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ABSTRACT

We consider estimation of a sparse parameter vector that determines
the covariance matrix of a Gaussian random vector via a sparse ex-
pansion into known “basis matrices.” Using the theory of reproduc-
ing kernel Hilbert spaces, we derive lower bounds on the variance
of estimators with a given mean function. This includes unbiased
estimation as a special case. We also present a numerical compari-
son of our lower bounds with the variance of two standard estimators
(hard-thresholding estimator and maximum likelihood estimator).

Index Terms— Sparsity, sparse covariance estimation, variance
bound, reproducing kernel Hilbert space, RKHS.

1. INTRODUCTION

We consider a Gaussian signal vectors ∈ R
M, s∼N (µ,C) embed-

ded in white Gaussian noisen∼N (0, σ2I). The observed vector is

y = s+ n , (1)

wheres andn are independent and the signal meanµ and noise
varianceσ2 are known. In what follows, we assumeµ= 0 since a
nonzeroµ can always be subtracted froms. The signal covariance
matrixC is unknown; we will parameterize it according to

C = C(x) ,

N
∑

k=1

xkCk , (2)

with unknown nonrandom coefficientsxk ≥ 0 and known positive
semidefinite “basis matrices”Ck. Thus, estimation of the signal
covariance matrixC reduces to estimation of the coefficient vector
x , (x1, . . . , xN)T ∈ R

N
+ .

Our central assumption is thatx is S-sparse, i.e., at mostS coef-
ficientsxk are nonzero. We can formulate this as

x ∈ XS,+ ,
{

x
′∈R

N
+

∣

∣‖x′‖0 ≤ S
}

. (3)

The sparsity degreeS is supposed known; however, the set of po-
sitions of the nonzero entries ofx (denoted bysupp(x); note that
|supp(x)| = ‖x‖0 ≤ S) is unknown. Typically,S ≪N . We will
refer to (1)–(3) as thesparse covariance model(SCM). The SCM
and estimation ofx are relevant, e.g., in time-frequency (TF) anal-
ysis [1, 2], where the basis matricesCk correspond to disjoint TF
regions andxk represents the mean signal power in thek th TF re-
gion. An application is cognitive radio scene analysis [3].

The problem we will study is estimation ofz , g(x) ∈ R
K

from y, whereg(·) is a known function. This includes estimation
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of x and, less trivially, of a linear combination of thexk. In the TF
application mentioned above, the latter case corresponds to a linear
combination of the mean signal powers in the various TF regions.

In this paper, building on [4, 5], we use the theory ofreproduc-
ing kernel Hilbert spaces(RKHS) to derive lower bounds on the
variance of estimators ofz. The estimators are required to have a
prescribed differentiable mean function; this includes the case of un-
biased estimation. They are allowed to exploit the known sparsity of
x. The RKHS framework has been previously proposed for a funda-
mentally different problem of sparsity-exploiting estimation in [6].

Sparsity-exploiting estimation ofC and ofC−1 was considered
recently in [7] and in [8], respectively. In both cases, the sparsity as-
sumption was placed onC−1, which corresponds to a sparse graph-
ical model fors. Our SCM approach (2), (3) is clearly different:
while the coefficient vectorx is assumed sparse, the matricesC or
C−1 need not be sparse.

This paper is organized as follows. In Section 2, we review
minimum-variance estimation and the RKHS framework. In Sec-
tion 3, we use RKHS theory to derive lower variance bounds forthe
SCM. The special case of unbiased estimation is considered in Sec-
tion 4. Finally, Section 5 presents a numerical comparison of our
bounds with the variance of two established estimation schemes.

2. RKHS FORMULATION OF MINIMUM-VARIANCE
ESTIMATION

2.1. Minimum-Variance Estimation

The estimation error incurred by an estimatorẑ(y) of z = g(x)

can be quantified by the mean squared error (MSE)ε(ẑ(·),x) ,

Ex

{

‖ẑ(y)− z‖22
}

, where the notationEx{·} indicates that the ex-
pectation is taken with respect to the pdff(y;x) parameterized by
x. According to our assumptions in Section 1,

f(y;x) =
exp

(

− 1
2
yT C̃−1(x)y

)

[

(2π)Mdet
{

C̃(x)
}]1/2

, with C̃(x) , C(x) + σ2
I.

