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ABSTRACT of x and, less trivially, of a linear combination of the. In the TF
application mentioned above, the latter case correspandsinear
combination of the mean signal powers in the various TF regio

In this paper, building or[4]5], we use the theoryreproduc-
ing kernel Hilbert space$RKHS) to derive lower bounds on the
variance of estimators of. The estimators are required to have a
prescribed differentiable mean function; this includescthse of un-
biased estimation. They are allowed to exploit the knowmssfyeof
x. The RKHS framework has been previously proposed for a funda
mentally different problem of sparsity-exploiting estioa in [6].
Index Terms— Sparsity, sparse covariance estimation, variance Sparsity-exploiting estimation o and of C~! was considered

We consider estimation of a sparse parameter vector thaxtrdietes
the covariance matrix of a Gaussian random vector via a spgars
pansion into known “basis matrices.” Using the theory ofoejoic-
ing kernel Hilbert spaces, we derive lower bounds on theavag
of estimators with a given mean function. This includes asbd
estimation as a special case. We also present a numericglacbm
son of our lower bounds with the variance of two standaravestrs
(hard-thresholding estimator and maximum likelihoodraator).

bound, reproducing kernel Hilbert space, RKHS. recently in[7] and in[[8], respectively. In both cases, tharsity as-
sumption was placed o ~%, which corresponds to a sparse graph-
1. INTRODUCTION ical model fors. Our SCM approacH12)[3) is clearly different:

while the coefficient vectoxk is assumed sparse, the matri€eor
C~! need not be sparse.
This paper is organized as follows. In Sectldn 2, we review
y=s+n, (1)  minimum-variance estimation and the RKHS framework. In-Sec
tion[3, we use RKHS theory to derive lower variance boundsHer
wheres andn are independent and the signal mgarand noise  SCM. The special case of unbiased estimation is consider8ed-
variances? are known. In what follows, we assurpe=0 since a  tion[d. Finally, Sectiofi]5 presents a numerical comparisoauo

nonzerop can always be subtracted frasn The signal covariance  bounds with the variance of two established estimationraeise
matrix C is unknown; we will parameterize it according to

We consider a Gaussian signal veatar R, s ~ A (u, C) embed-
ded in white Gaussian noise~ N (0, o°I). The observed vector is

N 2. RKHS FORMULATION OF MINIMUM-VARIANCE
C=C(x) 2> xCy, 2 ESTIMATION

k=1
with unknown nonrandom coefficients. > 0 and known positive 2.1. Minimum-Variance Estimation

semidefinite “basis matricesC;. Thus, estimation of the signal The estimation error incurred by an estimaggy) of z = g(x)
covariance matrbxC reduces to estimation of the coefficient vector can pe quantified by the mean squared error (MSE):), x) £

N h . .
x2 (z1,...,2n)  €RY. _ _ Ex{||z(y) — z||3}, where the notatiolE.{-} indicates that the ex-
~ Our central assumption is thatis S-sparsgi.e., at mostS coef-  pectation is taken with respect to the pélfy; x) parameterized by
ficientsz, are nonzero. We can formulate this as x. According to our assumptions in Sectldn 1,
x € Xs 4 2 {x'eRY||x']l, < S}. (3)

o exp(—3y'CT'x)y) o . 2
The sparsity degre§ is supposed known; however, the set of po- flyix) = [(27) det {C(x)}] 17z » With C(x) = C(x) + oL
sitions of the nonzero entries &f (denoted bysupp(x); note that 4
lsupp(x)| = [|x[[, < 5) is unknown. Typically,5 < N. We will Let z;, and 2, (y) denote thekth entries ofz andz(y), respec-
refer to [1)-(B) as theparse covariance mod¢sCM). The SCM  iyely We haves(z(-), x) = SN e((-),x), wheree((-), x)
an_d estimation ok are relt_avant, e.g., in tlme-frequency (_T_F) anal- o Ex{[(y) — z]?} denotes the:th component MSE. For our
ysis [1]2], where the basis matric€%, correspond to disjoint TF scope, minimization of (2(-), x) with respect tca(-) is equivalent

regions andrk_ represents th_e_ mean signal power in i TF re- to separate minimization of each component MSE;(-), x) with
gion. An application is cognitive radio scene analysis [3]. respect tc. (). We furthermore have
The problem we will study is estimation af £ g(x) € R¥ P k-

