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Smoothed Analysis in Unsupervised Learning via Decoupling

Aditya Bhaskara∗ Aidao Chen† Aidan Perreault‡ Aravindan Vijayaraghavan§

Abstract

Smoothed analysis is a powerful paradigm in overcoming worst-case intractability in unsu-
pervised learning and high-dimensional data analysis. While polynomial time smoothed analysis
guarantees have been obtained for worst-case intractable problems like tensor decompositions
and learning mixtures of Gaussians, such guarantees have been hard to obtain for several other
important problems in unsupervised learning. A core technical challenge in analyzing algo-
rithms is obtaining lower bounds on the least singular value for random matrix ensembles with
dependent entries, that are given by low-degree polynomials of a few base underlying random
variables.

In this work, we address this challenge by obtaining high-confidence lower bounds on the
least singular value of new classes of structured random matrix ensembles of the above kind. We
then use these bounds to design algorithms with polynomial time smoothed analysis guarantees
for the following three important problems in unsupervised learning:

• Robust subspace recovery, when the fraction α of inliers in the d-dimensional subspace
T ⊂ R

n is at least α > (d/n)ℓ for any constant ℓ ∈ Z+. This contrasts with the known
worst-case intractability when α < d/n, and the previous smoothed analysis result which
needed α > d/n (Hardt and Moitra, 2013).

• Learning overcomplete hidden markov models, where the size of the state space is any
polynomial in the dimension of the observations. This gives the first polynomial time
guarantees for learning overcomplete HMMs in the smoothed analysis model.

• Higher order tensor decompositions, where we generalize and analyze the so-called FOOBI
algorithm of Cardoso to find order-ℓ rank-one tensors in a subspace. This allows us to
obtain polynomially robust decomposition algorithms for 2ℓ’th order tensors with rank
O(nℓ).

1 Introduction

Several basic computational problems in unsupervised learning like learning probabilistic models,
clustering and representation learning are intractable in the worst-case. Yet practitioners have had
remarkable success in designing heuristics that work well on real-world instances. Bridging this
disconnect between theory and practice is a major challenge for many problems in unsupervised
learning and high-dimensional data analysis.
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The paradigm of Smoothed Analysis [ST04] has proven to be a promising avenue when the
algorithm has only a few isolated bad instances. Given any instance from the whole problem space
(potentially the worst input), smoothed analysis gives good guarantees for most instances in a
small neighborhood around it; this is formalized by small random perturbations of worst-case in-
puts. This powerful beyond worst-case paradigm has been used to analyze the simplex algorithm
for solving linear programs [ST04], linear binary optimization problems like knapsack and bin pack-
ing [BV06], multi-objective optimization [MO11], local max-cut [ER17, ABPW17], and supervised
learning [KST09]. Smoothed analysis gives an elegant way of interpolating between traditional
average-case analysis and worst-case analysis by varying the size of the random perturbations.

In recent years, smoothed analysis has been particularly useful in unsupervised learning and
high-dimensional data analysis, where the hard instances often correspond to adversarial degen-
erate configurations. For instance, consider the problem of finding a low-rank decomposition of
an order-ℓ tensor that can be expressed as T ≈ ∑k

i=1 ai ⊗ ai ⊗ · · · ⊗ ai. It is NP-hard to find
a rank-k decomposition in the worst-case when the rank k ≥ 6n[H̊as90] (this setting where the
rank k ≥ n is called the overcomplete setting). On the other hand, when the factors of the
tensor {ai}i∈[k] are perturbed with some small amount of random Gaussian noise, there exist
polynomial time algorithms that can successfully find a rank-k decomposition with high proba-
bility even when the rank is k = O(n⌊(ℓ−1)/2⌋) [BCMV14]. Similarly, parameter estimation for
basic latent variable models like mixtures of spherical Gaussians has exponential sample complex-
ity in the worst case [MV10]; yet, polynomial time guarantees can be obtained using smoothed
analysis, where the parameters (e.g., means for Gaussians) are randomly perturbed in high dimen-
sions [HK12, BCMV14, ABG+14, GHK15].1 Smoothed analysis results have also been obtained for
other problems like overcomplete ICA [GVX14], learning mixtures of general Gaussians [GHK15],
fourth-order tensor decompositions [MSS16], and recovering assemblies of neurons [ADM+18].

The technical core of many of the above smoothed analysis results involves analyzing the min-
imum singular value of certain carefully constructed random matrices with dependent entries. Let
{ã1, ã2, . . . , ãk} be random (Gaussian) perturbations of the points {a1, . . . , ak} ⊂ R

n (think of
the average length of the perturbation to be ρ = 1/poly(n)). Typically, these correspond to the
unknown parameters of the probabilistic model that we are trying to learn. Proving polynomial
smoothed complexity bounds often boils down to proving an inverse polynomial lower bound on
the least singular value of certain matrices (that depend on the algorithm), where every entry is a
multivariate polynomial involving some of the perturbed vectors {ã1, . . . , ãk}. These bounds need
to hold with a sufficiently small failure probability over the randomness in the perturbations.

Let us now consider some examples to give a flavor of the statements that arise in applications.

• In learning mixtures of spherical Gaussians via tensor decomposition, the key matrix that
arises is the “product of means” matrix, in which the number of columns is k, the number of
components in the mixture, and the ith column is the flattened tensor ã⊗ℓ

i , where ãi is the
mean of the ith component.

• In the so-called FOOBI algorithm for tensor decomposition (proposed by [Car91], which we
will study later), the complexity as well as correctness of the algorithm depend on a special
matrix Φ being well conditioned. Φ has the following form: each column corresponds to a

1In many unsupervised learning problems, the random perturbation to the parameters can not be simulated by
perturbations to the input (i.e., samples from the mixture). Hence unlike binary linear optimization [BV06], such
smoothed analysis settings in learning are not limited by known NP-hardness and hardness of approximation results.
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pair of indices i, j ∈ [k], and the (i, j)th column is ã⊗2
i ⊗ ã⊗2

j − (ãi ⊗ ãj)
⊗2.

• In learning hidden Markov models (HMMs), the matrix of interest is one in which each column
is a sum of appropriate monomials of the form ãi1 ⊗ ãi2 ⊗ . . .⊗ ãiℓ, where i1i2 . . . iℓ correspond
to length-ℓ paths in the graph being learned.

For many of the recent algorithms based on spectral and tensor decomposition methods (e.g.,
ones in [AMR09, AGH+12]), one can write down matrices whose condition numbers determine the
performance of the corresponding algorithms (in terms of running time, error tolerance etc.). While
there is a general theory with broadly applicable techniques (sophisticated concentration bounds)
to derive high confidence upper bounds on the maximum singular value of such dependent random
matrix ensembles, there are comparatively fewer general tools for establishing lower bounds on the
minimum singular value (this has more of an “anti-concentration” flavor), except in a few special
cases such as tensor decompositions (using ideas like partitioning co-ordinates).

The high level question that motivates this paper is the following: can we obtain a general
characterization of when such matrices have a polynomial condition number with high probability?
For instance, in the first example, we may expect that as long as k <

(
n+ℓ−1

ℓ

)
, the matrix has an

inverse polynomial condition number (note that this is ≪ nℓ due to the symmetries).
There are two general approaches to the question above. The first is a characterization that

follows from results in algebraic geometry (see [AMR09, Str83]). These results state that the matrix
of polynomials either has a sub-matrix whose determinant is the identically zero polynomial, or that
the matrix is generically full rank. This means that the set of {ãi} that result in the matrix having
σmin = 0 has measure zero. However, note that this characterization is far from being quantitative.
For polynomial time algorithms, we typically need σmin ≥ 1/poly(n) with high probability (this
is because polynomial sample complexity often requires these algorithms to be robust to inverse
polynomial error). A second approach is via known anti-concentration inequalities for polynomials
(such as the Carbery-Wright inequality [CW01]). In certain settings, these can be used to prove
that each column must have at least a small non-zero component orthogonal to the span of the
other columns (which would imply a lower bound on σmin). However, it is difficult to use this
approach to obtain strong enough probability guarantees for the condition number.

Our main contributions are twofold. The first is to prove lower bounds on the least singular value
for some broad classes of random matrix ensembles where the entries are low-degree multivariate
polynomials of the entries of a given set of randomly perturbed vectors. The technical difficulty
arises due to the correlations in the perturbations (as different matrix entries could be polynomials
of the same “base” variables). We note that even in the absence of correlations, (i.e., if the entries
are perturbed independently), analyzing the least singular value is non-trivial and has been studied
extensively in random matrix theory (see [Tao11, RV08]).

Our second contribution is to leverage these results and prove new smoothed analysis guarantees
for learning overcomplete hidden markov models, and design algorithms with improved bounds for
overcomplete tensor decompositions and for robust subspace recovery.

2 Our Results and Techniques

2.1 Lower bounds on the Least Singular Value.

The first setting we consider is a simple yet natural one. Suppose we have k independently perturbed
vectors ã1, . . . , ãk, and suppose we have a matrix in which each column is a fixed polynomial function
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of precisely one of the variables. We give a sufficient condition under which σk (kth largest singular
value, or the least singular value here since there are only k columns) of this matrix is at least
inverse polynomial with high probability.

Theorem 2.1. Let ℓ ∈ Z+ be a constant and let f : Rn → R
m be a map defined by m homogeneous

polynomials {fi}mi=1 of degree ℓ. Suppose that

fi(x) =
∑

J=(j1,...,jℓ)∈[n]ℓ
j1≤j2≤···≤jℓ

Ui(j1, . . . , jℓ)xj1xj2 . . . xjℓ ,

and let U ∈ R
m×(n+ℓ−1

ℓ ) denote the matrix of coefficients, with ith row Ui corresponding to fi. For
vectors a1, a2, . . . , ak ∈ R

n, let Mf (a1, a2, . . . , ak) denote the m × k matrix whose (i, j)th entry is
fi(aj). Then for any set of vectors {ai}ki=1, with probability at least 1− k exp

(
− Ωℓ(δn)

)
,

σk

(
Mf (ã1, . . . , ãk)

)
≥ Ωℓ(1)√

k

(ρ
n

)ℓ
· σ

k+δ(n+ℓ−1
ℓ )(U), (1)

where ãj represents a random perturbation of aj with independent Gaussian noise N(0, ρ2/n)n.

To obtain a non-trivial bound, note that we need σk+δ(n+ℓ−1
ℓ )(U) > 0. Qualitatively, σk(U)

being > 0 is unavoidable. But more interestingly, we will see that the second term is also necessary.
In particular, we demonstrate that Ω(δnℓ) non-trivial singular values are necessary for the required
concentration bounds even when k = 1 (see Proposition 4.13 for details). In this sense, Theorem 2.1
gives an almost tight condition for the least singular value of the above random matrix ensemble
to be non-negligible.

For an illustration of Theorem 2.1, consider the simple vector-valued polynomial function f(x) =

x⊗ℓ ∈ R
nℓ

(the associated matrix U essentially just corresponds to the identity matrix, with some
repeated rows). If ã1, . . . , ãk ∈ R

n are randomly perturbed vectors, the above theorem shows that
the least singular value of the matrix Mf (ã1, . . . , ãk) is inverse polynomial with exponentially small

failure probability, as long as k ≤ (1 − o(1))
(n+ℓ−1

ℓ

)
(earlier results only establish this when k is

smaller by a exp(ℓ) factor, because of partitioning co-ordinates). In fact, the above example will
be crucial to derive improved smoothed polynomial time guarantees for robust subspace recovery
even in the presence of errors (Theorem 6.1).

The next setting we consider is one where the jth column of M does not depend solely on
ãj , but on a small subset of the columns in {ã1, . . . , ãk} in a structured form. Specifically, in the
random matrix ensembles that we consider, each of the R columns of the matrix depends on a few
of the vectors in a1, . . . , ak as a “monomial” in terms of tensor products i.e., each column is of the
form u1 ⊗ u2 ⊗ · · · ⊗ uℓ where u1, u2, . . . , uℓ ∈ {ã1, . . . , ãk}. To describe our result here, we need
some notation. For two monomials u1 ⊗ · · · ⊗ uℓ and v1 ⊗ · · · ⊗ vℓ, we say that they disagree in s
positions if ui 6= vi for exactly s different i ∈ [ℓ]. For a fixed column j ∈ [R], s ∈ {0, 1, . . . , ℓ}, let
∆s(j) represent the number of other columns whose monomial disagrees with that of column j in
exactly s positions, and let ∆s = maxj∈[R]∆s(j). (Note that ∆0 = 0 and ∆ℓ ≤ R by default).

Theorem 2.2. Let {ã1, . . . , ãk} ⊆ R
n be a set of ρ-perturbed vectors, let ℓ ∈ Z+ be a constant, and

let M ∈ R
nℓ×R be a matrix whose columns M1, . . . ,MR are tensor monomials in {ãi}i∈[k]. Let ∆s

be as above for s = 1, . . . , ℓ. If
ℓ∑

s=1

∆s ·
(n
ℓ

)ℓ−s
≤ c

(n
ℓ

)ℓ
(2)
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for some c ∈ (0, 1), then σR(M) > Ωℓ(1) · (ρ/n)ℓ/
√
R with probability at least 1 − exp

(
− Ωℓ(1 −

c)n+ logR
)
.

The above statement will be useful in obtaining smoothed polynomial time guarantees for
learning overcomplete hidden markov models (Theorem 2.6), and for higher order generalizations
of the FOOBI algorithm of [Car91] that gives improved tensor decomposition algorithms up to rank
k = n⌊ℓ/2⌋ for order ℓ tensors (Theorem 2.7). In both these applications, the matrix of interest
(call it M ′) is not a monomial matrix per se, but we express its columns as linear combinations
of columns of an appropriate monomial matrix M . Specifically, it turns out that M ′ = MP , and
P has full column rank (in a robust sense). For example, in the case of overcomplete HMMs,
each column of M ′ is a sum of monomial terms of the form ãi1 ⊗ ãi2 ⊗ . . . ⊗ ãiℓ , where i1i2 . . . iℓ
correspond to length-ℓ paths in the graph being learned. Each term corresponding to a length-ℓ
path only shares dependencies with other paths that share a vertex.

Failure probability. The theorems above emphasize the dependence on the failure probability.
We ensure that the claimed lower bounds on σmin hold with a sufficiently small failure probability,
say n−ω(1) or even exponentially small (over the randomness in the perturbations). This is im-
portant because in smoothed analysis applications, the failure probability essentially describes the
fraction of points around any given point that are bad for the algorithm. In many of these appli-
cations, the time/sample complexity, or the amount of error tolerance (as in the robust subspace
recovery application we will see) has an inverse polynomial dependence on the minimum singular
value. Hence, if we have a guarantee that σmin ≥ γ with probability ≥ 1 − γ1/2 (as is common
if we apply methods such as the Carbery-Wright inequality), we have that the probability of the
running time exceeds T (upon perturbation) is ≤ 1/

√
T . Such a guarantee does not suffice to show

that the expected running time is polynomial (also called polynomial smoothed complexity).

2.1.1 Techniques

Theorem 2.1 crucially relies on the following theorem, which may also be of independent interest.

Informal Theorem 2.3. Let Vℓ be the space of all symmetric order ℓ tensors in R
n×n×···×n, and

let S ⊂ Vℓ be an arbitrary subspace of dimension (1 − δ)
(n+1−ℓ

ℓ

)
, for some 0 < δ < 1. Let Π⊥

S

represents the projection matrix onto the subspace of Vℓ orthogonal to S. Then for any vector
x and its ρ-perturbation x̃, we have that ‖Π⊥

S x̃
⊗ℓ‖2 ≥ 1/polyℓ(n, 1/ρ) with probability at least

1− exp
(
− Ωℓ(δn)

)
.

The proofs of the theorems above use as a black-box the smoothed analysis result of Bhaskara
et al. [BCMV14] and the improvements in Anari et al. [ADM+18] which shows minimum singular
value bounds (with exponentially small failure probability) for tensor products of vectors that have

been independently perturbed. Given ℓ × k randomly perturbed vectors {ã(j)i : j ∈ [ℓ], i ∈ [k]},
existing results [BCMV14, ADM+18] analyze the minimum singular value of a matrix M where

the ith column (i ∈ [k]) is given by ã
(1)
i ⊗ ã

(2)
i ⊗ · · · ⊗ ã

(ℓ)
i . However this setting does not suffice for

proving Theorem 2.1, Theorem 2.2, or the different applications presented here because existing
results assume the following two conditions:

1. The perturbations to the ℓ factors of the ith column i.e., a
(1)
i , . . . , a

(ℓ)
i are independent. For

proving Theorem 2.1 (and for Theorem 2.5) we need to analyze symmetric tensor products
of the form x̃⊗ℓ

i , where the perturbations across the factors are the same.
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2. Each column of M depends on a disjoint set of vectors ã
(1)
i , . . . , ã

(ℓ)
i , i.e., any vector ã

(j)
i is

involved in only one column. For proving Theorem 2.2 (and later in Theorems 2.6 and 2.7)
however, the same perturbed vector may appear in several columns of M .

