)+logPbase(q,Ci(w))) +

                         β (logPcache(w|q)+logPcache(q)) }

where Pcache(q) is the document frequency described above, and 
Pcache(w|q)  is  a  static  OCR  confusion  table  augmented  with 
verified document corrections.   No attempt is made to learn α 
and β, which are set to 1.

A simple strategy is to simply replace  w with  qi
* for each 

instance independently.  However, this approach often misses a 
correction for lack of sufficient evidence in short or ambiguous 
contexts.   Therefore,  we  sum  the  likelihood  ratio  over  all 
contexts to derive the most likely answer and apply the same 
correction to all instances.

This is  illustrated in Fig.4.   We evaluate the word token 
“thinx”  in  four  different  contexts.   Suppose  Viterbi  search 
produced “think” twice and “thank” once as better alternatives, 
and made no suggestion in the other.  The likelihood ratio of 
each  candidate  to  the  base  hypothesis  is  summed  over  all 
contexts  and  remapped  to  a  confidence  to  produce  the  top 
choice “think”.    To prevent the situation where the correct 
answer for separate instances are indeed different, as in the last 
example of “thank you very much”, we check the likelihood 
P(q*,Ci(w))  against P(w,Ci(w)) for each instance, and generate 
a correction hypothesis only if the likelihood improves.

Figure 4. Combined error correction.

C. Case Inference

One practical issue worth discussing is token normalization. 
Although it is possible to absorb all case variants, punctuation 
and ligatures into a single model, these variations are typically 
normalized out in a language model.  Tokens are preprocessed 
entering  the  model,  and  corrections  denormalized  on  return. 
Unfortunately, Tesseract makes a fair number of casing errors, 
usually due to mis-adaptation on similar shape pairs such as 
c/C, w/W.  Using information such as sentence boundary, word 
context,  capitalization  rules,  one  could infer  the  most  likely 
surface  form of  a  given  word  as  described  in  TrueCase[6]. 
Although this provides a good prior for word casing using only 
textual information, it does not account for the strong signals 
derived  from  the  image.   For  example,  words  like  “DVD” 
maybe capitalized or not in identical context.  Using probability 
computed from textual information alone will force the same 
surface form on all occasions and inevitably make many errors.

The  strongest  signal  comes  from  the  image,  which  is 
indirectly observed through the initial answer provided by the 
OCR engine.  We added a feature based on edit distance cost 
between  raw  OCR  output  to  each  surface  form.   Another 
feature is based on comparing the expected word shape of a 
surface form to the actual bounding box profile.  Since book 
headers  are often capitalized  or  in all-caps,  a  different  prior 
distribution is estimated for header blocks.  

Using the same approach used to generate hypotheses for a 
word given its context, we learned a model to infer the most 
likely casing using these signals.  After word spelling has been 
corrected,  we  apply  the  case  inference  as  part  of  the 
denormalization process on each instance.

V.  EVALUATION AND RESULTS

The  system was  evaluated  on  scanned  books,  similar  in 
quality to those in the Google1000 dataset [9].  A  Smoke set 
consisting of roughly 2 million words (11 million chars) was 
used during development for error analysis and system tuning. 
Final testing was done on a larger set Test of 6 million words. 
The base language model was trained on a web corpus and the 
noise channel was learned from spelling errors.  For the case 
inference  model,  we  collected  statistics  from  the  Google 
Ngram  Viewer  data  [12]  and  the  geometrical  features  were 
tuned on the smoke set.  

Before  moving  on  to  experimental  results,  we  should 
explain the evaluation process and metrics.  Since it is difficult 
to manually collect and verify a dataset of this size, we rely on 
a  semi-automatic  approach  by  aligning  scanned  books  with 
available  PDF  sources.   Several  factors  contribute  to  the 
imperfection of this ground truth data, including duplicate or 



shuffled pages during scanning, different block ordering  in the 
output  serialization,  mismatch  in  editions  between  PDF and 
scanned  versions,  etc.   Therefore,  we  have  developed  an 
automatic  evaluation  method  based  on  string  alignment. 
Consequently,  variations  exist  across  experiments  due  to 
differences in aligned segments. 

A large set of metrics are defined to help measure various 
aspects of the results.  Three of the most important metrics are 
summarized  here.   The  ch.subst measures  the  character 
substitution  error  rate  in  the  aligned  section  of  text.   This 
measure is case and punctuation sensitive.  The wd.err rate is 
based on case-folded tokens stripped of punctuation marks and 
excludes stopwords,  but includes word substitution, insertion 
and deletion.  The measure makes sense from an indexing and 
search  perspective,  but  is  more  susceptible  to  alignment 
difference.  To  mitigate  the  effect  due  to  alignment,  the 
flwd.drop rate considers the ground truth as a bag of words, and 
computes the percentage of ground truth words that are missing 
from OCR output.  

The  results  are  summarized  in  Table  1.  Using Tesseract 
output  as  a  baseline,  the  columns  show the  percent  relative 
change in  each of the metrics obtained by the proposed method 
LIM.   For  reference,  improvements  yielded  using  only  the 
image-based  correction  (IM)  and  only  language-based 
correction (LM) are also given.  

