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Abstract

A repeated network game where agents have quadratic utilities that depend on information external-

ities – an unknown underlying state – as well as payoff externalities – the actions of all other agents

in the network – is considered. Agents play Bayesian Nash Equilibrium strategies with respect to their

beliefs on the state of the world and the actions of all other nodes in the network. These beliefs are

refined over subsequent stages based on the observed actions of neighboring peers. This paper introduces

the Quadratic Network Game (QNG) filter that agents can run locally to update their beliefs, select

corresponding optimal actions, and eventually learn a sufficient statistic of the network’s state. The QNG

filter is demonstrated on a Cournot market competition game and a coordination game to implement

navigation of an autonomous team.

I. INTRODUCTION

Games with information and payoff externalities are common models of networked economic behavior.

In, e.g., trade decisions in a stock market, the payoff that a player receives depends not only on the

fundamental (unknown) price of the stock but on the buy decisions of other market participants. Thus,

players must respond to both, their belief on the price of the stock and their belief on the actions of other

players [2]. Similar games can also be used to model the coordination of members of an autonomous

team whereby agents want to select an action that is jointly optimal but only have partial knowledge

about what the action of other members of the team will be. Consequently, agents select actions that they

deem optimal given what they know about the task they want to accomplish and the actions they expect

other agents to take.

Work in this paper supported by ARO W911NF-10-1-0388, NSF CAREER CCF-0952867, NSF CCF-1017454, and AFOSR

MURI FA9550-10-1-0567. Part of the results in this paper have been submitted to ICASSP 2013 [1].
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In both of the examples in the previous paragraph we have a network of autonomous agents intent on

selecting actions that maximize local utilities that depend on an unknown state of the world – information

externalities – and also the unknown actions of all other agents – payoff externalities. In a Bayesian setting

– or a rational setting, to use the nomenclature common in the economics literature [3] – nodes form a

belief on the actions of their peers and select an action that maximizes the expected payoff with respect

to those beliefs. In turn, forming these beliefs requires that each network element make a model of how

other members will respond to their local beliefs. The natural assumption is that they exhibit the same

behavior, namely that they are also maximizing their expected payoffs with respect to a model of other

nodes’ responses. But that means the first network element needs a model of other agents’ models which

shall include their models of his model of their model and so on. The fixed point of this iterative chain

of reasoning is a Bayesian Nash Equilibrium (BNE).

In this paper we consider repeated versions of this game in which agents observe the actions taken

by neighboring agents at a given time. In observing neighboring actions agents have the opportunity to

learn about the private information that neighbors are, perhaps unwillingly, revealing [2]. Acquiring this

information alters agents’ beliefs leading to the selection of new actions which become known at the

next play prompting further reevaluation of beliefs and corresponding actions. In this context we talk of

Bayesian learning because the agents’ goal can be reinterpreted as the eventual learning of peers’ actions

so that expected payoffs coincide with actual payoffs. This paper considers Gaussian prior distributions

and quadratic utilities. For this type of problem we introduce the Quadratic Network Game (QNG) filter

that agents can run locally to update their beliefs, select corresponding actions that maximize expected

payoffs, and eventually learn a sufficient statistic of the network’s state.

The burden of computing a BNE in repeated games is, in general, overwhelming even for small sized

networks [4]. This intractability has led to the study of simplified models in which agents are non-Bayesian

and update their beliefs according to some heuristic rule [5]–[9]. A different simplification is obtained

in models with pure information externalities where payoffs depend on the self action and an underlying

state but not on the actions of others. This is reminiscent of distributed estimation [10]–[19] since agents

deduce the state of the world by observing neighboring actions without strategic considerations on the

actions of peers. Computations are still intractable in the case of pure information externalities and for

the most part only asymptotic analyses of learning dynamics with rational agents are possible [20]–[22].

Explicit methods to maximize expected payoffs given all past observations of neighboring actions are

available only when signals are Gaussian [4] or when the network structure is a tree [23]. For the network

games considered here in which there are information as well as payoff externalities, not much is known
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besides asymptotic analyses of learning dynamics [24]–[26].

The specific setting considered in this paper is introduced in Section II. Agents repeatedly play a game

whose payoffs are represented by a utility function that is quadratic in the actions of all agents and an

unknown real-valued parameter. At the start of the game each agent makes a private observation of the

unknown parameter corrupted by additive Gaussian noise. At each play stage agents observe actions of

adjacent peers from the previous stage that they incorporate into a local observation history which they

use to update their inference of the unknown parameter, and synchronously take actions that maximize

their expected payoffs. Actions that maximize expected payoffs with respect to local observations histories

are defined as best responses to the expected actions taken by other agents. When the expected actions

of other agents are also modeled as best responses with respect to their respective observation histories,

we say that the network settles into a BNE (Section II-A).

In Section III we determine a mechanism to calculate BNE actions from the perspective of an outside

clairvoyant observer that knows all private observations. For this clairvoyant observer the trajectory of the

game is completely determined but individual agents operate by forming a belief on the private signals of

other agents. We start from the assumption that this probability distribution is normal with an expectation

that, from the perspective of the outside observer, can be written as a linear combination of the actual

private signals. If such is the case, we prove that there exists a set of linear equations that can be solved

to obtain actions that are linear combinations of estimates of private signals (Lemma 1). This is then used

to show that after observing the actions of their respective adjacent peers the probability distributions on

private signals of all agents remain Gaussian with expectations that are still linear combinations of the

actual private signals (Lemma 2). We proceed to close a complete induction loop to derive a recursive

expression that the outside clairvoyant observer can use to compute BNE actions for all game stages

(Theorem 1).

In Section IV we leverage the recursion derived in Section III to derive the QNG filter that agents can

run locally, i.e., without access to all private signals, to compute their BNE action. Results in sections

III and IV are generalized to the case of vector states and observations (Section V). We apply the scalar

QNG filter to a Cournot competition model (Section VI) and to the coordinated movement of a team of

mobile agents (Section VII).

Notation. Vectors v ∈ Rn are written in boldface and matrices A ∈ Rn×m in uppercase. We use 0 to

denote all-zero matrices or vectors of proper dimension. If the dimension is not clear from context, we

specify 0n×m. We use 1 to denote all-one matrices or vectors of proper dimension and 1n×m to clarify
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dimensions. We use ei to denote the ith element of the standard orthonormal basis of Rn and ēi := 1−ei
to write an all-one vector with the ith component nulled.