Our main tool for proving Theorem 2.1, and Theorem 2.2 are various decoupling techniques
to overcome the dependencies that exists in the randomness for different terms. Decoupling in-
equalities [dlPMS95] are often used to prove concentration bounds (bounds on the upper tail) for
polynomials of random variables. However, in our case they will be used to establish lower bounds
on the minimum singular values. This has an anti-concentration flavor, since we are giving an
upper bound on the “small ball probability” i.e., the probability that the minimum singular value
is close to a small ball around 0. For Theorem 2.1 (and Theorem 2.3) which handles symmetric
tensor products, we use a combination of asymmetric decoupling along with a positive correlation
inequality for polynomials that is inspired by the work of Lovett [Lov10].

We remark that one approach towards proving lower bounds on the least singular value for
the random matrix ensembles that we are interested in, is through a direct application of anti-
concentration inequalities for low-degree polynomials like the Carbery-Wright inequality (see [ABG+14]
for smoothed analysis bounds using this approach). Typically this yields an ε = 1/poly(n) lower
bound on σmin with probability ε1/ℓ (where ℓ is the degree). As we observed above, this cannot
lead to polynomial smoothed complexity for many problems.

Interestingly we prove along the way, a vector-valued version of the Carbery-Wright anti-
concentration inequality [CW01, NSV03] (this essentially corresponds to the special case of The-
orem 2.1 when k = 1). In what follows, we will represent a homogenous degree ℓ multivariate
polynomial gj : Rn → R using the symmetric tensor Mj of order ℓ such that gj(x) = 〈Mj , x

⊗ℓ〉
(please see Section 3 for the formal notation).

Informal Theorem 2.4. Let ε, δ ∈ (0, 1), η > 0, and let g : R
n → R

m be a vector-valued
degree ℓ homogenous polynomial of n variables given by g(x) = (g1(x), . . . , gm(x)) such that the

matrix M ∈ R
m×nℓ

, with the ith row being formed by the co-efficients of the polynomial gi, has
σδnℓ(M) ≥ η. Then for any fixed u ∈ R

n, t ∈ R
m, and x ∼ N(0, ρ2/n)n we have

P

[
‖g(u+ x)− t‖2 < Ωℓ(εη) ·

( ρℓ
nℓ

)]
< εΩℓ(δn). (3)

See Theorem 4.2 for a more formal statement. The main feature of the above result is that
while we lose in the “small ball” probability with the degree ℓ, we gain an mΩ(1) factor in the
exponent on account of having a vector valued function. The interesting setting of parameters is
when ℓ = O(1), ρ = 1/poly(n), ε = polyℓ(ρ/n) and δ = n−o(1). We remark that the requirement of
δnℓ non-trivial singular values is necessary, as described in Proposition 4.13.

The second issue mentioned earlier about [BCMV14, ADM+18] is that in many applications
each column depends on many of the same underlying few “base” vectors. Theorem 2.2 identifies
a simple condition in terms of the amount of overlap between different columns that allows us to
prove robust linear independence for very different settings like learning overcomplete HMMs and
higher order versions of the FOOBI algorithm. Here the decoupling is achieved by building on
the ideas in [MSS16], by carefully defining appropriate subspaces where we can apply the existing
results on decoupled tensor products [BCMV14, ADM+18].

We now describe how the above results give new smoothed analysis results for three different
problems in unsupervised learning.
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2.2 Robust Subspace Recovery

Robust subspace recovery is a basic problem in unsupervised learning where we are given m points
x1, . . . , xm ∈ R

n, an α ∈ (0, 1) fraction of which lie on (or close to) a d-dimensional subspace T .
When can we find the subspace T , and hence the “inliers”, that belong to this subspace? This
problem is closely related to designing a robust estimator for subspace recovery: a β-robust estima-
tor for subspace recovery approximately recovers the subspace even when a β fraction of the points
are corrupted arbitrarily (think of β = 1 − α). The largest value of β that an estimator tolerates
is called the breakdown point of the estimator. This problem has attracted significant attention
in the robust statistics community [Rou84, RL05, DH83], yet many of these estimators are not
computationally efficient in high dimensions. On the other hand, the singular value decomposition
is not robust to outliers. Hardt and Moitra [HM13] gave the first algorithm for this problem that is
both computationally efficient and robust. Their algorithm successfully estimates the subspace T
when α > d/n, assuming a certain non-degeneracy condition about both the inliers and outliers.2

This algorithm is also robust to some small amount of noise in each point i.e., the inliers need
not lie exactly on the subspace T . They complemented their result with a computational hardness
in the worst-case (based on the Small Set Expansion hypothesis) for finding the subspace when
α < d/n.

We give a simple algorithm that for any constants ℓ ≥ 1, δ > 0 runs in poly(mnℓ) time and
in a smoothed analysis setting, provably recovers the subspace T with high probability, when
α ≥ (1 + δ)(d/n)ℓ. Note that this is significantly smaller than the bound of (d/n) from [HM13]
when ℓ > 1. For instance in the setting when d = (1 − η)n for some constant η > 0 (say η =
1/2), our algorithms recovers the subspace when the fraction of inliers is any constant α > 0 by
choosing ℓ = O(log(α)/ log(1 − η)), while the previous result requires that at least α > 1 − η of
the points are inliers. On the other hand, when d/n = n−Ω(1) the algorithm can tolerate any
inverse polynomially small α, in polynomial time. In our smoothed analysis setting, each point is
given a small random perturbation – each outlier is perturbed with a n-variate Gaussian N(0, ρ2)n

(think of ρ = 1/poly(n)), and each inlier is perturbed with a projection of a n-variate Gaussian
N(0, ρ2)n onto the subspace T . Finally, there can be some adversarial noise added to each point
(this adversarial noise can in fact depend on the random perturbations).

Informal Theorem 2.5. For any δ ∈ (0, 1), ℓ ∈ Z+ and ρ > 0. Suppose there are m = Ω(nℓ +
d/(δα)) points x1, . . . , xm ∈ R

n which are randomly ρ-perturbed according to the smoothed analysis
model described above, with an α ≥ (1 + δ)

(
d+ℓ−1

ℓ

)
/
(
n+ℓ−1

ℓ

)
fraction of the points being inliers,

and total adversarial noise ε0 ≤ polyℓ(ρ/m). Then there is an efficient algorithm that returns a
subspace T ′ with ‖sinΘ(T, T ′)‖F ≤ polyℓ(ε0, ρ, 1/m) with probability at least 1− exp

(
− Ωℓ(δn) +

2 logm
)
− exp(−Ω(d logm)).

See Section 6 for a formal statement, algorithm and proof. While the above result gives
smoothed analysis guarantees when α is at least (d/n)ℓ < d/n, the hardness result of [HM13]
shows that finding a d-dimensional subspace that contains an α < d/n fraction of the points is
computationally hard assuming the Small Set Expansion conjecture. Hence our result presents a
striking contrast between the intractability result in the worst-case and a computationally efficient
algorithm in a smoothed analysis setting when α > (d/n)ℓ for some constant ℓ ≥ 1. Further, we
remark that the error tolerance of the algorithm (amount of adversarial error ε0) does not depend
on the failure probability.

2This general position condition holds in a smoothed analysis setting
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Techniques and comparisons. The algorithm for robust subspace recovery at a high level
follows the same approach as Hardt and Moitra [HM13]. Their main insight was that if we sample
a set of size slightly less than n from the input, and if the fraction of inliers is > (1 + δ)d/n, then
there is a good probability of obtaining > d inliers, and thus there exist points that are in the
linear span of the others. Further, since we sampled fewer than n points and the outliers are also
in general position, one can conclude that the only points that are in the linear span of the other
points are the inliers.

Our algorithm for handling smaller α is simple and is also tolerant to an inverse polynomial
amount of adversarial noise in the points. Our first observation is that we can use a similar idea
of looking for linear dependencies, but with tensored vectors! Let us illustrate in the case ℓ = 2.
Suppose that the fraction of inliers is > (1 + δ)

(d+1
2

)
/
(n+1

2

)
. Suppose we take a sample of size

slightly less than
(n+1

2

)
points from the input, and consider the flattened vectors x ⊗ x of these

points. As long as we have more than
(d+1

2

)
inliers, we expect to find linear dependencies among

the tensored inlier vectors. However, we need to account for the adversarial error in the points
(this error could depend on the random perturbations as well). For each point, we will look for
“bounded” linear combinations that are close to the given point. Using Theorem 2.3, we can show
that such dependencies cannot involve the outliers. This in turn allows us to recover the subspace
even when α > (d/n)ℓ for any constant ℓ in a smoothed analysis sense.

We remark that the earlier least singular value bounds of [BCMV14] can be used to show a
weaker guarantee about robust linear independence of the matrix formed by columns x̃⊗ℓ

i with a
cℓ factor loss in the number of columns (for a constant c ≈ e). This translates to an improvement
over [HM13] only in the regime when d < n/c. Our tight characterization in Theorem 2.3 is crucial
for our algorithm to beat the d/n threshold of [HM13] for any dimension d < n.

Secondly, if there is no adversarial noise added to the points, it is possible to use weaker con-
centration bounds (e.g., Carbery-Wright inequality). In this case, our machinery is not required
(although to the best of our knowledge, even an algorithm for this noise-free regime with a break-
down point < d/n was not known earlier). In the presence of noise, the weaker concentration
inequalities require a noise bound that is tied to the intended failure probability of the algorithm
in a strong way. Using Theorem 2.3 allows us to achieve a large enough adversarial noise tolerance
ε0, that does not affect the failure probability of the algorithm.

2.3 Learning Overcomplete Hidden Markov Models

Hidden Markov Models (HMMs) are latent variable models that are extensively used for data
with a sequential structure, like reinforcement learning, speech recognition, image classification,
bioinformatics etc [Edd96, GY08]. In an HMM, there is a hidden state sequence Z1, Z2, . . . , Zm

taking values in [k], that forms a stationary Markov chain Z1 → Z2 → · · · → Zm with transition
matrix P and initial distribution w = {wj}j∈[r] (assumed to be the stationary distribution). The

observation Xt is represented by a vector in x(t) ∈ R
n. Given the state Zt at time t, Xt (and hence

x(t)) is conditionally independent of all other observations and states. The matrix O (of size n× r)
represents the probability distribution for the observations: the ith column Oi ∈ R

n represents the
expectation of Xt conditioned on the state Zt = i i.e.

∀i ∈ [r], t ∈ [m], E[Xt|Zt = i] = Oi ∈ R
n.

In an HMM with continuous observations, the distribution of the observation conditioned on state
being i can be a Gaussian and ith column of O would correspond to its mean. In the discrete
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setting, each column of O can correspond to the parameters of a discrete distribution over an
alphabet of size n.

An important regime for HMMs in the context of many settings in image classification and
speech is the overcomplete setting where the dimension of the observations n is much smaller than
state space r. Many existing algorithms for HMMs are based on tensor decompositions, and work
in the regime when n ≤ r [AHK12, AGH+12]. In the overcomplete regime, there have been several
works [AMR09, BCV14, HGKD15] that establish identifiability (and identifiability with polynomial
samples) under some non-degeneracy assumptions, but obtaining polynomial time algorithms has
been particularly challenging in the overcomplete regime. Very recently Sharan et al. [SKLV17] gave
a polynomial time algorithm for learning the parameters of an overcomplete discrete HMMs when
the observation matrix M is random (and sparse), and the transition matrix P is well-conditioned,
under some additional sparsity assumptions on both the transition matrix and observation matrix
(e.g., the degree of each node in the transition matrix P is at most n1/c for some large enough
constant c > 1). Using Theorem 2.2, we give a polynomial time algorithm in the more challenging
smoothed analysis setting where entries of M are randomly perturbed with small random Gaussian
perturbations 3.

Informal Theorem 2.6. Let η, δ ∈ (0, 1) be constants. Suppose we are given a Hidden Markov
Model with r states and with n ≥ rη dimensional observations with hidden parameters Õ, P . Suppose
the transition matrix P is d ≤ n1−δ sparse (both row and column) and σmin(P ) ≥ γ1 > 0, and
the each entry of the observation matrix is ρ-randomly perturbed (in a smoothed analysis sense),
and the stationary distribution w ∈ [0, 1]r has mini∈[r]wi ≥ γ2 > 0, then there is a polynomial
time algorithm that uses samples of time window ℓ ≤ 1/(ηδ) and recovers the parameters up to ε
accuracy (in Frobenius norm) in time (n/(ργ1γ2ε))

O(ℓ), with probability at least 1− exp
(
−Ωℓ(n)

)
.

For comparison, the result of Sharan et al. [SKLV17] applies to discrete HMMs, and gives an
algorithm that uses time windows of size ℓ = O(logn r) in time poly(n, r, 1/ε, 1/γ1 , 1/γ2)

ℓ (there
is no extra explicit lower bound on n). But it assumes that the observation matrix O is fully
random, and has other assumptions about sparsity about both O and P , and about non-existence
of short cycles. On the other hand, we can handle the more general smoothed analysis setting for
the observation matrix O for n = rη (for any constant η > 0), and assume no additional conditions
about non-existence of short cycles. To the best of our knowledge, this gives the first polynomial
time guarantees in the smoothed analysis setting for learning overcomplete HMMs.

Our results complement the surprising sample complexity lower bound in Sharan et al. [SKLV17]
who showed that it is statistically impossible to recover the parameters with polynomial samples
when n = polylog(r), even when the observation matrix is random. The algorithm is based on an
existing approach using tensor decompositions [AMR09, AGH+12, BCMV14, SKLV17]. The robust
analysis of the above algorithm (Theorem 2.6) follows by a simple application of Theorem 2.2.

2.4 Overcomplete Tensor Decompositions

Tensor decomposition has been a crucial tool in many of the recent developments in showing
learning guarantees for unsupervised learning problems. The problem here is the following. Suppose

3While small Gaussian perturbations makes most sense in a continuous observation setting, we believe that these
ideas should also imply similar results in the discrete setting for an appropriate smoothed analysis model.

9



A1, . . . , AR are vectors in R
n. Consider the s’th order moment tensor

Ms =

R∑

i=1

A⊗s
i .

The question is if the decomposition {Ai} can be recovered given access only to the tensor
Ms. This is impossible in general. For instance, with s = 2, the Ai can only be recovered up to
a rotation. The remarkable result of Kruskal [Kru77] shows that for s > 2, the decomposition in
“typically” unique, as long as R is a small enough. Several works [Har70, Car91, AGH+12, MSS16]
have designed efficient recovery algorithms in different regimes of R, and assumptions on {Ai}.
The other important question is if the {Ai} can be recovered assuming that we only have access to
Ms + Err, for some noise tensor Err.

Works inspired by the sum-of-squares hierarchy achieve the best dependence on R (i.e., handle
the largest values of R), and also have the best noise tolerance, but require strong incoherence (or
even Gaussian) assumptions on the {Ai} [BKS15, HSSS16]. Meanwhile, spectral algorithms (such
as [GVX14, BCMV14]) achieve a weaker dependence on R and can tolerate a significantly smaller
amount of noise, but they allow recoverability for smoothed vectors {Ai}, which is considerably
more general than recoverability for random vectors. The recent work of [MSS16] bridges the two
approaches in the case s = 4.

Our result here is a decomposition algorithm for 2ℓ’th order tensors that achieves efficient
recovery guarantees in the smoothed analysis model, as long as R ≤ cnℓ for a constant c. Our result
is based on a generalization of the “FOOBI algorithm” of Cardoso [Car91, DLCC07], who consider
the case ℓ = 2. We also give a robust analysis of this algorithm (both the FOOBI algorithm for ℓ = 2,
and our generalization to higher ℓ): we show that the algorithm can recover the decomposition to
an arbitrary precision ε (up to a permutation), as long as ‖Err‖ ≤ polyℓ(ε, 1/n, ρ), where ρ is the
perturbation parameter in the smoothed analysis model.

Informal Theorem 2.7. Let ℓ ≥ 2 be an integer. Suppose we are given a 2ℓ’th order tensor
T =

∑R
i=1A

⊗2ℓ
i + Err, where Ai are ρ-perturbations of vectors with polynomially bounded length.

Then with probability at least 1 − exp(−Ωℓ(n)), we can find the Ai up to any desired accuracy ε
(up to a permutation), assuming that R < cnℓ for a constant c = c(ℓ), and ‖Err‖F is a sufficiently
small polynomial in ε, ρ, 1/n.

See Theorem 8.1 and Section 8 for a formal statement and details. We remark that there exists
different generalizations of the FOOBI algorithm of Cardoso to higher ℓ > 2 [AFCC04]. However,
to the best of our knowledge, there is no analysis known for these algorithms that is robust to
inverse polynomial error. Further our new algorithm is a very simple generalization of Cardoso’s
algorithm to higher ℓ.