On the  smoke set, the  ch.subst, wd.err and flwd.drop rate 
decreased by 36.88%, 22.58% and 24.39%, respectively.  The 
results  on  IM  and  LM  showed  both  correction  branches 
contributed  substantially.   The  additional  improvements  in 
character substitution rate are mostly attributed to fixing case 
errors and multiple errors in the same word.   On  Test, word 
error rate is reduced by 18%.  Both IM and LM generated less 
reduction on this larger set. The ch.subst, however, showed a 
much smaller  reduction  of  13%.   The much  smaller  4.85% 
reduction from LM in ch.subst relative to the 12% word error 
reduction suggests that  the case inference model generalized 
poorly on this set.   

TABLE I. SYSTEM PERFORMANCE IMPROVEMENT OVER BASELINE TESSERACT.

Dataset model Δch.subst% Δwd.err% Δflwd.drop%

Smoke IM -7.92 -7.5 -7.47

LM -30.47 -17.74 -19.23

LIM -36.88 -22.58 -24.39

Test IM -6.77 -3.19 -3.14

LM -4.85 -10.56 -12.04

LIM -13.58 -16.11 -18.16

A more detailed analysis showed that the proposed solution 
improved on almost every book, except for a book on statistical 
physics and protein folding where the case inference  model 
tried too hard to correct poorly recognized equations containing 
mixed-cased  words  and  ended  up  making  more  substitution 
errors.   However,  the  overall  flwd.drop rate  still  improved, 
meaning  misspelled  words  were  corrected.   Another  failure 
case occurred when an accented foreign name was consistently 
recognized as a more common English name.   This suggests 
that the adaptive model needs to be refined and image model 
verification needs to be tightened. 

We measure runtime as a percent of total CPU time taken 
by the base Tesseract on the same dataset.  Since the adaptive 
image  model  needs  to  cluster  and  classify  all  unigram  and 
bigram segments, runtime varied greatly depending on image 
quality and page content, measuring 55% on Smoke and 84% 
on Test.  It is more difficult to measure the runtime for  the 
language correction path since it employs a netword-distributed 
service.  We estimate the total language CPU overhead is 10-
15% on top of OCR.

VI.  CONCLUSIONS

We presented a system which consists  of two correction 
paths based on document-specific image and language models. 
Each  adaptive  model  exploits  the  redundancy  in  fonts  and 
vocabularies  to  detect  inconsistencies,  but  leverages  the 
orthogonality of the other to verify correction hypotheses.   The 
system was able to reduce the word error rate of Tesseract by 
25% on a large test set.  

Overall, we are very encouraged by the results considering 
the numerous  simplification steps  taken  in  the system.  We 
believe  that  substantial  improvements  can  be  made  by 
addressing  some  of  those  issues.    For  example,  the  base 
language correction model was trained on a web corpus using 
query spelling errors as the noise channel; it clearly should be 
retrained using a book corpus and OCR confusions.  Similarly, 
a better integration of the document language model into the 
Viterbi  search  process  should  generate  better  corrections. 
Furthermore, minimum error training could be applied to fine-
tuning  system  parameters  such  as  image  model  verification 
thresholds  and  log-linear  coefficients.   The  same  strategy, 
excluding the case  inference  model,  has  been tried on other 
Latin-family languages with similar success.   Generalizing the 
approach  to  non-alphabetical  or  non-word-based  languages 
remains as future work.

REFERENCES

[1] T.K.  Ho,  G.  Nagy,  “OCR with  no  shape  training,”  ICPR,  pp.27-30, 
2000.

[2] A. Kae, G. Huang, C. Doersch, E. Learned-Miller, “Improving state-of-
the-art  OCR  through  high-precision  document-specific  modeling,” 
CVPR, pp.1935-1942, 2010.

[3] A. Kae, E. Learned-Miller, “Learning on the Fly: Font-Free Approaches 
to Difficult OCR Problems,” ICDAR 2009.

[4] O.  Kolak,  P.  Resnik,  “OCR  error  correction  using  a  noisy  channel 
model,” Human Language Technology Conf., 2002.

[5] C.J. Leggetter, P.C. Woodland, “Maximum likelihood linear regression 
for speaker adaptation of continuous density hidden Markov models,” 
Computer Speech & Language, 9(2), pp171-185, 1995.

[6] L.V. Lita, A. Ittycheriah, S. Roukos, N. Kambhatla, “tRuEcasIng,” ACL, 
2003.

[7] P.  Sarkar,  G.  Nagy,  “Style  consistent  classification  of  isogenous 
patterns,” IEEE Tans. on PAMI, 27(1), January, 2005.

[8] R. Smith, “An overview of the Tesseract OCR engine,” ICDAR, 2007.

[9] L. Vincent, “Google book search: document understanding on a massive 
scale,” ICDAR, 2007.

[10] S.  Veeramachaneni,  G.  Nagy,  “Adaptive  classifiers  for  multi-source 
OCR,” IJDAR, vol.6, pp.154-166, 2003.

[11] P Xiu, H Baird, “Towards whole book recognition,” DAS, pp.629-636, 
2008.

[12] http://ngrams.googlelabs.com/datasets  

http://ngrams.googlelabs.com/datasets

	I.  Introduction
	II.  System Overview
	A. Design Motivation
	B. System Control
	C. System Components

	III.  Image-based Correction
	A. Shape Clustering
	B. Shape Classification
	C. Hypotheses Verification

	IV.  Language-Based Correction
	A. Adaptive Language Model
	B. Hypotheses Generation
	C. Case Inference

	V.  Evaluation and Results
	VI.  Conclusions