II. GAUSSIAN QUADRATIC GAMES

We consider games with incomplete information in which N identical agents in a network repeatedly

choose actions and receive payoffs that depend on their own actions, an unknown scalar parameter θ ∈ R,

and actions of all other agents. The network is represented by an undirected connected graph G = (V,E)

with node set V = 1, . . . , N and edge set E. The network structure restricts the information available

to agent i who is assumed to observe actions of agents j in its neighborhood n(i) := {j : {j, i} ∈ E}

composed of agents that share an edge with him. The degree of node i is given by the cardinality of the

set n(i) and denoted as d(i) := #n(i). The neighbors of i are denoted ji,1 <, . . . , < ji,d(i). We assume

the network graph G is known to all agents.

At time t = 0 agent i observes a private signal xi ∈ R which we model as being given by the unknown

parameter θ contaminated with zero mean additive Gaussian noise εi,

xi = θ + εi. (1)

The noise variances are denoted as ci := E
[
ε21
]

and grouped in the vector c := [c1, . . . , cN ]T which

is assumed known to all agents. The noise terms εi are further assumed independent across agents. For

future reference define the vector of private signals x := [x1, . . . , xN ]T ∈ RN×1 grouping all local

observations.

Consider a discrete time variable t = 0, 1, 2, . . . to index subsequent stages of the game. At each stage

t agent i takes scalar action ai(t) ∈ R. The selection of agent i, along with the concurrent selections

aj(t) of all other agents j ∈ V \ {i} results in a payoff ui(ai(t), {aj(t)}j∈V \i, θ) that agent i wants to

make as large as possible. In this paper we restrict attention to quadratic payoffs which for simplicity

we assume to be time invariant. Specifically, selection of actions {ai = ai(t)}i∈V when the state of the

world is θ results in agent i experiencing a reward

ui(ai, {aj}j∈V \i, θ) := −1

2
a2
i +

∑
j∈V \i

βijaiaj + δaiθ, (2)

where βij ∈ R for all i ∈ V , j ∈ V \ i and δ ∈ R are real valued constants. Notice that since

∂2ui/∂a
2
i = −1 < 0, the payoff function in (2) is strictly concave with respect to the self action ai of

agent i.
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Although the goal of agent i is to select the action ai(t) that maximizes the payoff in (2), this is

not possible because neither the state θ nor the actions {aj(t)}j∈V \i are known to him. Rather, agent

i needs to reason about state θ and actions {aj(t)}j∈V \i based on its available information. At time

t = 0 only the private signal xi is known. Define then the initial information as hi,0 = {xi}. The

information hi,0 is used to reason about θ and the initial actions {aj(0)}j∈V \i that other agents are to

take in the initial stage of the game. At the playing of this stage, agent i observes the actions an(i)(0) :=

[aji,1(0), . . . , aji,d(i)(0)]T ∈ Rd(i)×1 of all agents in his neighborhood. These observed neighboring actions

become part of the observation history hi,1 =
{
xi,an(i)(0)} =

{
h0,i,an(i)(0)

}
which allows agent i to

improve on his estimate of θ and the actions {aj(1)}j∈V \i that other agents will play on the first stage

of the game, thereby also affecting the selection of its own action ai(1). In general, at any point in time

t the history of observations hi,t is augmented to incorporate the actions of neighbors in the previous

stage,

hi,t :=
{
hi,t−1,an(i)(t− 1)

}
=
{
xi,an(i)(u), u < t

}
. (3)

The observed action history hi,t is then used to update the estimates of the world state θ and the upcoming

actions {aj(t)}j∈V \i of all other agents leading to the selection of the action ai(t) in the current stage

of the game.

The final components of the game that we introduce are the strategies σi,t that are used to map histories

to actions. In this paper we focus on pure strategies that can be written as functions that map history

realizations hi,t to actions ai(t)

σi,t : hi,t 7→ ai(t). (4)

We emphasize the difference between strategy and action. An action ai(t) is the play of agent i at time t,

whereas strategies σi,t refer to the map of histories to actions. We can think of the action ai(t) = σi,t(hi,t)

as the value of the strategy function σi,t associated with the given observed history hi,t. Further define the

strategy of agent i as the concatenation σi := {σi,u}u=0,...,∞ of strategies that agent i plays at all times.

Use σt := {σi,t}i∈V to refer to the strategies of all players at time t, σ0:t := {σu}u=0,...t to represent the

strategies played by all players between times 0 and t, and σ := {σu}u=0,...,∞ = {σi}i∈V to denote the

strategy profile for all agents i ∈ V and times t. As in the case of the network topology, the strategy σ

is also assumed to be known to all agents. We study mechanisms for the construction of strategies in the

following section.
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A. Bayesian Nash equilibria

Given that agent i wants to maximize the utility in (2) but has access to the partial information available

in the observed history hi,t in (3), a reasonable strategy σi,t is to select the action ai(t) that maximizes

the expected utility with respect to the history hi,t. To write this formally note that this expected utility

depends on strategies σ0:t−1 played in the past by all agents and on strategies {σj,t}j∈V \i that all other

agents are to play in the upcoming turn. Fix then the past strategies σ0:t−1 and the upcoming strategies

{σj,t}j∈V \i of other players and define the corresponding best response of player i at time t as

BRi,t
(
σ0:t−1, {σj,t}j∈V \i

)
:= argmax

ai∈R
Eσ0:t−1

[
ui(ai, {σj,t(hj,t)}j∈V \i, θ)

∣∣hi,t]. (5)

The strategies σ0:t−1 in (5) played at previous times mapped respective histories {hj,u}j∈V to actions

{aj(u)}j∈V for u < t. Therefore, the past strategies σ0:t−1 determine the manner in which agent i updates

his beliefs on the state of the world θ and on the histories {hj,t}j∈V \i observed by other agents. As per (4)

the strategy profiles {σj(t)}j∈V \i of other players in the current stage permit transformation of history

beliefs {hj,t}j∈V \i into a probability distribution over respective upcoming actions {aj(t)}j∈V \i. The

resulting joint distribution on {aj(t)}j∈V \i and θ permits evaluation and maximization of the expectation

in (5).

One can think of the profiles {σj(t)}j∈V \i played by other agents in the upcoming stage as the model

agent i makes of the behavior of other agents. In that sense the sensible assumption is that other agents

are also playing best response to a best response model of other agents. I.e., agent i assumes agent j

is playing the best response to its respective model of the behavior of other agents and that the model

agent j makes of these responses is that these agents also play best response to a best response model.