This yields an improvement in the best-known dependence on the rank in such a smoothed
analysis setting — from nℓ−1 (from [BCMV14]) to nℓ. Previously such results were only known for
ℓ = 2 in [MSS16], who analyzed an SoS-based algorithm that was inspired by the FOOBI algorithm
(to the best of our knowledge, their results do not imply a robust analysis of FOOBI). Apart from
this quantitative improvement, our result also has a more qualitative contribution: it yields an
algorithm for the problem of finding symmetric rank-1 tensors in a linear subspace.

Informal Theorem 2.8. Suppose we are given a basis for an R dimensional subspace S of Rnℓ

that is equal to the span of the flattenings of A⊗ℓ
1 , A⊗ℓ

2 , . . . A⊗ℓ
R , where the Ai are unknown ρ-

perturbed vectors. Then the Ai can be recovered in time polyℓ(n, 1/ρ) with probability at least
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1 − exp(−Ωℓ(n)). Further, this is also true if the original basis for S is known up to an inverse-
polynomial perturbation.

Techniques. At a technical level, the FOOBI algorithm of [Car91, DLCC07] for decomposing
fourth-order tensors rests on a rank-1 detecting “device” Φ that evaluates to zero if the inputs are
a symmetric product vector, and is non-zero otherwise. We construct such a device for general ℓ,
and further analyze the condition number of an appropriate matrix that results using Theorem 2.2.

We also give an analysis of the robustness of the FOOBI algorithm of [Car91] and our extension
to higher ℓ. While such robustness analyses are often straightforward, and show that each of
the terms estimated in the proofs will be approximately preserved. In the case of the FOOBI
algorithm, this turns out to be impossible to do (this is perhaps one reason why proving robust
guarantees for the FOOBI algorithm even for ℓ = 2 has been challenging) . The reason is that
the algorithm involves finding the top R eigenvectors of the flattened moment matrix, and setting
up a linear system of equations in which the coefficients are non-linear functions of the entries of
the eigenvectors. Now, unless each of the eigenvectors is preserved up to a small error, we cannot
conclude that the system of equations that results is close to the one in the noise-free case. Note that
for eigenvectors to be preserved approximately after perturbation, we will need to have sufficient
gaps in the spectrum to begin with. This turns out to be impossible to guarantee using current
smoothed analysis techniques. We thus need to develop a better understanding of the solution to
the linear system, and eventually argue that even if the system produced is quite different, the
solution obtained in the end is close to the original.

3 Preliminaries

In this section, we introduce notation and preliminary results that will be used throughout the rest
of the paper.

Given a vector a ∈ R
n and a ρ (typically a small inverse polynomial in n), a ρ-perturbation of a

is obtained by adding independent Gaussian random variables xi ∼ N(0, ρ2/n) to each coordinate
of a. The result of this perturbation is denoted by ã.

We will denote the singular values of a matrix M by σ1(M), σ2(M), . . ., in decreasing order.
We will usually use k or R to represent the number of columns of the matrix. The maximum and
minimum (nonzero) singular values are also sometimes written σmax(M) and σmin(M).

While estimating the minimum singular value of a matrix can be difficult to do directly, it is
closely related to the leave-one-out distance of a matrix, which is often much easier to calculate.

Definition 3.1. Given a matrix M ∈ R
n×k with columns M1, . . . ,Mk, the leave-one-out distance

of M is
ℓ(M) = min

i
dist(Mi,Span{Mj : j 6= i}). (4)

The leave-one-out distance is closely related to the minimum singular value, up to a factor
polynomial in the number of columns of M [RV08].

Lemma 3.2. For any matrix M ∈ R
n×k, we have

ℓ(M)√
k

≤ σmin(M) ≤ ℓ(M). (5)

11



Tensors and multivariate polynomials. An order-ℓ tensor T ∈ R
n×n×···×n has ℓ modes each

of dimension n. Given vectors u, v ∈ R
n we will denote by u⊗ v ∈ R

n×n the outer product between
the vectors u, v, and by u⊗ℓ the outer product of u with itself ℓ times i.e., u⊗ u⊗ · · · ⊗ u.

We will often identify an ℓth order tensor T (with dimension n in each mode) with the vector

in R
nℓ

obtained by flattening the tensor into a vector. For sake of convenience, we will sometimes
abuse notation (when the context is clear) and use T to represent both the tensor and flattened
vector interchangeably. Given two ℓth order tensors T1, T2 the inner product 〈T1, T2〉 denotes the

inner product of the corresponding flattened vectors in R
nℓ
.

A symmetric tensor T of order ℓ satisfies T (i1, i2, . . . , iℓ) = T (iπ(1), . . . , iπ(ℓ)) for any i1, . . . , iℓ ∈
[n] and any permutation π of the elements in [ℓ]. It is easy to see that the set of symmetric tensors

is a linear subspace of Rn⊗ℓ

, and has a dimension equal to
(
n+ℓ−1

ℓ

)
. Given any n-variate degree ℓ

homogenous polynomial g ∈ R
n → R, we can associate with g the unique symmetric tensor T of

order ℓ such that g(x) = 〈T, x⊗ℓ〉.

Minimum singular value lower bounds for decoupled tensor products. We will use as a
black box high confidence lower bounds on the minimum singular value bounds for decoupled tensor
products. The first statement of this form was shown in [BCMV14], but this had a worse polynomial
dependence on n in both the condition number and the exponent in the failure probability. The
following result in [ADM+18] gives a more elegant proof, while also achieving much better bounds
in both the failure probability and the minimum singular value.

Lemma 3.3 ([ADM+18], Lemma 6). Let p ∈ (0, 1], δ ∈ (0, 1) be constants, and let W ⊆ R
n⊗ℓ

be
an arbitrary subspace of dimension at least δnℓ. Given any x1, · · · , xℓ ∈ R

n, then for their random
perturbations x̃1, · · · , x̃ℓ where for each i ∈ [ℓ], x̃i = xi +N(0, ρ2i /(2nℓ))

n with ρ2i ≥ ρ2, we have

P

[
‖ΠW (x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃ℓ)‖2 <

c1(ℓ)ρ
ℓ

nℓ
· pℓ
]
≤ pc2(ℓ)δn

where c1(ℓ), c2(ℓ) are constants that depend only on ℓ.

We remark that the statement of Anari et al. [ADM+18] is stated in terms of the distance to
the orthogonal subspace W⊥, as long as dim(W⊥) ≤ cℓnℓ for some c < 1; this holds above for
c = 1− δ/ℓ.

4 Decoupling and Symmetric Tensor Products

In this section we prove Theorem 2.1 and related theorems about the least singular value of random
matrices in which each column is a function of a single random vector. The proof of Theorem 2.1
relies on the following theorem which forms the main technical theorem of this section.

Theorem 4.1 (Same as Theorem 2.3). Let δ ∈ (0, 1), and let Vℓ be space of all symmetric order
ℓ tensors in R

n×n×···×n (dimension is D =
(
n+ℓ−1

ℓ

)
), and let W ⊂ Vℓ be an arbitrary subspace of

dimension δD. Then we have for any x ∈ R
n and x̃ = x+ z where z ∼ N(0, ρ2/n)n

P
z

[
‖ΠW x̃

⊗ℓ‖2 ≥ c1(ℓ)ρ
ℓ

nℓ

]
≥ 1− exp

(
− c2(ℓ)δn

)
,

where c1(ℓ), c2(ℓ) are constants that depend only on ℓ.
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Theorem 2.1 follows by combining the above theorem with an additional lemma that uses a
robust version of Sylvester’s inequality for products of matrices (see Section 4.3). Our main tool
will be the idea of decoupling, along with Lemma 3.3 that handles tensor products of vectors that
have been perturbed independently. While decoupling inequalities [dlPMS95] are often used to
prove concentration bounds for polynomials of random variables, here this will be used to establish
lower bounds on projections and minimum singular values, which have more of an anti-concentration
flavor.

In fact we can use the same ideas to prove the following anti-concentration statement that can
be seen as a variant of the well-known inequality of Carbery and Wright [CW01, NSV03]. In what
follows, we will represent a degree ℓ multivariate polynomial gj : Rn → R using the symmetric
tensor Mj of order ℓ such that gj(x) = 〈Mj , x

⊗ℓ〉.

Theorem 4.2. Let ε, δ ∈ (0, 1), η > 0 and let ℓ ≥ 2 be an integer. Let g : Rn → R
m be a vector-

valued degree ℓ homogenous polynomial of n variables given by g(x) = (g1(x), . . . , gm(x)) where

for each j ∈ [m], gj(x) = 〈Mj , x
⊗ℓ〉 for some symmetric order ℓ tensor Mj ∈ R

nℓ
. Suppose the

matrix M ∈ R
m×nℓ

formed with the (Mj : j ∈ [m]) as rows has σδnℓ(M) ≥ η, then for any fixed
u ∈ R

n, t ∈ R
m, and z ∼ N(0, ρ2/n)n we have

P

[
‖g(u+ z)− t‖2 < c(ℓ)εη ·

(ρℓ
nℓ

)]
< εc

′(ℓ)δn (6)

where c(ℓ), c′(ℓ) > 0 are constants that depend only on ℓ.

Remark 4.3. Comparison to Carbery-Wright inequality: Anti-concentration inequalities for poly-
nomials are often stated for a single polynomial. They take the following form: if g : Rn → R is
a degree-ℓ polynomial with ‖g‖2 ≥ η, and x ∼ N(0, 1)n (or other distributions like the uniform
measure on a convex body), then the probability that

P
x∼N(0,1)n

[
|g(x) − t| < εη

]
≤ O(ℓ) · ε1/ℓ.

Our statement in Theorem 4.2 applies to vector valued polynomials g. Here, if the gj are “different
enough”, one can hope that the dependence above becomes O(εm/ℓ), where m is the number of
polynomials. Our statement may be viewed as showing a bound that is qualitatively of this kind
(albeit with a much weaker dependence on ℓ, when ℓ ≥ 2), when m ≥ δnℓ. We capture the notion
of gj being different using the condition on the singular value of the matrix M . We also note that
the paper of Carbery and Wright [CW01] does indeed consider vector-valued polynomials, but their
focus is on obtaining ε1/ℓ type bounds with a better constant for ε. To the best of our knowledge,
none of the known results try to get an advantage due to having multiple gj .

Remark 4.4. While the condition of δnℓ non-negligible singular values seems strong, this in fact
turns out to be necessary. Proposition 4.13 shows that the relation between the failure probability
and the number of non-negligible singular values is tight up to constants that depend only on ℓ.
In fact, m ≥ nℓ−1 is necessary to get any non-trivial bounds. Getting a tight dependence in the
exponent in terms of ℓ is an interesting open question.

The main ingredient in the proof of the above theorems is the following decoupling inequality.

Proposition 4.5. [Anticoncentration through Decoupling] Let ε > 0 and let ℓ ≥ 2 be an integer,
and let ‖·‖ represent any norm over R

n. Let g : Rn → R
m be given by g(x) = (g1(x), . . . , gm(x))
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where for each j ∈ [m], gj(x) := 〈Mj , x
⊗ℓ〉 is a multivariate homogeneous polynomial of degree ℓ,

and Mj is a symmetric tensor of order ℓ. For any fixed u ∈ R
n, t ∈ R

m, and z ∼ N(0, ρ2)n we have

P
z

[
‖g(u + z)− t‖ ≤ ε

]
≤ P

[
‖ĝ(u+ z0, z1, z2, . . . , zℓ−1)‖ ≤ ε/ℓ!

]1/2ℓ−1

, (7)

where ∀j ∈ [m], ĝj(u+ z0, z1, . . . , zℓ−1) = 〈Mj , (u+ z0)⊗ z1 ⊗ · · · ⊗ zℓ−1〉,

z0 ∼ N(0, ρ2(ℓ+ 1)/(2ℓ))n,and z1, z2, . . . , zℓ−1 ∼ N(0, ρ2/(2ℓ))n.

Note that in the above proposition, the polynomials ĝj(z0, z1, . . . , zℓ−1) = 〈Mj , (u + z0)⊗ z1 ⊗
· · ·⊗zℓ−1〉 correspond to decoupled multilinear polynomials of degree ℓ. Unlike standard decoupling
statements, here the different components u + z0, z1, . . . , zℓ−1 are not identically distributed. We
also note that the proposition itself is inspired by a similar lemma in the work of Lovett [Lov10]
on an alternate proof of the Carbery-Wright inequality. Indeed the basic inductive structure of our
argument is similar (going via Lemma 4.8 below), but the details of the argument turn out to be
quite different. In particular we want to consider a random perturbation around an arbitrary point
u, and moreover the proposition above deals with vector-valued polyomials g, as opposed to real
valued polynomials in [Lov10].

Theorem 4.1 follows by combining Proposition 4.5 and the theorem for decoupled tensor prod-
ucts (Lemma 3.3). This will be described in Section 4.2. Later in Section C, we also give an
alternate simple proof of Theorem 4.1 for ℓ = 2 that is more combinatorial. First we introduce
the slightly more general setting for decoupling that also captures the required smoothed analysis
statement.

4.1 Proof of Proposition 4.5

We will start with a simple fact involving signed combinations.

Lemma 4.6. Let α0, α1, . . . , αm be real numbers, and let ζ1, ζ2, . . . , ζm ∈ {±1} be independent
Rademacher random variables. Then

E
ζ

[(
α0 + α1ζ1 + · · ·+ αmζm

)m+1
∏

i∈[m]

ζi

]
= (m+ 1)! · α0α1 . . . αm.

Proof. For a subset S ⊆ [m], let ξ(S) =
∏

i∈S ζi. Then it is easy to check that E
[
ξ(S)

∏
i∈[m] ζi

]
= 0

if S 6= {1, 2, . . . ,m}, and 1 if S = [m]. Applying this along with the multinomial expansion for(
α0 + α1ζ1 + · · · + αmζm

)m
gives the lemma.

Lemma 4.7. Consider any symmetric order ℓ tensor T , a fixed vector x ∈ R
n , and let z1 ∼

N(0, ρ21)
n, . . . , zℓ ∼ N(0, ρ2ℓ )

n be independent random Gaussians. Then we have

∑

ζ2,...,ζℓ∈±1

( ℓ∏

i=2

ζi

)
〈T, (x+ z1 + ζ2z2 + · · ·+ ζℓzℓ)

⊗ℓ〉 = 2ℓ−1ℓ! · 〈T, (x+ z1)⊗ z2 ⊗ · · · ⊗ zℓ〉. (8)

Note that the right side corresponds to the evaluation of the tensor T at a random perturbation
of (x, 0, 0, . . . , 0).
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Proof. First, we observe that since T is symmetric, it follows that 〈T, u1⊗u2⊗· · ·⊗uℓ〉 = 〈T, uπ(1)⊗
uπ(2)⊗· · ·⊗uπ(ℓ)〉 for any permutation π on (1, 2, . . . , ℓ). Let u = x+z1, and let ζ2, ζ3, . . . , ζℓ ∈ {±1}
be independent Rademacher random variables. For any symmetric decomposition into rank-one
tensors T =

∑
j λjv

⊗ℓ
j (note that such a decomposition always exists for a symmetric tensor; see

[CGLM08] for example), we have for every x ∈ R
n, 〈T, x⊗ℓ〉 =∑j λj〈vj , x〉ℓ. Applying Lemma 4.6

(with m = ℓ− 1) to each term separately

∀j, E
ζ2,ζ3,...,ζℓ

[( ℓ∏

i=2

ζi

)
〈v⊗ℓ

j , (u+ ζ2z2 + · · · + ζℓzℓ)
⊗ℓ〉
]
= ℓ! · 〈v⊗ℓ

j , u⊗ ζ2 ⊗ · · · ⊗ ζℓ〉.

Combining them, we get

E
ζ2,ζ3,...,ζℓ

[( ℓ∏

i=2

ζi

)
〈T, (u+ ζ2z2 + · · ·+ ζℓzℓ)

⊗ℓ〉
]
= ℓ! · 〈T, u⊗ z2 ⊗ z3 ⊗ · · · ⊗ zℓ〉

= ℓ! · 〈T, (x+ z1)⊗ z2 ⊗ z3 ⊗ · · · ⊗ zℓ〉.

Our proof of the anti-concentration statement (Proposition 4.5) will rely on the signed combi-
nation of vectors given in Lemma 4.7 and on a positive correlation inequality that is given below.

Lemma 4.8. Let z ∼ N(0, ρ2)n be an n-variate Gaussian random variable, and let z0 ∼ N(0, ρ2(ℓ+
1)/(2ℓ))n and z1, z2, . . . , zℓ−1 ∼ N(0, ρ2/(2ℓ))n be a collection of independent n-variate Gaussian
random variables. Then for any measurable set S ⊂ R

n we have

P
z

[
z ∈ S

]
≤ P

z

[ ∧

ζ1,...,ζℓ−1∈{±1}

(
z0 +

∑ℓ−1
j=1 ζjzj

)
∈ S

]1/(2ℓ−1)
(9)

This inequality and its proof are inspired by the work of Lovett [Lov10] mentioned earlier.
The main advantage in our inequality is that the right side here involves the particular signed
combinations of the function values at 2ℓ−1 points from ℓ independent copies that directly yields
the asymmetric decoupled product (using Lemma 4.7).

