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ABSTRACT

Large-scale protein sequence comparison is an important but
compute-intensive task in molecular biology. The popular
BLASTP software for this task has become a bottleneck for
proteomic database search. One third of this software’s time
is spent executing the Smith-Waterman dynamic program-
ming algorithm. This work describes a novel FPGA design
for banded Smith-Waterman, an algorithmic variant tuned to
the needs of BLASTP. This design has been implemented
in Mercury BLASTP, our FPGA-accelerated version of the
BLASTP algorithm. We show that Mercury BLASTP runs
6-16 times faster than software BLASTP on a modern CPU
while delivering 99% identical results.

1. INTRODUCTION

Comparison of protein sequences is an important tool in
modern molecular biology. Comparing newly discovered
proteins to each other, or to databases of known proteins,
can help to identify their functions. However, the compu-
tational cost of such comparisons has become problematic,
as sequence databases such as NCBI’s GenBank has grown
exponentially over the last two decades.

One way to reduce the cost of proteomic sequence com-
parison is to accelerate it using specialized hardware. The
traditional target for acceleration is the Smith-Waterman (S-
W) algorithm [1]. Previous S-W implementations based on
FPGAs [2, 3] have achieved speedups of 10- to 100-fold
over a general-purpose CPU.

The popular BLASTP software [4] uses a seeded align-
ment heuristic to limit S-W comparison to pairs of proteins
that are a priori likely to be highly similar. This heuristic
avoids almost all the work that S-W would normally per-
form while still delivering results of sufficient quality to sat-
isfy biologists. BLASTP has therefore become the dominant
tool for proteomic comparison in the biological community.

In this work, we have implemented a S-W accelerator
as part of Mercury BLASTP, a combined hardware/software
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architecture for BLASTP. There are two key distinctions be-
tween S-W as used in BLASTP and the classical algorithm.
Firstly, whereas classical accelerators compare a query pro-
tein sequence to a continuous stream of other sequences,
BLASTP instead delivers a stream of comparison tasks, each
with its own pair of sequences to compare. Secondly, whereas
classical S-W compares two entire proteins, BLASTP tries
to minimize the region within each protein inspected by the
algorithm. We accommodate both differences by implement-
ing a banded version of S-W, which strictly limits the region
explored by the algorithm to reduce computational cost. Our
implementation of can scan a database of protein sequences
at a rate of 282 million residues per second.

A limitation of previously published accelerators for pro-
teomic comparison is that few have included measurements
of their sensitivity relative to the BLASTP software. With-
out such measurements, there is little reason for biologists
to trust the results produced by these systems. We there-
fore demonstrate that our complete BLASTP implementa-
tion can compete on both speed and sensitivity. In particular,
we achieve throughput 6-16 times faster than the BLASTP
software on a modern CPU while delivering results 99%
identical to those returned by the software.

1.1. Related work

Acceleration of the BLAST family of algorithms requires
acceleration of several computations, not just S-W. Mer-
cury BLASTP’s FPGA architectures for those other com-
putations are described in [5, 6]. Mercury BLASTN, our ac-
celerator for BLAST on DNA sequences, does not include a
hardware S-W implementation.

In addition to the S-W accelerators described above, re-
cent literature reports several accelerators for BLAST-like
seeded alignment algorithms [7, 8]. None of these acceler-
ators include a S-W stage, though [8] plans one for future
work1. Moreover, none of them provide sensitivity mea-
surements for their implementations versus the software that
they are designed to replace.

1In some cases, the accelerator targets only DNA comparison, for which
Smith-Waterman is not a bottleneck.



2. BACKGROUND: SMITH-WATERMAN AND ITS
ROLE IN BLASTP

Proteomic comparison algorithms compare a query protein
to a subject protein, which is drawn from a database of sub-
jects. For our purposes, proteins are strings of residues, or
characters from the 20-character amino acid alphabet.

2.1. Classical Smith-Waterman

S-W computes an alignment between query and subject, which
matches up pairs of residues in the two sequences that likely
evolved from a common ancestral residue. Each pair of
aligned residues x, y is assigned a score δ(x, y), with more
biologically similar pairs receiving higher scores. Runs of
k ≥ 1 residues in one protein with no corresponding residues
in the other protein are gaps, which receive a penalty −go −
k · ge. S-W finds an alignment with the best total score
among all possible alignments of query and subject. The
alignment found is local; that is, it may align only a sub-
string of each protein. Higher-scoring alignments provide
stronger evidence that the two aligned proteins are biologi-
cally related.

