
Population based Ant Colony Optimization on FPGA

M. Guntsch
�
, M. Middendorf

�
, B. Scheuermann

�
, O. Diessel

�
, H. ElGindy

�
, H. Schmeck

�
, K. So

�

�
Institute AIFB

�
Computer Science and Engineering

�
Institute of Computer Science

University of Karlsruhe (TH), Germany University of New South Wales, Australia University of Leipzig, Germany�
mgu,bsc,schmeck � @aifb.uni-karlsruhe.de

�
odiessel,hossam,keiths � @cse.unsw.edu.au middendorf@informatik.uni-leipzig.de

Abstract

We propose to modify a type of ant algorithm called Pop-
ulation based Ant Colony Optimization (P-ACO) to allow
implementation on an FPGA architecture. Ant algorithms
are adapted from the natural behavior of ants and used to
find good solutions to combinatorial optimization problems.
General layout on the FPGA and algorithmic description
are covered. The most notable achievements featured in this
paper are a runtime reduction and including the approxi-
mation of the heuristic function by a small set of favored
decisions which changes over time.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic for
finding good solutions to combinatorial optimization prob-
lems (see [3] for an overview) is motivated by the behavior
of real ant colonies. When ants attempt to find short paths
between their nest and food sources, they communicate in-
directly by using pheromone to mark the decisions they
made when building their respective paths. In ACO, artifi-
cial ants search for good solutions in an iterative fashion: af-
ter � ants have constructed a solution, the best ant updates
it’s path in the decision graph. Afterwards, the next iteration
of ants builds solutions with the updated pheromone infor-
mation. This process continues until some stopping crite-
rion is met. The pheromone information usually takes the
form of a matrix, e.g. choosing 	 at place
 in the decision
graph has an associated pheromone value �
��� . In Population
based ACO (P-ACO), however, a population of past good
solutions is maintained instead of the entire pheromone ma-
trix (see [6]). ACO has been used to find best solutions to
a number of combinatorial optimization problems, for in-
stance in scheduling (see [8]).

Some authors have studied parallel versions of ACO al-
gorithms. But most of these efforts use coarse-grained ap-
proaches were each processor can hold the entire prob-

lem instance and the corresponding pheromone informa-
tion. So far, [7] is the only work were a more fine-grained
and hardware-oriented implementation of ACO is proposed.
This implementation is suitable in particular for processor
arrays with a dynamically reconfigurable bus system were
algorithmic tasks like bit-summation and finding the rank of
a number in a set of numbers can be done very efficiently.
Therefore it can not be used directly for an implementation
on FPGAs.

The rest of this paper is structured as follows. In Section
2 the P-ACO approach is described. The basic mapping
of our Population based ACO on the FPGA is presented in
Section 3. Section 4 discusses several extensions. A con-
clusion is given in Section 5.

2 Population based ACO

In this section we describe in detail the type of ACO al-
gorithm which we intend to realize on an FPGA. First we
will describe the generic decision process performed by a
single ant in the ACO algorithm for permutation problems.
Afterwards, the Population based ACO as described in [6]
is explained.

2.1 Generic Decision Process

When constructing solutions to a problem instance, ants
proceed in an iterative fashion, making a number of local
decisions. For a permutation problem an ant has to find a
permutation � of a given set of � items so that the permuta-
tion has a minimal value with respect to a given evaluation
function.

For example, for the Traveling Salesman Problem (TSP),
there are � cities with pairwise distances ����� between cities

 and 	 for
���	����������! . The goal is to find a Hamiltonian
cycle which minimizes the sum of distances covered, i.e. to
find a monocyclic permutation � of �"�#�$�! which minimizes%'&
�)(+* � �),�-��). . An ant starts at some city and proceeds by

choosing the city to visit next from its current location until
the tour is complete.