This modeling assumption leads to the definition of Bayesian Nash equilibria (BNE) as the solution to

the fixed point equation

σ∗i,t(hi,t) = BRi,t(σ∗0:t−1, {σ∗j,t}j∈V \i), for all hi,t, (6)

where we have also added the restriction that an equilibrium strategy σ∗i,t−1 has been played for all

times u < t. We emphasize that (6) needs to be satisfied for all possible histories hi,t and not just for

the history realized in a particular game realization. This is necessary because agent i doesn’t know

the history observed by agent j but rather a probability distribution on histories. Thus, to evaluate the

expectation in (5) agent i needs a representation of the equilibrium strategy for all possible histories hj,t.

If all agents play their BNE strategies as defined in (6), σ∗i,t becomes optimal in the usual game

February 4, 2013 DRAFT



7

theoretic sense. There is no strategy that agent i could unilaterally deviate to that provides a higher

expected payoff than σ∗i,t [cf. (5)]. In that sense the BNE strategy is the best that agent i can do given

other agents’ strategies and his locally available information hi,t. In the rest of the paper we consider

agents playing with respect to the BNE strategy σ∗i,t at all times. To simplify future notation define the

expectation operator

Ei,t
[
·
]

:= Eσ∗
0:t−1

[
· | hi,t

]
, (7)

to represent expectations with respect to the local history hi,t when agents have played the equilibrium

strategy σ∗0:t−1 in all earlier stages of the game. Similarly, we define the conditional probability distribution

of agent i at time t given past strategies σ∗0:t−1 and his information hi,t as Pi,t(·) := Pσ∗
0:t−1

(
·
∣∣hi,t).

Since ui(ai, {aj}j∈V \i, θ) is a strictly concave quadratic function of ai as per (2), the same is true of

the expected utility Ei,t
[
ui(ai, {σj,t}j∈V \i, θ)

]
that we maximize to obtain the best response in (5). We

can then rewrite (5) by nulling the derivative of the expected utility with respect to ai. It follows that

the fixed point equation in (6) can be rewritten as the set of equations

σ∗i,t(hi,t) =
∑

j∈V \{i}

βijEi,t[σ
∗
j,t(hj,t)] + δEi,t[θ], (8)

that need to be satisfied for all possible histories hi,t and agents i. Our goal is to develop a filter that

agents can use to compute their equilibrium actions a∗i (t) := σ∗i,t(hi,t) given their observed history hi,t.

We pursue this in the following section after some remarks.

Remark 1 It may be of interest to modify the utility in (2) to include more additive terms that are

functions of other actions {aj}j∈V \i and the state of the world θ but not of the self actions ai. This may

change the utility and the expected utility in (5) but doesn’t change the equilibrium strategy in (6). Since

these terms do not contain the self action ai, their derivatives are null and do not alter the fixed point

equation in (8).

Remark 2 The equilibrium notion in (6) is based on the premise of myopic agents that choose actions that

optimize payoffs at the present game stage. A more general model is to consider non-myopic agents that

consider discounted payoffs of future stages. Non-myopic behavior introduces another layer of strategic

reasoning. Forward looking agents would need to take into account the effect of their decisions at each

stage of the game on the future path of play knowing that other agents base their future decisions on what

they have previously observed. E.g., non-myopic agents might reduce their immediate payoff to harvest
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information that may result in future gains. Extensions to games with non-myopic agents is beyond the

scope of this paper.

III. PROPAGATION OF PROBABILITY DISTRIBUTIONS

According to the model in (8), at each stage of the game agents use the observed history hi,t to estimate

the unknown parameter θ as well as the histories {hj,t}j∈V \i observed by other agents. They use the

latter and the known BNE strategy {σ∗j,t(hj,t)}j∈V \i to form a belief Pi,t({a∗j (t)}j∈V \i) on the actions

{a∗j (t)}j∈V \i of other agents which they use to compute their equilibrium action a∗j (t) at time t. Observe

that if the vector of private signals x := [x1, . . . , xN ]T is given – not to the agents but to an outside

observer – the trajectory of the game is completely determined as there are no random decisions. Thus,

agent i can form beliefs on the histories {hj,t}j∈V \i and actions {a∗j (t)}j∈V \i of other agents if it keeps

a local belief Pi,t(x) on the vector of private signals x. A method to track this probability distribution

is derived in this section using a complete induction argument.

Start by assuming that at given time t, the posterior distribution Pi,t(x) is normal. Recalling the

definition of the expectation operator Ei,t
[
·
]

in (7), the mean of this normal distribution is Ei,t [x].

Define the corresponding error covariance matrix M i
xx(t) ∈ RN×N as

M i
xx(t) := Ei,t

[(
x−Ei,t [x]

)(
x−Ei,t [x]

)T ]
. (9)

Although agent i’s probability distribution for x is sufficient to describe its belief on the state of the

system, subsequent derivations are simpler if we keep an explicit belief on the state of the world θ.

Therefore, we also assume that agent i’s beliefs on θ and x are jointly Gaussian given history hi,t. The

mean of θ is Ei,t [θ] and the corresponding variance is

M i
θθ(t) := Ei,t

[(
θ −Ei,t [θ]

)(
θ −Ei,t [θ]

)T ]
. (10)

The cross covariance M i
θx(t) ∈ R1×N between the world state θ and the private signals x is

M i
θx(t) := Ei,t

[(
θ −Ei,t [θ]

)(
x−Ei,t [x]

)T ]
. (11)

We further make the stronger assumption that the means of this joint Gaussian distribution can be written

as linear combinations of the private signals. In particular, we assume that for some known matrix

Li,t ∈ RN×N and vector ki,t ∈ RN×1 we can write

Ei,t [x] = Li,tx, Ei,t [θ] = kTi,tx. (12)
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Observe that the assumption in (12) is not that the estimates Ei,t [x] and Ei,t [θ] are computed as linear

combinations of the private signals x – indeed, x is not known by agent i in general. The assumption is

that from the perspective of an external observer the actual computations that agents do are equivalent

to the linear transformations in (12).

Under the complete induction hypothesis of Gaussian posterior beliefs at time t with expectations as

in (12), we show that agents play according to linear equilibrium strategies of the form

σ∗i,t(hi,t) = vTi,tEi,t[x], (13)

for some action coefficients vi,t ∈ RN×1 that vary across agents but are independent of the observed

history hi,t. These can be found by solving a system of linear equations. We do this in the following

lemma.

