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ABSTRACT

A frequency domain approach for the detection of symmetries

in real images is presented. Our framework is based on recent

state-of-the-art research where motion estimation techniques

are employed to sequentially determine all the associated pa-

rameters. In particular, we introduce several modifications

regarding the order of symmetry estimation and the detection

of the axes of possible bilateral symmetry. Preliminary results

demonstrate the efficiency of our approach.

Index Terms— symmetry detection, correlation methods

1. INTRODUCTION

Symmetry is an important object visual attribute inferred by

the human vision system which drives attention, facilitates

perceptual grouping and helps in scene interpretation. Ad-

ditionally, symmetry detection already finds applications in

fundamental computer vision tasks such as image segmenta-

tion, recognition and pattern classification. Thus, a module

designed for symmetry identification might be useful for ma-

chine vision systems which attempt to mimic successfully the

way mammals sense and process visual information.

This works aims at detecting possible symmetries of 2D
objects. For the class of similarity transforms, 2D patterns

can be characterized by two types of symmetry: rotational

and bilateral (or reflectional). A pattern is rotationally sym-

metric of order n, if it is invariant under 2π/n rotation about

its center of mass, which is also called the center of sym-

metry. A pattern exhibits bilateral symmetry if it is invariant

under reflection about one or more straight lines. A pattern

characterized by n reflection symmetry lines is necessarily

rotationally symmetric of order n.

Our approach follows recent research in symmetry de-

tection [1], [2], [3], where techniques used in frequency do-

main motion estimation algorithms are employed to compute

a number of parameters related to symmetry identification. In

particular, we wish to robustly estimate the order of symme-

try, recover the symmetry center, define its type (rotational

or bilateral) and determine the axes of possible bilateral sym-

metry. A frequency domain formulation of symmetry detec-
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tion has the advantage that the above parameters can be ex-

tracted sequentially, thus, reducing computational complexity

and enhancing accuracy.

The approach in [1] detects symmetry by minimizing a

functional obtained from the analytical Fourier-Mellin repre-

sentation of a given image; however the scheme used to com-

pute the Fourier-Mellin transform is based on the assumption

that the center of symmetry is known. The method presented

in [2] is fast, accurate and does not employ any conversion

to the polar coordinate system. It is experimentally verified to

correctly classify high-order symmetric patterns; nevertheless

its applicability to real images is not demonstrated and maybe

problematic. Finally, the method in [3] is capable of detecting

symmetries under clutter/partial occlusion and is considered

state-of-the-art in symmetry detection. The approach starts

with obtaining a pseudo-polar Fourier representation of the

given image which enables the estimation of the order of sym-

metry without any prior knowledge of the symmetry center.

In particular, the magnitude of the Fourier transform is used

to compute a translation-invariant representation of the sym-

metric pattern; then, the order detection is achieved by de-

riving and estimating the period of a 1D periodic function

using MuSIC. Once the order has been identified, this infor-

mation is used to recover the center of symmetry. Finally, the

framework is also able to detect the axes of possible bilateral

symmetry by examining the existence of a dominant global

maximum of a second appropriately derived 1D function.

We step on this approach and based on the methodology

suggested we propose a scheme which is briefly summarized

in the following steps:

1. Extract image salient features by computing an edge

map G which combines both the magnitude and the ori-

entation of image gradients.

2. Feed G to a fast and accurate polar transform [4] and

consider the magnitude M of the outcome solely. Esti-

mate the order of symmetry by computing the 2D auto-

correlation of M , followed by a singular value decom-

position and periodicity detection schemes.

3. Exploit symmetry information to estimate the center of

symmetry [3].
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4. Identify the axes of potential bilateral symmetry us-

ing gradient cross-correlation [5] combined with a local

scheme which exploits symmetry to provide additional

robustness to possible partial occlusion and clutter.

The contributions of this work are summarized in steps

1,2 and 4 where new schemes for the estimation of the order

of symmetry and the recovery of the axes of bilateral symme-

try are introduced.

2. METHODOLOGY

Our approach starts with computing a gray level edge map G
of the given image I , which retains both magnitude and phase

information, as follows:

G = Gx + jGy (1)

where Gx = ∇xI and Gy = ∇yI are the gradients along

the horizontal and vertical direction respectively. This step

provides the location, magnitude and orientation of the image

high-activity structures which can be used as salient features

to characterize symmetry. Assuming that the image mainly

captures a large periodic pattern, this operation is very likely

to reduce the effect of background clutter, emphasizing the

features which vote for the existence of the symmetric struc-

ture. At the same time, low spatial frequency components in-

herent to the low pass nature of images will be filtered out as

well. For real images, in most cases, the contribution of low

spatial frequencies rather shadows the existence of periodicity

than facilitates the symmetry detection process. Additionally,

we note that a band-pass filtered version of the original im-

age, as suggested by the use of practical differential operators,

eliminates possible noise and aliasing effects [5]. The derived

edge map is used throughout this work to estimate the order

of symmetry, find the center of symmetry and detect the axes

of possible bilateral symmetry as described in the remaining

of the paper.

