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Abstract

This paper presents an algorithm for three dimensional (3D) reconstruction of tumor ablations 

using ultrasound electrode vibration elastography. Shear wave velocity, which is used as a 

surrogate for tissue stiffness, is estimated by perturbing the ablation needle and tracking frame-to-

frame displacements using radiofrequency ultrasound echo data. This process is repeated over 

many imaging planes that share a common axis of intersection collinear with needle. A 3D volume 

is reconstructed by solving an optimization problem which smoothly approximates shear wave 

velocities on a stack of transverse planes. The mean shear wave velocity estimates obtained in the 

phantom experiments are within 20% of those measured using a commercial shear wave imaging 

system.

I. INTRODUCTION

Ultrasound based shear wave elastography is a promising new imaging modality that uses 

ultrasound to infer mechanical properties of the imaged tissue [1]. It is a valuable tool for 

ascertaining mass location and stiffness for diagnosis of malignant breast masses [2], 

cancers in the prostate and thyroid, liver fibrosis and hepatic cancers [3]. The present work 

pertains to ultrasound shear wave imaging assisted monitoring of hepatic tumor ablation 

procedures. Although hepatocellular carcinoma (HCC) is not the most common type of 

cancer, it has a high mortality rate—according to the National Cancer Institute, there were 

over 30,000 new cases of liver cancer in 2013, and over 20,000 deaths [4] and historical 

trends suggest that the incidence rate has been on the rise. Ablation is a minimally invasive 

procedure for treating hepatic tumors. However, there is high probability of recurrence if 

cancerous cells are left untreated during the ablation procedure. The main goal of the present 

work is to reliably reconstruct the boundary of the ablated tissue using ultrasound shear 

wave elastography. This can potentially provide immediate feedback to the clinician and 

enable better ablation procedure planning.

Two dimensional (2D) monitoring of liver ablations has been studied for over two decades. 

Elastograms can provide useful stiffness information when displayed alongside a 

conventional B-mode (grayscale) ultrasound image because stiffness variations are not 
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easily visible on B-mode scans [5]. In theory, 2D elastography methods can be extended to 

3D by using a matrix array transducer. Recently Wang et al. [6] demonstrated a method for 

3D tracking of shear waves in muscle using a 2D matrix ultrasound transducer. 

Unfortunately, such transducers have higher manufacturing costs and full 3D tracking 

requires processing capability (such as modern graphical processing units) that may not be 

available on low-end commercial ultrasound systems. As a result 3D shear wave 

elastography is still in a nascent phase, as evidenced by a lack of full 3D stiffness imaging 

mode on any commercial ultrasound systems. The present work uses a conventional one 

dimensional array transducer to acquire multiple planes of data around the ablation needle in 

a “spoke-wheel” fashion and proposes a fast 3D reconstruction algorithm capable of 

generating volume estimates from just a few image planes.

II. METHODS AND MATERIALS

A. Phantom Design

An oil-in-gelatin based tissue mimicking (TM) phantom was used in this study. The 

phantom consists of a 14 × 14 × 9 cm3 gel block of “background” material to mimic healthy 

untreated tissue, with a stiffer ellipsoidal inclusion in the center to mimic the ablated region. 

An irregularly shaped intermediate stiffness region is present on one side of the ellipsoid. A 

steel rod which plays the role of an ablation needle is glued to the center of the inclusion. 

The gel block assembly is covered with a layer of safflower oil to prevent desiccation. A 

cross-sectional view of the phantom (with the intermediate stiffness region visible) is shown 

in Fig. 1. The phantom was designed so that the three different stiffness regions are easily 

visible in B-mode. In real tissue, ablated and normal tissue are not so easily distinguishable. 

Details of the material used for phantom construction can be found in the paper by Madsen 

et al. [11]. For validation of the algorithm, ground truth shear wave velocities (SWV) are 

measured using a commercial ultrasound system (Supersonic Imagine, France).

B. Electrode Vibration Elastography Setup

The electrode vibration elastography setup consists of an actuator driven by an actuator 

controller (Physik Instrumente, Germany). The actuator motion is synchronized to a custom 

scan sequence programmed on the ultrasound scanner (Ul-trasonix Medical Corp., Canada) 

to acquire radiofrequency (RF) echo data. The imaging probe is operated at a center 

frequency of 5 MHz. RF echo data frames are acquired synchronously with the needle 

vibration which sets up a shear wave pulse. The needle in this case acts as a line source, with 

a cylindrical shear wave front traveling outward and away from this line. Many snapshots of 

the image plane are acquired at high frame rates while this wave front propagates in the field 

of view of the transducer. A phase-locked acquisition sequence is used to obtain pseudo-

high frame rate RF data to track the shear wave pulse [7].