Formally, let x and y be sequences of lengths m and
n, and let Mi,j be the score of an optimal local alignment
between substrings x[1..i] and y[1..j] (0 < i ≤ m, 0 <
j ≤ n). We may compute Mi,j by the following dynamic
programming recurrence:

Mi,j = max {Mi−1,j−1 + δ(x[i], y[j]), Ii,j ,Di,j , 0}
Ii,j = max {Mi,j−1 − go, Ii,j−1} − ge

Di,j = max {Mi−1,j − go,Di−1,j} − ge.

Mi,j is computed as the best of four possibilities: the best
alignment may align residues x[i] and y[j], or it may leave
either x[i] or y[j] unaligned, or (if all these possibilities yield
alignments with negative scores) it may leave the sequences
unaligned with score 0. The I and D portions of the recur-
rence track the scores of optimal alignments ending with a
gap in x and y, respectively. The recurrence is initialized
with M0,j = Mi,0 = 0 and I0,j = Di,0 = −∞. An op-
timal local alignment then has score maxi,j Mi,j , which is
computed in time Θ(mn).

Let the set of three values Mi,j , Ii,j , and Di,j be the
i, jth cell of the computation. Cell i, j is dependent on only
three other cells for its value, namely cells i − 1, j; i, j − 1;
and i−1, j−1. Hence, all the cells with a common value of
i+j may be computed in parallel without violating any data
dependencies of the recurrence. We call this set of cells the
i+jth anti-diagonal of the recurrence. Traditional hardware
accelerators for S-W are organized as a systolic array that
computes successive anti-diagonals of the recurrence in a
pipelined fashion.
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Fig. 1. The BLASTP computational pipeline.

2.2. The BLASTP Pipeline

As shown in Figure 1, BLASTP consists of a pipeline with
three stages: seed matching, ungapped extension, and gapped
extension. The seed matching stage identifies short patterns
of residues, called seed matches, that appear in both query
and subject. Each seed match is described by its coordinates
i, j in query and subject, respectively. Seed matches are for-
warded to ungapped extension, which aligns the query and
subject with the restrictions that the alignment must intersect
the seed match positions i and j and must not contain gaps.
Any sufficiently high-scoring ungapped alignment from this
step is called a high-scoring segment pair, or HSP. HSPs are
passed on to gapped extension, where the two proteins are
(at last) aligned with S-W, which does allow for gaps. The
execution profile of the BLASTP software [4] shows that
about a third of CPU time is still spent in gapped extension.
Hence, meaningful acceleration of BLASTP still requires
acceleration of S-W.

2.3. Smith-Waterman within BLASTP

While classical S-W does not restrict its search space, gapped
extension restricts the alignments sought by S-W to those
that pass through or near a seed match. NCBI BLASTP
computes two optimal alignments: one alignment ending
at the match positions i, j (and starting anywhere before
them), and another starting at i, j (and ending anywhere af-
ter them). Concatenating these two alignments yields an op-
timal alignment constrained to pass through i, j. To limit
the number of S-W cells computed, NCBI BLASTP uses an
X-drop heuristic, described in [4], that terminates the recur-
rence at cells whose score Mi,j is much lower than the best
alignment score found so far.

Figure 2(a) shows the portion of the full S-W recur-
rence computed by a typical NCBI BLASTP gapped exten-
sion computation. Each pixel within the box represents one
cell computed by the recurrence. Where full S-W would
compute every cell in the box, NCBI BLASTP computes
only the smaller darkened area, centered on the seed match
(shown in white). BLASTP’s restriction of S-W yields large
savings in computation time in practice. However, the set
of cells computed by the heuristic varies in size and is quite
irregular in shape. Such variability is easily supported in
software but is more challenging for a hardware implemen-
tation.



(a) NCBI BLASTP
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Fig. 2. Typical structure of gapped extension in (a) NCBI
and (b) Mercury BLASTP. X- and Y-axes indicate position
within query and subject proteins. Cells computed by each
method are shaded, with seed match in white.

3. MERCURY BLASTP GAPPED EXTENSION

To avoid the complexity associated with NCBI BLASTP’s
irregular computation pattern, our accelerator uses an alter-
nate strategy, the banded Smith-Waterman algorithm. This
strategy was originally developed as an alternative software
implementation, which is found in e.g. WU-BLAST [9]. The
cells to be computed are limited a priori to a fixed-size band
of anti-diagonal strips centered on the input HSP, as shown
in Figure 2(b). The geometry of the band is defined by
two parameters: the band length λ, which is the number
of anti-diagonals computed in the band, and the band width
ω, which is the number of cells computed on each anti-
diagonal. It can be shown that this band covers exactly ω+ λ

2
residues in each of the two sequences.

