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Marie Lacombe4, Camille Guillerminet4 Mario Campone 3,4, Mathilde Colombié 4,

Mathieu Rubeaux2 and Nicolas Normand1

Abstract— 18FDG PET/CT imaging is commonly used in
diagnosis and follow-up of metastatic breast cancer, but its
quantitative analysis is complicated by the number and location
heterogeneity of metastatic lesions. Considering that bones are
the most common location among metastatic sites, this work
aims to compare different approaches to segment the bones
and bone metastatic lesions in breast cancer.

Two deep learning methods based on U-Net were developed
and trained to segment either both bones and bone lesions
or bone lesions alone on PET/CT images. These methods
were cross-validated on 24 patients from the prospective
EPICUREseinmeta metastatic breast cancer study and were eval-
uated using recall and precision to measure lesion detection,
as well as the Dice score to assess bones and bone lesions
segmentation accuracy.

Results show that taking into account bone information in the
training process allows to improve the precision of the lesions
detection as well as the Dice score of the segmented lesions.
Moreover, using the obtained bone and bone lesion masks,
we were able to compute a PET bone index (PBI) inspired
by the recognized Bone Scan Index (BSI). This automatically
computed PBI globally agrees with the one calculated from
ground truth delineations.

Clinical relevance— We propose a completely automatic deep
learning based method to detect and segment bones and bone
lesions on 18FDG PET/CT in the context of metastatic breast
cancer. We also introduce an automatic PET bone index which
could be incorporated in the monitoring and decision process.

I. INTRODUCTION

Breast cancer is the most common cancer in women
and the second most frequent cancer overall. One in eight
women will be diagnosed with invasive breast cancer in their
lifetime. Breast cancer survival varies according to cancer
staging at diagnosis. If detected early, the overall 5-years
survival rate is 98% but it goes down to 27% with metastatic
involvement [1].

18FDG positron emission tomography combined with
computed tomography (18FDG PET/CT) whole-body imag-
ing is widely used for diagnosis and follow-up [2]. Based on
these imaging techniques, lesion segmentation can provide
information to assess a treatment effect and to adapt the
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treatment over time. However, manual segmentation methods
are time-consuming and subject to inter and intra-observer
variability. Automatic and semi-automatic PET segmentation
methods based on computer vision have been developed but
their performance are affected by low contrast or hetero-
geneity in tumoral tissues [3]. Recently, deep learning based
methods have been shown to outperform more conventional
approaches [4].

Even if deep learning methods show good results for lesion
segmentation in solid tumors, the heterogeneity of metastatic
lesions in location, contrast and form can be very difficult
to learn for a network. Since most deep learning methods
are specialized on a single body part [4], an interesting
approach would be to train different networks according to
the location of the metastases. In the case of breast cancer,
metastatic lesions are mostly located in the bones (69%),
lungs (27%), liver (27%) [5], and lymph nodes [6]. As a first
step towards metastatic breast cancer lesion segmentation and
characterization, we chose to concentrate our effort on the
prevalent bone lesion detection and segmentation.

Two deep learning methods based on convolutional neural
networks (CNN) to segment bone lesions are presented: the
first one is trained with expert bone lesion annotations solely,
while the second also uses bone masks during the training
phase to force the network to focus on the sites of interest.

Finally, the bone and the bone lesion segmentations allow
to compute the percentage of total skeletal mass taken up by
the tumors as done with the Bone Scan Index (BSI) [7]. The
BSI was originally developed for prostate cancer but was
then applied in the context of metastatic breast cancer [8,
9]. Building upon these works, we propose to transpose the
BSI to PET imaging to automatically assess breast cancer
metastatic burden in the bones.

II. METHODS

A. Preprocessing

PET images were converted to Standard Uptake Value
(SUV) using the injected radioactivity’s concentration and
the patient’s body weight according to the standard devel-
oped by Kim et al. [10] and were also normalized with the
mean and the standard deviation and resampled by the nnU-
Net preprocessing (see Fig. 1).

CT images and bone masks (when used during training)
were resampled to match PET data.



CT images were also clipped to their 0.5th and 99.5th per-
centile values and normalized by the nnU-Net preprocessing.

