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Abstract—Prediction of a machine’s Remaining Useful Life
(RUL) is one of the key tasks in predictive maintenance. The task
is treated as a regression problem where Machine Learning (ML)
algorithms are used to predict the RUL of machine components.
These ML algorithms are generally used as a black box with a
total focus on the performance without identifying the potential
causes behind the algorithms’ decisions and their working mech-
anism. We believe, the performance (in terms of Mean Squared
Error (MSE), etc.,) alone is not enough to build the stakeholders’
trust in ML prediction rather more insights on the causes behind
the predictions are needed. To this aim, in this paper, we explore
the potential of Explainable AI (XAI) techniques by proposing an
explainable regression framework for the prediction of machines’
RUL. We also evaluate several ML algorithms including classical
and Neural Networks (NNs) based solutions for the task. For the
explanations, we rely on two model agnostic XAI methods namely
Local Interpretable Model-Agnostic Explanations (LIME) and
Shapley Additive Explanations (SHAP). We believe, this work
will provide a baseline for future research in the domain.

Index Terms—Explainability, Interpretability, Predictive Main-
tenance, Regression, Remaining Useful Life, LIME, SHAP.

I. INTRODUCTION

In the modern world, the scope of industries has expanded
a lot. These days industries are generally equipped with a
large number of modern machines resulting in a significant
increase in production. However, the performance of these
machines may degrade over time if proper care is not taken,
thus, they need a continuous monitoring and maintenance
process. Maintenance of machines in industries is a tedious
and time-consuming process and generally needs to take
different factors into account. However, thanks to the recent
advancement in technology, industry 4.0 have opened new
opportunities for predictive maintenance [1].

Predictive maintenance is one of the key aspects of modern
industries especially after the fourth revolution of industry. It
allows for monitoring, analyzing, and determining the condi-
tion of machine components for early detection of potential
faults. The process generally involves data acquisition, data
processing, and making intelligent decisions on the basis of the
collected data to improve and optimize maintenance processes.
Predictive maintenance generally involves different tasks. One
of these tasks is the prediction of remaining useful life (RUL)
of machines installed in a factory.

Thanks to the recent advancement in Machine Learning
(ML) and sensor technology, it is possible to automate the

prediction of RUL of machines by training ML algorithms on
the data collected through a diversified set of sensors installed
in the machines. The literature already reports the effectiveness
of a wide range of ML algorithms in predictive maintenance
in general and in predicting the RUL of machines in particular.
However, these ML algorithms are used as a black box with
total focus on their performance (i.e., accuracy and Mean
Squared Error, etc.,) without providing any insights on the
working mechanism and cause behind the decisions of these
algorithms. In such a critical application, accuracy/MSE alone
is not enough to build the stakeholders’ trust in ML prediction
rather more insights on the causes behind the predictions are
needed [2].

In this paper, we propose an explainable ML framework
incorporating a couple of model agnostic explainable Al
techniques for the prediction of the RUL of machines. The
proposed framework provides insights into the ML model’s
predictions allowing the stakeholders to analyze the main
causes of machine degradation. These insights not only build
stockholders’ trust in the framework but also allow them to
tune the model for better predictive performance.

The key contributions of the work can be summarized as
follows:

o We propose an explainable framework incorporating mul-
tiple regression and explainability methods for predicting
the RUL of machines.

e We also evaluate several regression methods including
multiple classical and Neural Networks (NNs) based tech-
niques. Moreover, we analyze the results of two model
agnostic methods for the explanation of our regression
algorithms.

« In extensive experimental setup, we evaluate the potential
and applicability of explainable Al methods in predictive
maintenance.

The rest of the paper is organized as follows. Section
provides an overview of the related work. Section [[1I| describes
the methodology of the proposed framework. Section
provides a detailed description of the dataset, experiments, and
experimental results. Finally, Section |V| concludes the work.