1

For the Quadratic Assignment Problem (QAP) there are
� facilities, � locations, and ����� matrices � � � � and � ����� ,
where � � � is the distance between locations
 and 	 and� ���

is the flow between facilities � and 	 . The goal is to
find an assignment of facilities to locations, i.e. a permuta-
tion � of ����� �! such that the sum of distance-weighted
flows between facilities

% &
��(*

% &
� (* � ,�-��). ,�- � . � � � is mini-

mized. An ant constructs a solution by going to a randomly
chosen unassigned location and placing one of the remain-
ing facilities there, continuing to do so until no free loca-
tions/facilities are left.

The decisions an ant makes are probabilistic in nature
and influenced by two factors: pheromone information � � �
and heuristic information
 ��� , each indicating how good it
is to choose item 	 at place
 of the permutation. An ant
chooses according to a probability distribution over the set
of valid choices �

� 	��
� ��� ����� ��������
�����%������ � �� � �
��� � (1)

where parameters � and � are used to define the relative
influence of pheromone values and heuristic values.

For TSP the pheromone matrix � � ��� is encoded in a
city � city fashion, which means that �
��� is an indication of
how good it was to go from city
 to city 	 . When initial-
izing the pheromone matrix, the diagonal elements � �)� are
therefore set to 0, and all other pheromone values are set to
the same positive value � � & ���! #" . The heuristic informa-
tion is derived from the distance between cities by setting
 � �$� �&% � � � . Typically, � � is chosen since the
 values
tend to be very close to one another.

For QAP, the pheromone value � ��� gives informa-
tion about placing facility 	 on location
 . Initially, all
pheromone values are set to the same value �
� & �'� (" . As
a standard approach, ACO algorithms for the QAP do not
make use of heuristic information (see [9]).

2.2 Solution Population

After � ants have constructed a solution, the pheromone
information is updated for the ants in the next iteration. P-
ACO uses a population of (previously best) solutions from
which the pheromone matrix can be derived. Initially the
population of solutions is empty. For the first) iterations
of ants the best solution found in that iteration enters the
population but no solution is removed. After that, whenever
the population is updated, the best solution of the iteration
enters the population and the oldest one is removed so that
the size of the population remains) . This means that the
population can be maintained like a FIFO-queue. Hence,
when) is the size of the population each solution that en-
ters the population has an influence on the decisions of the

ants over exactly) subsequent iterations. Other possibili-
ties for determining which solutions should enter/leave the
population are discussed in [5]. The pheromone matrix is
updated as follows:

* whenever a solution � enters the population, do a pos-
itive update:

�
 � ���$� �! � � ��,�-)��.,+- � ��,�-)��./.10
* whenever a solution 2 leaves the population, do a neg-

ative update:
�
 � ���$� �! � � �'3 -)��.,+- � �'3 -��).54�0

Note that this results in) . � discrete possible
pheromone values and is different to the standard ACO,
where evaporation is used to reduce all pheromone values
after an iteration (see [2, 4]).

The increment value 0 #" and the population size) ,
along with the number of ants per iteration � , are all pa-
rameters of the algorithm. Recall that for initialization ev-
ery pheromone value � ��� is set to � � & ��� except for problems
were some pheromones that do not correspond to possible
choices are set to zero. Note, that the exact value of � � & ��� is
arbitrary, as 0 can simply be scaled accordingly.

3 FPGA mapping of P-ACO

In the following we first give an overview of aspects to
be considered when mapping ACOs into the available re-
sources on an FPGA-chip. We then outline the algorithmic
operations required by the mapping. An analysis of the area
required by mapping the operations to Virtex is presented at
the end of this section.

3.1 Overview

Of primary concern in mapping an ACO algorithm to
fine-grained hardware such as FPGAs is the handling of
the �6� � arrays representing the pheromone and heuris-
tic values. In the sequential RAM model these are stored in
memory and accessed by one ant at a time. Ants are pro-
cessed iteratively and after � ants the population of good
ants is updated. Previous parallel implementations [7] pipe
a set of ants through statically allocated �7� � matrices in
a systolic fashion. For hardware of fixed size, parameter-
izing the mapping on � limits us unduly. We have instead
chosen to map a generation of � ants to the FPGA resource
and process them, i.e. allow them to develop a solution over
� 4 � decision cycles, in place. As � grows our hardware re-
quirement for processing grows linearly, not quadratically,
and we envisage folding our processing hardware to fit the
available area (see Section 4 for more details).