Lemma 1 Consider a Bayesian game with quadratic utility as in (2). Suppose that for all agents i, the

joint posterior beliefs Pi,t([θ,x
T ]) on the state of the world θ and the private signals x given the local

history hi,t at time t are Gaussian with means expressed as the linear combinations of private signals in

(12) for some known vectors ki,t and matrices Li,t. Define the aggregate vector kt := [kT1,t, . . . ,k
T
N,t]

T ∈

RN2×1 stacking the state estimation weights of all agents and the block matrix Lt ∈ RN2×N2

with N×N

diagonal blocks ((Lt))ii = LTi,t and off diagonal blocks ((Lt))ij = −βijLTi,tLTj,t,

Lt:=


LT

1,t −β12LT
1,tL

T
2,t ... −β1NLT

1,tL
T
N,t

−β21LT
2,tL

T
1,t LT

2,t ... −β2NLT
2,tL

T
N,t

... ···
. . .

...
−βN−11LT

N−1,tL
T
1,t ··· LT

N−1,t −βN−1NLT
N−1,tL

T
N,t

−βN1LT
N,tL

T
1,t ··· −βNN−1LT

N,tL
T
N−1,t LT

N,t

. (14)

If there exists a linear equilibrium strategy as in (13), the action coefficients vt := [vT1,t, . . . ,v
T
N,t]

T ∈ RN2

can be obtained by solving the system of linear equations

Ltvt = δkt. (15)

Proof: We hypothesize that agents play according to a linear equilibrium strategy as in (13).

Substituting this candidate strategy into the equilibrium equations in (8) yields

vTi,tEi,t[x] =
∑

j∈V \{i}

βijEi,t

[
vTj,tEj,t[x]

]
+ δEi,t[θ]. (16)

The summation in (16) includes the expectations Ei,t
[
Ej,t[x]

]
of agent i on the private signals’ estimate

of agent j. As per the induction hypothesis in (12), we have that the inner expectations can be written
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as Ej,t[x] = Lj,tx. Using this fact, agent i’s expectation of agent j’s estimate of private signals becomes

Ei,t

[
Ej,t[x]

]
= Lj,tEi,t[x]. (17)

Substituting (17) and the estimate induction hypotheses in (12) for the corresponding terms in (16) and

(17), and reordering terms yield the set of equations

vTi,tLi,tx =
∑

j∈V \{i}

βijv
T
j,tLj,tLi,tx + δ kTi,tx, (18)

At this point we recall that the equilibrium equations in (8) are true for all possible histories hi,t. Therefore,

the equilibrium equations in (18), which are derived from (8), have to hold irrespectively of the history’s

realization. This in turn means that they will be true for all possible values of x. This can be ensured by

equating the coefficients that multiply each component of x in (18) thereby yielding the relationships

LTi,tvi,t =
∑

j∈V \{i}

βijL
T
i,tL

T
j,tvj,t + δ ki,t, (19)

that need to hold true for all agents i. The result in (15) is just a restatement of (19) with the latter

corresponding to the i-th block of the relationship in (15).

Lemma 1 provides a mechanism to determine the strategy profiles σ∗i,t(·) of all agents through the

computation of the action vectors vi,t as a block of the vector vt that solves (15). We emphasize that

the value of the weight vector vt in (15) does not depend on the realization of private signals x. This

is as it should because the postulated equilibrium strategy in (13) assumes the action weights vi,t are

independent of the observed history. A consequence of this fact is that the action coefficients {vi,t}i∈V
of all agents can be determined locally by all agents as long as the matrices Li,t and vectors vi,t are

common knowledge. The equilibrium actions a∗i (t), however, do depend on the observed history because

to determine the action a∗i (t) = σ∗i,t(hi,t) = vTi,tEi,t[x] we multiply vTi,t by the expectation Ei,t[x]

associated with the actual observed history hi,t. See Section IV for details.

At time t agent i computes its action vector vi,t which it uses to select the equilibrium action a∗i (t) =

vTi,tEi,t[x] as per (13). Since we have also hypothesized that Ei,t [x] = Li,tx, as per (12) the action of

agent i at time t is given by

ai(t) = vTi,tLi,tx. (20)

We emphasize that as in (12) the expression in (20) is not the computation made by agent i but an

equivalent computation from the perspective of an external omniscient observer.
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The actions an(i)(t) := [aji,1(t), . . . , aji,d(i)(t)]
T ∈ Rd(i)×1 of neighboring agents j ∈ n(i) become part

of the observed history hi,t+1 of agent i at time t + 1 [cf. (3)]. The important consequence of (20) is

that these observations are a linear combination of private signals x. In particular, by defining the matrix

HT
i,t := [vTji,1,tLji,1,t; . . . ;v

T
ji,d(i),t

Lji,d(i),t] ∈ Rd(i)×N we can write

an(i)(t) = HT
i,tx :=


vTji,1,tLji,1,t

...

vTji,d(i),tLji,d(i),t

x. (21)

Agent i’s belief of x at time t is normally distributed; moreover, when we go from time t to time t+ 1,

agent i observes a linear combination, an(i)(t) = HT
i,tx, of private signals. Thus, the propagation of the

probability distribution when the history hi,t+1 incorporates the actions an(i)(t) is a simple sequential

LMMSE estimation problem [27, Ch. 12]. In particular, the joint posterior distribution of x and θ given

hi,t+1 remains Gaussian and the expectations Ei,t+1 [x] and Ei,t+1 [θ] remain linear combinations of

private signals x as in (12) for some matrix Li,t+1 and vector ki,t+1 which we compute explicitly in the

following lemma.

Lemma 2 Consider a Bayesian game with quadratic utility as in (2) and the same assumptions and

definitions of Lemma 1. Further define the observation matrix HT
i,t := [vTji,1,tLji,1,t; . . . ;v

T
ji,d(i),t

Lji,d(i),t] ∈

Rd(i)×N as in (21) and the LMMSE gains

Ki
x(t) := M i

xx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
, (22)

Ki
θ(t) := M i

θx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
, (23)

and assume that agents play the linear equilibrium strategy in (13). Then, the beliefs Pi,t+1([θ,xT ]) after

observing neighboring actions at time t are Gaussian with means that can be expressed as the linear

combination of private signals

Ei,t+1 [x] = Li,t+1x, Ei,t+1 [θ] = kTi,t+1x, (24)

where the matrix Li,t+1 and vector ki,t+1 are given by

Li,t+1 = Li,t +Ki
x(t)

(
HT
i,t −HT

i,tLi,t

)
, (25)

kTi,t+1 = kTi,t +Ki
θ(t)
(
HT
i,t −HT

i,tLi,t

)
. (26)
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The posterior covariance matrix M i
xx(t + 1) for the private signals x the variance M i