(4)

Let zk and ẑk(y) denote thek th entries ofz and ẑ(y), respec-
tively. We haveε(ẑ(·),x) =

∑N
k=1 ε(ẑk(·),x), whereε(ẑk(·),x)

, Ex

{

[ẑk(y) − zk]
2
}

denotes thek th component MSE. For our
scope, minimization ofε(ẑ(·),x) with respect tôz(·) is equivalent
to separate minimization of each component MSEε(ẑk(·),x) with
respect tôzk(·). We furthermore have

ε(ẑk(·),x) = b2(ẑk(·),x) + v(ẑk(·),x) , (5)

with the component biasb(ẑk(·),x) , Ex{ẑk(y)} − zk and the
component variancev(ẑk(·),x) , Ex

{

[ẑk(y)− Ex{ẑk(y)}]
2
}

. A
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common approach to defining a “locally optimal” estimatorẑk(·)
is to requireb(ẑk(·),x) = ck(x) for all x ∈ XS,+, with a given
bias functionck(x), and look for estimators that minimize the vari-
ancev(ẑk(·),x) at a given parameter vectorx=x0 ∈XS,+. It fol-
lows from (5) that once the bias is fixed, minimizingv(ẑk(·),x0) is
equivalent to minimizingε(ẑk(·);x0). Furthermore, fixing the bias
is equivalent to fixing the mean, i.e., requiring thatEx{ẑk(y)} =

γk(x) for all x ∈ XS,+, whereγk(x) , ck(x) + gk(x).
In what follows, we consider a fixed componentk and drop the

subscriptk for better readability. Furthermore, we consider a given
mean functionγ(x) (short forγk(x)) and a given nominal param-
eter vectorx0. We are interested in the minimum variance atx0

achievable by estimatorŝz(·) (short forẑk(·)) that have mean func-
tion γ(x) for all x ∈ XS,+. In order to derive a lower bound on
this achievable variance, let us consider some subsetD⊆XS,+. We
denote byBD

γ (x0) the set of all scalar estimatorŝz(·) whose mean
equalsγ(x) for all x∈D (however, not necessarily for allx∈XS,+)
and whose variance atx0 is finite, i.e.,

BD
γ (x0) ,

{

ẑ(·)
∣

∣Ex{ẑ(y)}= γ(x) ∀x∈D , v(ẑ(·),x0)<∞
}

.

If BD
γ (x0) is nonempty, we consider the minimum variance achiev-

able at the given parameter vectorx0 by estimatorŝz(·)∈BD
γ (x0):

LD
γ (x0) , min

ẑ(·)∈BD
γ (x0)

v(ẑ(·),x0) . (6)

The use ofmin (rather thaninf) in (6) is justified by the fact that the
existence of a finite minimum can always be guaranteed by a proper
choice ofD; a sufficient condition will be provided in Section 2.2.

BecauseD⊆XS,+, LD
γ (x0) is a lower bound on the variance at

x0 of any estimator̂z(·) whose mean isγ(x) for all x∈XS,+ (and
not just for allx∈D), i.e.,

LD
γ (x0) ≤ v(ẑ(·),x0) , for any ẑ(·) such that

Ex{ẑ(y)} = γ(x) ∀x∈XS,+ . (7)

2.2. RKHS Formulation

An inner product of two real random variablesa = a(y), b = b(y)

can be defined as〈a, b〉RV , Ex0
{a(y)b(y)}, with induced norm

‖a‖RV =
√

〈a, a〉RV =
√

Ex0
{a2(y)}. Note the dependence on

x0. One can show that (6) can be rewritten formally as the following
constrained norm-minimization problem:

LD
γ (x0) = min

ẑ(·)
‖ẑ‖2RV − γ2(x0)

subject to 〈ẑ, ρx〉RV = γ(x) ∀x∈D . (8)