from y, whereg(-) is a known function. This includes estimation cGr(-),x) = b2(2(), %) + v(3k(-), x) )
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$10603-N13 within the National Research Network SISE, gntieWwTF  With the component bias(2x(+), x) = Ex{Zx(y)} — z» and the
under Grant MA 07-004 (SPORTS). component variance(2x (-),x) £ Ex{[2x(y) — Ex{2:(y)}*}. A


http://arxiv.org/abs/1101.3838v1

common approach to defining a “locally optimal” estimagq(-)
is to requireb(2x(-),x) = cx(x) for all x € X5+, with a given

bias functioncy (x), and look for estimators that minimize the vari- linear span of the set of functios/, (x) = R(x,x’)}

ancev(zx (), x) at a given parameter vectar=xg € Xs, . It fol-
lows from [B) that once the bias is fixed, minimizin¢z, (), xo) is
equivalent to minimizing (2, (+); xo0). Furthermore, fixing the bias
is equivalent to fixing the mean, i.e., requiring tf&at{ 2, (y)} =
v (x) for all x € Xs, 4, whereyy (x) £ cx(x) + gr(x).

In what follows, we consider a fixed componéntind drop the

subscriptk for better readability. Furthermore, we consider a given

mean functiorny(x) (short forv;(x)) and a given nominal param-
eter vectorxg. We are interested in the minimum variancexat
achievable by estimato#s-) (short forZ,(-)) that have mean func-
tion y(x) for all x € Xs,+. In order to derive a lower bound on
this achievable variance, let us consider some subsetts ;. We
denote byB? (xo) the set of all scalar estimatogg-) whose mean
equalsy(x) for all x € D (however, not necessarily for alle X's )
and whose variance &t is finite, i.e.,

B,?(xo) £ {2()’ Ex{2(y)} =~(x) Vx€D, v(2(-),x0) < oo} .

If BY (x0) is nonempty, we consider the minimum variance achiev-

able at the given parameter vectay by estimatorss(-) € BY (xo):
L7 (x0) = v(2(), %0) ©)

The use ofnin (rather tharinf) in (@) is justified by the fact that the
existence of a finite minimum can always be guaranteed by@epro
choice ofD; a sufficient condition will be provided in SectibnP.2.

min
£()€BD (xo)

where as befor€(x) = C(x) +¢*I. The RKHSH(R) is a Hilbert
space of functiong : D — R that is defined as the closure of the
<ep This
closure is taken with respect to the topology that is giverthsy
inner product(, -)H(R) defined via theeproducing property9]

<f(')7R(',X,)>,H(R) = f(xl)7 fGH(R), X,ED.

The induced norm i§ f|l,, )y = 1/ {f, a(r)-

It can be showr{[4]9] that i satisfies[(D), thery € H(R) is nec-
essary and sufficient fdfs‘f (x0) to be nonempty and the minimum

valueL? (xo) in (8), (8) to exist and be given by

LY (x0) = [Vl13(r) — 7*(x0) - (13)

3. LOWER BOUNDS ON THE ESTIMATOR VARIANCE

According to [IB), any lower bound OFTWH?{(R) entails a lower
bound onL,(x0). For mathematical tractability, we hereafter as-
sume that the basis matric€%, in (2) are projection matrices on
orthogonal subspaces Bf. Thus, they can be written as

Tk
T
Cy, = g Umy ;Umy, ;s k

i=1

1. (14)
where{u,n},,_, ,, is an orthonormal basis f@&"' and the sets

U, = {umk’i}izlw-wf'k are disjoint, so that they span orthogonal

BecauseD C Xs 4, L (xo) is a lower bound on the variance at Subspaces dR". We note that[(2) and(14) correspond to a latent

xo of any estimatog(-) whose mean ig/(x) for all x € X’s, + (and
not just for allx € D), i.e.,

LY (x0) < v(2(-),%0), foranyz(-)such that
Ex{2(y)} = v(x) Vx€Xs . (7)
2.2. RKHS Formulation

An inner product of two real random variables= a(y), b = b(y)
can be defined a&:, b)r, = Ex,{a(y)b(y)}, with induced norm
lalley = V/{@,a)gy = VExo{a2(y)}. Note the dependence on
xo. One can show thdt(6) can be rewritten formally as the fahgw
constrained norm-minimization problem:

L3 (x0) = min |12z = 7*(x0)
subject to (2, px)gy = V(x) Vx€D. (8)

Furthermore, iTB‘E(xO) is nonempty, the existence of a finite mini-
mum in [8), [8) can be guaranteed by choosIhguch that{[4.55]

pxllay = Exo{px(y)} < 00 Vx€D, ©)
where
2 Jy;x)

According to [4], the solutions of [8) can be described using
RKHS H(R) with kernel R(x1,x2): DxD — R given by
R(x1,%2) <px17px2>Rv = Ex(){pxl (y)pxz()’)}‘ (11)

Note thatR(x1, x2) andH (R) depend orx,. Inserting [ID) and{4)
into (1) yields the expression

R(x1,x2) = [det{C(x0)}]"* [det{C(x1)C(x2)
(C7M 1) + € (xe) — €7 (x0)) Y] TV (12)

variable modek = >°. | si With sy = 3°7% | &m, , Um, ,, Where
the¢,,,, , are independent zero-mean Gaussian with variander

all 4, i.e.,fm,m. ~ N(0,z). This is similar to the latent variable
model used in probabilistic principal component analys@§ pxcept
that our “factors™u,, are fixed. With[(T%), the kernel expression in
(TI2) simplifies to

N .
1T (o +0°)"*
k=1

R(x1,%x2) = — )
[T [(@o,k+02)2 = (21,6 — 2o,k) (2,6 — To,k)] T/
k=1
where, e.g.xo,; denotes theé:th entry ofxo. We will refer to the
SCM with basis matrice€}, of the form [14) as theparse diagonal-
izable covariance modéSDCM) It can be shown that, within the
SDCM, a sufficient condition fof {9)—and, thus, for the egiste of
a minimum in (), [(B)—iscx < 2xo +o>forallk e {1,...,N}.
Therefore, we choose our domain as

D = {x€Xsi|zp<2z0r+0° Vke{l,...,N}}.

Note thatD depends oxo.

We will now derive a lower bound Oﬁ’YHi(R) for the SDCM.
Let us assume for the moment that #(R). ConsiderL functions
v(x), ! =1,...,L, withv; : D — R andv; € H(R), which are
orthogonal, i.e.{vi, vV)H(R) =0if I #1'. LetV denote the sub-
space off{(R) spanned by the;, andPy the orthogonal projection
operator on). Clearly, a lower bound oﬂw||f_[(m is given by

||PV'Y||§-¢(R) < H'VH?-L(R)- (15)

lindeed, for the SDCM, the covariance mat€iXx) can bediagonalized
by a signal transformatios’ = Us, with a unitary matrixU that does not
depend on the true parameter vector



This lower bound can be expressed as

(v Ul)y(R)|2

L
Py = D (16)

2
e (]| PP
A convenient construction of functiong(x) is via partial deriva-
tives of R(x1,x2) with respect tax [4]. Consider an index se€
containing exactly indices from{1, ..., N},i.e, K C{1,...,N}
and|K| = S. Furthermore lep; = (pi.1, ..., pi.~) € NY be L dif-
ferent multi-indices satisfyingupp(p;) C K. We then define

P
wio 2 L)y L ap
8X2 xp=xK
2 0
whereZ L) 2 (Hk ) ‘9p;fl’“k )f(x) andx} is obtained fromx,

by zeroing all entries except those whose indices afé.iit can be
verified that the functions; are orthogonal, i.e.,

<Ul7vl/>7.[(R) = Ql(X())5l,l/ s (18)

OPLOPl R(x1,x2)

whereg;(xo) = . Furthermore[4],

Bxllax2 X]=X2=X(y
P ()
<f7 vl)H(R) = W o for any fEH(R) . (29)
-0
Using [18) and[(19) i (16), we obtain
2 L 1 |OPy(x) 20
|‘PV7|‘H(R) - lz:; QL(XO) 8Xpl i ( )

Finally, combining[(¥),[(2B)[{15), anf (R0), we arrive at flollow-
ing bound. (Hereafter, we again explicitly indicate thedrd.)