θθ(t + 1) of the

state θ and the cross covariance M i
θx(t+ 1) are further given by

M i
xx(t+ 1) =M i

xx(t)−Ki
x(t)HT

i,tM
i
xx(t), (27)

M i
θθ(t+ 1) =M i

θθ(t)−Ki
θ(t)

THT
i,tM

i
xθ(t), (28)

M i
θx(t+ 1) =M i

θx(t)−Ki
θ(t)H

T
i,tM

i
xx(t). (29)

Proof: Since observations of i, an(i)(t), are linear combinations of private signals x which are

normally distributed, observations of i are also normally distributed from the perspective of i. Furthermore,

by assumption (12), the prior distribution Pi,t(x) is Gaussian. Hence, the posterior distribution, Pi,t+1(x),

is also Gaussian. Specifically, the mean of the posterior distribution corresponds to the LMMSE estimator

with gain matrix Ki
x(t) = M i

xx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1; that is,

Ei,t+1[x] =Ei,t [x] +Ki
x(t)

(
an(i)(t)−Ei,t[an(i)(t)]

)
. (30)

Because θ and x are jointly Gaussian at time t, θ and an(i)(t) are also jointly Gaussian. Therefore,

the posterior distribution Pi,t+1(θ) is also Gaussian. Consequently, the Bayesian estimate of θ is given

by a sequential LMMSE estimator with gain matrix Ki
θ(t) = M i

θx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1,

Ei,t+1 [θ] =Ei,t [θ] +Ki
θ(t)

(
an(i)(t)−Ei,t

[
an(i)(t)

])
. (31)

Given the linear observation model in (21), agent i’s estimate of his observations at time t is given by

Ei,t(an(i)(t)) = HT
i,tEi,t[x]. Substituting (12) for the mean estimates at time t in (30) and (31), we obtain

Ei,t+1 [x] = Li,tx +Ki
x(t)

(
HT
i,tx−HT

i,tLi,tx
)
, (32)

Ei,t+1 [θ] = kTi,tx +Ki
θ(t)

(
HT
i,tx−HT

i,tLi,tx
)
. (33)

Grouping the terms that multiply x on the right hand side of the two equations, we observe that

Ei,t+1 [x] = Li,t+1x and Ei,t+1 [θ] = kTi,t+1x where Li,t+1 and ki,t+1 are as defined in (25) and (26).

Similarly, the updates for error covariance matrices are as given in (27)–(29) following standard LMMSE

updates [27, Ch. 12].

In the repeated game we are considering, agents determine optimal actions given available information

and determine the information that is revealed by neighboring actions. These questions are respectively

answered by lemmas 1 and 2 under the inductive hypotheses of Gaussian beliefs and linear estimates as
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per (12). The answer provided by Lemma 2 also shows that the inductive hypotheses hold true at time

t + 1 and provides an explicit recursion to propagate the mean and variance of the beliefs posterior to

the observation of neighboring actions. This permits closing the inductive loop to establish the following

theorem for recursive computation of BNE of repeated games with quadratic payoffs.

Theorem 1 Consider a repeated Bayesian game with the quadratic utility function in (2) and assume

that linear strategies σ∗i,t(hi,t) = vTi,tEi,t[x] as in (13) exist for all times t. Then, the action coefficients

vi,t can be computed by solving the system of linear equations in (15) with vt := [vT1,t, . . . ,v
T
N,t]

T ,

kt := [kT1,t, . . . ,k
T
N,t]

T and Lt as in (14). The matrices Li,t and the vectors ki,t are computed by

recursive application of (22)-(23) and (25)-(29) with initial values

Li,0 = 1eTi , ki,0 = ei. (34)

The initial covariance matrix M i
xx(0), initial variance M i

θθ(0), and initial cross covariance M i
θx(0) are

given by

M i
xx(0) = diag(ēi)diag(c) + ēiē

T
i ci, M i

θθ(0) = ci, M i
θx(0) = ciē

T
i . (35)

Proof: See Appendix A.

According to Theorem 1, the beliefs on θ and x remain Gaussian for all agents and all times when

agents play according to a linear equilibrium strategy as in (13) at each stage. Theorem 1 also provides a

recursive mechanism to compute the coefficients vi,t of the linear BNE strategies σ∗i,t(hi,t) = vTi,tEi,t[x]

and the coefficients Li,t and ki,t that determine the LMMSE estimates as per (12). However, these latter

expressions cannot be used by agent i to calculate estimates Ei,t [x] and Ei,t [θ] unless the private signals

x are exactly known, which will absolve agent i from responsibility of the estimation process entirely.

Since the BNE action a∗i (t) = σ∗i,t(hi,t) = vTi,tEi,t[x] depends on having the observed private signal

estimate Ei,t[x] available, Theorem 1 does not provide a way of computing the optimal action either.

This mismatch can be solved by writing the LMMSE updates in a different form as we show in the next

section after the following remark.

Remark 3 Results in this paper assume the system of linear equations in (15) has a unique solution. If

the solution is not unique, a prior agreement is necessary for agents to play consistent strategies. E.g.,

agents could agree beforehand to select the vector vt with minimum Euclidean norm. If (15) does not

have a solution, it means that the equilibrium strategies of the form in (20) do not exist. A sufficient
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an(i)(t)
∑

Ki
x

∑ Ei,t[x]
vTi,t ai(t)

−HT
i,t−Ei,t[an(i)(t)]

M i
xx(t) {kj,t}j∈V

{Lj,t}j∈V

HT
i,t

x

{vj,t}j∈n(i)

{Lj,t}j∈n(i)

Ki
θ

∑ Ei,t[θ]

Fig. 1. Quadratic Network Game (QNG) filter at agent i. There are two types of blocks, circle and rectangle. Arrows coming
into the circle block are summed. The arrow that goes into a rectangle block is multiplied by the coefficient written inside the
block. Inside the dashed box agent i’s mean estimate updates on x and θ are illustrated (cf. (36) and (37)). The gain coefficients
for the mean updates are fed from LMMSE block in Fig. 2. The observation matrix Hi,t is fed from the game block in Fig.
2. Agent i multiplies his mean estimate on x at time t with action coefficient vi,t, which is fed from game block in Fig. 2, to
obtain ai(t). The mean estimates Ei,t[x] and ai(t) can only be calculated by agent i.

condition for this not to happen is to have a strictly diagonally dominant utility function which in explicit

terms we write
∑

j∈V \{i} |βij | < 1. In this case Gershgorin’s Theorem implies that Lt is full rank because

it has no null eigenvalues. Laxer conditions to guarantee existence of linear equilibria as in (20) can be

found in, e.g., [28], [29]. In all of our numerical experiments solutions to (15) exist and are unique.