Furthermore, ifBD
γ (x0) is nonempty, the existence of a finite mini-

mum in (6), (8) can be guaranteed by choosingD such that [4, 5]

‖ρx‖
2
RV ≡ Ex0

{

ρ2x(y)
}

< ∞ ∀x∈D , (9)
where

ρx(y) ,
f(y;x)

f(y;x0)
. (10)

According to [4], the solutions of (8) can be described usingan
RKHSH(R) with kernelR(x1,x2) : D×D → R given by

R(x1,x2) = 〈ρx1
, ρx2

〉RV = Ex0
{ρx1

(y)ρx2
(y)} . (11)

Note thatR(x1,x2) andH(R) depend onx0. Inserting (10) and (4)
into (11) yields the expression

R(x1,x2) =
[

det
{

C̃(x0)
}]1/2[

det
{

C̃(x1)C̃(x2)

·
(

C̃
−1(x1) + C̃

−1(x2)− C̃
−1(x0)

)}]−1/2
, (12)

where as beforẽC(x) = C(x)+σ2I. The RKHSH(R) is a Hilbert
space of functionsf : D → R that is defined as the closure of the
linear span of the set of functions{fx′(x) = R(x,x′)}

x′∈D
This

closure is taken with respect to the topology that is given bythe
inner product〈· , ·〉

H(R) defined via thereproducing property[9]

〈

f(·), R(·,x′)
〉

H(R)
= f(x′) , f ∈H(R) , x′∈D .

The induced norm is‖f‖
H(R) =

√

〈f, f〉
H(R).

It can be shown [4,9] that ifD satisfies (9), thenγ∈H(R) is nec-
essary and sufficient forBD

γ (x0) to be nonempty and the minimum
valueLD

γ (x0) in (6), (8) to exist and be given by

LD
γ (x0) = ‖γ‖2

H(R) − γ2(x0) . (13)

3. LOWER BOUNDS ON THE ESTIMATOR VARIANCE

According to (13), any lower bound on‖γ‖2
H(R) entails a lower

bound onLγ(x0). For mathematical tractability, we hereafter as-
sume that the basis matricesCk in (2) are projection matrices on
orthogonal subspaces ofRM. Thus, they can be written as

Ck =

rk
∑

i=1

umk,iu
T
mk,i

, k = 1, . . . , N , (14)

where{um}m=1,...,M is an orthonormal basis forRM and the sets
Uk , {umk,i}i=1,...,rk

are disjoint, so that they span orthogonal

subspaces ofRM. We note that (2) and (14) correspond to a latent
variable models =

∑N
k=1 sk with sk =

∑rk
i=1 ξmk,iumk,i , where

theξmk,i are independent zero-mean Gaussian with variancexk for
all i, i.e., ξmk,i ∼ N (0, xk). This is similar to the latent variable
model used in probabilistic principal component analysis [10] except
that our “factors”um are fixed. With (14), the kernel expression in
(12) simplifies to

R(x1,x2) =

N
∏

k=1

(x0,k+σ2)rk

N
∏

k=1

[

(x0,k+σ2)2 − (x1,k−x0,k)(x2,k−x0,k)
]rk/2

,

where, e.g.,x0,k denotes thek th entry ofx0. We will refer to the
SCM with basis matricesCk of the form (14) as thesparse diagonal-
izable covariance model(SDCM).1 It can be shown that, within the
SDCM, a sufficient condition for (9)—and, thus, for the existence of
a minimum in (6), (8)—isxk < 2x0,k +σ2 for all k ∈ {1, . . . , N}.
Therefore, we choose our domain as

D =
{

x∈XS,+

∣

∣xk< 2x0,k +σ2 ∀ k ∈ {1, . . . , N}
}

.

Note thatD depends onx0.
We will now derive a lower bound on‖γ‖2

H(R) for the SDCM.
Let us assume for the moment thatγ∈H(R). ConsiderL functions
vl(x), l = 1, . . . , L, with vl : D → R andvl ∈ H(R), which are
orthogonal, i.e.,〈vl, vl′〉H(R) = 0 if l 6= l′. Let V denote the sub-
space ofH(R) spanned by thevl, andPV the orthogonal projection
operator onV. Clearly, a lower bound on‖γ‖2

H(R) is given by

‖PVγ‖
2
H(R) ≤ ‖γ‖2

H(R) . (15)

1Indeed, for the SDCM, the covariance matrixC(x) can bediagonalized
by a signal transformations′ = Us, with a unitary matrixU that does not
depend on the true parameter vectorx.