Proof. Let x0, x1, . . . , xℓ−1 ∼ N(0, ρ2/ℓ)n, and for each k ∈ [ℓ− 1], let ŷk ∼ N(0, ρ2(k + 2)/(2ℓ))n.
Clearly P[z ∈ S] = P[x0 + · · · + xℓ−1 ∈ S]. Let f(z) = 1z∈S represent the indicator function of S.
For 0 ≤ k ≤ ℓ− 1, let

Ek = E
ŷk,z1,...,zk,xk+1,...,xℓ−1


 ∏

ζ1,...,ζk∈{±1}
f
(
ŷk +

k∑

j=1

ζjzj +

ℓ−1∑

j=k+1

xj

)



We will prove that for each k ∈ [ℓ− 1], E2
k−1 ≤ Ek. Using Cauchy-Schwartz inequality, we have

E2
k−1 =


 E

ŷk−1,z
xk+1,...,xℓ−1

E
xk

[ ∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj +

∑ℓ−1
j=k xj

)]



2

≤ E
ŷk−1,xk+1,...,xℓ−1

z1,...,zk−1


E

xk

[ ∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj +

∑ℓ−1
j=k xj

)]



2

.
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Now if yk, zk are i.i.d variables distributed as N(0, ρ2/(2ℓ))n, then xk, yk+zk, yk−zk are identically
distributed. More crucially, yk + zk and yk − zk are independent! Hence

E2
k−1 ≤ E

ŷk−1,xk+1,...,xℓ−1
z1,...,zk−1

(
E

yk,zk∼N(0,
ρ2

2ℓ ))
n

[ ∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj + (yk + zk) +

∑ℓ−1
j=k+1 xj

)]

× E

yk,zk∼N(0,
ρ2

2ℓ ))
n

[ ∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj + (yk − zk) +

∑ℓ−1
j=k+1 xj

)])

= E
ŷk−1,xk+1,...,xℓ−1

z1,...,zk−1

E

yk,zk∼N(0,
ρ2

2ℓ ))
n

[ ∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj + (yk + zk) +

∑ℓ−1
j=k+1 xj

)

× f
(
ŷk−1 +

∑k−1
j=1 ζjzj + (yk − zk) +

∑ℓ−1
j=k+1 xj

)]

= E
ŷk,xk+1,...,xℓ−1

z1,...,zk

[ ∏

ζ1,...,ζk∈{±1}
f
(
ŷk +

∑k
j=1 ζjzj +

∑ℓ−1
j=k+1 xj

)]
,

where the last step follows by identifying ŷk−1 + yk with ŷk. The proof of the lemma is completed
by observing that E0 = P[ŷ0 + x1 + · · ·+ xℓ ∈ S] = P[z ∈ S].

We now proceed to the proof of the main decoupling statement.

Proof of Proposition 4.5. Let S := {z ∈ R
n : ‖g(z + u) − t‖ ≤ ε}. Let z0 ∼ N(0, ρ2(ℓ + 1)/(2ℓ))n

and z1, . . . , zℓ−1 ∼ N(0, ρ2/(2ℓ))n be independent n-variate Gaussian random variables. From
Lemma 4.8 we have for z ∼ N(0, ρ2)n,

P
z

[
‖g(z + u)− t‖ ≤ ε

]
≤ P

z0,...,zℓ−1

[ ∧

ζ1,...,ζℓ−1∈{±1}

(
‖g(u + z0 +

∑ℓ−1
j=1 ζjzj)− t‖ ≤ ε

)]1/(2ℓ−1)

≤ P
z0...zℓ−1

[ ∑

ζ1,...,ζℓ−1∈{±1}
‖g(u+ z0 +

∑ℓ−1
j=1 ζjzj)− t‖ ≤ 2ℓ−1ε

]1/(2ℓ−1)

≤ P
z0...zℓ−1

[∥∥∥
∑

ζ1,...,ζℓ−1∈{±1}

( ℓ−1∏

j=1

ζj
)
g
(
u+ z0 +

∑ℓ−1
j=1 ζjzj

)∥∥∥ ≤ 2ℓ−1ε
]1/(2ℓ−1)

,

where the last inequality follows from triangle inequality, and observing that the signed combina-
tions of t cancel out when ℓ ≥ 2. Now applying Lemma 4.7 for each i ∈ [m], we get

P
z∼N(0,ρ2)n

[
‖g(z + u)− t‖ ≤ ε

]
≤ P

z0,...,zℓ−1

[
‖ĝ(u+ z0, z1, . . . , zℓ−1)‖ ≤ ε/ℓ!

]1/(2ℓ−1)
.

4.2 Proofs of Theorem 4.1 and Theorem 4.2

Proof of Theorem 4.1. Letm = δD, and letM1,M2, . . . ,Mm be an orthonormal basis of symmetric
tensors inW ⊂ R

n⊗ℓ
. We will also denote byM them×nℓ matrix formed by flatteningM1, . . . ,Mm

respectively. For each j ∈ [m], let gj(x) = 〈Mj , x
⊗ℓ〉. Let x̃ = x + z where z ∼ N(0, ρ2/n)n. We
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would like to lower bound ‖ΠW x̃
⊗ℓ‖2 = ‖g(x+z)‖2. Using Proposition 4.5 with t = 0, for all ε > 0,

we have

P

[
‖g(x+ z)‖2 < ε

]
≤ P

[
‖ΠW (x+ z0)⊗ z1 ⊗ z2 · · · ⊗ zℓ−1‖2 < ε/ℓ!

]1/(2ℓ−1)
, (10)

where z0 ∼ N(0, ρ
2(ℓ+1)
2ℓn )n, z1, z2, . . . , zℓ−1 ∼ N(0, ρ2

2ℓn)
n. Then

P

[
‖ΠW x̃

⊗ℓ‖2 <
c(ℓ)ρℓ

nℓ

]
≤ exp

(
− c′(ℓ)δn

)
, (11)

with c(ℓ), c′(ℓ) > 0 being constants that depend only on ℓ. The last inequality follows from (10) and
Lemma 3.3 applied with p = 1/e, x1 = x, x2 = x3 = · · · = xℓ = 0, and δ′ = δ/ℓℓ. This concludes
the proof of Theorem 4.1.

Please see Appendix C for an alternate combinatorial proof when ℓ = 2. Note that we can also
obtain a similar statement for general lower bound of εη with ε ∈ (0, 1/poly(n)) (as in Theorem 4.2),
where the failure probability becomes εΩℓ(δn). The proof is exactly the same, except that we can
apply Lemma 3.3 with p = ε1/ℓ instead. Finally, the proof of Theorem 4.2 is almost identical to
Theorem 4.1. In fact Theorem 4.2 essentially corresponds to the special case of Theorem 2.1 when
k = 1. We include a proof of Theorem 4.2 in Appendix B.

4.3 Condition Number Lower Bounds for Arbitrary Polynomials

We are now ready to complete the proof of Theorem 2.1. We start by re-stating the theorem.

Theorem 4.9 (Same as Theorem 2.1). Let ℓ ∈ Z+ be a constant and let a1, a2, . . . , ak ∈ R
n be any

arbitrary collection of vectors, let f1, f2, . . . , fm be a collection of arbitrary homogeneous polynomials
fi : R

n → R of degree ℓ given by

fi(x) =
∑

J=(j1,...,jℓ)∈([n]
ℓ )

j1≤j2≤···≤jℓ

Ui(j1, . . . , jℓ)xj1xj2 . . . xjℓ ,

and let Mf (a1, . . . , ak) =
(
fi(aj)

)
i∈[m],j∈[k] be the m × k matrix formed by applying each of these

polynomials with the k vectors a1, . . . , ak. Denote by U ∈ R
m×D with D =

(n+ℓ−1
ℓ

)
, with row i ∈ [m]

representing coefficients of fi. We have that with probability at least 1− exp
(
−Ωℓ(δn)+ log k

)
that

σk

(
Mf (ã1, . . . , ãk)

)
≥ Ωℓ(1)√

k
· ρ

ℓ

nℓ
· σk+δD(U), (12)

where ãj represents a random perturbation of aj with independent Gaussian noise N(0, ρ2/n)n.

Remark 4.10. We note that the condition on U is almost tight, since σk(U) being non-negligible
is a necessary condition (irrespective of A). Proposition 4.13 shows that the additive δnℓ term in
number of non-negligble singular values is necessary even when k = 1. Also note that by choosing
a projection matrix U for a subspace of dimension δD, we recover Theorem 4.1. Finally as before,
we can obtain an analogous statement for ε ∈ (0, 1/polyℓ(n)) as in Theorem 4.2 (see Section 4.2).
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Definition 4.11. Let D =
(n+ℓ−1

ℓ

)
. For x1, · · · , xn ∈ R, Pℓ(x1, · · · , xn) ∈ R

D is a vector whose
entries corresponding to D different degree-ℓ monomials of x1, · · · , xn.

The idea behind the proof is to view Mf (a1, . . . , ak) as the product of a coefficient matrix and
the matrix whose ith column is Pℓ(ai). Call the latter matrix Y . The following lemma show how
to use the property that Theorem 4.2 gives about Y to show Theorem 2.1.

Lemma 4.12. Let δ ∈ (0, 1), and let U be a D′×D matrix, and let Y ∈ R
D×R be a random matrix

with independent columns Ỹ1, Ỹ2, . . . , ỸR satisfying the following condition: for each j ∈ [R], and
any fixed subspace V of dimension at least δD, ‖ΠV Ỹj‖2 ≥ κ1 with probability at least 1− γ/R over
the randomness in Ỹj. Then assuming σR+δD(U) ≥ κ2, we have that σR(UY ) ≥ κ1κ2/

√
R with

probability at least 1− γ.

Proof. For convenience let r := R + δD. We will lower bound the minimum singular value of
M = UY using the leave-one-out-distance. Fix an j ∈ [R]; we want column Mj = UỸj to have a
non-negligible component orthogonal to W = span

(
{UỸi : i ∈ [R], j 6= i}

)
w.h.p.

Let ΠW ,ΠW⊥ be the projectors onto the spaceW,W⊥ respectively. Note that σr(U) = σR+δD ≥
κ2, and σD′−R+1(ΠW⊥) ≥ 1. We can use the following robust version of Sylvester’s inequality for
products of matrices using the variational characterization of singular values to conclude

σr−R+1

(
ΠW⊥U

)
≥ σD′−R+1

(
ΠW⊥

)
σr(U)

≥ κ2.

Let V be the subspace spanned by the top r−R+1 right singular vectors of ΠW⊥U . Since the
dimension of V is at least r−R+1 ≥ δD, we can then use the condition of the lemma to conclude
that with probability at least 1 − γ/R, ‖ΠV Ỹj‖2 ≥ κ2κ1. Hence, by using a union bound over all
j ∈ [R] and using the leave-one-out distance the lemma follows.

We can now complete the proof of the main result of the section.

Proof of Theorem 2.1. The idea is to apply Lemma 4.12 with D′ = m,D =
(n+ℓ−1

ℓ

)
, R = k, where

U is the corresponding coefficient matrix, and Y is the matrix whose jth column is ã⊗ℓ
j . Note that

the naive representation of ã⊗ℓ
j ∈ R

n⊗ℓ
is in nℓ dimensions, whereas the rows of the co-efficient

matrix U is in R
D. However ã⊗ℓ

j are elements of the D-dimensional space of symmetric tensors of

order ℓ (alternately each row of U can be seen as a nℓ dimensional vector constructed by flattening
the corresponding symmetric order ℓ tensor for that row of U). Hence, Theorem 4.1 implies that
Y satisfies the conditions of Lemma 4.12, and this completes the proof.

4.4 Tight Example for Theorem 2.1 and 4.2

We now give a simple example that demonstrates that the condition on many non-trivial singular
values for the matrix M that encodes g is necessary.

Proposition 4.13. In the notation of Theorem 4.2, for any r ≥ 1, there exists a matrixM ∈ R
m×nℓ

(where m = rnℓ−1), with the jth row corresponding to a symmetric order ℓ tensor Mj , such that
σrnℓ−1(M) = Ωℓ(1), but

P
z∼N(0,1/n)n

[
‖g(z)‖2 = ‖Mz⊗ℓ‖ ≤ ε

]
≥ (cε)Oℓ(r),

for some absolute constant c > 0.
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Considering the subspace of symmetric tensors spanned by the rows of M also gives a simi-
lar tight example for Theorem 4.1. Moreover, the above example also gives a tight example for
Theorem 2.1 even when k = 1, by considering the function f(x) := g(x), and a1 = 0 (so ã1 = z).

Proof. Let e1, . . . , en constitute the standard basis for R
n. Let U be the space R

nℓ−1
, and let

V ⊂ R
n be the subspace spanned by e1, e2, . . . , er. Let E1, E2, . . . , Enℓ−1 ∈ R

nℓ−1
constitute the

standard basis of U given by all the ℓ− 1 wise tensor products of e1, . . . , en. Consider the product
space W = U ⊗ V, and let B be the matrix whose m = rnℓ−1 rows correspond to the orthonormal
basis of W given by {EI ⊗ ej : I ∈ [n]ℓ−1, j ∈ [r]}. Note that each of these vectors are 1-
sparse. Let g : Rn → R

m be given by ∀j ∈ [m], gj(x) = 〈Bj , x
⊗ℓ〉. First note that by definition,

‖g(x)‖2 = ‖ΠU⊗Vx⊗ℓ‖2. Hence, if z ∼ N(0, 1/n)n, we have

P
z

[
‖g(z)‖2 ≤ ε

]
= P

z

[
‖ΠU⊗Vz

⊗ℓ‖2 ≤ ε
]

= P

[
‖ΠUz

⊗(ℓ−1)‖‖ΠVz‖ ≤ ε
]

≥ P

[
‖ΠVz‖ ≤ ε/2, ‖z‖ ≤ 21/(ℓ−1)

]

= P

[
‖ΠVz‖ ≤ ε/2 | ‖z‖ ≤ 21/(ℓ−1)

]
· (1− o(1))

≥ P

[
‖ΠVz‖ ≤ ε/2

]
· (1− o(1)) by Lemma A.1 in Appendix

≥ (cε)r ,

for some absolute constant c > 0, using standard properties of Gaussians.
We now just need to give a lower bound of Ω(rnℓ−1) for the number of non-trivial singular values

of the matrixM , whereMj is the symmetric order ℓ tensor representing gj i.e., 〈Mj , x
⊗ℓ〉 = 〈Bj, x

⊗ℓ〉
for every x ∈ R

n. In other words Mj is just the symmetrization (projection onto the space of all
symmetric tensors) of Bj . Note that each Mj is ℓ! sparse (since Bj were 1-sparse). Hence there are
at least rnℓ−1/ℓ! vectors Mj which have disjoint support. Hence at least rnℓ−1/ℓ! singular values
of M are at least 1/

√
ℓ!, as required.

5 Polynomials of Few Random Vectors

In this section, we consider random matrix ensembles, where each column is a constant degree
“monomial” involving a few of the columns. We will first consider a matrix M whose columns are
degree ℓ monomials in the input vectors ã1, . . . , ãk (that is, tensors of the form ãf(1)⊗. . .⊗ãf(ℓ) with
f(i) ∈ [k] for i = 1, . . . , ℓ). Since the same vector may appear in many columns or multiple times
within the same column, there are now dependencies in the perturbations between columns as well
as within a column, so we cannot apply [BCMV14] directly. We deal with these dependencies by
extending an idea of Ma, Shi and Steurer [MSS16], carefully defining appropriate subspaces that
will allow us to decouple the randomness.

Since one type of dependence comes from the same input vector appearing in many different
columns, it is natural to require that the number of these overlaps be small. Because of the
decoupling technique used to avoid dependencies within a column, the troublesome overlaps are
only those in which the same input vector appears in two different columns of M in the same
position within the tensor product. This motivates the following definition.
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Definition 5.1. Let M be a matrix whose columns M1, . . . ,MR consist of order-ℓ tensor products
of {ã1, . . . , ãk}. For s ∈ [ℓ] and a fixed column Mi, let ∆s(i) be the number of other columns that
differ from Mi in exactly s spots. (If Mi = ãf(1)⊗ . . .⊗ ãf(ℓ) and Mj = ãf ′(1)⊗ . . .⊗ ãf ′(ℓ), then the
number of spots in which Mi and Mj differ is |{i : f(i) 6= f ′(i)}|.) Finally, let ∆s = maxi∆s(i).