Computation proceeds along anti-diagonals in a stair-
step fashion from left to right in the band. To ensure that
the optimal alignment found in the band is associated with
the HSP that defined it, we impose the constraint that the
alignment must cross the anti-diagonal at the center of the
HSP. This constraint is implemented by not clamping the
alignment score to zero once the center is crossed, thus for-
bidding the alignment to start anew, and by returning the
best alignment score observed after crossing the center.

3.1. Banded Smith-Waterman core

Computation of the cells on each anti-diagonal is handled
in our design by the banded S-W core. This core is imple-
mented as a standard systolic array that computes ω cells
of each anti-diagonal in parallel. Figure 3 shows its main
components: the S-W cell array, the MID register block (re-
taining the recurrence values M , I , and D), the score block,
the database-query shift register, and the pass-fail block.

Each cell in the systolic array implements logic to com-
pute the recurrence for a single S-W cell. It consists of
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Fig. 3. Design of banded Smith-Waterman core with ω = 5.
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Fig. 4. Design of MID register block.

four adders, five maximizers, and a two-input mux to clamp
scores either to zero, for cells before the HSP’s center, or to
negative infinity, for cells after the center.

The cell values computed by the array are stored in the
MID register block. Because only the score of the optimal
alignment is computed and not the alignment itself, only the
two most recent anti-diagonals need be stored. As shown
in Figure 4, four registers in each cell store the M , I , and
D values computed in the previous clock cycle and the M
value computed two cycles prior. Some of the local depen-
dencies of a cell vary according to whether it is on an odd
or even anti-diagonal (the leftmost anti-diagonal is odd). For
odd cells, Mi−1,j and Ii,j−1 are retrieved from its left neigh-
bor, while for even cells Mi,j−1 and Di−1,j are retrieved
from its right neighbor. Multiplexers are used in the MID
register block to resolve these dependencies.

The score block generates a signed 8-bit δ score for each
residue pair considered by a cell. δ is stored as a table in on-
chip block RAM for single cycle access and is addressed by
a concatenated residue pair. On our FPGA, each block RAM
provides two independent read ports; we therefore use ω/2
block RAMs to service the systolic cell array.



To perform gapped extension on a pair of sequences, the
entire query is first loaded into on-chip block RAMs, after
which the subject sequence is streamed in through a circular
buffer. The active query and database residues are stored in
a pair of parallel-tap shift registers, whose values are read by
the score block. Residues are shifted in one per clock cycle,
during the computation of odd anti-diagonals for the subject
and even anti-diagonals for the query.

The pass-fail block simultaneously compares the ω cell
scores in an anti-diagonal against a threshold. If any cell
value exceeds the threshold, the HSP is deemed significant
and is immediately passed through to software. We imple-
ment the following optimization to terminate extension early
in some cases. Once an alignment crosses the HSP, its score
is never clamped to zero but may become negative. If we
observe only negative scores in all cells on two consecutive
anti-diagonals, extension is terminated.

3.2. Supporting packed query sequences

Protein sequences are typically only about 300 residues long.
However, the upstream stages of Mercury BLASTP can sup-
port query sequences that are significantly larger. It is there-
fore advantageous to concatenate several small query se-
quences into one composite query that is compared to the
database in a single pass. Such query packing reduces the
number of passes over the database and hence the overall
search time.

Our gapped extension hardware uses threshold and start
tables to support packed query sequences. In BLASTP, the
score threshold to pass on a gapped alignment varies based
on the query sequence. The threshold table maps any posi-
tion in a packed query to the threshold score corresponding
to the component query sequence at that location. The start
table is used to identify the start of the current component
at any point in the packed query. Knowing this start permits
extension to begin at the start of an HSP’s component, rather
than considering the full composite query.

The worst-case running time per HSP is exactly 5+ω +
λ clock cycles (5 to compute band geometry and initialize
the database buffer, ω to load the shift registers with initial
residues, and λ for the score computation). The use of the
start table along with optimizations to support early align-
ment termination provide an average running time savings
of 56% for ω = 65 and λ = 1601 on typical protein datasets.

4. RESULTS

We have implemented Mercury BLASTP on the Mercury
system [10], a disk-based, high-throughput architecture for
reconfigurable logic. The system’s host machine contains
two 2.0 GHz AMD Opteron CPUs with 8 GB of memory,
running Linux, and two prototyping co-processor boards con-
nected via the PCI-X bus to the host. Interfacing drivers

Fig. 5. Stage 3 throughput as a function of band length λ.

to the boards are provided by Exegy, Inc.2 The first board
contains a Xilinx Virtex-II 6000 FPGA (used for BLASTP
stages 1 & 2); the second, a Xilinx Virtex-II 4000 FPGA
(used for stage 3, the gapped extension stage). For an ω
range of 35 to 75 anti-diagonals, the stage 3 design uses 33-
50% of the slices and 45-62% of the block RAMs.