IV. QUADRATIC NETWORK GAME FILTER

To compute and play BNE strategies each node runs the quadratic network game (QNG) filter that

we derive in this section. Since agent i cannot use (12), we need an alternative means of computing

estimates Ei,t [x] and Ei,t [θ]. To do this refer to the transformation of (30) and (31) into (32) and (33)

in the proof of Lemma 2. In this transformation we substitute the observed neighboring actions an(i)(t)

for their model an(i)(t) = HT
i,tx and write the expectation of these actions as HT

i,tEi,t[x] with the further

substitution Ei,t [x] = Li,tx. As a result we can rewrite (30) and (31) as

Ei,t+1[x] = Ei,t [x] +Ki
x(t)

(
an(i)(t)−HT

i,tEi,t[x]
)
, (36)

Ei,t+1[θ] = Ei,t [θ] +Ki
θ(t)

(
an(i)(t)−HT

i,tEi,t[x]
)
. (37)

The updates in (36) and (37) can be implemented locally by agent i since they depend on the previous

values Ei,t[x] and Ei,t[θ] of the LMMSE estimates, and the observed neighboring actions an(i)(t). They

February 4, 2013 DRAFT



15

can be combined with the coefficient recursions in (15), (22)-(23), and (25)-(29) as well as with the

BNE strategy expression in (13) to recursively compute the equilibrium actions a∗i (t) given the observed

history hi,t.

The updates in (13), (15), (22)-(23), (25)-(29), and (36)-(37) form the QNG filter. In the QNG filter

agent i performs a full network simulation in which it maintains a belief Pi,t([θ,x
T ]) on the state of

the world θ and the private signals x of all agents. This implies performing the coefficient updates (15),

(22)-(23), (25)-(29) for all agents in the network. This he can do because the network topology and

private signal models are common knowledge. The updates (13) and (36)-(37) are performed for agent

i’s own index only.

The signal updates on (36)-(37) are illustrated inside the dashed box in Fig. 1. At time t, the inputs to the

filter are the observed actions an(i)(t) of agent i’s neighbors. The prediction Ei,t[an(i)(t)] = Hi,tEi,t[x]

of this vector is subtracted from the observed value and the resultant error is fed into two parallel blocks

respectively tasked with updating the belief Ei,t[θ] on the state of the world θ, and the belief Ei,t[x] on

the private signals x of other agents. The error an(i),t −Ei,t[an(i),t] is multiplied by the gain Ki
x(t) and

the resultant innovation is added to the previous mean estimate to correct the estimate of x [cf. (36)].

Similarly, the error is multiplied by the gain Ki
θ(t) and the resultant innovation is added to the previous

mean estimate to correct the estimate of θ at i [cf. (37)]. In order to determine the equilibrium play as

per (13), agent i multiples his private signal estimate Ei,t[x] by the vector vi(t) obtained by solving the

system of linear equations in (15).

Observe that in the QNG filter, we do not use the fact that estimates Ei,t [θ] and Ei,t[x] as well as

actions ai,t can be written as linear combinations of the private signals [cf. (12) and (20)]. While the

expressions in (12) and (20) are certainly correct, they cannot be used for implementation because x is

only partially unknown to agent i. The role of (12) and (20) is to allow derivation of recursions that we

use to keep track of the gains used in the QNG filter. These recursions can be divided into a group of

LMMSE updates and a group of game updates as we show in Fig. 2.

As it follows from (22)-(23) and (27)-(29), the update of LMMSE coefficients is identical to the gain

and covariance updates of a sequential LMMSE. The only peculiarity is that the observation matrix Hj,t

is fed from the game update block and is partially determined by the LMMSE gains and covariances of

previous iterations. Nevertheless, this peculiarity is more associated with the game block than with the

LMMSE block. The game block uses (25) and (26) to keep track of the matrices Lj,t and the vectors

kj,t. The matrices Lj,t are used as building blocks of the matrix Lt and the vectors kj,t are stacked in

the vector kt and used to formulate the systems of equations in (15). Solving this system of equations,
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using L−1
t when it is full rank or its pseudo inverse when it is not, yields the coefficients vj,t which

in turn determine the observation matrix Hj,t as per (21). As mentioned before, the game block feeds

the matrices Hj,t to the filter block as they are used in the LMMSE gains and covariance updates. The

LMMSE block feeds the gains Kj
x(t) and Kj

θ(t) to the game block as these are needed to update Lj,t

and kj,t.

We remark that agent i is keeping track of the matrices and vectors in Fig. 2 for all i ∈ V . I.e., agent

i calculates observation matrices Hj,t for j ∈ V in the game block which are fed into the LMMSE block

to obtain gains matrices Kj
x(t) and Kj

θ(t) for all j ∈ V . These gains are fed into the game block from the

LMMSE block as they are needed to update Lj,t and kj,t for all j ∈ V . The reason for this is the step in

the game block in which we compute the play coefficients vj,t. To solve this system of equations, agent

i needs to build the matrix Lt that is formed by the blocks Lj,t of all agents. All of these computations

for the coefficients of other agents are internal to agent i and independent of the game realization. The

gains can be computed offline prior to running the game.

Remark 4 The QNG filter can also be used in repeated games with purely informational externalities. In

this case each agent’s payoff is given by u(θ, ai) = −(θ−ai)2, and the problem is thus equivalent to the

distributed estimation of the world state θ [4]. Our model subsumes the games with purely informational

externalities as a special case. Given this payoff function, the best response of agent i at time t is the

action ai(t) = Ei,t[θ]. Hence, it is not necessary to solve (15) for the optimal strategy coefficients vi,t.

Other than this the QNG filter remains unchanged. Since in the case of purely informational externalities

the end goal is the estimation of θ, the QNG filter is tantamount to an optimal distributed implementation

of a Kalman filter.