Multiple intersecting image planes of RF echo data are acquired following the scheme 

shown in Fig. 2. Each image plane is manually aligned by using angle markers on the 

phantom container and the needle as a guide. Misalignment variations are averaged out by 

acquiring five independent datasets [8].
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III. RECONSTRUCTION ALGORITHM

The reconstruction algorithm consists of two distinct steps:

1. Shear wave velocity (SWV) estimation on individual image planes using a Loess 

filter.

2. 3D volume reconstruction over a fine grid of points using the set of intersecting 

planes of SWV images.

These steps are discussed in the following subsections.

A. Shear Wave Velocity Reconstruction

Since the needle is vertically oriented in every image plane, the shear wave pulse can be 

assumed to travel laterally away from the needle. Only axial displacement information is 

needed in this case because, by definition, particle motion in a shear wave is perpendicular 

to the direction of the wave. Frame-to-frame displacement information can be used to 

estimate the time of maximum displacement at any pixel in the image (also called time-to-

peak [10]) and is used as the time of arrival of the shear wave at that point. Focusing 

attention on a line of constant depth in any image plane (as shown in Fig. 1), the wave 

arrival time can be plotted as a function of lateral distance away from the needle. The 

reciprocal of the local slope of this plot gives an estimate of SWV at any given pixel in the 

image plane.

Since the arrival time information can be quite noisy, finite differencing can produce an 

undesirable noise amplification. Therefore a linear Loess smoother [9] is used to estimate 

the slope. It uses weighted linear least squares with tricubic weight function with a span of 7 

data points (i.e. 3 points on either side of the current location), centered around each data 

point. This is shown in the zoomed inset in Fig. 1. The tricubic weight function is given by 

wk = (1 − |k/3|3)3 for |k| ≤ 3 and wk = 0 otherwise, where k = 0 is the current sample, k = ±1 

denote the immediate neighbors on either side, and so on. Let yk denote the noisy arrival 

time values for |k| ≤ 3. The slope obtained from weighted linear least squares is given by 

. SWV is equal to the reciprocal of this slope value.

The same process is repeated to generate SWV maps for all imaging planes. These images 

are used in the next step for 3D reconstruction of the ablated volume.

B. Three Dimensional Reconstruction

A 3D reconstruction using a fine grid of points is desirable. However, the problem may 

become intractable because the number of grid points can become too large. For instance, 

even with just 100 points along the three axes, the total number of 3D grid points is 106. 

Therefore, a simpler approximate approach is taken here by decomposing the 3D problem 

into many decoupled 2D reconstruction problems. SWV is reconstructed on transverse 

planes of constant depth, and these reconstructions are stacked to form a 3D visualization. 

The number of transverse planes is equal to the number of samples along the axial direction 

in any image plane. On any given transverse plane, SWV estimates are available along 
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radial lines that intersect at a common central point. The algorithm approximately infers the 

values on a fine grid over the entire plane.

As shown in Fig. 2, SWV estimates are available along concurrent radial lines. These data 

points may not necessarily coincide with the grid points over which shear wave velocities 

are to be approximated. The reconstruction result must satisfy two requirements: (1) it 

should agree with the known data points, and (2) it should be smooth. The first requirement 

is enforced through bilinear interpolation. Each data point value is assumed to obey a linear 

combination of the (unknown) values at the four nearest grid neighbors. All the data points 

are vectorized into a tall vector v and the unknown grid point values in another vector g. The 

bilinear interpolation requirement can be written as Mg = v where M is an “interpolation 

matrix” whose entries are the coefficients for bilinear interpolation at each data point. In 

particular, M is sparse and each row has only four nonzero entries. This system of linear 

equations may not have a unique solution because the number of grid points is usually much 

larger than the number of data points (i.e. M has fewer rows than columns). Tikhonov 

regularization [12, Ch. 8] is used to bypass this ill-posedness. A matrix D which produces 

second order finite differences is constructed; each row carries coefficients involved in a 

second order central difference calculation at each grid point. The vector of second 

derivatives is then given by Dg. Again, it is worth noting that D is square, sparse, banded 

diagonal, with only five non-zero entries per row. The unknown g can be retrieved by 

solving the following regularized least squares optimization problem:

(1)

by choice of g. A closed form solution is given by (MTM+λDTD)−1MT v, which can be 

calculated very efficiently due to the sparse, banded diagonal structure of the matrices 

involved. Note that the matrix inverse should not be explicitly computed; a sparse linear 

equations solver should be used instead. This reduces the computational complexity of 

calculating the inverse of a sparse matrix (w2P) where w is the width of the non-zero band 

and P is the grid size (i.e. the number of rows in the square matrix D). The computations for 

this paper were performed using MATLAB (Natick, MA).