The significant challenge we then face in developing a
suitable mapping is how to implement and determine the
probability distribution of Equation 1. Since the member-
ship of set � is dynamic, the usual approach is to compute

the prefix sums of the products in the numerator over the
as yet unchosen elements that remain in the set at the be-
ginning of the decision step. This suggests the need to sup-
port multiplication and addition operations, and potentially��� ��� time to compute the distribution, neither of which are
attractive for implementation in current field-programmable
technology. If we restrict ourselves to problems like QAP
that do not usually consider heuristic information, the need
for multiplication is avoided. Furthermore, we can observe
that the population of) previous good solutions contribute
at most) positive pheromone updates to the set of choices
currently available to the ant. Thus, by broadcasting the)
elements of the respective solutions in the population, an
ant can determine how many updates apply to the current
set � and which elements in � were targeted by an update.
The former allows the denominator of Equation 1 to be cal-
culated in constant time following the broadcasts. The latter
can be used together with a randomly generated number to
select an element remaining in � according to the probabil-
ity distribution of Equation 1 in constant time. Our method
relies upon buffering the addresses of elements in � whose
pheromone value should be updated according to their oc-
currence in one of the population entries. Multiple updates
to the one element give rise to multiple entries in the buffer.
Scaling the number of buffered addresses by 0 and adding
the size of the selection set � yields the required denomina-
tor � . Subtracting the size of � from a uniformly distributed
random number ���	� then yields either the address
 (in-
dex) of the element to be chosen from � directly, or its ad-
dress as selected from the buffer when the difference � is
scaled by �&% 0 . Choosing 0 to be a power of 2 further sim-
plifies calculations by reducing the scaling operations to left
and right shifts.

The significance of this approach is that the decision cy-
cle for an ant takes � �)�� time assuming the random number
generation can be bound to

���)�� steps (see the next subsec-
tion for further analysis). For a problem of size � , this im-
plies � � �)�� time is required per ant to complete a solution.
In comparison, a sequential processor will require

��� ��
��
time per ant. The functional parallelism embodied in pro-
cessing � ants in parallel on the FPGA allows � solutions
to be formed in � � �)�� time, which compares with

��� � ��
��
time to achieve the same result on a sequential processor.

3.2 P-ACO Design on FPGA

In this section we first describe the top-level of the P-
ACO algorithm. We then explain the implementation of the
main modules in greater detail.

The processing flow executed by the P-ACO is presented
in Figure 1. The algorithm starts by initializing the popula-
tion, selection set � � ����" �������)� � 4 ��� and problem-specific
evaluation data (e.g. distance matrix � ��� for TSP). The pop-

stopping
criteria
met?

Comparison

Update
Population

Generate
solution

Evaluation

Generate
solution

Evaluation

Generate
solution

Evaluation

END

START

Initialization

no

yes

start of new iteration

Figure 1. P-ACO processing flow

ulation of) good solutions is stored as a queue, which is
initialized to an empty set � � ��� . Afterwards � ants it-
eratively create solutions until some stopping criterion has
been met (e.g. the maximum number of iterations has been
exceeded, or the best solution has not changed over a cer-
tain number of iterations). Here � solutions are generated
and evaluated in parallel. After comparing the results of �
evaluations, the best of these � solutions is used to update
the current population, which is accomplished by adding it
to the FIFO-queue.