II. RELATED WORK

In this section, we provide an overview of the existing
literature on both predictive maintenance and explainable Al.



In the first part, we focus on the literature on predictive
maintenance by highlighting some recent works in the domain.
In the second part, we provide an overview of explainable Al
techniques and key applications where Al could be beneficial.

A. Predictive Maintenance

The literature reports several interesting works on predictive
maintenance, where different aspects of predictive mainte-
nance are explored [1f], [3]]. Predictive maintenance generally
involves three activities namely (i) data acquisition, (ii) data
processing, and (iii) maintenance decision making, and the
research in the domain mainly focuses on these areas [4].
For data acquisition, the predictive maintenance techniques
heavily depend on sensor technologies, which provide relevant
and useful information on the machine conditions. Based on
the nature of sensors, predictive maintenance techniques can
be roughly divided into three categories including (i) existing
sensor-based maintenance, (ii) test-sensor-based maintenance,
and (iii) test signal-based maintenance techniques [5]].

The literature also reports several interesting frameworks
of intelligent data processing and handling for predictive
maintenance. For instance, Shcherbakov et al. [6] provides an
overview of several data processing techniques and pipelines
for data handling and processing for cyber-physical systems
maintenance. Similarly, Yan et al. [7] provide a detailed
overview of the challenges associated with heterogeneous
industrial data handling and processing for predictive main-
tenance.

Predictive decision-making is one of the most explored
topics in predictive maintenance. To this aim, several in-
teresting solutions have been proposed over the years. The
majority of the initial efforts in this direction rely on con-
ventional/statistical ML algorithms, such as Random Forst,
Support Vector Machines (SVMs), and decision trees [3].
For instance, Kusiak et al. [8] relied on two classical ML
algorithms namely decision trees and SVMs, which were
trained on feature vectors composed of 60 sensor readings, for
the predictive maintenance of wind turbines. Other classical
ML algorithms that are widely used for predictive maintenance
include RF and Naive Bayes. These algorithms are normally
trained raw sensor data or handcrafted features depending on
the nature of the data [3[]. A vast majority of the literature also
relies on fuzzy logic and Hidden Markov Models (HMMs)
for predictive maintenance. For instance, Zaki et al. [9] and
Omoregbee et al. [[10] employed Fuzzy logic and HMMs for
predictive maintenance of renewable energy systems, respec-
tively. However, recently the trend shifted towards the use
NN, and the majority of the recently proposed solutions rely
on different types of NNs, such as MLP, Convolutional Neural
Networks (CNNs), and Long short-term memory (LSTM)
[3l. The choice of these algorithms mainly depends on the
nature of the data. For example, CNNs are mostly used for
predictive maintenance using visual content [[11f], [12]. LSTM-
based solutions, on the other hand, are more effective for the
analysis of sequential/time series data [[13]], [[14].

B. Explainable Al

Over the last few years, explainable/interpretable Al got
the attention of the research community. The literature reports
several studies where it is demonstrated that in critical applica-
tions, such as healthcare, education, defense, and transporta-
tion, predictive capabilities of ML algorithms alone are not
enough rather the algorithms should be interpretable [2], [15].
Explainability/interpretability, which aims at highlighting the
causes behind the Al models’ predictions, could be obtained
either by developing explainable Al algorithms or providing
an explanation of the so-called black-box Al algorithms [16].
However, there is a trade-off between accuracy/performance of
Al algorithms and interpretation [17]]. Therefore, a majority
of the explainable AI frameworks rely on model agnostics
methods for the interpretation of Al models [2], [[18]. To this
aim, several interesting techniques are proposed. Some most
commonly used techniques include LIME [19], SHAP [20],
Grad-CAM [21], and DiCE [22].