Theorem 5.2 (Same as Theorem 2.2). Let {ã1, . . . , ãk} ⊆ R
n be a set of ρ-perturbed vectors, let

ℓ ∈ Z+ be a constant, and let M ∈ R
nℓ×R be a matrix whose columns M1, . . . ,MR are tensor

monomials in {ãi}. Let ∆s be as above for s = 1, . . . , ℓ. If

ℓ∑

s=1

∆s ·
(n
ℓ

)ℓ−s
≤ c

(n
ℓ

)ℓ
(13)

for some c ∈ (0, 1), then σR(M) > Ωℓ(1) · (ρ/n)ℓ/
√
R with probability at least 1 − exp(−Ωℓ(1)(1 −

c)n+ logR).

Remark 5.3. The condition (13) is tight up to a multiplicative constant depending only on ℓ. We
give a simple upper bound on ∆s. Assume σR(M) > 0, and fix a column Mi of M . There are(
ℓ
s

)
ways to choose a set of s spots in which to differ from Mi, and once we make this choice, the

dimension of the available space is ns since each of the s spots contributes n dimensions. Therefore
the subspace of Rnℓ

consisting of all tensors that differ from Mi in exactly s spots has dimension
at most

(
ℓ
s

)
ns. Since all subsets of columns of M must be linearly independent, we must have

∆s ≤
(ℓ
s

)
ns. Therefore our condition is tight up to a factor of at most ℓ2ℓ+1.

In the above theorem, as stated, the columns of M are “monomials” involving the underlying
vectors ã1, . . . , ãk. However in our applications (e.g., Sections 7 and 8) the matrix of interest M ′

will have columns that are more general polynomials of the underlying vectors. Such matrices are
expressible as M ′ = MP where P ∈ R

R×R′
is a coefficient matrix with σR′(P ) > 1/poly(n, 1/ρ).

Hence, our theorem implies that σR′(M ′) > 1/poly(n, 1/ρ) in these cases w.h.p.
As in [BCMV14], we will use leave-one-out distance, denoted ℓ(M), as a surrogate for the

smallest singular value. The proof will make use of Lemma 3.3, which we will use to bound leave-
one-out distances. Our goal will be to find a suitable subspace W that is both large enough and
independent of the column of M we are projecting.

Proof of Theorem 5.2. Let L1, . . . , Lℓ be an equipartition of [n]. Define a new matrixM ′ ∈ R
(n
ℓ
)ℓ×R

by restricting the columns of M to the indices L1×L2× . . .×Lℓ. In other words, if Mi is a column
of M with Mi = ãf(1) ⊗ . . . ⊗ ãf(ℓ), then M ′

i = ãf(1),L1
⊗ . . . ⊗ ãf(ℓ),Lℓ

, where aL denotes the
restriction of the vector a to the coordinates in the set L. This ensures that for every column Mi,
the perturbations of each factor of this tensor product are independent.

Fix a column M ′
i of M ′, and let W be the subspace spanned by all other columns of M ′. We

want to find a subspace V satisfying:

1. W ⊆ V .

2. V is independent of M ′
i .

3. dimV ⊥ = c′(nℓ )
ℓ for some c′ ∈ (0, 1).
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Given such a V , properties 2 and 3 allow us to apply Lemma 3.3 to obtain that ‖ProjV ⊥M ′
i‖ ≥

Ωℓ((ρ/n)
ℓ) with probability at least 1− exp(−Ω(c′n)). Since W ⊆ V , we have

‖ProjW⊥M ′
i‖ ≥ ‖ProjV ⊥M ′

i‖ ≥ Ωℓ((ρ/n)
ℓ)

with high probability. Taking a union bound over all columns of M ′ gives that ℓ(M ′) ≥ Ωℓ((ρ/n)
ℓ)

with probability at least 1 − exp(−Ωℓ(1) · c′n + logR). Since adding more rows to M ′ can only
increase the magnitude of the projection of any column onto some subspace, ℓ(M) ≥ ℓ(M ′). Now
using properties of the leave-one-out distance (Lemma 3.2), we have

σmin(M) ≥ ℓ(M)√
R

≥ Ωℓ(1) ·
ρℓ

nℓ
√
R
.

Next we construct the subspace V . Let M ′
i′ , i

′ 6= i be some other column of M ′. Let S ⊆ [ℓ]
be the set of indices at which M ′

i and M
′
i′ share a factor, and let s = |S|. In order to ensure V is

independent of M ′
i , we must avoid touching any factors of M ′

i′ shared by M ′
i . Therefore we include

in V all vectors of the form ũ1 ⊗ . . . ⊗ ũℓ, where ũj agrees with the jth factor of M ′
i′ if j 6∈ S and

ũj is any vector in R
n/ℓ otherwise. As desired, V now includes M ′

i′ and is independent of M ′
i , at a

cost of adding (nℓ )
s dimensions to V .

Repeat this process for each i′ 6= i, and let V be the span of all vectors included at each step.
Since the number of overlaps with M ′

i can be s at most ∆ℓ−s times, the total dimension of V is

at most
∑ℓ

s=1 ∆s(
n
ℓ )

ℓ−s. By our assumption on the ∆ss, we get dimV ⊥ = c′(nℓ )
ℓ as desired, with

c′ = 1− c.

6 Robust Subspace Recovery

We introduce the following smoothed analysis framework for studying robust subspace recovery.
The following model also tolerates some small amount of error in each point i.e., inliers need not
lie exactly on the subspace, but just close to it.

6.1 Input model

In what follows, α, ε0, ρ ∈ (0, 1) are parameters.

1. An adversary chooses a hidden subspace T of dimension d in R
n, and then chooses αm points

from T and (1−α)m points from R
n. We denote these points inliers and outliers respectively.

Then the adversary mixes them in arbitrary order. Denote these points a1, a2, . . . , am. Let
A = (a1, a2, . . . , am), and Iin, Iout be the set of indices of inliers and outliers respectively. For
convenience, we assume that all the points have lengths in the range [1/2, 1].4

2. Each inlier is ρ-perturbed with respect to T . (Formally, this means considering an orthonor-
mal basis BT for T and adding BT v, where v ∼ N (0, ρ2/d)d.) Each outlier is ρ-perturbed
with respect to R

n. Let G denote the perturbations, and let us write Ã = A+G.

4If the perturbations in step (2) are done proportional to the norm, this assumption can be made without loss of
generality. (Since the algorithm can scale the lengths of each of the points.)
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3. With the constraint ‖E‖F ≤ ε0, the adversary adds noise E ∈ R
n×m to A, yielding Ã′ =

Ã+E = (ã′1, ã
′
2, · · · ). Note that this adversarial noise can depend on the random perturbations

in step 2.

4. We are given Ã′.

The goal in the subspace recovery problem is to return a subspace T ′ close to T .

Notation. As introduced above, Ã = A +G denotes the perturbed vectors. ãi denotes the i’th
column of Ã. We also use the notation AI to denote the sub-matrix of A corresponding to columns
in a set I.

6.2 Our result

We show the following theorem about the recoverability of T .

Theorem 6.1. Let δ ∈ (0, 1), ℓ ∈ Z+ and ρ > 0. Suppose we are given m ≥ nℓ + 8d/(δα)
points x1, x2, · · · , xm ∈ R

n generated as described above, where the fraction of inliers α satisfies
α ≥ (1 + δ)

(d+ℓ−1
ℓ

)
/
(n+ℓ−1

ℓ

)
. Then there exists ε0 = polyℓ(ρ/m) such that whenever ‖E‖F ≤ ε0,

there is an efficient deterministic algorithm that returns a subspace T ′ that satisfies

‖sinΘ(T, T ′)‖F ≤ ‖E‖F ·polyℓ(m, 1/ρ), w.p. ≥ 1− 2m2[exp(−Ωℓ(δn))+ exp(−Ω(d logm))]. (14)

When d/n < 1, the above theorem gives recovery guarantees even when the fraction of inliers
is approximately (d/n)ℓ. This can be significantly smaller than d/n (shown in [HM13]) for any
constant ℓ > 1.

Algorithm overview. We start by recalling the approach of [HM13]. The main insight there
is that if we sample a set of size slightly less than n from the input, and if the fraction of inliers
is > (1 + δ)d/n, then there is a good probability of obtaining > d inliers, and thus there exist
points that are in the linear span of the others. Further, since we sampled fewer than n points
and the outliers are also in general position, one can conclude that the only points that are in the
linear span of the other points are the inliers! In our algorithm, the key idea is to use the same
overall structure, but with tensored vectors. Let us illustrate in the case ℓ = 2. Suppose that the
fraction of inliers is > (1+ δ)

(d+1
2

)
/
(n+1

2

)
. Suppose we take a sample of size slightly less than

(n+1
2

)

points from the input, and consider the flattened vectors x⊗ x of these points. As long as we have
more than

(d+1
2

)
inliers, we expect to find linear dependencies among the tensored inlier vectors.

Further, using Theorem 4.1 (with some modifications, as we will discuss), we can show that such
dependencies cannot involve the outliers. This allows us to find sufficiently many inliers, which in
turn allows us to recover the subspace T up to a small error.

Given m points, the algorithm (Algorithm 1) considers several batches of points each of size
b = (1 − δ

3)
(n+ℓ−1

ℓ

)
. Suppose for now that m is a multiple of b, and that the m/b batches form

an arbitrary partition of the m points. (See the note in Section 6.3 for handling the general case.)
In every batch, the algorithm does the following: for each point u in the batch, it attempts to
represent u⊗ℓ as a “small-coefficient” linear combination (defined formally below) of the tensor
products of the other points in the batch. If the error in this representation is small enough, the
point is identified as an inlier.
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Definition 6.2 (c-bounded linear combination). Let v1, v2, . . . , vm be a set of vectors. A vector
u is said to be expressible as a c-bounded linear combination of the {vi} if there exist {αi}mi=1

such that |αi| ≤ c for all i, and u =
∑

i αivi. Further, u is said to be expressible as a c-bounded
combination of the {vi} with error δ if there exist {αi}mi=1 as above with |αi| ≤ c for all i, and
‖u−∑i αivi‖1 ≤ δ.

Notice that in the above definition, the error is measured by ℓ1 norm. In the algorithm, we will
need a subprocedure to check whether a vector is expressible as a 1-bounded combination of some
other vectors with some fixed error. By the choice of ℓ1 norm, this subprocedure can be formulated
as a Linear Programming problem, hence we can solve it efficiently.

Algorithm 1 Robust subspace recovery

1: Set threshold τ = Ωℓ(ρ
ℓ/nℓ)(which is the threshold from Theorem 4.1). Set batchsize b =

(1− δ/3)
(n+ℓ−1

ℓ

)
.

2: Let V1, V2, · · · , Vr be the r ≤ m batches each of size b as defined above.
3: Initialize C = ∅.
4: for i = 1, 2, · · · , r do

5: Let S be the set of all u ∈ Vi such that ã′⊗ℓ
u can be expressed as 1-bounded combinations of

{ã′⊗ℓ
v : v ∈ Vi \ {u}}, with error ≤ τ/2.

6: C = C ∪ S
7: Return the subspace T ′ corresponding to the top d singular values of Ã′

C
, for any 2d-sized

subset C of C

Proof outline. The analysis involves two key steps. The first is to prove that none of the outliers
are included in S in step 5 of the algorithm. This is where we use 1-bounded linear combinations.
If the coefficients were to be unrestricted, then because the error matrix E is arbitrary, it is possible
to have a tensored outlier being expressible as a linear combination of the other tensored vectors in
the batch. The second step is to prove that we find enough inliers overall. On average, we expect
to find at least δ

3

(d+ℓ−1
ℓ

)
inlier columns in each batch. We “collect” these inliers until we get a total

of 2d inliers. Finally, we prove that these can be used to obtain T up to a small error.
For convenience, let us write g(n) := Ωℓ(δn) (which is the exponent in the failure probability

from Theorem 4.1). Thus the failure probabilities can be written as exp(−g(n)).

Lemma 6.3. With probability at least 1 − exp(−g(n) + 2 logm), none of the outliers are chosen.
I.e., C ∩ Iout = ∅.

Proof. The proof relies crucially on the choice of the batch size. Let us fix some batch Vj. Note
that by the way the points are generated, each point in Vj is ãi

′, for some ai that is either an inlier
or an outlier.

Let us first consider only the perturbations (i.e., without the noise addition step). Recall that
we denoted these vectors by ãi. Let us additionally denote by B(j) the matrix whose columns are
ã⊗ℓ
i for all i in the phase j. Consider any i corresponding to an outlier. Now, because the batch

size is only (1 − δ
3)
(n+ℓ−1

ℓ

)
, we have (using Theorem 4.1) that the projection of the column B

(j)
i

orthogonal to the span of the remaining columns (which we denote by B
(j)
−i ) is large enough, with

very high probability. Formally,
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P[dist(B
(j)
i , span(B

(j)
−i )) ≥ τ ] ≥ 1− exp(−g(n)). (15)

Indeed, taking a union bound, we have that the inequality dist(B
(j)
i , span(B

(j)
−i )) ≥ τ holds for

all outliers i (and their corresponding batch j) with probability ≥ 1−m2 exp(−g(n)).
We need to show that moving from the vectors ãi to ã

′
i maintains the distance. For this, the

following simple observation will be useful.

Observation 6.4. If ai is an outlier, then

P[‖ãi‖ ≥ 1 + 2ρ] ≤ exp(−n/2).

On the other hand if ai is an inlier,

P[‖ãi‖ ≥ 1 + 4ρ
√

logm] ≤ exp(−4d logm).

Both the inequalities are simple consequences of the fact that the vectors ai were unit length
to start with, and are perturbed by N (0, ρ2/n) and N (0, ρ2/d) respectively.

Now let us consider the vectors with noise added, ã′i. Note that ‖ãi − ã′i‖ ≤ ε0. Since ‖ai‖ ≤ 1
and since i is an outlier, we have (using Observation 6.4), ‖ã′i‖ ≤ 1 + 2ρ + ε0, with probability
≥ 1− exp(−n/2). Thus for the flattened vectors ã⊗ℓ

i , with the same probability,

‖ã⊗ℓ
i − (ã′i)

⊗ℓ‖ = ‖
(
ã⊗ℓ
i − ã

⊗(ℓ−1)
i ⊗ ã′i

)
+
(
ã
⊗(ℓ−1)
i ⊗ ã′i − ã

⊗(ℓ−2)
i ⊗ ã′⊗2

i

)
+ . . .‖

≤ ℓ(max{‖ãi‖, ‖ã′i‖})ℓ−1ε0

≤ ℓ(1 + 2ρ+ ε0)
ℓε0. (16)

Thus, for any 1-bounded linear combination of the b vectors in the batch (which may contain
both inliers and outliers), ã′⊗ℓ

i is at a Euclidean distance ≤ bℓ(1 + ε0 + 4ρ
√
logm)ℓε0 to the cor-

responding linear combination of the ℓth powers of the vectors in the batch prior to the addition

of noise (i.e., the columns of B
(j)
−i ). Thus if bℓ(1 + ε0 + 4ρ

√
logm)ℓε0 < τ/2, then ã′⊗ℓ

i cannot be
expressed as a 1-bounded combination of the other lifted vectors in the batch with Euclidean error
< τ/2, let alone ℓ1 error.

This means that none of the outliers are added to the set S, with probability at least 1 −
m[exp(−g(n))− exp(−4d logm)].

Next, we turn to proving that sufficiently many inliers are added to S. The following simple
lemma will help us show that restricting to 1-bounded combinations does not hurt us.

Lemma 6.5. Let u1, u2, . . . , ud+c be vectors that all lie in a d-dimensional subspace of Rn. Then
at least c of the ui can be expressed as 1-bounded linear combinations of {uj}j 6=i.

Proof. As the vectors lie in a d-dimensional subspace, there exists a non-zero linear combination
of the vectors that adds up to zero. Suppose

∑
i αiui = 0. Choose the i with the largest value of

|αi|. This ui can clearly be expressed as a 1-bounded linear combination of {uj}j 6=i.
Now, remove the ui from the set of vectors. We are left with d + c − 1 vectors, and we can

use the same argument inductively to show that we can find c − 1 other vectors with the desired
property. This completes the proof.

The next lemma now proves that the set C at the end of the algorithm is large enough.
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Lemma 6.6. For the values of the parameters chosen above, we have that at the end of the algo-
rithm,

|C| ≥ δ/3

1 + δ/3
αm, with probability at least 1− exp(−4d logm).

Proof. We start with the following corollary to Lemma 6.5. Let us consider the jth batch.

Observation. Let nj be the number of inliers in the jth batch. If nj ≥
(
d+ℓ−1

ℓ

)
+ k, then the size of

S found in Step 5 of the algorithm is at least k.

Proof of Observation. Define B(j) as in the proof of Lemma 6.3. Now, since the inliers are all
perturbed within the target subspace, we have that the vectors ã⊗ℓ

i corresponding to the inliers all

live in a space of dimension
(d+ℓ−1

ℓ

)
. Thus by Lemma 6.5, at least k of the vectors B

(j)
i can be

written as 1-bounded linear combinations of the vectors B
(j)
−i .