At high level, the mapping of the P-ACO algorithm into
the corresponding FPGA design is straightforward (see Fig-
ure 2) and consists of three main modules: Population,
Generator and Evaluation. Note that, for the sake of clar-
ity, all schematic design figures only show data paths; the
controlling state machines and their control signals have
been omitted. The Population Module contains the queue

� ����� � ���
 � " ������� �) 4 ��� of) good solutions, with

� � � � � � �! ������� � � �#" &%$ *�� and � � � being the 	 -th decision in the

 -th solution. The module manages all communication be-
tween the queue and the Generator Module via an � � �
Crossbar. Furthermore, at the end of the current iteration
it receives the best solution from the Evaluation Module,
which is then inserted into the queue. The Generator Mod-
ule holds � Solution Generators, one per ant. The solutions

are transferred from there to � parallel Evaluation circuits
in the Evaluation Module. It is also possible to have less
than � Solution Generators and Evaluation circuits, which
will be discussed in greater detail in Section 4. The evalua-
tion results of these � solutions are collected in a Compar-
ison block, which chooses the best solution of the current
iteration.

q
00

q
k−1,0

q
01

q
k−1,1

q
0,n−1

q
k−1,n−1

Solution
Generator

Solution
Generator

Solution
Generator

Module
Generator

C
om

pa
ris

on

Evaluation

Evaluation

Evaluationn x m Crossbar

Queue Update

Module
Population

Queue

Module
Evaluation

Figure 2. P-ACO design with Population, Gen-
erator and Evaluation Modules

3.2.1 Population Module

The current population of) good solutions is stored in
rows

� � �! ��������� � �#" &%$ * � �
 � ��" �������)�) 4 ��� , one row per solu-
tion, with each solution being a permutation of the numbers" ������� � � 4 � . The Queue is updated by inserting the update
solution. If the queue is full prior to insertion, then the old-
est solution is removed in order to maintain a constant queue
size of) . In every iteration the Population Module receives
� 4 � requests for queue columns

� � � ��������� �
� $ * " � � from each

Solution Generator. A request is encoded as index 	 of
the required queue column. Since the Solutions Genera-
tors need an arbitrary and concurrent access to the queue
columns, probable conflicts are avoided by an intermediate
� � � Crossbar, which establishes the required data bus
connections. Queue column elements � � �$��	 � ��" �������)�) 4 ���
are sent sequentially via the bus connections formed.

3.2.2 Generator Module

The operating sequence of an individual Solution Genera-
tor simulates the behavior of an artificial ant constructing a
solution. Each Solution Generator has its own local control-
ling state machine and can therefore work independently of
the other Solution Generators as well as other modules on
chip. The flow of instructions executed by a Solution Gen-
erator is depicted in Figure 3.

A Solution Generator starts off by filling the selection
set � with the numbers " ������� � � 4 � and initializing the
S-Counter � , which over the course of the solution finding

START(j)

Get q ij

Broadcast q ij

l ijs = q ?
Match

at address M

into Match Buffer

store address a l

Incr. Match Counter
M := M + 1

i := i + 1

l*Select address a

Send s l*

to Evaluation

Get next Queue
column j

END

i := 0, M := 0

no

yes

no yes

c := n−1

c = 0 ?

c := c − 1
Decr. S−Counter

i = k ?

Initialize S−Array
S := (0,...,n−1)

Initialize S−Counter

s := s
l* c

yes

no

Figure 3. Solution generation

process will be the index of the last element of the S-Array,
i.e. the size of � , see Figure 4. Afterwards, the first decision
cycle starts with the initialization of the counters
 , used
for indicating the current solution of the population from

M
ov

e

a0 ac an−1c+1a

M
at

ch
 B

uf
fe

r

P
op

ul
at

io
n

M
od

ul
e

Set S

movement to the left

M
ov

e

0s sc

Figure 4. S-Array.
�� �
 is the index of cell
 ,
and �
� is the element from � at this address.
Shaded cells are deactivated, they no longer
contain an element of � .

which an element is to be read, and
�

, which counts the
number of matches between elements from the population
and selection set � .

The loop which starts after initialization has the goal of
writing those addresses
 � of elements �

�
which match the

elements received from the population from the S-Array
into the Match Buffer, see Figures 5 and 6. Note that if
an element matches multiple times, its address is also trans-
ferred to the Match Buffer multiple times and the

�
counter

is increased accordingly.