2.1. Estimating the order of symmetry

It is well known that the magnitude M of the Fourier trans-

form of a symmetric image with unknown symmetry center is

also symmetric around the origin of order n, if n is even, or

2n, if n is odd. The main idea is to exploit this property to re-

cover first the order of symmetry [3]. A polar representation

M(r, θ) results in a repeated pattern of period n or 2n with

respect to the angular parameter θ.

We start by computing the Fourier transform of G and

considering its magnitude M solely. To obtain a polar repre-

sentation of M , three options exist. The first is to evaluate the

Fourier Transform over the Cartesian grid using the standard

FFT and then interpolate the outcome over a polar grid. In

general, such an approach is unstable and sensitive to interpo-

lation errors even for good quality images [6]. The next option

is to approximate the polar with a pseudo-polar grid for which

a fast algorithm exists and its computation is algebraically sta-

ble. This approach is followed in [3]. Nevertheless, even in

this case, the distortion caused by the uneven sampling of both

polar parameters r and θ deteriorates the performance of the

detection process. The last option is to use the fast and accu-

rate polar Fourier transform recently proposed in [4]. From a

computational point of view the algorithm’s complexity is on

the order of the standard Cartesian FFT, while experimental

results report significant gain in performance compared to the

pseudo-polar grid. This option is the approach adopted in this

work.

Once M is computed, we need to measure its periodic-

ity with respect to the angular parameter θ. The solution pro-

posed in [3], starts with computing the expectation of M(r, θ)
with respect to r and therefore reduces the problem of esti-

mating the symmetry order to finding the dominant frequency

of a 1D periodic function. For real images where the sym-

metric pattern is embedded in a complex background, noise

is not evenly distributed over the whole spatial spectrum and

averaging over r does not guarantee noise reduction. We take

advantage of all information in M by computing the 2D au-

tocorrelation function, as follows:

C(k, l) = F−1{MF M∗
F } (2)

where MF is the Fourier transform of M , ∗ denotes the com-

plex conjugate operator and F−1 denotes the inverse Fourier

transform. The indices k and l represent displacements with

respect to r and θ respectively.

A straightforward solution to find the order of symmetry

would be to estimate the periodicity of the 1D autocorrelation

C(0, l) using standard spectrum estimation techniques such

as the Fourier transform. Alternatively, we may observe, that

for any fixed k, C(k, l) is a periodic pattern of period n. In

practice, one would like to identify the range of k, for which

C(k, l) provides a reliable estimate of the periodicity and then

combine this information to measure it. This idea can be im-

plemented in one step by performing a singular value decom-

position (SVD) of C and then finding the period of the domi-

nant eigenvector of the subspace spanned by the rows of C:

C = USV T (3)

where the columns of U and V are the eigenvectors of the sub-

space spanned by the columns and rows of C respectively and

S is a diagonal matrix containing the corresponding eigenval-

ues. The advantage of such an approach is that the estimation

of the dominant eigenvector v1 is largely defined by the rows

C(k, l) which measure significant correlation. In contrary, the

effect of the rows with low correlation values, is expected to

be negligible. This directly comes from the fact that the SVD

satisfies the minimum squared error criterion.

Which one of the two methods presented above should be

chosen depends on the application. For clean symmetric pat-

terns segmented from the background image, estimating the
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order of symmetry from C(0, l) appears to be the most rea-

sonable solution. For cluttered images which result in clut-

tered Fourier transforms, using the SVD approach might be

beneficial. Two examples are shown in Fig. 1. It is evident

that the 5−order periodicity is better captured when the SVD

approach is used.
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Fig. 1. (a)-(c): A corrupted symmetric image of order 5, the

1D autocorrelation C(0, l) and the periodic pattern v1(l) ex-

tracted using SVD.(d)-(f): Another example of a non-perfect

symmetry and the obtained C(0, l) and v1(l) respectively.

To estimate the period of C(0, l) or v1, we consider ba-

sic Fourier analysis. Ideally, the Fourier spectrum will exhibit

peaks located at frequencies ωk = kn, k = 1, . . . multiples of

the order of symmetry. From preliminary results with real im-

ages, we have observed that even for images with significant

amount of clutter, using the scheme presented so far, the mag-

nitude of the Fourier transform at ω = k is always among the

one or two dominant frequency components. Therefore, con-

sidering for example the first two biggest peaks ωi, i = 1, 2
in the Fourier spectrum, we may prune the set of possible

solutions. The real order of symmetry may be found by ro-

tating the image by 2π/ωi, computing the cross-correlation

between the two images and choose n = ωi for the solution

which yields the biggest correlation peak.