B. CNN architecture

Fig. 1. The nnU-Net preprocessed the data with image resampling and
normalization. It automatically sets the batch size (min. size of 2), patch
size and number of pooling operations, while maximizing the amount of
spatial context. (Figure inspired from [11].)

The proposed architecture is based on a recent 3D U-
Net implementation called ”not new U-Net” (nnU-Net) [12].
The U-Net is an encoder-decoder network, developed by
Ronneberger, Fischer, and Brox [13] and commonly used
for semantic segmentation of medical images. The nnU-Net
takes advantage of recent improvements of the original U-
Net such as leaky ReLU activation, instance normalization
and padded convolutions. This network achieved state of the
art performance in recent challenges [14].

The originality and interest of the nnU-Net implementation
lies particularly in its capability to automatically set a number
of hyper-parameters, taking into consideration several con-
straints such as input data features and memory consumption
as shown in Fig. 1. The loss is defined as the sum of
the cross entropy loss (LCE ) and the multi-class Dice loss
(LDice): LTotal = LDice +LCE , with LCE as in [13] and LDice
as in [12]. Stochastic gradient descent with Adam optimizer
is employed with an initial learning rate of 3 × 10−4, a
drop factor of 0.2 after 30 epochs without improvement (1
epoch being defined as 250 batches), and a weight decay
of 3× 10−5. Training ends after 1000 epochs or when the
learning rate falls below 10−6. Data augmentation composed
of elastic deformations, random scaling, random rotations,
and gamma augmentation was also used during training to
counteract the relatively small database.

III. DATA AND EXPERIMENTS

A. Data acquisition and annotation

Twenty-four patients were recruited in the context of the
prospective EPICUREseinmeta metastatic breast cancer study
(NCT03958136). Data acquisition was performed in two
institutions with different imaging systems. At the Integrated

Center for Oncology (ICO) of Nantes, PET/CT images were
obtained using either a Siemens Biograph mCT40 or mCT64
PET/CT imaging system. At the ICO of Angers, PET/CT
images were obtained using a dual-slice GE discovery 690
or IQ PET/CT.

The EPICUREseinmeta study was approved by the French
Agence Nationale de Sécurité du Médicament et des pro-
duits de santé (ANSM, 2018-A00959-46) and the Comité
de Protection des Personnes (CPP) IDF I, Paris, France
(CPPIDF1-2018-ND40-cat.1), and a written informed con-
sent was signed by each participant.

Bone lesions were manually annotated using Keosys
Viewer [15] by one expert from each institution. Bone
segmentations were first extracted automatically using a set
of traditional morphological and thresholding procedures
inspired by Banik, Rangayyan, and Boag [16] and then
manually corrected by 4 non-specialist image processing
researchers. Seven of the twenty-four patients did not have
any bone lesions.

B. Experiments

All training experiments were conducted using a 3-fold
cross-validation. Two methods for bone lesion segmentation
are compared. First, only lesion annotations were used as
ground truth with PET and CT images as 2-channel input for
the training (U-NetL). A second network was trained with
both the reference bone and lesion masks as ground truth
(U-NetBL).

C. Evaluation

1) Bone segmentation: Bone segmentation was evaluated
i) with a side-by-side visual comparison with the traditional
automatic bone segmentation method (see Fig. 3) and ii) with
the computation of a mean Dice score over all the cases.

2) Bone lesion segmentation: Detection as well as seg-
mentation metrics have been computed since both tasks are
closely linked. For some patients who do not present any
bone lesion, the Dice score per case was not evaluated.

a) Detection metrics: A lesion is considered detected
when the overlap between ground truth and its prediction
reaches a certain threshold, fixed to 50% hereafter.

While lesions are generally easy to separate and match,
bone lesions are often connected and hard to isolate which
complicates the recall and precision computation. Thus, a
connected components algorithm was employed to separate
the lesions of the reference mask, which were then over-
lapped with the predicted binary mask as shown on Fig. 2.

This allows to count the true positives (TP), the false
positives (FP), false negatives (FN) and to compute the
detection recall ( T P

T P+FN ) and precision ( T P
T P+FP ).

b) Segmentation metrics: Two metrics based on the
Dice score, which evaluates the degree of overlap between
a reference mask and a predicted one, were used.