Selector

E
va

lu
at

io
n

M
od

ul
e

Next Queue Column

P
op

ul
at

io
n

M
od

ul
e

S−Array

S−Counter Move

Match Buffer

Figure 5. Solution Generator

M−1
al0

al 1
al

Match Counter S
el

ec
to

r

0 1 M−1 M k−1

S−Array

Figure 6. Match Buffer, shaded area is empty.

At the end of this loop, the values of
�

and � are
transferred to the Selector, see Figure 7. Here, the up-
per bound � for the random number � is calculated and �
drawn uniformly from the interval � " � � 4 � afterwards.
Without large multiplier or divider circuits, it is difficult to
draw a random number uniformly from an arbitrary inter-
val. Hardware-based random number generators creating
random bits can be used to create random numbers from the
interval � " ����� 4 � by drawing � bits. However, since �
will most likely not be a power of 2, we suggest repeatedly
drawing a random number � � � " � ��� 4 � until �	� � ,
where �
� � � �
� ��� -�� .�� is the smallest power of 2 greater
than or equal to � . Let � ��� ����� � ��� � � � ���� denote
the probability of drawing a random number � � � " � � 4 � ,
where *

 �6� � � . Then the probability of drawing a ran-
dom number ��� � " � � 4 � after � 4 � unsuccessful trials
is � � � � �%� � � � � 4 � �"! $ * , decreasing exponentially in � .
Hence, the expected value # � � � is

�$� � � �
%&
! (+*

� � � 4 � � ! $ * � �
� � (2)

On average, random numbers have to be drawn # �$� �
times, with � �'# � � �(�)� , in order to receive a uniformly
distributed random number � � � " � � 4 � . The random
bits necessary for generating the random number are cre-
ated with the RNG introduced by Ackermann et al. in [1],
which is well suited in terms of quality of the random bits
and space requirements. Note that the individual Solution
Generators can and probably will take different amounts of
time to draw their respective random numbers. However,
since each Solution Generator has an independent local con-
trolling state machine, no timing problems arise from this.

Once � has been generated, we compare the number with
� to determine whether an element from the S-Array or the
Match-Buffer has been chosen. If � � � , then
 �+* �
-,
is the index of the selected element from � ; otherwise,

 �+* �
/. *

, with
�10 � 	 - , $32 .5476 , is selected from the

Match Buffer, where 0 � � 6 is the update value associ-
ated with elements in the population. Recall that the Match
Buffer consists of the addresses �
 �
8 ������� �
 �+9;:=< � . After
 � *
has been determined, the corresponding element �

� *
is read

from the S-Array and sent to the Evaluation Module, which
is described in Section 3.2.3. Now, all that remains is up-
dating the set � , decrementing its counter � , and computing
place 	 in the population from which the elements of the
next cycle will be read, until � 4 � cycles have been com-
pleted.

r
RNG

add
sub

carry out

0

RMatch Counter

S−Counter

Match Buffer

Move

Figure 7. Selector

3.2.3 Evaluation Module

The main role of the Evaluation Module is to assign respec-
tive solution qualities to the permutations � * ������� � �?> which
are constructed by the Solution Generators and, after hav-
ing received all � solutions, to pick the best one to be sent
to the Population Module as an update to the population
stored in the queue. Since there are as many Evaluation
Units as there are Solution Generators, there is no prob-
lem with addressing or sharing a bus for transferring data.
An Evaluation Unit receives the choices made by the So-
lution Generator in the individual cycles immediately, and
can therefore calculate the quality of the solution online, if
the problem permits. For TSP for example, every time the
current choice, i.e. the next city to visit, is sent to the Eval-
uation unit, the length of the corresponding edge is added

to the overall tour length, which is also the solution qual-
ity. In QAP, which takes considerably longer to evaluate
in the unrestricted case, the newly determined products of
flows and distances are added after every new placement of
a facility. Most optimization problems in which an optimal
permutation is sought admits some form of online quality
computation.