V. VECTOR STATES AND VECTOR OBSERVATIONS

Consider the case when state of the world is a vector, that is, θ ∈ Rm for m > 1. Similar to the scalar

case, each agent receives initial private signal xi ∈ Rm,

xi = θ + εi (38)

where the additive noise term εi ∈ Rm is multivariate Gaussian with zero mean and variance-covariance

matrix Ci ∈ Rm×m. For future reference, define the vector obtained by stacking elements at the kth

row and lth column of variance-covariance matrices of all agents, Ck,l := [C1[k, l], . . . , CN [k, l]]T . We

use xi[n] to denote the nth private signal of agent i where n ≤ m. We assume that private signals are
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Variable

Lj,t

kj,t

vj,t

Hj,t

Game coefficients

Update

Lj,t+1 = Lj,t +Kj
x(t)

(
HT
j,t −HT

j,tLj,t

)
(25)

kTj,t+1 = kTj,t +Kj
θ(t)

(
HT
j,t −HT

j,tLj,t

)
(26)

Ltvt = δkt (15)

Hj,t :=
[
vTkj,1,t

Lkj,1,t; . . . ;v
T
kj,d(j),t

Lkj,d(j),t]
T

(21)

Variable

Kj
x(t)

Kj
θ(t)

Mj
xx(t)

Mj
θx(t)

LMMSE coefficients

Update

Kj
x(t) = Mj

xx(t)Hj,t

(
HT
j,tM

j
xx(t)Hj,t

)−1
(22)

Kj
θ(t) = Mj

θx(t)Hj,t

(
HT
j,tM

j
xx(t)Hj,t

)−1
(23)

Mj
xx(t+ 1) = Mj

xx(t)−Kj
x(t)HT

j,tM
j
xx(t) (27)

Mj
θx(t+ 1) = Mj

θx(t)−Kj
θ(t)HT

j,tM
j
xx(t) (29)

Hj,t

Kj
x(t)

Kj
θ(t)

vi,t Hi,t

to QNG filterto QNG filter

Ki
x(t) Ki

θ(t)

to QNG filterto QNG filter

Fig. 2. Propagation of gains required to implement the Quadratic Network Game (QNG) filter of Fig. 1. Gains are separated
into interacting LMMSE and game blocks. All agents perform a full network simulation in which they compute the gains of
all other agents. This is necessary because when we compute the play coefficients vj,t in the game block, agent i builds the
matrix Lt that is formed by the blocks Lj,t of all agents [cf. (14)]. This full network simulation is possible because the network
topology and private signal models are common knowledge.

independent among agents, that is, Ei,0[εiεj ] = 0 for all i ∈ V and j ∈ V \ {i}. We define the set of all

private signals as

x := [x1[1], . . . ,xN [1], . . . ,x1[m], . . . ,xN [m]]T , (39)

where x ∈ RNm×1. We use x[n] := [x1[n], . . . ,xN [n]]T to denote the vector of private signals of agents

on the nth state of the world.

At each stage t, agent i takes action ai(t) ∈ Rm. Agent i’s action at time t is to maximize a payoff

function which is represented by the following quadratic function

ui(ai, {aj}j∈V \i,θ) = −1

2

∑
j∈V

aTj aj +
∑

j∈V \{i}

aTi Bijaj + aTi Dθ, (40)

where constants Bij and D belong to Rm×m. Similar to the scalar case, other additive terms that depend

on {aj}j∈V \i and θ can exist without changing the results to follow. We obtain the best response function

for agent i by taking the derivative of the expected utility function with respect to ai, equating it to zero,
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and solving for ai:

BRi,t({σj,t(hj,t)}j∈V \i) =
∑
j∈V \i

BijEi,t[σj,t(hj,t)] +DEi,t[θ]. (41)

Note that BRt : RNm → RNm.

Similar to the case when the unknown parameter is a scalar, it is sufficient for agents to keep track

of estimates of x in order to achieve the best estimate of θ. Accordingly, the definitions of estimates of

private signals and the unknown parameters and their corresponding covariance matrices (9)–(11) are the

same as in the scalar case.

In what follows, we show that the mean estimates are linear in private signals and equilibrium actions

are linear in expectations of private signals in the similar fashion we did for the scalar state of the world.

Lemma 3 Consider a Bayesian game with quadratic utility as in (40). Suppose that for all agents i, the

joint posterior beliefs on the state of the world θ and the private signals x given the local history hi,t

at time t, Pi,t([θ
T ,xT ]), are Gaussian with means expressed as

Ei,t [θ] = Qi,tx, and Ei,t[x] = Li,tx, (42)

where Li,t ∈ RNm×Nm and Qi,t ∈ Rm×Nm are known estimation weights. If there exists an equilibrium

strategy profile that is linear in expectations of private signals,

σ∗i,t(hi,t) = Ui,tEi,t[x] for all i ∈ V, (43)

then the action coefficients {Ui,t}i∈V can be obtained by solving the system of linear equations

LTi,tU
T
i,t =

∑
j∈V \i

LTi,tL
T
j,tU

T
j,tB

T
ij +QTi,tD

T , for all i ∈ V (44)

Proof: The proof is analogous to the proof of Lemma 1. By substituting the candidate strategies in

(43) to the best response function in (41) for all i ∈ V , we obtain the following equilibrium equations

Ui,tEi,t[x] =
∑

j∈V \{i}

BijEi,t[Uj,tEj,t[x]] +DEi,t[θ]. (45)

for all i ∈ V . After using the fact that Ei,t[Ej,t[x]] = Lj,tEi,t[x] with mean estimate assumptions in (42)
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for the corresponding terms in (45), we obtain the following set of equations

Ui,tLi,tx =
∑

j∈V \{i}

BijUj,tLj,tLi,tx +DQi,tx. (46)

We ensure that the strategies in (43) satisfy the equilibrium equations for any realization of history by

equating coefficients that multiply each component of x in (46) which yields the set of equations given

by (44).

For a linear equilibrium strategy, the actions can be written as a linear combination of the private

signals using (42), that is, the action of agent i at time t is given by

ai(t) = Ui,tLi,tx for all i ∈ V. (47)

Being able to express actions as in (47) permits writing observations of agents in linear form. From the

perspective of an observer, the action aj(t) is equivalent to observing a linear combination of private

signals. As a result, we can represent observation vector of agent i an(i)(t) :=
[
aj1(t), . . . ,ajd(i)(t)

]T ∈
Rmd(i) in linear form as

an(i)(t) = HT
i,tx = [Uj1,tLj1,t; . . . ;Ujd(i),tLjd(i),t]x (48)

where HT
i,t = [Uj1,tLj1,t; . . . ;Ujd(i),tLjd(i),t] ∈ Rmd(i)×Nm is the observation matrix of agent i.

Agent i’s belief of x at time t is normal, and at time t + 1 agent i observes a linear combination of

x. Hence, agent i’s belief at time t + 1 can be obtained by a sequential LMMSE update. As a result,

mean estimates remain weighted sums of private signals as in (42). In the following lemma, we explicitly

present the way we compute the estimation weights, Li,t+1 and Qi,t+1, at time t+ 1 when θ ∈ Rm.