For inliers i, using the fact that ai are perturbed by N (0, ρ2/d), we have

P[‖ãi‖ ≥ (1 + 4ρ
√

logm)] ≤ exp(−4d logm).

Using (16) again, we have that ã′⊗ℓ
i can be expressed as a 1-bounded linear combination of the other

vectors in the batch, with Euclidean error bounded by bℓ · (1 + 5ρ
√
logm)ℓε0. We know ℓ1 norm

is a
√
nℓ-approximation of ℓ2 norm. By assumption, the ℓ1 norm of the error is < τ/2, thereby

completing the proof of the observation.

Now, note that we have
∑

j nj ≥ αm, by assumption. This implies that

m/b∑

j=1

max

{
0, nj −

(
d+ ℓ− 1

ℓ

)}
≥ αm− m

b

(
d+ ℓ− 1

ℓ

)
≥ δ/3

1 + δ/3
αm.

The last inequality follows from our choice of α and the batch size b. Thus the size of S in the end
satisfies the desired lower bound.

Finally, we prove that using any set of 2d inliers, we can obtain a good enough approximation
of the space T , with high probability (over the choice of the perturbations). The probability will
be high enough that we can take a union bound over all 2d-sized subsets of [m].

Lemma 6.7. Let I ⊆ Iin be any (fixed) set of size 2d. Then if ‖E‖F ≤ poly(ρ/m), the subspace U
corresponding to the top d singular value of Ã′

I will satisfy

‖sinΘ(U, T )‖F ≤ poly(m, 1/ρ) · ‖E‖F

with probability at least 1− e−4d logm.

Proof. We start by considering the matrix ÃI (the matrix without addition of error). This matrix
has rank ≤ d (as all the columns lie in the subspace T ). The first step is to argue that σd(ÃI)
is large enough. This implies that the space of the top d SVD directions is precisely T . Then by
using Wedin’s theorem [Wed72], the top d SVD space U of Ã′

I satisfies

‖sinΘ(U, T )‖F ≤ 2
√
d‖E‖F

σd(ÃI)− ‖E‖F
. (17)
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Hence it suffices to show σd(Ã) is at least inverse-polynomial with high probability.
Recall that ÃI = AI + GI , where GI is a random matrix. Without loss of generality we

can assume that T is spanned by the first d co-ordinate basis; in this case every non-zero entry of

GI is independently sampled from N (0, ρ
2

d ). We can thus regard AI , GI as being d× 2d matrices.
Recall that leave-one-out distance is a good approximation of least singular value, it suffices to show
ℓ((AI +GI)

T ) is at least inverse-polynomial with high probability. Let Aj, Gj denote the jth row
of AI , GI correspondingly. Consider j ∈ [d], fix all other rows except jth. Let W be the subspace
of R

2d that is orthogonal to span({Ak + Gk : k ∈ [d], k 6= j}), and let w1, w2, . . . , wd+1 be an
orthonormal basis for W . Then for any t > 0, if the projection of (Aj +Gj) to W is < t (equivalent
to the leave-one-out distance < t), then for all 1 ≤ i ≤ d + 1, we must have |〈wi, Aj + Gj〉| ≤ t.
Using the anti-concentration of a Gaussian and the orthogonality of the wi, this probability can be
bounded by (t/ρ)d+1. Choosing t = ρ/m4, this can be made < (1/m4)d+1, and thus after taking a
union bound over the m choices of j, we have that the leave-one-out distance is > ρ/m4 (and thus
σd > ρ/m5) with probability ≥ 1− exp(−4d logm)

We can now complete the proof of the theorem.

Proof of Theorem 6.1. Suppose that ‖E‖F ≤ ε0 is small enough. Now by Lemma 6.3, we have that
C ⊆ Iin with probability at least 1− exp(−g(n) + logm. By Lemma 6.6 and our assumption that
m is at least Ω(d/(δα)), we know |C| ≥ 2d with probability 1 − e−4d logm. Finally, by Lemma 6.7
and a union bound over all 2d sized subsets of [m], we have that with probability at least 1 −
exp(−Ω(d logm)), for any subset of inliers with size 2d, the subspace T ′ corresponding to the top-d
singular value will satisfy ‖sinΘ(T, T ′)‖F ≤ ‖E‖F /poly(m).

6.3 Batches when m is not a multiple of b

he case of m not being a multiple of b needs some care because we cannot simply ignore say the
last few points (most of the inliers may be in that portion). But we can handle it as follows: let
m′ be the largest multiple of b that is < m. Clearly m′ > m/2. Now for 1 ≤ j ≤ n, define
Dj = {xj , xj+1, . . . , xj+m′−1} (with the understanding that xn+t = xt). This is a set of m′ points
for every choice of j. Each Dj is a possible input to the algorithm, and it has at least m′ > m/2
points, and additionally the property that b|m′.

At least one of the Dj has ≥ α fraction of its points being inliers (by averaging). Thus the
procedure above (and the guarantees) can be applied to recover the space. To ensure that no outlier
is chosen in step 5 of the algorithm (Lemma 6.3), we take an additional union bound to ensure that
Lemma 6.3 holds for all Dj .

7 Learning Hidden Markov Models

We consider the setup of Hidden Markov Models considered in [AMR09, AHK12]. A hidden state
sequence Z1, Z2, . . . , Zm ∈ [r] forms a stationary Markov chain with transition matrix P and initial
distribution w = {wk}k∈[r], assumed to be the stationary distribution. The observations {Xt}t∈[m]

are vectors in R
n. The observation matrix of the HMM is denoted by O ∈ R

n×r; the columns of
O represent the conditional means of the observation Xt ∈ R

n conditioned on the hidden state
Zt i.e., E[Xt|Zt = i] = Oi, where Oi represents the ith column of O. We also assume that Xt

has a subgaussian distribution about its mean (e.g., Xt is distributed as a multivariate Gaussian
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with mean Oi when the hidden state Zt = i). In the smoothed analysis setting, the model
is generated using a randomly perturbed observation matrix Õ, obtained by adding independent
Gaussian random vectors drawn from N(0, ρ2/n)n to each column of O. We remark that some
prior works [AMR09, SKLV17] consider the more restrictive discrete setting where the observations
are discrete over an alphabet of size n.5 While our smoothed analysis model with small Gaussian
perturbations is natural for the more general continuous setting, it may not be an appropriate
smoothed analysis model for the discrete setting (for example, the perturbed vector Oi could have
negative entries).

Using a trick from [AMR09, AHK12], we will translate the problem into the setting of multi-
view models. Let m = 2ℓ + 1 for some ℓ to be chosen later, and use the hidden state Zℓ+1 as the
latent variable. In what follows, we will abuse notation and also represent the states using the
standard basis vectors e1, e2, . . . , er ∈ R

r: for each j ∈ [r], ℓ ∈ [m], Zℓ = ej ∈ R
r iff the state at

time ℓ is j. Our three views are obtained by looking at the past, present, and future observations:
the first view is Xℓ⊗Xℓ−1 ⊗ . . .⊗X1, the second is Xℓ+1 and the third is Xℓ+2 ⊗Xℓ+3⊗ . . . X2ℓ+1.
We can access these views by viewing the moment tensor X1 ⊗ . . . ⊗X2ℓ+1 as a 3-tensor of shape
nℓ × n× nℓ. The conditional expectations of these three views are given by matrices A, B, and C
of dimensions nℓ × r, n× r, and nℓ × r respectively. Explicitly, these matrices satisfy

E[Xℓ ⊗ . . .⊗X1|Zℓ+1] = AZℓ+1,

E[Xℓ+1|Zℓ+1] = BZℓ+1,

E[Xℓ+2 ⊗ . . .⊗X2ℓ+1|Zℓ+1] = CZℓ+1.

Let P ′ = diag(w)P Tdiag(w)−1, which is the reverse transition matrix Zi → Zi−1, and let X ⊙ Y
denote the Khatri-Rao product of X and Y , given in terms of its columns by (X ⊙ Y )i = Xi ⊗ Yi.
Then we can write down A, B, and C in terms of the transition and observation matrices as follows.
This fact is straightforward to check, so we leave the details to [AMR09].

A = ((. . . (ÕP ′)⊙ Õ)P ′)⊙ Õ) . . . P ′)⊙ Õ)P ′ (18)

B = Õ (19)

C = ((. . . (ÕP )⊙ Õ)P )⊙ Õ) . . . P )⊙ Õ)P, (20)

where Õ and P or P ′ appear ℓ times each in A and C. Our goal is to upper bound the condition
numbers of A and C. Once we do this, we will be able to use a argument similar to that in [BCV14]
to obtain P and Õ up to an inverse polynomial error.

The proof of this theorem will use a simple lemma relating the minimum singular value of a
matrix A to that of a matrix obtained by adding together rows of A.

Lemma 7.1. Let n1, n2, n3 be positive integers with n2 ≥ n3. Let A = (A(i1,i2),j) ∈ R
n1n2×n3

be a matrix, and let B ∈ R
n2×n3 be the matrix whose i2th row is

∑
i1
A[(i1,i2),:]. Then σn3(A) ≥

1√
n1
σn3(B).

Proof. We can write B =MA, where M ∈ R
n2×n1n2 is a matrix whose ith row consists of n1(i−1)

zeros, then n1 ones, then n1(n2− i) zeros. For any v = (vij) ∈ R
n1n2 , applying the Cauchy-Schwarz

5These observations can be represented using the n standard basis vectors for the n alphabets and column Oi

gives the probability distribution conditioned on the current state being i ∈ [r].
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inequality gives

‖Mv‖2 =

n2∑

i=1

(M[i,:] · v)2 =

n2∑

i=1




n1∑

j=1

vij




2

≤ n1‖v‖2.

Therefore σmax(M) ≤ √
n1. Since σmin(B) ≤ σmax(M)σmin(A), we have

σmin(A) ≥
1√
n1
σmin(B).

Theorem 7.2. Let ℓ ∈ Z+ be a constant. Suppose we are given a Hidden Markov Model in the
setting described above, satisfying the following conditions:

1. P ∈ R
r×r is d-sparse, where d < O(min{n/ℓ2, n/r1/ℓ}) and n = Ω(r1/ℓ). In addition, we

assume σmin(P ) ≥ γ1.

2. The columns of O ∈ R
n×r are polynomially bounded (i.e. the lengths are bounded by some

polynomial in n) and are perturbed by independent Gaussian noise N(0, ρ2/n)n to obtain Õ,
with columns {Õi}.

3. The stationary distribution w of P has wi > γ2 for all i ∈ [r].

Then there is an algorithm that recovers P and Õ up to ε error (in the Frobenius norm) with
probability at least 1 − exp(−Ωℓ(n)), using samples of m = 2ℓ + 1 consecutive observations of the
Markov chain. The algorithm runs in time (n/(ργ1γ2ε))

O(ℓ).

Proof. We will show that C is well-conditioned. First note that since the columns of Õ (and
therefore of C) are polynomially bounded, σmax(C) is also bounded by some polynomial in n and
r. Therefore we only need to give a lower bound on σmin(C). Since σmin(P

′) ≥ γ2 · σmin(P ), the

proof for A is identical. We can write C = M(Õ, P ) · F (P ), where M ∈ R
nℓ×R is a matrix whose

columns are order-ℓ tensor products of {Õi} and F (P ) ∈ R
R×r is a matrix of coefficients. We will

show that each of these factors is well-conditioned, which will give us a bound on the condition
number of C.

First we work with M . The columns of M are all of the tensor products of {Õi} that appear
in C. Specifically, if the columns of Õ are {Õi}i∈[r], then the columns of M are all tensor products
of the form

Õi1 ⊗ . . .⊗ Õiℓ , (21)

where Pis,is+1 6= 0 for all s = 1, . . . , ℓ − 1. The key here is that while the noise coming from the
ρ-perturbations of {Oi} is not independent column to column, any column of M has noise that is
highly correlated with only a few other columns.

In order to apply Theorem 2.2, we need to find ∆1, . . . ,∆ℓ. Fix a column Mi of M . For s < ℓ,
we have

∆s(Mi) ≤
(
ℓ

s

)
ds. (22)

To show why, we describe a way of generating all columns of M that differ from Mi in s factors.
First, choose a set S ⊆ [ℓ] with |S| = s, which will specify the places at which the new column
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will differ from Mi. Begin at one place at which the new column will not differ, which is possible
because s < ℓ. Fill in the remaining factors by progressing by step forwards and backwards until
each factor is chosen. Each time a place in S is encountered, we have at most d choices due to the
sparsity of P .

Remark 7.3. Note that not all of these choices may correspond to a path through the state space
of the Markov chain. Thus additional conditions limiting the number of short cycles in the graph
of the Markov chain could lead to smaller upper bounds on {∆s}.

For s = ℓ, we have ∆ℓ(Mi) ≤ R ≤ r · dℓ since all of the ℓ factors are arbitrary as long as they
determine a path in the Markov chain.

Now the condition of Theorem 2.2 becomes

rdℓ +

ℓ−1∑

s=1

(
ℓ

s

)
ds
(n
ℓ

)ℓ−s
≤ c

(n
ℓ

)ℓ
for c ∈ (0, 1), (23)

which holds by the restrictions on d and r. Therefore we conclude that σmin(M) ≥ Ωℓ(1)·(ρ/n)ℓ/
√
R

with probability at least 1− exp(−Ωℓ(n) + logR) ≥ 1− exp(−Ωℓ(n) + log nℓ) = 1− exp(−Ωℓ(n)).
Next, we show that F is well-conditioned. To simplify notation, we write as if R = rℓ (in which

case M would have many unused columns and F would have many zero rows and columns). Index
the rows of F by a tuple (i1, . . . , iℓ). We have

F(i1,...,iℓ),j = Pji1Pi1i2 · · ·Piℓ−1iℓ . (24)

In other words, the coefficient of Õi1 ⊗ . . .⊗Õiℓ in column j of C is the probability, given that you
begin at state j, of traveling through states i1, . . . , iℓ.

We want to give a lower bound for the least singular value of F . Lemma 7.1 shows that it is
enough to bound the least singular value of a matrix obtained by adding together rows of F . Using
this idea, we sum over all rows with the same iℓ to obtain a matrix F ′ ∈ R

r×r with entries

F ′
i,j =

∑

i1,...,iℓ−1

Pji1Pi1i2 · · ·Piℓ−1i. (25)

Thus we have F ′ = (P ℓ)T , which has σmin(F
′) ≥ γℓ1. Therefore Lemma 7.1 gives σmin(F ) ≥ γℓ1/r

ℓ/2.
These two results show that

σmin(C) ≥ Ωℓ(1) · (ργ1)ℓ/(n
√
rd)ℓr1/2 ≥ Ωℓ(1) ·

(
ργ1√
n3r

)ℓ

with probability at least 1− exp(−Ωℓ(n)).
As mentioned above, we also get σmin(A) ≥ Ωℓ(1) ·(ργ1γ2/

√
n3r)ℓ with the same probability. In

order to recover P and Õ, we use an algorithm similar to Algorithm 1 from Sharan et al. [SKLV17].
First, we can estimate the moment tensor X1⊗ . . .⊗X2ℓ+1 to sufficient accuracy using polyℓ(n, 1/ε)
many samples since each observation vector has a conditional distribution which is subgaussian.
This follows from standard large deviation bounds, for example see Lemma C.1 in [BCV14]. Next,
we can obtain A, B, and C up to an error δ = poly(ε, n, ρ) using a tensor decomposition algorithm
such as in [BCMV14]. Since B = Õ, it only remains to find P . To do this, we use a similar trick to
[AMR09]. We will use the fact that C and P are both well-conditioned. First, let D = (C ⊙ Õ)P .
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Note that we can obtain D by following the entire procedure again but increasing ℓ by one. Since we
already have Õ up to a small error, we can also find C⊙Õ. Now σmin(C⊙Õ) ≥ σmin(D)/σmax(P ),
and σmax(P ) ≤ √

r. Therefore we can recover P from D and C ⊙ Õ up to the required inverse
polynomial error.

8 Higher Order Tensor Decompositions

In this section, we describe an algorithm to decompose 2ℓ’th order tensors of rank up to nℓ. Let
us start by recalling the problem: suppose A1, . . . , AR are vectors in R

n. Consider the 2ℓ’th order
moment tensor

M2ℓ =

R∑

i=1

A⊗2ℓ
i .

The tensor decomposition problem asks to find the vectors Ai to a desired precision (up to a
re-ordering), given only the tensor M2ℓ. The question of robust recovery asks to find the vectors
Ai to a desired precision given access to a noisy version of M2ℓ, specifically, given only the tensor
T = M2ℓ + Err. The aim is to show that recovery is possible, assuming that ‖Err‖ is bounded by
some polynomial in n and the desired precision for recovering the Ai. We give an algorithm for
robust recovery, under certain condition number assumptions on the Ai. Then using the methods
developed earlier in the paper, we show that these assumptions hold in a smoothed analysis model.