Once the entire permutation �!� has been transferred to
Evaluation Unit
 , it finishes computing the corresponding
solution quality and transfers both the permutation and its
quality to a backup array so that Solution Generator
 can
immediately start building a new solution. As soon as the
Comparison Unit is available, it receives the solution quality
of � � from Evaluation Unit
 . If this quality is better than all
previous and other currently finished � � in the same itera-
tion, the permutation is transferred to the Comparison Unit.
Note that the Evaluation Units can deliver their solutions
asynchronously since the generation of random numbers
might take a different amount of time in the Solution Gen-
erators. After the Comparison Unit has determined which
of the past � solutions is best, it forwards this solution � 0
to the Population Module to update the population.

3.3 Area Requirements

So far the P-ACO design has been explained on a rather
abstract level. In this section we present implementation
ideas for some selected partial circuits together with the cor-
responding estimates on the required FPGA resources. We
assume targeting a Virtex device of at least size XCV300.

3.3.1 S-Array cell

As described before, an S-Array consists of � cells (S-
Cells). Each of them keeps two integer values, an ad-
dress value
 and a value � being a member of choice set
� . Both values are supposed to be encoded as vectors of� ������� � bits. For an S-Cell, it is desirable to store
 and

D Q
2

s

2
q

D Q
s

2nd slice1st slice

Cin / MS i−1

Cout / MS
i

2
s

2
s

2
q

X

s
1

s

MS* for the top−most CLB

1
q

1

LUT

LUT

MS

0

0

1

X

1

1
q

i

0

0

Figure 8. S-Cell circuit matching queue ele-
ment broadcasts � against � -values

� in flip-flops to allow reading and writing in constant time
- the alternative, which is to store in LUTs, would result in
� � � � cycles for reading and writing. Previous observation
implies that

� %�� slices are needed to store either
 or � ,
and a vertical arrangement facilitates a comparison with the
broadcast value � .

Refer to Figure 8 for a Virtex CLB configuration that
allows 2-bit values that are broadcast on horizontal wires
(singles or hex) to be matched within a CLB. In this circuit
2 bits of � are stored in flip-flops. All local match signals� � � are accumulated along the fast carry logic resources
to create a wired AND. For the bottom-most CLB �
�� is
initialized to 1. The overall match signal

� � 0
is output

on the �
�	��
 port of the top-most CLB.
� � 0

is fed back,
thereby spanning the complete column.

MS*

W’2

W1

W2

LUT

LUT

D Q

D Q
a 2

1st slice

a 1 W’1

2nd slice

0
1

MS* W’

W
a

Figure 9. Circuit propagating address values

 to the Match Buffer

Figure 9 depicts a Virtex CLB configuration that will
propagate address value
 from a flip-flop along single wires�

horizontally spanning a row of CLBs. The function of

s 2,j

Cin / MS i−1,j

Cout / MS
i,j

D Q

D Q 2,ja

1,ja

W2,j
W1,j

MS* for the top−most CLBj

j−1MS*

q
q 2

1

D Q

D Q

s 1,jLUT

LUT LUTW2,j−1
a 2,j−1

W1,j−1
1,j−1a

1st slice 2nd slice

LUT

0

0

Figure 10. Top-most S-Cell circuit combining
match and propagation functionality

the LUTs is to form a CREW-bus through � S-Cells. Again� %�� circuits per S-Cell have to be vertically aligned in a
column to be able to create a bus segment of width

�
.

A partial S-Cell circuit is shown in Figure 10, which
matches broadcast bits � with element � and forwards ad-
dress bits
 . We estimate 2-3 CLBs are therefore required
to provide the functionality needed to support 2 bits of an

 - � -pair. Since

� %�� rows are needed for
�

bits, in total
� �

to � ��� � � � CLBs are necessary to form an S-Array.