Theorem 3.1. For the SDCM, leté;(-) be any estimator of, =
gx(x) whose mean equalg; (x) for all x € Xs,+ and whose vari-
ance at a fixetko € Xgs,+ is finite. Then, this variance satisfies

2
- 713 (X0)7 (21)

@
><
S

M ’

xPl

X:x}C

0
for any choice ofL differentp; € N{’ such thatsupp(p;) C K,
where K C {1,..., N} is an arbitrary set ofS different indices.
The lower boundZ)) is achieved by an estimata,(-) if and only
if there are nonrandom coefficienigsc R such that

L
psz ’

: : P

T oxPr e

= -0
with the random variablegx (y) being defined iff10).

Note that the bound if{21) depends 9p(x) only via a finite
number of partial derivatives ofy(x) at x = x&. Thus, it only
depends on the local behavior of the prescribed mean or bies.
furthermore note that Theordm B.1 does not mention the tiondi

i € H(R) we used in its derivation. This is no problem because it
can be showr([4] that iy, ¢ H(R), there exists no estimator that

has meany; (x) for all x € X5, and finite variance ato.

4. SPECIAL CASE: UNBIASED ESTIMATION

In this section, we evaluate the bould](21) for the importgpe-
cial case of unbiased estimationxfi.e., for z; = gx(x) =z, and
¢k (x) =0 or equivalentlyy, (x) = z. To obtain a simple expres-
sion, we usel, = 2 and particular choices df andp; (I = 1, 2).
Specifically, usingC = {k} U £, whereL consists of the indices
of the S—1 largest entries of the vector that is obtained fremby
zeroing thekth entry, andp: = 0 andp2 = ex, wheree; denotes
the kth column of the identity matrix, the following variance bal
is obtained from Theorefm 3.1.

Corollary 4.1. For the SDCM, letix(-) be any estimator of, that
is unbiased (i.ex(x) = x) forall x € Xs . and whose variance
at a fixedxo € Xs + is finite. Then, this variance satisfies

v(Zx(+), %o)
2
_(xoak + 02)27
Tk

3 ot [(f(xo)+02)2 _ 62(X0)]7"jo/2
Tk ({(xo)—i—UQ)TjO ’

k € supp(xo)

\Y]

k & supp(xo),

(22)
where{(xo), jo denote the value and index respectively of fhe
largest entry ofxo.

The lower bound[{22) can be achieved at least in the following
two cases: (i) ift € supp(xo), and (ii) for anyk € {1,..., N} if
Ixoll, < S (note that this condition implieg(xo) = 0). In both
cases, the estimator given by

Tk

1
2 7._ Z (uﬁkm y)27
i=1 (23)

is unbiased and its variance achieves the bound (22). Ttiisasr
does not use the sparsity information and does not depesd.on

Let us define a “signal-to-noise ratio” (SNR) quantity as S8R
&(x0)/0% For SNRx) < 1, the lower bound{d2) is approximately
= (wo,1 +0?)? for any k, which does not depend dfiand more-
over equals the variance of the unbiased estimafdr (23)ceShat
estimator does not exploit any sparsity information, Cargll4.1
suggests that, in the low-SNR regime, unbiased estimatoreat
exploit the prior information thak is S-sparse. However, in the
high-SNR regime (SNRxo) — oc), (22) becomes™ (o, + o*)°
for k € supp(xo) and0 for k£ ¢ supp(xo), which can be shown
to equal the variance of the oracle estimator that knewysp(xo)
(this oracle estimator yield8, = xo,, = 0 for all & & supp(xo)).
The transition of the lower boun@_(22) from the low-SNR regim
to the high-SNR regime has a polynomial characteristics ithus
much slower than the exponential transition of an analodowsr
bound recently derived in [6] for theparse linear modelThis slow
transition suggests that the optimal estimator for low SNiieh
ignores the sparsity information—will also be nearly oglraver a
relatively wide SNR range. This further suggests that, fmaciance
estimation based on the SDCM, prior information of sparsityot
as helpful as for estimating the mean of a Gaussian randoiorvec
based on the sparse linear model [6].