This lower bound can be expressed as

‖PVγ‖
2
H(R) =

L
∑

l=1

|〈γ, vl〉H(R)|
2

‖vl‖
2
H(R)

. (16)

A convenient construction of functionsvl(x) is via partial deriva-
tives ofR(x1,x2) with respect tox2 [4]. Consider an index setK
containing exactlyS indices from{1, . . . , N}, i.e.,K⊆ {1, . . . , N}
and|K|= S. Furthermore letpl = (pl,1, . . . , pl,N ) ∈ N

N
0 beL dif-

ferent multi-indices satisfyingsupp(pl)⊆K. We then define

vl(x) ,
∂plR(x,x2)

∂x
pl
2

∣

∣

∣

∣

x2=x
K
0

, l = 1, . . . , L , (17)

where∂pl f(x)
∂xpl

,

(

∏N
k=1

∂
pl,k

∂x
pl,k
k

)

f(x) andxK
0 is obtained fromx0

by zeroing all entries except those whose indices are inK. It can be
verified that the functionsvl are orthogonal, i.e.,

〈vl, vl′〉H(R) = ql(x0)δl,l′ , (18)

whereql(x0) =
∂pl∂plR(x1,x2)

∂x
pl
1

∂x
pl
2

∣

∣

∣

x1=x2=x
K
0

. Furthermore [4],

〈f, vl〉H(R) =
∂plf(x)

∂xpl

∣

∣

∣

∣

x=x
K
0

for any f ∈H(R) . (19)

Using (18) and (19) in (16), we obtain

‖PVγ‖
2
H(R) =

L
∑

l=1

1

ql(x0)

∣

∣

∣

∣

∣

∂plγ(x)

∂xpl

∣

∣

∣

∣

x=x
K
0

∣

∣

∣

∣

∣

2

. (20)

Finally, combining (7), (13), (15), and (20), we arrive at the follow-
ing bound. (Hereafter, we again explicitly indicate the indexk.)

Theorem 3.1. For the SDCM, let̂zk(·) be any estimator ofzk =
gk(x) whose mean equalsγk(x) for all x ∈ XS,+ and whose vari-
ance at a fixedx0 ∈ XS,+ is finite. Then, this variance satisfies

v(ẑk(·),x0) ≥
L
∑

l=1

1

ql(x0)

∣

∣

∣

∣

∣

∂plγk(x)

∂xpl

∣

∣

∣

∣

x=x
K
0

∣

∣

∣

∣

∣

2

− γ2
k(x0) , (21)

for any choice ofL differentpl ∈ N
N
0 such thatsupp(pl) ⊆ K,

whereK ⊆ {1, . . . , N} is an arbitrary set ofS different indices.
The lower bound(21) is achieved by an estimator̂zk(·) if and only
if there are nonrandom coefficientsal∈R such that

ẑk(y) =

L
∑

l=1

al
∂plρx(y)

∂xpl

∣

∣

∣

∣

x=x
K
0

with the random variablesρx(y) being defined in(10).

Note that the bound in (21) depends onγk(x) only via a finite
number of partial derivatives ofγk(x) at x = xK

0 . Thus, it only
depends on the local behavior of the prescribed mean or bias.We
furthermore note that Theorem 3.1 does not mention the condition
γk ∈H(R) we used in its derivation. This is no problem because it
can be shown [4] that ifγk /∈ H(R), there exists no estimator that
has meanγk(x) for all x ∈XS,+ and finite variance atx0.