8.1 Robust decomposition assuming non-degeneracy

We will now consider a generalization of the algorithm of Cardoso [Car91], and prove robust re-
covery guarantees under certain non-degeneracy assumptions. As stated in the introduction, our
contribution is along two directions: the first is to extend the algorithms of [Car91] and [dlVKKV05]
to the case of 2ℓ’th order tensors. Second (and more importantly), we give a robustness analysis.

We now define an operator, and then a matrix whose condition number is important for our
argument. Given ℓ’th order tensorsX,Y , we define the operator Φ as Φ(X,Y ) = Ψ(X,Y )+Ψ(Y,X),
where Ψ : Rℓ × R

ℓ 7→ R
2ℓ is defined by:

Ψ(X,Y )(i1, i2, . . . , iℓ, j1, j2, . . . , jℓ) = Xi1...iℓ−1iℓYj1...jℓ−1jℓ −Xi1...iℓ−1jℓYj1...jℓ−1iℓ (26)

One of the nice properties of Φ above is that Φ(X,X) = 0 for a symmetric tensor6 X iff X = u⊗ℓ,
for some u ∈ R

n (and for this reason, [Car91] who introduced such an operator for ℓ = 2 and
subsequent works refer to this as a rank-1 “detector”). The algorithm and its analysis only use the
easy direction of the above statement, namely Φ(u⊗ℓ,u⊗ℓ) = 0 for any u ∈ R

n, and thus we do not
prove the property above.

The following matrix plays a crucial role in the analysis: consider the
(R
2

)
vectors of the form

Φ(A⊗ℓ
i , A⊗ℓ

j ), for i < j. Let MΦ be the matrix with all of these vectors as columns. Thus MΦ is of

dimensions n2ℓ ×
(R
2

)
.

6An ℓ’th order tensor T is said to be symmetric if Ti1i2...iℓ = Tπ(i1)π(i2)...π(iℓ) for any permutation π.
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Relevant condition numbers. Our robustness analysis will depend on (a) the condition number
of the matrix U := A⊙ℓ, which we will denote by κU , and (b) the condition number of the matrix
MΦ described above, which we will denote by κM . For convenience, let us also define ui = A⊗ℓ

i ,
flattened. From the definition of U above, we also have M2ℓ equal to UU

T , when matricized.
The following is our main result of the section.

Theorem 8.1. Given the tensor T =M2ℓ + Err, an accuracy parameter ε, and the guarantee that
‖Err‖F ≤ εc/(κUκM )c

′
for some constants c, c′, there is an algorithm that outputs, with failure

probability 1− γ, a set of vectors {Bi}Ri=1 such that

min
π

∑

i

‖Ai −Bπ(i)‖ ≤ ε.

Furthermore, this algorithm runs in time poly(nℓ, κU , κM , log(1/γ)).

Remark. We note that the above statement does not explicitly require a bound on the rank
R. However, the finiteness of the condition numbers κU and κM implies that R ≤ nℓ/2. Our
theorem 8.13 shows that when R ≤ nℓ/2, the condition numbers are both polynomial in n in a
smoothed analysis model. Also, we do not explicitly compute c, c′. From following the proof näıvely,
we get them to be around 8, but they can likely be improved.

8.1.1 Outline of the proof and techniques

We will start (section 8.1.2) by presenting the FOOBI procedure for arbitrary ℓ. The algorithm
proceeds by considering the top eigenvectors of the matricized version of M2ℓ, and tries to find
product vectors (i.e. vectors of the form x⊗ℓ) in their span. This is done via writing a linear system
involving the basis vectors.

In section 8.1.3, we show that the entire procedure can be carried out even if M2ℓ is only known
up to a small error. The technical difficulty in the proof arises for the following reason: while a
small perturbation in M2ℓ does not affect the top-R SVD of the (matricized) M2ℓ, if we have no
guarantees on the gaps between the top R eigenvalues, the eigenvectors of the perturbed matrix can
be quite different from those of M2ℓ. Now the FOOBI procedure performs non-trivial operations
on these eigenvectors when setting up the linear system we mentioned in the previous paragraph.
Showing that the solutions are close despite the systems being different is thus a technical issue we
need to overcome.

8.1.2 Warm-up: the case of Err = 0

Let us start by describing the algorithm in the zero error case. This case illustrates the main ideas
behind the algorithm and generalizes the FOOBI procedure to arbitrary ℓ.

The algorithm starts by computing the SVD of the matricized M2ℓ (i.e., UU
T ). Thus we obtain

matrices E and Λ such that UUT = EΛET . Let H denote the matrix EΛ1/2. Then we have
HHT = UUT , and thus there exists an orthogonal R × R matrix Q such that U = HQ. Thus,
finding U now reduces to finding the orthogonal matrix Q.

This is done using in a clever manner using the rank-1 detecting device Φ. Intuitively, if we
wish to find one of the columns of U , we may hope to find a linear combination

∑
j αjHj of the

{Hj} such that Φ(
∑

j αjHj ,
∑

j αjHj) = 0. Each column of Q would provide a candidate solution
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α. However, this is a quadratic system of equations in αi, and it is not clear how to solve the
system directly.

The main idea in [Car91] is to find an alternate way of computing Q. The first observation
is that Φ is bi-linear (i.e., linear in its arguments X,Y ). Thus, we have Φ(

∑
j αjHj,

∑
j αjHj) =∑

i,j∈[R] αiαjΦ(Hi,Hj). Now, consider the linear system of equations

∑

i,j∈[R]

WijΦ(Hi,Hj) = 0. (27)

This is a system of n2ℓ equations in R2 variables. The reasoning above shows that for every
column Qi of Q, we have thatW = QiQ

T
i is a solution to (27). Because of linearity, this means that

for any diagonal matrix D, QDQT is a solution to the linear system as well. The main observation
of [Car91] is now that any symmetric solution W (i.e. one that satisfies Wij =Wji) is of this form!
Thus, the matrix Q can be computed by simply finding a “typical” symmetric solution W and
computing its eigen-decomposition. Let us now formalize the above.

Lemma 8.2. [Car91] The space of symmetric solutions to the system of equations (27) has dimen-
sion precisely R, and any solution is of the form W = QDQT , for some diagonal matrix D.

Proof. Consider any symmetric solution W . Because of bi-linearity, using the fact that HQ = U ,
or H = UQT , we have that Hi =

∑
s Us(Q

T )si =
∑

s UsQis. Thus for any i, j,

Φ(Hi,Hj) =
∑

s,t

QisQjt · Φ(Us, Ut).

Thus,

∑

i,j

WijΦ(Hi,Hj) =
∑

s,t

Φ(Us, Ut) ·


∑

i,j

WijQisQjt


 =

∑

s,t

Φ(Us, Ut)〈W,QsQ
T
t 〉. (28)

Since κM <∞, we have that {Φ(Us, Ut) : s < t} is linearly independent. Now, since Φ(Us, Ut) =
Φ(Ut, Us), and since Φ(Us, Ut) 6= 0 for all s 6= t (the latter is a simple computation, using the fact
that As 6= At), we must have that

for all s 6= t, 〈W,QsQ
T
t 〉 = 0.

Now, since Q is an orthogonal matrix, we have that {QsQ
T
t }s,t∈[R] forms an orthonormal basis

for all R×R matrices. The above equality thus means thatW lies only in the span of {QsQ
T
s }s∈[R].

This implies that W = QDQT , for some diagonal matrix D.
Plugging back into (28), we see that any W of this form satisfies the equation. As the QsQ

T
s

are all orthogonal, we have found a solution space of dimension precisely R.

To handle the robust case, we also need a slight extension of the lemma above. Let HΦ denote
a matrix that has R(R + 1)/2 columns, described as follows. The columns correspond to pairs
i, j ∈ [R], for i ≤ j. For i = j, the corresponding column is Φ(Hi,Hi) and for i < j, the
corresponding column is

√
2 · Φ(Hi,Hj). We note that the null space of HΦ can be mapped in

a one-one manner to symmetric R × R matrices W . For any z = (zij)i≤j , define the symmetric
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R × R matrix ψ(z) to have ψ(z)ii = zii and ψ(z)ij = ψ(z)ji =
zij√
2
. The point of this definition is

that 〈z, z′〉 = 〈ψ(z), ψ(z′)〉. Note that ψ−1 is well-defined, and that it takes symmetric matrices to
R(R+ 1)/2-dimensional vectors (and preserves dot-products).

Further, we have

HΦz =
∑

i

Φ(Hi,Hi)zii +
∑

i<j

√
2 · Φ(Hi,Hj)zij

=
∑

i

Φ(Hi,Hi)zii +
∑

i<j

2Φ(Hi,Hj)ψ(z)ij

=
∑

i,j

Φ(Hi,Hj)ψ(z)ij . (29)

Using this correspondence, Lemma 8.2 implies that HΦ has a null space of dimension precisely R
(corresponding to the span of ψ−1(QsQ

T
s ), for s ∈ [R]). We now claim something slightly stronger.

Lemma 8.3. Let λ denote the (R+1)th smallest singular value of HΦ. We have that λ ≥ σmin(MΦ).
Recall that MΦ was defined to be the matrix with columns Φ(A⊗ℓ

i , A⊗ℓ
j ), for i < j.

Proof. Consider any z orthogonal to span{ψ−1(QsQ
T
s ) : s ∈ [R]}. Then, ψ(z) is orthogonal to

QsQ
T
s for all s, as ψ preserves dot-products. Thus, using our earlier observation that {QsQ

T
t }

forms an orthonormal basis for all R×R matrices, we can write

ψ(z) =
∑

s 6=t

αstQsQ
T
t .

Since ψ(z) is symmetric, we also have αst = αts. Now, using the expansion (28) with Wij =
ψ(z)ij , we have

∑

i,j

ψ(z)ijΦ(Hi,Hj) =
∑

s,t

αstΦ(Us, Ut) = 2
∑

s<t

αstΦ(Us, Ut).

Combining this with (29), and the definition of the smallest singular value, we obtain

‖HΦz‖2F ≥ 4

(
∑

s<t

α2
st

)
σmin(MΦ)

2.

Finally, since ‖z‖2 = ‖ψ(z)‖2F = 2
∑

s<t α
2
st, the desired conclusion follows (indeed with a slack

of a factor
√
2).

The following theorem then gives the algorithm to recover Q, in the case Err = 0.

Theorem 8.4. Let S be the subspace (of RR×R) of all symmetric solutions to the system of equa-
tions

∑
ijWijΦ(Hi,Hj) = 0. Let Z be a uniformly random Gaussian vector in this subspace of unit

variance in each direction. Then with probability at least 9/10, we have that

Z =
∑

i

αiQiQ
T
i , where min

i 6=j
|αi − αj| ≥

1

20R2
.

Thus the SVD of Z efficiently recovers the Qi, with probability ≥ 9/10.
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Proof. From the lemmas above, we have that the space S is precisely the span of QsQ
T
s , for s ∈ [R].

These are all orthogonal vectors. Thus a random Gaussian vector in this space with unit variance
in each direction is of the form

∑
i αiQiQ

T
i , where the αi are independent and distributed as the

univariate Gaussian N (0, 1).
Now, for any i, j, we have that αi − αj is distributed as N (0, 2), and thus

P

[
|αi − αj | ≤

1

20R2

]
≤ 1

20R2
.

Taking a union bound over all pairs i, j now gives the result.

This completes the algorithm for the case Err = 0. Let us now see how to extend this analysis
to the case in which Err 6= 0.

8.1.3 A robust analysis

We will now prove an approximate recovery bound by following the above analysis, when Err is
non-zero (but still small enough, as in the statement of Theorem 8.1). As is common in such
analyses, we will use the classic Davis-Kahan Sin-θ theorem. We start by recalling the theorem.
To do so, we need some notation.

Suppose V1 and V2 are two n × d matrices with orthonormal columns. Then the matrix of
principal angles between the column spans of V1 and V2 is denoted by Θ(V1, V2), and is defined to
be the diagonal matrix whose entries are arccos(λi), where λi are the singular values of V T

1 V2.

Theorem 8.5 (Sin-θ theorem, [DK70]). Let Σ and Σ′ ∈ R
n×n be symmetric, with eigenvalues

λ1 ≥ λ2 ≥ . . . λn and λ′1 ≥ λ′2 ≥ · · · ≥ λ′n. Let 1 ≤ r ≤ s ≤ n, and let d = s − r + 1. Let V
be a matrix with columns being the eigenvectors corresponding to λr . . . λs in Σ, and suppose V ′ is
similarly defined. Let

δ := inf{|λ′ − λ| : λ ∈ [λs, λr], λ
′ ∈ (−∞, λ′s+1] ∪ [λ′r−1,∞)},

which we assume is > 0. Then we have

‖sinΘ(V, V ′)‖F ≤ ‖Σ− Σ′‖F
δ

.

Furthermore, there exists an orthogonal matrix O′ such that

‖V − V ′O′‖F ≤
√
2‖Σ− Σ′‖F

δ
. (30)

We note that the precise statement above is from [YWS15]. Our proof will follow the outline of
the Err = 0 case. The first step is to symmetrize the matricized version of T , so that we can take
the SVD. We have the following simple observation.

Lemma 8.6. Let A ∈ R
n×n, and define A′ = (A + AT )/2. Let B ∈ R

n be symmetric. Then
‖A′ −B‖F ≤ ‖A−B‖F .

Proof. The lemma follows from observing that A′ is the projection of A onto the linear space of
symmetric n× n matrices, together with the fact that projections to convex sets only reduces the
distance.
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Let T ′ be the symmetric version of the matricized version of T . Then we have ‖T ′ −UUT ‖F ≤
‖Err‖F . Likewise, let T̂ be the projection of T ′ onto the PSD cone (we obtain T̂ by computing the
SVD and zero’ing out all the negative eigenvalues). By the same reasoning, we have ‖T̂ −UUT‖F ≤
‖Err‖F . For convenience, in what follows, we denote ‖Err‖F by η.

Next, we need a simple lemma that relates the error in a square root to the error in a matrix.

Lemma 8.7. Let Z and H be n× d matrices with d ≤ n, and suppose ‖ZZT −HHT ‖ ≤ δ. Then
there exists an orthogonal matrix Q such that

‖ZQ−H‖F ≤ (dδ)1/2 +
2δdσ1(H)

σd(H)2
.

Proof. Let ZZT = M1Σ1N
T
1 , and let HHT = M2Σ2N

T
2 , where Mi, Ni are n × d matrices with

orthonormal columns. Now, the theory of operator-monotone functions acting on PSD matrices
(see e.g. [Bha97], Theorem X.1.1) implies that

‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 NT

2 ‖F ≤ δ1/2.

Now we may apply the Sin-θ theorem (with r = 1 and s = d in the statement above) to

conclude that there exists an orthogonal matrix Q1 such that ‖N1Q1 − N2‖F ≤
√
2 δ

σd(H)2
. Thus,

writing N2 = N1Q1 +∆, the LHS above becomes

‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 QT

1N
T
1 −M2Σ

1/2
2 ∆T ‖F .

Now, we have ‖M2Σ
1/2
2 ∆T ‖F ≤ ‖M2Σ

1/2
2 ‖F ‖∆‖F . The first term is simply (tr(Σ2))

1/2 ≤
d1/2σ1(H). Using this, we obtain

‖(M1Σ
1/2
1 −M2Σ

1/2
2 QT

1 )N
T
1 ‖F

= ‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 NT

2 +M2Σ
1/2
2 ∆T ‖F

≤ δ1/2 +
2δd1/2σ1(H)

σd(H)2
.

We can now appeal to the simple fact that for a matrix X, for any N2 with orthonormal columns,
we have ‖X‖F = ‖XNT

2 N2‖ ≤ ‖XNT
2 ‖F d1/2. This gives us

‖M1Σ
1/2
1 −M2Σ

1/2
2 QT

1 ‖F ≤ (dδ)1/2 +
2δdσ1(H)

σd(H)2
.

Thus, since Z = M1Σ
1/2
1 Q′ for an orthogonal matrix Q′ and likewise for H, and because the

product of orthogonal matrices is orthogonal, we have the desired result.

In what follows, to simplify the notation, we introduce the following definition.

Definition 8.8 (Poly-bounded function). We say that a function f of a parameter η is poly-bounded
if f(η) is of the form ηc · poly(n,R, κU , κM ), where c > 0 is a constant.

Intuitively speaking, by choosing η to be “polynomially small” in n,R and the condition numbers
κU , κM , we can make f(η) arbitrarily small.

Now, the lemma above gives the following as a corollary.
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Corollary 8.9. Let ÊΛ̂ÊT be the rank-R SVD of T̂ , and let UUT = EΛET be the SVD as
before. Define Ĥ = ÊΛ̂1/2 and H = EΛ1/2. Then there exists an orthogonal matrix P such that
‖ĤP −H‖F ≤ f1(η) for some poly-bounded function f1.