Some key applications in which explainable Al has been
widely explored include healthcare [23]], education [24]], secu-
rity [25]], and other smart cities applications [2]. The applica-
tions of explainable Al have been recently also introduced in
industry [26]]. However, most of the literature aims to analyze
its applicability, challenges, and advantages in different indus-
trial applications [26]. For instance, Shukla et al. [27] analyzed
the opportunities of explainable Al in aerospace predictive
maintenance. The authors also provide a detailed overview
of the challenges associated with predictive maintenance in
the domain. In contrast to most of the works reported in the
literature, in this work, we propose an explainable regression
framework for one of the most crucial applications of pre-
dictive maintenance namely the prediction of the remaining
useful life of a machine.

III. METHODOLOGY

Figure [I] provides the block diagram of the proposed ex-
plainable predictive maintenance framework. The framework
is mainly composed of two components namely (i) features
selection and ML-based prediction, and (ii) explanation of the
predictions. In the first part, we rely on several ML algorithms
for the prediction of the remaining useful life of the machine
components. In the second part, two different algorithms are
used for the explanation of the model’s predictions. We note
that the main contribution of the work lies in the explanation
part. In the next subsections, we provide a detailed description
of each of the phases.

A. ML-based Prediction

For the prediction of the useful remaining life of the ma-
chine components, we rely on several algorithms including (i)
Random Forest (RF), (ii) ElasticNet with Generalized Linear
Models (GLMs), (iii) Gradient Boosting, (iv) Support Vector
Machines (SVMs), and a (v) Neural Network (NNs) model.
A description of each of the methods is provided below.

o RF-based Prediction: RF is one of the most widely used
methods. In this work, we use it as one of our baseline



Input Data

Sensor 3

O
O
O

Training ML Model

Sensor N

Explanation

Prediction

RUL Value

Figure 1: Block diagram of the proposed methodology.

methods. In this approach, as a first step, a shallow
RF model is used to identify more important/influential
features by plotting a chart of feature ranking. After the
plotting feature ranking, the less important features (i.e.,
sensors values) are dropped. An RF model is then trained
on the selected features. Table [I| provides the values of
hyperparameters of the model used in the experiments.
SVM-based Prediction: Our second baseline method
is based on SVMs. SVMs are one of the most widely
used algorithms for classification problems. However, it
is rarely used for regression. It follows the same rules and
criteria for regression tasks where the aim is to identify
a function approximating the mapping from the input to
real numbers based on training samples. One of the key
processes in SVM-based prediction is the selection of
hyperparameters values. To this aim, we rely on a grid-
search algorithm to find the best combination of SVM
hyperparameters.

Gardient Boosting-based Prediction: Our third method
is based on Gradient Boosting [28[], which is also one
of the most widely used algorithms for classification and
regression tasks. It is an ensemble method where multiple
learning algorithms, which are also called weak learners,
are combined to obtain better predictive performance.
In our case, the weak learners are based on decision
trees. Similar to the other models, we rely on the grid-
search approach for the selection of hyperparameters of
the model.

ElasticNetGLM-based Prediction: Elastic net regular-
ization pairing with GLMs is one of the widely used
regularization methods. It allows to filter out unimportant
and highly correlated features and helps to improve the
performance of the model. In this work, we use an ML
library namely Scikit-learn for the implementation of the
ElasticNetGLM model. For tuning the hyperparameters
of the model, we rely on the grid-search algorithm that
allows us to find the best combination of the hyperparam-
eters. Table [[I| provides the summary of the parameters
used in the model.

NNs-based Prediction: Based on the proven perfor-
mances in other applications, we also propose an NNs-
based solution for the prediction of the useful remaining
life of the machine components. To this aim, we propose
an MLP regressor model. Our MLP regressor is com-
posed of a total of 50 hidden layers, which are trained

using backpropagation without an activation function in
the output layer. Moreover, we used the square error as
the loss function resulting in continuous values as an
output.

Table I: Parameters setting of the FR model.

Attribute Value
max-depth 9
max-features auto
min-samples-leaf 10
min-samples-split 2
n-estimators 10

Table II: Parameters setting of the ElasticNetGLM model.