The choice of λ affects the final fit: a larger value produces more smoothing because it puts 

more weight on the penalty term in (1). An objective method for choosing λ is briefly 

discussed in the Appendix.

IV. RESULTS

Results of SWV reconstruction on two image planes are shown in Fig. 3. The partially 

ablated region is visible in the first image plane, and can also be seen in the corresponding 

B-mode image. Results of transverse plane reconstruction obtained from such image planes 

are shown in Fig. 4. Fig. 4(a) uses four image planes whereas Fig. 4(b) uses sixteen image 

planes for the transverse plane approximation. Only one transverse plane at half the 

maximum depth is shown in each case. Note that the reconstruction with four image planes 

appears smoother than the sixteen plane reconstruction. This is because the voids between 
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the image planes is larger when using fewer image planes, and the optimization algorithm 1 

fills in these voids with a smooth surface whose second order derivative is small.

The SWV estimates obtained from three different ROIs are shown in Table I. Note that the 

estimates obtained from both the 4-planes and 16-planes reconstructions are similar in the 

sense that the one standard deviation intervals overlap. The mean SWV estimates are within 

20% of the “ground truth” values measured using the commercial system.

A 3D reconstruction showing three sliced planes is shown in Fig. 5.

V. CONCLUSIONS

This paper presented a computationally tractable algorithm for 3D shear wave elastography 

and presented results from a TM phantom experiment. Although it was assumed that the 

needle is perfectly aligned with the axial scanning direction, the method can be extended to 

track displacements in 2D. These displacements can then be resolved parallel to the needle 

and arrival time can be estimated at different locations away from the needle. Moreover, the 

3D reconstruction idea discussed in this paper is not limited to shear wave velocity 

processing. The same mathematical formulation can be used to reconstruct strain, 

attenuation, temperature or any other physical quantities that can be estimated from the RF 

echo data. The mathematical formulation is general enough to handle cases where data is not 

acquired over the entire volume, in which case only a part of the volume can be 

reconstructed and displayed to the clinician.

APPENDIX

Choosing a reasonable λ is important because arbitrarily choosing a small (large) value may 

result in under(over)smoothing. Leave-one-out crossvalidation [12, Ch. 4, Sec. 4.2] is used 

here to choose λ in an objective manner. Let N be the number of data points and v(k) denote 

the kth element of the data vector v. After fixing a particular value of λ the regularized least 

squares problem (1) is solved N times, leaving out one of the N data points each time. Let 

 be the missing data point predicted from the fit. The crossvalidation score function is 

defined as

Leave-one-out crossvalidation evaluates S(λ) for different values of λ and chooses the 

smoothing parameter that minimizes the score.
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Fig. 1. 
(Top) A cross-section view of the phantom is shown. The stiff ellipsoidal tumor region is 

surrounded by softer background material. There is also an intermediate stiffness area on 

one side of the ellipsoid. (Bottom) Wave arrival time processing is performed along lines of 

constant depth. The zoomed inset shows how the Loess algorithm uses a span of 7 data 

points around any location of interest to estimate the slope via weighted linear least squares.
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Fig. 2. 
(Top) Image planes over which ultrasound echo data is acquired by rotating the transducer 

are shown. A particular transverse plane which is perpendicular to all image planes is also 

shown. Shear wave velocity images are generated on each image plane separately. (Bottom) 

The location of data samples along concurrent lines available on a particular transverse 

image plane is shown. The optimization routine reconstructs the shear wave velocities on a 

fine grid over this transverse plane. A stack of such transverse planes is used to produce the 

3D visualization.
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Fig. 3. 
B-mode images (a) and (c) and shear wave velocity images (b) and (d) of two different 

image planes. The partially ablated region is visible in (a) and (b).
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Fig. 4. 
Two sample transverse plane reconstructions shown over a plane at a depth of 3 cm. (a) was 

reconstructed using 4 image planes while (b) was reconstructed with 6 image planes. This is 

considerably more “detail” visible in (b) whereas the reconstruction in (a) is much smoother.
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Fig. 5. 
A three dimensional view of shear wave velocities in the phantom. The 16-image-plane 

dataset was used for this reconstruction.
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TABLE I

Shear wave velocity estimates in m/s

4 image planes 16 image planes SSI

background 0.7480 ± 0.0794 0.7516 ± 0.0802 0.9 ± 0.07

irregular region 1.0196 ± 0.0190 0.9910 ± 0.0248 1.1 ± 0.05

ellipsoid 1.2569 ± 0.1099 1.2407 ± 0.1219 1.2 ± 0.03

Values of SWV for the three regions of interest are shown. The number of imaging planes used for 3D reconstruction is varied from 4 to 16. These 
values are within 20% of the shear wave velocity values for the background and 5% for the ellipsoid, measured using a commercial imaging system 
(SSI).
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