Proof. The desired conclusion follows from Lemma 8.7 if we show that ‖ÊΛ̂ÊT − EΛET ‖ ≤ 2η.
This follows from the fact that ‖T̂ − ÊΛ̂ÊT ‖ ≤ η (which is true because the SVD gives the closest
rank-k matrix to T̂ — and UUT is at distance at most η), together with the triangle inequality.

Informally speaking, we have shown that ĤP ≈η H, for an orthogonal matrix P . We wish to
now use our machinery from Section 8.1.2 to find the matrix U , which will then allow us to obtain
the vectors in the decomposition.

Let us define H ′ = HP T , where P is as above. Thus we have H = H ′P (and thus H ′ ≈η Ĥ,
informally). Further, if Q is the orthogonal matrix such that U = HQ (as in Section 8.1.2), we
have U = H ′PQ.

Outline of the remainder. We first sketch the rest of the argument. The key idea is the
following: suppose we run the whole analysis in Section 8.1.2 using the matrices H ′ and PQ
instead of H and Q, we obtain that the set of symmetric solutions to the system of equations∑

i,j∈[R]WijΦ(H
′
i,H

′
j) is precisely the span of the matrices (PQ)s(PQ)Ts . Thus, a random matrix

in the space of symmetric solutions can be diagonalized to obtain (PQ)s. Using U = H ′(PQ), one
can reconstruct U . Now, we have access to Ĥ and not H ′. However, we can relate the space of
symmetric approximate solutions to the perturbed system to the original one in a clean way. Taking
a random matrix in this space, and utilizing the “gap” in Theorem 8.4, we obtain the matrix PQ
approximately. This is then used to find Û that approximates U , completing the argument.

Lemma 8.10. For any i, j ∈ [R], we have

‖Φ(H ′
i,H

′
j)− Φ(Ĥi, Ĥj)‖ ≤ O

(
‖H ′

i − Ĥi‖‖H ′
j‖+ ‖H ′

j − Ĥj‖‖Ĥi‖
)
.

Proof.

‖Φ(H ′
i,H

′
j)− Φ(Ĥi, Ĥj)‖ ≤ ‖Φ(H ′

i,H
′
j)−Φ(Ĥi,H

′
j)‖+ ‖Φ(Ĥi,H

′
j)− Φ(Ĥi, Ĥj)‖.

The first term can be bounded by 2‖H ′
j‖‖H ′

i − Ĥi‖, and so also the second term is bounded by

2‖Ĥi‖‖H ′
i − Ĥi‖, which implies the lemma.

Next, as in Section 8.1.2, define the R(R+1)/2 dimensional matrices ĤΦ and H ′
Φ. Specifically,

these matrices have columns corresponding to pairs 1 ≤ i ≤ j ≤ R, and for i = j, the corresponding
column of H ′

Φ is Φ(H ′
i,H

′
i) and for i 6= j, the column is

√
2 · Φ(H ′

i,H
′
j). A simple corollary of the

lemma above is that

‖ĤΦ −H ′
Φ‖F ≤ O

(
‖Ĥ −H ′‖F · (‖Ĥ‖F + ‖H ′‖F )

)
= f2(η), (31)

for some poly-bounded function f2. This follows from the lemma and corollary above, together
with an application of the Cauchy-Schwarz inequality. Next, we show the following.

Lemma 8.11. For 1 ≤ r ≤ R, we have σr(ĤΦ) ≤ f2(η). Also, we have σR+1(ĤΦ) ≥ σmin(MΦ)−
f2(η).
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Proof. The main idea, as mentioned in the outline, is to apply Lemma 8.3 to H ′. If λ′ denotes
the (R+ 1)th smallest singular value of H ′

Φ, then this lemma implies that H ′
Φ has R zero singular

values and λ′ ≥ σmin(MΦ). Weyl’s inequality7 now immediately implies the lemma.

From now on, suppose that η is chosen small enough that f2(η) <
σmin(MΦ)

2 . Next, let us define

the spaces S′ and Ŝ as in Theorem 8.4: let S′ be the space of all symmetric solutions to the linear
system ∑

i,j

WijΦ(H
′
i,H

′
j) = 0.

Likewise, let Ŝ be the space of symmetric matrices ψ(z) (see Section 8.1.2 for the definition of ψ),
where z is in the span of the R smallest singular values of ĤΦ. The analog of Theorem 8.4 is the
following.

Theorem 8.12. Let Z be a uniformly random Gaussian vector in Ŝ, and suppose that Z = GΣGT

is the SVD of Z. Then with probability ≥ 9/10, we have ‖G−PQ‖F ≤ f3(η), for some poly-bounded
function f3.

Proof. The first step is to show that the spaces S′ and Ŝ are close. This is done via the Sin-θ
theorem, applied to the matrices (H ′

Φ)
TH ′

Φ and ĤT
ΦĤΦ. Let T

′ and T̂ be the spans of the smallest
R singular vectors of the two matrices. By Theorem 8.5 and the bounds on σR+1, we have that
there exist orthonormal bases Υ and Υ̂ for these spaces such that for some orthonormal matrix Q′,

‖ΥQ′ − Υ̂‖F ≤ ‖(H ′
Φ)

TH ′
Φ − ĤT

ΦĤΦ‖F
σmin(MΦ)2

.

Now, appealing to the simple fact that for any two matrices X,Y , ‖XTX−Y TY ‖F ≤ ‖XT (X−
Y ) + (XT − Y T )Y ‖F ≤ ‖X − Y ‖F (‖X‖F + ‖Y ‖F ), we can bound the quantity above by f4(η) for
some poly-bounded function f4.

We can now obtain bases for Ŝ and S′ by simply applying ψ to the columns of the matrices
Υ̂ and Υ respectively. Let us abuse notation slightly and call these bases Ŝ and S′ as well. By
properties of ψ, we have that

‖S′Q′ − Ŝ‖F ≤ ‖ΥQ′ − Υ̂‖F ≤ f4(η). (32)

Next, note that a random unit Gaussian vector in the space Ŝ can be viewed as first picking
v ∈ N (0, 1)R and taking Ŝv. Now, using Theorem 8.4 if we consider the matrix S′v (which is a
random Gaussian vector in the space S′), with probability at least 9/10, we have an eigenvalue gap
of at least 1

20R2 . Thus, using this and (32), together with the Sin-θ theorem (used this time with
precisely one eigenvector, and thus the rotation matrix disappears), we have that ‖Gi − (PQ)i‖ ≤
20R2f4(η). Summing over all i (after taking the square), the theorem follows.

We can now complete the proof of the main theorem of this section.

7Recall that the inequality bounds the change in eigenvalues due to a perturbation of a matrix by the spectral
norm (and hence also the Frobenius norm) of the perturbation.
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Proof of Theorem 8.1. Theorem 8.12 shows that the matrix G gives a good approximation to the
rotation matrix (PQ) with probability 9/10. (Since this probability is over the randomness in the
algorithm, we can achieve a probability of 1 − γ by running the algorithm O(log 1/γ) times.) We
now show that ĤG ≈ H ′PQ:

‖ĤG−H ′PQ‖F ≤ ‖Ĥ(G− PQ) + (Ĥ −H ′)PQ‖F ≤ f5(η). (33)

Note now that H ′PQ is precisely U ! Thus the matrix Û := ĤG (which we can compute as
discussed above) is an approximation up to an error f5(η). Finally, to obtain a column Ui of U , we
reshape Û into an n × nℓ−1 matrix, apply an SVD, and output the top left-singular-vector. This
yields an error f6(η), for some poly-bounded function of η.

8.2 Smoothed analysis

Finally, we show that Theorem 8.1 can be used with our earlier results to show the following.

Theorem 8.13. Suppose T =
∑

i∈[R] Ã
⊗2ℓ
i + E, where {Ai} have polynomially bounded length.

Given an accuracy parameter ε and any 0 < δ < 1/ℓ2, with probability at least 1 − exp(−Ωℓ(n))
over the perturbation in Ã, there is an efficient algorithm that outputs a set of vectors {Bi}Ri=1 such
that

min
π

∑

i

‖Ãi −Bπ(i)‖ ≤ ε,

as long as R ≤ δnℓ, and ‖E‖F ≤ poly(1/n, ρ, ε), for an appropriate polynomial in the arguments.

The proof of this theorem goes via the robust decomposition algorithm presented in Theo-
rem 8.1. In order to use the theorem, we need to bound the two condition numbers κU and
κM . Since the columns of A are polynomially bounded, the columns of U and MΦ are as well,
so σmax(U), σmax(MΦ) are bounded by some polynomial in n. Therefore we only need to give
lower bounds on σmin(U) and σmin(MΦ). We now use Theorem 2.2 to prove that these quantities
are both polynomially bounded with high probability in a smoothed analysis setting. This would
complete the proof of Theorem 8.13.

Lemma 8.14. Let U = Ã⊙ℓ, and MΦ be the matrix whose columns are indexed by pairs i, j ≤
R, and whose {i, j}’th column is Φ(Ã⊗ℓ

i , Ã⊗ℓ
j ). Then for R ≤ nℓ/ℓ2, with probability at least

1− exp(−Ωℓ(n)), we have both σR(U) and σR(R−1)/2(MΦ) to be ≥ poly(1/n, ρ).

Proof. The desired inequality for the matrix U was already shown in earlier sections. Let us thus
consider MΦ. We can write the {i, j}’th column as

(MΦ)i,j = (ã⊗ℓ
i ⊗ ã⊗ℓ

j )− (ã
⊗(ℓ−1)
i ⊗ ãj ⊗ ã

⊗(ℓ−1)
j ⊗ ãi) + (ã⊗ℓ

j ⊗ ã⊗ℓ
i )− (ã

⊗(ℓ−1)
j ⊗ ãi ⊗ ã

⊗(ℓ−1)
i ⊗ ãj).

We will show a stronger statement, namely that a matrix with four different columns (corre-
sponding to each term above) for each pair {i, j} has σmin ≥ poly(1/n, ρ). In this matrix, which
we call M ′

Φ, we have two columns for every (ordered) pair (i, j). The first column is ã⊗ℓ
i ⊗ ã⊗ℓ

j and

the second is ã
⊗(ℓ−1)
i ⊗ ãj ⊗ ã

⊗(ℓ−1)
j ⊗ ãi.
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For any of the columns, we thus have

∆2 = 1 (same i, j, different terms)

∆ℓ = R− 1 (same i, different j)

∆ℓ+1 = R− 1 (same i, different j, different terms)

∆2ℓ−2 = 1 (i and j swapped, different terms)

∆2ℓ−1 = R− 1 (same i, different j, different terms)

∆2ℓ = R2.

The rest of the ∆ values are zero. Thus, we observe that we can apply Theorem 5.2 (with
c = Ω(1)), as the dominant terms are the ones corresponding to ∆2,∆ℓ,∆2ℓ. This completes the
proof.

Appendix

A Lemma A.1

Lemma A.1. Let X,Y be two independent real random variables, for all a, b ∈ R such that P[X +
Y ≤ b] > 0, we have

P[X ≤ a] ≤ P[X ≤ a|X + Y ≤ b]

Proof. WLOG, assume P[X ≤ a] > 0,P[X > a] > 0, then we have

P[X + Y ≤ b|X ≤ a] ≥ P[Y ≤ b− a|X ≤ a] = P[Y ≤ b− a]

= P[Y ≤ b− a|X > a] ≥ P[X + Y ≤ b|X > a]

Hence P[X + Y ≤ b|X ≤ a] ≥ P[X + Y ≤ b] , then

P[X ≤ a|X + Y ≤ b] =
P[X ≤ a]P[X + Y ≤ b|X ≤ a]

P[X + Y ≤ b]
≥ P[X ≤ a]

B Proof of Theorem 4.2

The proof of Theorem 4.2 is almost identical to Theorem 4.1.

Proof of Theorem 4.2. By Proposition 4.5, it suffices to show that

P[‖ĝ(u+ z0, z1, · · · , zℓ−1)‖2 < c(ℓ)εη · ρ
ℓ

nℓ
] < εc

′(ℓ)δn

where z0 ∼ N(0, ρ2(ℓ+1)/(2nℓ))n and z1, z2, · · · , zℓ−1 ∼ N(0, ρ2/(2nℓ)), c(ℓ), c′(ℓ) > 0 are constants
depending only on ℓ. Let W be the span of the top δnℓ right singular vectors of M . Observe that

‖ĝ(u+ z0, z1, · · · , zℓ−1)‖2 = ‖M(u+ z0)⊗ z1 ⊗ · · · ⊗ zℓ−1‖2 ≥ η‖ΠW (u+ z0)⊗ z1 ⊗ · · · ⊗ zℓ−1‖2.
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The theorem then follows by applying Lemma 3.3 with x1 = u, x2 = x3 = · · · = xℓ = 0 and
p = ε1/ℓ.

C Combinatorial Proof of Theorem 4.1 and Theorem 4.2 for ℓ = 2.

We now give a self-contained combinatorial proof of Theorem 4.1 for ℓ = 2, that uses decoupling
and Lemma 3.3. Let D′ be the dimension of the subspace W , and let M1,M2, . . . ,MD′ be a basis
forW . Let z ∼ N(0, ρ2)n and z1, z2, . . . , zr ∼ N(0, ρ2/r)n be independent Gaussian random vectors
for r = O(

√
n). Note that x+ z1 ± z2 ± z3 ± · · · ± zr are all identically distributed as x̃.

Consider the following process for generating x̃ = x + z. We first generate z1, z2, . . . , zr and
random signs ζ = (ζ2, ζ3, . . . , ζr) ∈ {±1}r−1 all independently, and return z = z1 +

∑r
i=2 ζ2z2. It is

easy to see that z ∼ N(0, ρ2). We will now prove that at most one of the 2r−1 signed combinations
z1 ± z2 ± · · · ± zr has a non-negligible projection onto W .

Consider any fixed pair ζ, ζ ′ ∈ {±1}r−1, and let u = z1+
∑r

i=2 ζizi and u
′ = z1+

∑r
i=2 ζ

′
izi. We

will use the basic decoupling Lemma 4.7 to show w.h.p. at least one of ‖ΠWu
⊗2‖2 or ‖ΠW (u′)⊗2‖2

is non-negligible. Using decoupling (with ℓ = 2) in Lemma 4.7 we have for each j ∈ [D′]

〈
Mj , (x+ u)⊗2

〉
−
〈
Mj , (x+ u′)⊗2

〉
= 4

〈
Mj , (x+ u+ u′)⊗ (u− u′)

〉

= 4 〈Mj , (x+ v1)⊗ v2〉 , (34)

where v1 = z1 +
∑

2≤i≤r:ζi=ζ′i

ζizi, v2 =
∑

2≤i≤r:ζi 6=ζ′i

ζizi. (35)

Also from Lemma 3.3, we have that the above decoupled product (x+v1)⊗v2 has a non-negligible
projection onto W ; hence with probability at least 1− exp

(
− Ω(δn)

)
,

‖ΠW (x+ v1)⊗ v2‖22 =
D′∑

j=1

〈Mj , (x+ v1)⊗ v2〉2 ≥
Ω(ρ4)

r2n4

i.e., ∃j∗ ∈ [D′] s.t. |〈Mj∗, (x+ v1)⊗ v2〉| ≥
Ω(ρ2)

rn3
.

Applying (35) with the above inequality for j∗,

|
〈
Mj∗ , (x+ u)⊗2

〉
−
〈
Mj∗ , (x+ u′)⊗2

〉
| ≥ Ω(ρ2)

rn3
.

Hence, ‖ΠW (x+ u)⊗2‖2 + ‖ΠW (x+ u′)⊗2‖2 ≥ Ω
( ρ2
rn3

)
, (36)

with probability at least 1− exp(−Ω(δn))
Since r = c1δn (for a sufficiently small constant c1 > 0), we can apply (36) for each of the 22r−1

pairs of ζ, ζ ′ ∈ {±1}r−1, and union bound over them to conclude that with probability at least
1− exp(−Ω(δn))

∀ζ 6= ζ ′ ∈ {±1}r−1, max
{∣∣〈Mj , (x+ z1 +

r∑

i=2

ζizi)
⊗2〉
∣∣,
∣∣〈Mj , (x+ z1 +

r∑

i=2

ζ ′izi)
⊗2〉
∣∣
}
≥ Ω(ρ2)

rn3
.
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Hence w.h.p. at most one of the 2r−1 signed combinations x+ z1± z2± · · ·± zr has a negligible
projection onto W . Hence, with probability at least 1 − 2−r+1 i.e., with probability at least
1 − 2−Ω(δn), ‖ΠW x̃

⊗2‖2 ≥ Ω(ρ2)/n4. This establishes Theorem 4.1. An identical proof also works
for Theorem 4.2 when ℓ = 2.
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