3.3.2 Match Buffer

The Match Buffer consists of a Match Counter and memory
circuitry to store up to) integer values

�
 * ���������
 . $ * � of
size

�
bits with

� �) . Since in practical applications
values for) are usually less than 10, the storage part can
efficiently implemented by configuring

�
LUTs as RAM

blocks ��� � � � � � � " ��������� � � " *�� � with a capacity of 16 bits
per block. Let
�� � �
�� " �������)�
��#" � $ *�� with " �
 � � 4 �
be the bit representation of an integer value. We propose
storing integer values in a distributed fashion: ��� � ����
 �" � �������)�
 . $ * " � � , where " � 	�� � 4 � . Since the integer
values are accessed only sequentially, this method allows
bit-parallel read and write operations in constant time and
a total area consumption of

� %	� CLBs. For very small) ,
however, matches should rather be stored in block RAM,
if available. The Match Counter requires at most 1 CLB
considering usual parameter settings for) (see [6]).

3.3.3 Selector

Building the Selector requires an
� � -bit adder, an

� � . � -
bit random number generator and an

� � . � -bit subtracter,
where

� � ��

��� � � � �) .�� � � � � , so that in total � � � � �
CLBs are required for these structures with single wire de-
lays.

4 Modifications

This section deals with modifications to the architectural
schematic for P-ACO on an FPGA described in Section 3.
Specifically, we will propose a technique for reducing the
space needed by the P-ACO algorithm and discuss how to
enable the algorithm to use heuristic information.

4.1 Space Constraints

Depending on the size of the FPGA designated for map-
ping the P-ACO algorithm, we will at some point be deal-
ing with problem instances too large to fit the entire algo-
rithm as introduced in Section 3. Specifically, the “height”
of the P-ACO algorithm increases only logarithmically with
� while the “width” increases in a linear fashion, resulting

in an increasingly flat rectangle shape as a basic structure.
Then, fitting the algorithm can be accomplished by folding,
which is standard technique for this kind of problem.

Another method to make better use of the available space
takes into account the fact that the selection set � decreases
in size over time. It is possible at certain points in time
to move the currently active selection sets to smaller rows.
Two examples for this modification are given in Figure 11.

Figure 11. Example of 2- resp. 4-row configu-
ration with decreasing size. The gray area is
the part of the row which holds the set � .

The 2/4-row configurations in Figure 11 save 25/37.5%
space at the cost of having the simulated ants be in different
stages of completion due to their respective starting delays.
The left side shows all rows after a new ant was started, the
right side the moment just before the sets are shifted down
and a new ant starts. Note that the shorter rows could be
rearranged to make the layout more compact.

4.2 Heuristic Information

Another aspect of ant algorithms in general that was ne-
glected in the basic layout described in Section 3 is the use
of heuristic information about the problem instance. In this
subsection, we describe a method of utilizing heuristic in-
formation without giving up the

���)�� cycle length of our
FPGA implementation of the P-ACO algorithm.

The method for increasing the probability that an ele-
ment be chosen is by repeating this element in a separate
buffer associated with a higher weight per entry, as de-
scribed in Section 3. Implementing this approach for heuris-
tic information poses two problems: heuristic values are
generally real-valued, and they exist for all elements of the
set � , not just an

���)�� size subset.

We propose to transform a heuristic-vector �
 ��� & , e.g.
the distances from one city to all others in TSP, into a set of
element-vectors �
/�* ������� �
/�� � with
/�� ��� " � � 4 �

�
, where

each vector
 �� holds elements which have a high heuristic
value. The following method is proposed:

1) Calculate � � *& %'&
�)(+* �
 � .

2) do the following � times

2.1) determine
 so that �
 � �

��� � (+* " ����� " & �
 �
2.2) add element
 to pool of numbers for building the

element-vectors.

2.3) update �
 � +- �
 � 4 � .
The quality of the approximation attainable by this

method depends on the values of �
 � and � . Deciding which
elements should be placed into a given vector is accom-
plished by placing any one element in as many different
vectors as possible and combining it with the maximum
amount of other elements. The order of the elements in
each vector
 �� is arbitrary. If � � , i.e. there is more
than one element-vector for the given row, then we de-
clare one of the element-vectors
 �� as active, and the other� 4 � as inactive. Only the active element-vector affects the
decision- process of the ant. After an iteration of � ants has
finished, the active element-vector
 �� is replaced by some
other
/�� with 	 � ���$� �� � �
 � . Note that the creation of the
element-vectors
 �* ������� �
 �� must take place before the al-
gorithm is programed onto the FPGA. Therefore, problems
which require an online computation of the heuristic values,
e.g. most scheduling problems, cannot be handled by this
method.