2.2. Estimating the center of symmetry

Once the order of symmetry has been found, we estimate the

center of symmetry using the approach presented in [3]. The

method is based on the observation that symmetric images

of order n, when rotated by 2π/n, are related to each other

by a pure translation. Therefore, we compute the gradient

of the rotated image and we estimate the resulting translation

using gradient cross-correlation. From this point, a simple

geometric inspection reveals that both the distance and the

direction of the center of symmetry with respect to the image

center can be easily computed.

2.3. Estimating the axes of bilateral symmetry

The final step is to compute the axes of possible bilateral sym-

metry. If a0 is the angle formed by the image horizontal axis

and the first reflection symmetry axis, then all the lines of re-

flection symmetry are ai = a0+πi/n, i = 0, . . . , n−1. To

compute a0 the image is flipped upside down about its center

of symmetry. It can be easily seen that the original image I
and its flipped version F are related by a rotation 2a0 [2].

To estimate a0, we start by obtaining a polar representa-

tion Ip(r, θ) and Fp(r, θ) of the two images about the center

of symmetry. It is evident that with respect to θ, Ip and Fp are

repeated patterns of order n. We form:

Ii
p = Ip(r, θi),

2πi

n
≤ θi <

2π(i + 1)
n

, i = 0, . . . , n − 1
(4)

That is we segment the image Ip in n parts Ii
p according to

the recovered so far symmetry information (order and center

of symmetry). Then, we recover a0 by matching any of Ii
p

to Fp using gradient cross-correlation (that is, instead of us-

ing the original images we rather use image gradients). Now,

for perfect bilateral symmetries, it is evident that correlating

any Ii
p with Fp will yield n peaks in the derived correlation

function located at 2a0 + 2πi/n, i = 0, . . . , n − 1. For ro-

tationally but not bilaterally symmetric objects, it is expected

that no dominant peaks will appear. Similarly, for corrupted

reflection symmetries, possibly due to partial occlusion, if Ii
p

is partly or totally corrupted, peaks of small height or no peaks

at all will appear respectively. Nevertheless, assuming that the

corruption is partial, there will always exist a non-corrupted

Ii
p which will yield nc < n dominant peaks in the resulting

correlation.

From the above analysis, it is clear that the proposed scheme

makes full use of the symmetry information to provide local-

ization in the detection of the axes of bilateral symmetry, and

therefore it is much more robust than the global approaches

suggested in [2], [3]. A by-product of the above approach is

the detection of possible occluded parts, which may be use-

ful, for example, for segmentation purposes. Additionally,

we emphasize that the detection process is based on gradi-

ent cross-correlation, a variation of phase correlation based

on image gradients, which is expected to provide sharp peaks

and better localization than standard cross-correlation tech-

niques.

3. RESULTS

In this section we present preliminary results by applying the

presented scheme to real images 1. In Fig. 2a we show an ex-

ample of an image which captures a non-perfect symmetry of

order n = 5 embedded in background clutter. The recovered

periodic pattern obtained by the singular value decomposition

1The pentagon images and the results related with the work in [3] are

directly obtained from the paper.
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of the 2D autocorrelation matrix and its Fourier spectrum are

illustrated in Fig. 2b and 2c respectively. For the same im-

age, the periodic pattern extracted by the approach proposed

in [3] along with its Fourier spectrum are shown in Fig. 2d

and 2e. For this example, it is evident that our scheme yields

an easier estimation of the order of symmetry which can be

identified correctly even with basic spectrum estimation tech-

niques such as Fourier analysis.
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Fig. 2. (a): A a non-perfect symmetry of order 5. (b)-(c)

the periodic pattern v1(l) extracted using SVD and its Fourier

spectrum.(d)-(e): The periodic pattern extracted using the

method in [3] and its Fourier spectrum.

To illustrate the efficiency of our approach in estimat-

ing the axes of bilateral symmetry we consider the corrupted

version of the same image shown in Fig. 1a, for which the

scheme in [3] failed to identify correctly. Figures 3a and 3b

show the 1D gradient cross-correlation functions obtained by

considering the occluded and one non-occluded segment Ii
p

respectively. We may observe that while no dominant peaks

appear in the former case, spikes of large magnitude are evi-

dent in the latter case. The symmetry axes estimated from the

biggest peak are sketched in Fig. 3c. The symmetry axes for

the image in Fig. 1d are also shown in Fig. 3d. We conclude

that the proposed scheme provides good accuracy.

4. CONCLUSIONS

We have presented a frequency domain framework for the de-

tection of symmetries in real images. The approach is able to

estimate the order and center of symmetry, define its type and

identify the possible axes of bilateral symmetry. Preliminary

results show promising performance.

0 1 2 3 4 5 6 7
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

l (rad)

GC(l)

(a)

0 1 2 3 4 5 6 7
0.5

0

0.5

1

1.5

2

2.5

l (rad)

GC(l)

(b)

(c) (d)

Fig. 3. (a)-(b): The 1D gradient cross-correlation functions

for the occluded and one non-corrupted part of the symmetric

pattern in Fig. 1a. (d)-(e): The estimated axes of bilateral

symmetry.
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