In the special case whefe=1 andx, #0, let&, andj, denote,
respectively, the value and index of the single nonzerg/efdtk, €
X, 4. Consider the estimater™°)(.) given componentwise by

i(xo)(y)_{ﬁk(y)_ojv k= jo
g a(y;xo) (Bk(y) —o?), k# jo,

ir(y) = Be(y) — o, with Bu(y)

(24)



wherea(y;xo) £ a(xo)exp

242 _ 21750 /2
ley 0202 oy

Tio
1 1
o0 (g0+0)" 3 (7~ ).
using RKHS theory that*0)(.) is unbiased and has the minimum
variance achievable by unbiased estimators atanyg X7 4+ with
x0 7 0. Note that this estimator depends explicitly on the assume
Xo, at which it achieves minimum variance; its performance fyay

poor when the true parameter vectois different fromxg.

b(xo BJO( )) with a(xo) £
One can show

Lo

5. NUMERICAL RESULTS

We compare the lower bound{21) fg(x) = x with the variance
of two standard estimators. The first is an ad-hoc adaptafiche
hard-thresholding (HT) estimatdr [11] to SDCM-based ci@arare
estimation. It is defined componentwise as (cf] (23))

1 &
) £ HZS& (UE,HY)
=1

wherep, : R — R denotes the hard-thresholding function with
thresholdr > 0, i.e., - (y) isy for |y| > 7 and0 else. The second
standard method is the maximum likelihood (ML) estimator

~ 2
Zpr(y -0,

L (y) £ argmax f(y;x').
x'eXg |
For the SDCM, one can show that
7 ( ) _ 5k(y)_027 keglm£2
EMLLY) = 0, else

where £, consists of theS indicesk for which r4[Bx(y)/0? —
In(Be(y)/o?)—1] (with In = log,) is largest, and_, consists of all
indicesk for which B (y) > .

Fora numerical evaluation, We considered the SDCM Witk 5,
S=1,0%=1, andCj = erel. We generated parameter vectors
xo With jo = 1 and different¢,. In Fig.[d, we show the variance
at xo, v(%x(-),x0) = Zszl v(Zx(-),%0) (computed by means of
numerical integration), for the HT estimator using vari@mwices
of = and for the ML estimator.
SNR = &(x0)/0? = &0 /0> Along with each variance curve, we
display a corresponding lower bound that was calculatedvbijue
ating [21) for eactk, using forv, (x) the mean function of the re-
spective estimator (HT or ML), and summing over/all(The mean

functions of the HT and ML estimators were computed by meéns o

numerical integration.) In evaluating{21), we used paderiva-
tives of order at most in (I7), and we chose for the evaluation of
the lower bound. =2, K= {k}, p1 =0, andp2 = e. In Fig.[d, all
variances and bounds are normalized2tfg, + 02)2, which is the
variance of the oracle estimator knowig

It can be seen from Fif] 1 that in the high-SNR regime, for lesth
timators, the gap between the variance and the corresppiairer
bound is quite small. This indicates that the performancbath
estimators is nearly optimal. However, in the low-SNR regirie
variances of the estimators tend to be significantly highantthe
bounds. This means that theraybe estimators with the same bias

and mean function as that of the HT or ML estimator but a lower

variance. However, the actual existence of such estimagonst
shown by our analysis.

6. CONCLUSION

We considered estimation of (a function of) a sparse vexttiat
determines the covariance matrix of a Gaussian randomvecta

The variance is plotted versus

— oo (i x0)

3 == bound onu(xme (+); Xo) N
—v(ﬁHT(-);Xu),T=3

R -+~ bound onu(xnr(-); o), 7 =3
Gé a, ML —— v(Xn1(+);%0), T=6
S 2T - bound onv(&u7(-); X0), T=6 |
8 —v(ﬁHT(~);Xu),T=9
-% -- bound onv(Xer(+); xo0), 7=9
>

—

HT(r=3)

30

©-9-0:9-0-0-0-0"7
f Lol n P

—-10
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—20
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Fig. 1. Normalized variance of the HT and ML estimators and cor-
responding lower bounds versus SNRE(x¢) /o2 for the SDCM
with N=5, S=1,0%2=1, andCj = exe}.

parametric covariance model. Using RKHS theory, we derioagr
bounds on the estimator variance for a prescribed bias arzh me
function. For the important special case of unbiased esbirnaf
x, we found that the transition of our bounds from low to highFSN
is significantly slower than that of analogous bounds forgparse
linear model([6]. This suggests that the prior informatiésarsity

is not as helpful as for the sparse linear model. Numericallte
showed that for low SNR, the variance of two standard estirsat
(hard-thresholding estimator and maximum likelihoodreator) is
significantly higher than our bounds. Hence, there mighdteesti-
mators that have the same bias and mean function as thedarstan
estimators but a smaller variance.
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