4. SPECIAL CASE: UNBIASED ESTIMATION

In this section, we evaluate the bound (21) for the importantspe-
cial case of unbiased estimation ofx, i.e., forzk = gk(x)= xk and
ck(x)≡ 0 or equivalentlyγk(x) = xk. To obtain a simple expres-
sion, we useL = 2 and particular choices ofK andpl (l = 1, 2).
Specifically, usingK = {k} ∪ L, whereL consists of the indices
of theS−1 largest entries of the vector that is obtained fromx0 by
zeroing thekth entry, andp1 = 0 andp2 = ek, whereek denotes
thek th column of the identity matrix, the following variance bound
is obtained from Theorem 3.1.

Corollary 4.1. For the SDCM, let̂xk(·) be any estimator ofxk that
is unbiased (i.e.,γk(x) = xk) for all x ∈ XS,+ and whose variance
at a fixedx0 ∈ XS,+ is finite. Then, this variance satisfies

v(x̂k(·),x0)

≥



















2

rk
(x0,k +σ2)2, k ∈ supp(x0)

2

rk

σ4
[(

ξ(x0)+σ2
)2

− ξ2(x0)
]rj0/2

(

ξ(x0)+σ2
)rj0

, k 6∈ supp(x0),

(22)
whereξ(x0), j0 denote the value and index respectively of theS-
largest entry ofx0.

The lower bound (22) can be achieved at least in the following
two cases: (i) ifk ∈ supp(x0), and (ii) for anyk ∈ {1, . . . , N} if
‖x0‖0 < S (note that this condition impliesξ(x0) = 0). In both
cases, the estimator given by

x̂k(y) = βk(y)−σ2, with βk(y) ,
1

rk

rk
∑

i=1

(

u
T
mk,i

y
)2
,

(23)

is unbiased and its variance achieves the bound (22). This estimator
does not use the sparsity information and does not depend onx0.

Let us define a “signal-to-noise ratio” (SNR) quantity as SNR,

ξ(x0)/σ
2. For SNR(x0)≪1, the lower bound (22) is approximately

2
rk

(x0,k + σ2)2 for anyk, which does not depend onS and more-
over equals the variance of the unbiased estimator (23). Since that
estimator does not exploit any sparsity information, Corollary 4.1
suggests that, in the low-SNR regime, unbiased estimators cannot
exploit the prior information thatx is S-sparse. However, in the
high-SNR regime (SNR(x0)→∞), (22) becomes2

rk
(x0,k + σ2)2

for k ∈ supp(x0) and0 for k 6∈ supp(x0), which can be shown
to equal the variance of the oracle estimator that knowssupp(x0)
(this oracle estimator yieldŝxk = x0,k = 0 for all k 6∈ supp(x0)).
The transition of the lower bound (22) from the low-SNR regime
to the high-SNR regime has a polynomial characteristic; it is thus
much slower than the exponential transition of an analogouslower
bound recently derived in [6] for thesparse linear model. This slow
transition suggests that the optimal estimator for low SNR—which
ignores the sparsity information—will also be nearly optimal over a
relatively wide SNR range. This further suggests that, for covariance
estimation based on the SDCM, prior information of sparsityis not
as helpful as for estimating the mean of a Gaussian random vector
based on the sparse linear model [6].

In the special case whereS=1 andx0 6=0, let ξ0 andj0 denote,
respectively, the value and index of the single nonzero entry of x0 ∈
X1,+. Consider the estimator̂x(x0)(·) given componentwise by

x̂
(x0)
k (y) =

{

βk(y)−σ2, k = j0

α(y;x0)
(

βk(y)−σ2
)

, k 6= j0 ,
(24)



whereα(y;x0) , a(x0) exp
(

− rj0b(x0)βj0(y)
)

with a(x0) ,
[(ξ0+σ2)2−ξ20 ]

rj0
/2

σ
rj0 (ξ0+σ2)

rj0
/2 andb(x0) , 1

2

(

1
σ2 − 1

ξ0+σ2

)

. One can show

using RKHS theory that̂x(x0)(·) is unbiased and has the minimum
variance achievable by unbiased estimators at anyx0 ∈ X1,+ with
x0 6= 0. Note that this estimator depends explicitly on the assumed
x0, at which it achieves minimum variance; its performance maybe
poor when the true parameter vectorx is different fromx0.