We augmented the NCBI BLASTP codebase to inter-
face with our FPGA accelerator while preserving the orig-
inal user interface, command-line options, and input/output
formats. Queries are packed into 2048-residue bins, and
the database is streamed through the three hardware filtering
stages for each bin. Results from the hardware are passed to
the host CPU for full gapped extension in software. In this
configuration, we have demonstrated sustained data through-
put from disk to FPGA well over the requirement for Mer-
cury BLASTP (i.e., we are not I/O limited).

4.1. Performance of gapped extension

Stage 3 throughput and sensitivity is dependent on band ge-
ometry. The throughput of stage 3 is expressed as millions
of database residues processed per second (Mres/sec). The
throughput of this stage, as estimated by a simple mean-
value model, is directly proportional to the design clock fre-
quency and inversely proportional to the average HSP pro-
cessing time and to the filtering rates of the initial stages of
the BLASTP pipeline. Figure 5 plots the estimated stage 3
throughput as a function of band length, for a fixed width of
65. The largest estimated throughput for gapped extension is
325 Mres/sec for λ = 1001. Larger band geometries require
more processing time per HSP and so reduce throughput.
Our final design uses parameters ω = 65 and λ = 1601
with a maximum estimated throughput of 282 Mres/sec.

2http://www.exegy.com/



Table 1. Execution time of Mercury BLASTP compared to
the baseline system.

Experiment Baseline Time Mercury Time Speedup
1 2,515 min 148 min 16.99×
2 3,168 min 225 min 14.08×
3 202 min 35 min 5.77×

Table 2. Sensitivity of Mercury BLASTP compared to the
baseline system.

Experiment Sensitivity Alignments Lost New Alignments
1 99.36% 37,799 11,218
2 99.45% 21,334 54,426
3 98.53% 38,444 35,812

4.2. Overall Performance of Mercury BLASTP

To quantify the performance of the entire Mercury BLASTP
pipeline, we compared it to NCBI BLASTP running on a
modern, general-purpose workstation with a 3.0 GHz Pen-
tium D CPU and 1.5 GB of RAM running 64-bit Linux. We
used a recent version of NCBI BLASTP (release 2.2.15)
built with all available compiler optimizations of gcc 3.4.
BLASTP runs were performed single-threaded on one core
of the CPU. BLASTP was run with an E-value threshold of
10−5 and default parameters otherwise. Recorded runtimes
include query setup and the time spent in the three stages
of the pipeline but do not include time spent formatting the
final alignments for printing.

The three comparisons performed were as follows:

1. E. coli K12 proteome (1.35 Mres) vs. GenBank Non-
Redundant (NR) database (1.39 Gres);

2. B. thetaiotaomicron proteome (1.85 Mres) vs. Gen-
Bank NR;

3. Y. pestis KIM proteome (1.27 Mres) vs. all other bac-
terial proteomes in GenBank (282 Mres).

Query sequences were filtered to remove low-complexity re-
gions.

Tables 1 and 2 respectively show the speedup and the
sensitivity of Mercury BLASTP relative to the software base-
line for our experiments. Sensitivity is measured as the frac-
tion of alignments from the baseline output that were also
found by Mercury BLASTP. Alignments in the two outputs
that overlap by more than 50% were considered to be the
same. We also report the number of alignments found by the
baseline but not by Mercury BLASTP (”Alignments Lost”)
and vice versa (”New Alignments”).

Mercury BLASTP averages more than an order of mag-
nitude faster than the software baseline for the three exper-

iments, with larger databases giving greater speedups. Fur-
thermore, 99% of all alignments found by NCBI BLASTP
were also detected by our FPGA solution. Mercury BLASTP
finds about as many new significant alignments as it loses
existing ones, suggesting that observed differences in sensi-
tivity are within the normal error margin.

5. CONCLUSION

This paper presents the design of a banded Smith-Waterman
accelerator for use within the context of the BLASTP appli-
cation. This banded Smith-Waterman accelerator is distinct
from the classical algorithm in that it performs alignments
only within a bounded region around an HSP (provided by
previous stages in the BLASTP application).

Overall, Mercury BLASTP is shown to execute between
6 and 16 times faster than NCBI BLASTP running on a
modern processor, maintaining 99% sensitivity. These re-
sults are measured using experimental runs that are indica-
tive of BLASTP usage common in the biological research
community.
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