Attribute Value
Alpha 0.01
11-ratio 0.01
copy-X True
fit-intercept True
selection Cyclic
tol True 0.0001

Table III: Parameters setting of the MLP model.

Attribute Value
Model MLP Regressor
Hidden Layers 50
Max Iteration 1000
Learning Rate Adaptive

B. Model’s Explanation

For the models’ explanation, we mainly rely on two methods
namely (i) LIME, and (ii) SHAP. In the next subsections, we
provide a detailed description of each of the methods.

1) LIME-Local Interpretable Model-Agnostic Explana-
tions: LIME [19] is one of the most commonly used methods
for the interpretation of ML models’ predictions. One of the
key advantages of LIME is that it is a model agnostics method
and could be used for the explanation/interpretation of any
model. For the explanation of an ML model, LIME perturbs
the input samples and analyzes the changes in the prediction
of the model. This simple working mechanism makes it a
preferable choice for model interpretation compared to model-
specific methods, which require a deeper understanding of the
underlying models.

LIME provides local interpretation, which means the
model’s behavior is described by analyzing the response of a



model to changes in a single data sample. Here the intuition is
to analyze causing behind a particular prediction by answering
questions like ”why was this prediction made?” or “which
features caused the prediction?”. It produces results in the
form of a list of explanations highlighting the contribution of
the individual feature as detailed in Section We note that
the idea and working mechanism of LIME is different from
a related concept of “feature importance”, which is generally
conducted over the entire datasets.

LIME could be used for the explanations of models de-
ployed in different application domains including textual,
tabular (i.e., sensor data), and visual content. The literature
already reports the effectiveness of the method in several
interesting human-centric applications, such as healthcare and
other smart cities applications [?2].

2) SHAPE-Shapley Additive Explanations: Our second
explanation approach is based on another state-of-the-art
technique namely SHAPE. The method was introduced by
Lundberg et al. [20] to cope with the limitations of the existing
methods. Similar to LIME, SHAP provides explanations of
individual predictions and could be used for the explanation
of any model. However, in contrast to LIME, SHAP provides
both local and global explanations. The main difference be-
tween global and local explanations lies in the level/scope
of explanation. The global interpretations/explanations include
complete insights into the general/overall behavior of the
model. The local explanations/interpretations describe the
causes behind a decision on an individual data sample.

Similar to LIME, SHAP could be used for the explanation
of ML models trained on different types of data including
textual, visual, and tabular data. The literature reports the
effectiveness of the method in several application domains,
such as healthcare, defense, agriculture, etc [2f], [29]], [30].

IV. EXPERIMENTS AND RESULTS
A. Dataset

For the evaluation of proposed solutions, we used a dataset
composed of the engine degradation simulation (C-MAPSS)
data, which is collected in a simulated engine degradation
environment under different combinations of operational con-
ditions and modes [31]. The dataset is provided by the
Prognostics Center of Excellence (PCoE) where the data is
based on time series ranging from the working state to the
failure state of the components. The dataset provides a 24
features vector containing 21 sensor readings and 3 operational
settings. The sensor readings are mostly related to temperature,
pressure, the fan speed of an engine, fuel, etc. The description
of all of these sensor readings is provided in Table [[V]

The dataset is widely used for fault detection and prognos-
tics (i.e., predicting the time at which the machine components
will no longer work). In this paper, we are interested in
predicting the Remaining Useful Life (RUL) of machine
components, which is a continuous target/value. We treat the
problem as a regression task. The dataset is composed of more
than 20,000 data samples, which are divided into training and
test sets. The training set is composed of 16504 samples while
the test set contains 4127 samples.

Table IV: Description of the sensor readings provided in the
dataset.