5. NUMERICAL RESULTS

We compare the lower bound (21) forg(x) = x with the variance
of two standard estimators. The first is an ad-hoc adaptationof the
hard-thresholding (HT) estimator [11] to SDCM-based covariance
estimation. It is defined componentwise as (cf. (23))

x̂k,HT(y) ,
1

rk

rk
∑

i=1

ϕ2
τ

(

u
T
mk,i

y
)

− σ2,

whereϕτ : R → R denotes the hard-thresholding function with
thresholdτ ≥ 0, i.e.,ϕτ (y) is y for |y| ≥ τ and0 else. The second
standard method is the maximum likelihood (ML) estimator

x̂ML (y) , argmax
x′∈XS,+

f(y;x′) .

For the SDCM, one can show that

x̂k,ML (y) =

{

βk(y)−σ2, k ∈ L1∩L2

0 , else,

whereL1 consists of theS indicesk for which rk
[

βk(y)/σ
2 −

ln(βk(y)/σ
2)−1

]

(with ln = loge) is largest, andL2 consists of all
indicesk for whichβk(y)≥ σ2.

For a numerical evaluation, we considered the SDCM withN=5,
S = 1, σ2 = 1, andCk = eke

T
k . We generated parameter vectors

x0 with j0 = 1 and differentξ0. In Fig. 1, we show the variance
at x0, v(x̂(·),x0) =

∑N
k=1 v(x̂k(·),x0) (computed by means of

numerical integration), for the HT estimator using variouschoices
of τ and for the ML estimator. The variance is plotted versus
SNR = ξ(x0)/σ

2 = ξ0/σ
2. Along with each variance curve, we

display a corresponding lower bound that was calculated by evalu-
ating (21) for eachk, using forγk(x) the mean function of the re-
spective estimator (HT or ML), and summing over allk. (The mean
functions of the HT and ML estimators were computed by means of
numerical integration.) In evaluating (21), we used partial deriva-
tives of order at most1 in (17), and we chose for the evaluation of
the lower boundL=2, K= {k}, p1=0, andp2= ek. In Fig. 1, all
variances and bounds are normalized by2(ξ0 + σ2)2, which is the
variance of the oracle estimator knowingj0.

It can be seen from Fig. 1 that in the high-SNR regime, for bothes-
timators, the gap between the variance and the corresponding lower
bound is quite small. This indicates that the performance ofboth
estimators is nearly optimal. However, in the low-SNR regime, the
variances of the estimators tend to be significantly higher than the
bounds. This means that theremaybe estimators with the same bias
and mean function as that of the HT or ML estimator but a lower
variance. However, the actual existence of such estimatorsis not
shown by our analysis.

6. CONCLUSION

We considered estimation of (a function of) a sparse vectorx that
determines the covariance matrix of a Gaussian random vector via a

 

 

PSfrag replacements

SNR [dB]
−20 −10 0 10 20 30
0

1

2

3

va
ri

an
ce

/b
ou

nd

bound onv(x̂ML (·);x0)

v(x̂ML (·);x0)

v(x̂HT(·);x0), τ=3

v(x̂HT(·);x0), τ=6

v(x̂HT(·);x0), τ=9

bound onv(x̂HT(·);x0), τ=3

bound onv(x̂HT(·);x0), τ=6

bound onv(x̂HT(·);x0), τ=9

ML

HT(τ=3)
HT(τ=6)

HT(τ=9)

Fig. 1. Normalized variance of the HT and ML estimators and cor-
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parametric covariance model. Using RKHS theory, we derivedlower
bounds on the estimator variance for a prescribed bias and mean
function. For the important special case of unbiased estimators of
x, we found that the transition of our bounds from low to high SNR
is significantly slower than that of analogous bounds for thesparse
linear model [6]. This suggests that the prior information of sparsity
is not as helpful as for the sparse linear model. Numerical results
showed that for low SNR, the variance of two standard estimators
(hard-thresholding estimator and maximum likelihood estimator) is
significantly higher than our bounds. Hence, there might exist esti-
mators that have the same bias and mean function as these standard
estimators but a smaller variance.
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