First, the mean Dice score per case was computed by
averaging the Dice score obtained individually for the pa-
tients presenting bone lesions. In the second case, a global
measurement of the dice was performed combining all cases



Fig. 2. Illustration of the true positives, false positives and false negatives
computation on the spine. First, a connected components method is applied
on the ground truth (GT) binary mask (white) to isolate bone lesions. Then,
a lesion is considered to be correctly detected if the overlap between the
predicted mask and and the GT is > 50% (green). Otherwise, it is considered
as an undetected lesion (red).

in a single one. The global Dice score tends to be more
affected by large lesions compared to small ones while the
Dice score per case penalizes prediction error in cases with
fewer lesions.

3) PET bone index: Using the automatically computed
bone and bone lesion segmentation, we calculated the PET
bone index as the ratio of the bone lesion volume compared
to the total volume of all bones.

IV. RESULTS

The networks converged in approximately 500 epochs and
it took between 4 and 5 days to train each fold depending
on the GPU and the amount of data given as input.

A. Bone segmentation

Bone segmentation achieves a mean Dice score of
0.94 ± 0.03. Fig. 3 shows side-by-side comparison with
the traditional automatic bone segmentation method for one
patient.

B. Bone lesion segmentation and detection

The results obtained by the 2 different networks are given
in Table I. The best score in terms of precision and Dice score
was achieved by the U-NetBL network. Fig. 4 shows some
visual examples of lesion segmentation for each network.

TABLE I
RESULTS OF THE BONE LESION SEGMENTATION. U-NetL IS THE

NETWORK WITH PET AND CT AS INPUT AND ONLY BONE LESIONS AS

GROUND TRUTH. U-NetBL IS THE NETWORK WITH PET AND CT AS

INPUT AND BONE MASK WITH BONE LESIONS AS GROUND TRUTH.

Methods Recall det. Preci. det. Mean Dice Global Dice
U-NetL 0.67 0.82 0.58±0.17 0.59
U-NetBL 0.67 0.88 0.61±0.16 0.61

C. PET bone index

Per patient PET bone indexes are given in Fig. 5.

Fig. 3. Example of bone segmentation visual result. Top: traditional mor-
phological and thresholding procedures inspired by [16]. Bottom: U-NetBL
trained with both the reference bones and lesions masks as ground truth.
Unlike the U-NetBL, the traditional approach fails to dissociate active organs
(top-left/middle: heart and top-right: kidneys) from bones.

V. DISCUSSION AND CONCLUSION

We presented an automatic PET/CT bones and metastatic
bone lesion segmentation approach based on deep learning in
the context of metastatic breast cancer, applied to 24 patients.

The bone segmentation algorithm achieves good results,
without presenting large false positive regions, contrary to
threshold-based automatic methods. Moreover, the use of
the bone masks as ground truth during the training phase
slightly improves the results of the automatic bone lesion
segmentation in terms of Dice score, but even more in terms
of precision: the network is constrained to look for lesions
in the bones.

The segmentation results of the bone lesions are per-
fectible. Indeed, the large PET SUV heterogeneity found in
these lesions tend to lower the bone lesion Dice score in our
experiments, low fixing lesions being sometimes ignored by
the presented U-Net architecture as shown on the middle row
of Fig. 4.

The automatic PET bone index (PBI) shows relatively
good agreement with the ground truth measurements, except
for a few cases (see Fig. 5). These disagreements are also
due to the lesions 18FDG fixation differences.

Nevertheless, there is a real potential to improve the re-
sults. First, we already started working on a way to integrate
the bone masks in the deep learning network more efficiently.
Then, several paths would be explored to address the lesions
with low 18FDG fixation.



(a) Ground Truth (b) U-NetL (c) U-NetBL

Fig. 4. Bone lesion segmentation visual results for 3 patients. (a) The
ground truth (b) U-NetL trained only with the lesion masks, (c) U-NetBL
trained with both the reference bones and lesions masks. Top: patient 15
with bad segmentation results (Dice score < 0.5 for both methods) due to
the low 18FDG fixation. The mean SUV difference between detected and
undetected lesions is 2.7. Bottom: patient 14 presenting a lot of bone lesions
with good segmentation results (Dice score > 0.76 for both methods).

Finally, we will be soon able to evaluate our methods on a
more significant set of data of the ongoing EPICUREseinmeta
study, and to measure the predictive power of the PBI.
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