Sensor No Readi Sensor No Readi
1 Total temperature at fan inlet 2 Total temperature at LPC outlet
3 Total temperature at HPC outlet 4 Total temperature at LPT outlet
5 Pressure at fan inlet 6 Total pressure in bypass-duct
7 Total pressure at HPC outlet 8 Physical fan speed
9 Physical core speed 10 Engine pressure ratio
11 Engine pressure ratio 12 Ratio of fuel flow to Ps30
13 Corrected fan speed 14 Corrected core speed
15 Bypass Ratio 16 Burner fuel-air ratio
17 Bleed Enthalpy 18 Demanded fan speed
19 Demanded corrected fan speed 20 HPT coolant bleed
21 LPT coolant bleed - -

Table V: Experimental results in terms of Mean Squared
Error (MSE) and Mean Absolute Error (MAE) on a test set
containing 4127 samples.

Method MSE MAE

RF 1767.06 | 29.84
ElasticNetGLM 2043.03 | 34.60
Gradient Boosting | 1768.45 | 29.92
SVMs 2043.03 | 34.60

MLP 1742.08 | 28.46

B. Experimental Results

In this section, we provide the experimental results of
the proposed work. Firstly, we report the results of all the
algorithms employed in this work followed by some samples
of the explanations produced by LIME and SHAP.

1) Prediction Results: Table |V| provides the experimental
results of all the algorithms employed in this work including
the classical and NNs-based solutions in terms of Mean
Squared Error (MSE) and Mean Absolute Error (MAE) on
a test set containing a total of 4127 samples. We note that
there is a trade-off between performance and explainability.
The classical ML algorithms are more explainable compared
to NNs, however, their performance is generally on the lower
side. Similar trends have been also observed in this work.
As can be seen, the MSE and MAE values for the NNs-
based solution are significantly lower compared to the classical
algorithms, such as RF and SVMs.

As far as the explanations of the NNs-based solutions is
concerned, this could be overcome with the use of model
agnostic methods of explainability. Next, we analyze the
explanations provided by two model agnostic explainable Al
methods.

2) Model Explanations via LIME and SHAP: Figure [2] and
Figure [3| provides explanations generated by LIME and SHAP
method, respectively. In this sample, the actual value of RUL
of the machine component is 151 cycles while the predicted
value is 148.35 cycles.

In Figure [2] the features (i.e., sensor values) on the right
side in red color are the ones that contribute to increasing the
prediction values while the ones in blue color are the features
that have a negative effect or decrease the predicted value.
For example, the values of the sensors 11, 7, 2, etc. on the
right side indicate that the machine component is in a good
condition and its RUL is supposed to be high. The sensor value
on the left side in blue color, for example, sensor — 1 =<
518.67 indicates that the conditions of the component are not
good and it tries to reduce the predicted RUL value.
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Figure 2: Sample explanations provided by LIME. Here the actual value of RUL of the component is 151 while the predicted

value is 148.3.

Figure [3| provides the explanation of the same sample.
Similar to LIME, SHAP explanations are also composed of
several values including:

o The predicted value (i.e., 148.35)

o The base value, which is the average of the model output
over the training dataset.

o The feature values that contributed to the prediction.
The red values are the feature values that increased
the predicted value while the values in blue color (i.e.,
sensor — 14 = 8.151 contributed to the reduction of the
predicted RUL value. In other words, the sensor values in
red color mean the condition of the component is good
while the blue ones indicate something is wrong with the
component.

e The size/length of the arrow shows the impact of the
feature on the prediction. For example, in the given
sample, sensor-11, sensor-12, and sensor-14 have a higher
impact on the prediction.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an explainable regression frame-
work for the prediction of the RUL of machine components.
We evaluated several ML techniques including classical ML
and NNs approaches for the prediction. For the explanation
of the models, we employed two different models agnostic
explainable AI methods. The explanation provided by these
methods is very insightful that could help the stakeholders
in making correct decisions in such critical applications. The
explanation of the models could also help the developers to
rectify the limitations of their proposed solutions. In the future,
we aim to further extend the scope of the work by tackling
more relevant tasks of predictive maintenance.
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