The way in which an element-vector influences the de-
cision made by an ant is practically the same as that of the
current population-vector. The respective addresses of ele-
ments which are in the element-vector as well as the selec-
tion set � are copied into a separate location called the H-
Buffer, which works exactly like the Match Buffer in Figure
6. Furthermore, since the pheromone and heuristic values
are multiplied by the ant algorithm, we need an additional
buffer which stores the elements that are in the element-
vector, the population-vector, and � . Let 0�� � � 6�� be the
weight associated with the population-vector and 0�� �
� 6
	 the weight of the element-vector derived from the
heuristic information. Then, 0���� � 0�� � 0�� � � 6 ��
 6
	
is the weight for an element of which the address is stored in
the PH-Buffer. Note that the combined weight of an element
which is in � as well as the population- and the element-
vectors is � . 0�� .�0�� .�0���� � � � .70�� � � � � . 0�� � ,
which is in accordance with Equation 1. The Selector from
the basic layout in Figure 7 must be modified as well, since
we can now have 4 sets of elements with different weights
instead of two. These modifications, however, are essen-
tially only doing two further subtractions and expanding the
multiplexer which chooses the address to relay to the Move
block in Figure 5.

5 Conclusion

We have designed a mapping of P-ACO to an FPGA ar-
chitecture. In doing so, we have implemented new ways

for dealing with the pheromone information which have led
to significant improvements in runtime and area require-
ments in comparison to a sequential ant algorithm. Further-
more, we have shown possibilities for compacting the al-
gorithm and include heuristic information in the process of
constructing the solutions without asymptotically increas-
ing runtime or required space.

Our future work will include actually implementing the
algorithm on chip. Also, the effect of the discretized heuris-
tic on solution quality will be investigated.

6 Acknowledgments

This work was supported by the Int. Office (IB/DLR) of
the German Ministry of Education and Research (BMBF)
within the scope of WTZ-project AUS 00/002.

References

[1] J. Ackermann, U. Tangen, B. Bödekker, J. Breyer, E. Stoll,
and J. McCaskill. Parallel random number generator for inex-
pensive configurable hardware cells. Computer Physics Com-
munications, 140(3):293–302, 2001.

[2] M. Dorigo. Optimization, Learning and Natural Algorithms
(in Italian). PhD thesis, Dipartimento di Elettronica , Politec-
nico di Milano, Italy, 1992. pp. 140.

[3] M. Dorigo and G. Di Caro. The ant colony optimization meta-
heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas in Optimization, pages 11–32. McGraw-Hill, 1999.

[4] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents. IEEE Trans.
Systems, Man, and Cybernetics – Part B, 26:29–41, 1996.

[5] M. Guntsch and M. Middendorf. Applying population based
aco to dynamic optimization problems. In M. Dorigo et
al., editor, Ant Algorithms: 3rd International Workshop,
ANTS2002, volume 2463 of Lecture Notes in Computer Sci-
ence, pages 111–122. Springer Verlag, 2002.

[6] M. Guntsch and M. Middendorf. A population based ap-
proach for ACO. In S. Cagnoni et al., editor, Applications
of Evolutionary Computing - EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTIM/EvoPLAN, number 2279 in Lecture Notes
in Computer Science, pages 72–81. Springer Verlag, 2002.

[7] D. Merkle and M. Middendorf. Fast ant colony optimiza-
tion on runtime reconfigurable processor arrays. Genetic Pro-
gramming and Evolvable Machines, 3(4), 2002.

[8] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony op-
timization for resource-constrained project scheduling. IEEE
Trans. on Evolutionary Computation, 6(4):333–346, 2002.

[9] T. Stützle and M. Dorigo. ACO algorithms for the quadratic
assignment problem. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 33–50. McGraw-
Hill, 1999.