Lemma 4 Consider a Bayesian game with quadratic function as in (40) and the same assumptions and

definitions of Lemma 3. Further define the gain matrices as

Ki
x(t) := M i

xx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
, (49)

Ki
θ(t) := M i

θx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
. (50)

If agents play according to a linear equilibrium strategy then agent i’s posterior Pi,t+1([θT ,xT ]) is

Gaussian with means that are linear combination of private signals,

Ei,t+1 [θ] = Qi,t+1x, and Ei,t+1[x] = Li,t+1x, (51)
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where the estimation matrices are given by

Li,t+1 = Li,t +Ki
x(t)

(
HT
i,t −HT

i,tLi,t
)
, (52)

Qi,t+1 = Qi,t +Ki
θ(t)

(
HT
i,t −HT

i,t, Li,t
)
, (53)

and the covariance matrices are further given by

M i
xx(t+ 1) =M i

xx(t)−Ki
x(t)HT

i,tM
i
xx(t), (54)

M i
θθ(t+ 1) =M i

θθ(t)−
[
Ki

θ(t)THT
i,tM

i
xθ(t)

]T
, (55)

M i
θx(t+ 1) =M i

θx(t)−Ki
θ(t)HT

i,tM
i
xx(t). (56)

Proof: The proof is identical to the proof of Lemma 2 with the action coefficients Ui,t taking the

place of vi,t.

Lemma 4 shows that when mean estimates are linear combinations of private signals at time t, they

remain that way at time t + 1. In the next theorem, we show that assumption in (42) is indeed true

for all time by realizing that the estimates at time t = 0 are linear combinations of private signals.

To simplify presentation of initial conditions, we assume that agent i’s private signals are independent,

Ei,0[xi[k]xi[l]] = 0 for all k = 1, . . . ,m and l 6= k.

Theorem 2 Given the quadratic utility function in (40), if there exists a linear equilibrium strategy σ∗t

as in (43) for t ∈ N, then the action coefficients Ui,t can be computed by solving the system of linear

equations in (44), and further, agents’ estimates of x and θ are linear combinations of private signals as

in (42) with estimation matrices computed recursively using (49)-(50) and (52)-(56) with initial values

Qi,0 :=

 eT
i 01×N ... 01×N

01×N eT
i ... 01×N

... ···
. . .

...
01×N ... 01×N eT

i

 ∈ Rm×Nm, (57)

Li,0 := diag
([
1eTi , . . . ,1e

T
i

])
∈ RNm×Nm, (58)

where ei ∈ RN . The initial covariance matrix M i
xx(0) ∈ RNm×Nm is a diagonal block matrix with

N × N blocks ((M i
xx))k,k ∈ RN×N for k = 1, . . . ,m , initial variance M i

θθ(0) ∈ Rm×m and initial
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Algorithm 1 QNG filter for θ ∈ Rd
Initialization: Set posterior distribution on θ and x[

θ
x

] ∣∣hi,0 ∼ N ([Qi,0xLi,0x

]
,

(
M i

θθ(0),M i
θx(0)

M i
xθ(0),M i

xx(0)

))
and {Lj,0,kj,0}j∈V according to (57) and (58).

For t = 0, 1, 2, . . .

1) Equilibrium strategy: Solve for {Uj,t}j∈V using the set of equations in (44).

2) Play and observe: Take action ai(t) = Ui,tEi,t[x] and observe an(i)(t).

3) Observation matrix: Construct Hi,t using (48).

4) Bayesian estimates: Update Ei,t[x] and Ei,t[θ] using (30) and (31), respectively. Update error
covariance matrices using (54)–(56).

5) Estimation weights: Update {Lj,t,kj,t}j∈V using (52)–(53).

cross covariance M i
θx(0) ∈ Rm×Nm are given by

(
(M i

xx)
)
k,k

= diag(ēi)diag(Ck,k) + ēiē
T
i Ci[k, k], (59)

M i
θθ(0) = Ci, (60)

M i
θx(0) = Ci

 ēT
i 01×N ... 01×N

01×N ēT
i ... 01×N

... ···
. . .

...
01×N ... 01×N ēT

i

 (61)

Proof: See Appendix B.

Similar to the scalar case, when network structure and the equilibrium strategy profile are common

knowledge, agent i can calculate the weights {Uj,t}j∈V for all t and update his estimates locally. In

Algorithm 1, we provide a sequential local algorithm for agent i to calculate updates for θ and x and to

act according to equilibrium strategy. The Bayesian rational learning defined here in Algorithm 1 for the

vector state case follows the same steps for the scalar case defined in Section IV and by Figs. 1 and 2.

VI. COURNOT COMPETITION

In a Cournot competition model N firms produce a common good that they sell in a market with

limitless demand. The cost per production unit c is common for all firms and constant for all times. The

selling unit price, however, decreases as the total amount of goods produced by all companies increases.

We adopt the specific linear model p−
∑

j∈V aj for the selling unit price, where p is the constant market
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Fig. 3. Line, star and ring networks.

price when no goods are produced. The profit of firm i for production level ai ∈ R+ is therefore given

by the utility

ui(ai, {aj}j∈V \i, θ) = −cai + (p− ai −
∑
j∈V \i

aj)ai. (62)

The utility function in (62) is not of the quadratic form given in (2) because there are two information

externalities, the cost c and the clearing price p. While it is possible to resort to the vector form of the

QNG filter covered in Section V, it is simpler to write (62) in a form compatible with (2) by defining

the parameter θ := p− c as the effective unit profit at the market price. Using this definition in (62) and

reordering terms yields

ui(ai, {aj}j∈V \i, θ) = (θ − ai −
∑
j∈V \i

aj)ai. (63)

Since this utility function is of the form in (2), we can use the QNG filter of Section IV as summarized

in Figs. 1 and 2 to determine subsequent BNE production levels. The explicit form of the equilibrium

equation in (8) is

σ∗i,t(hi,t) =
1

2
Ei,t[θ]−

1

2

∑
j∈V \i

Ei,t[σ
∗
j,t(hj,t)]. (64)

It is immediate from (64) that when Ei,t[θ] < 0 it is best for firm i to shut down production. To avoid

boundary conditions we restrict attention to cases where private signals x are such that Ei,t[θ] > 0 for

all i ∈ V and t ∈ N. This can be guaranteed if all private signals are nonnegative, i.e., x ≥ 0. In a game

with complete information all private signals x are known to all agents. In this case the (regular) Nash

equilibrium actions of all agents coincide and are given by

a∗i =
E[θ

∣∣x]

N + 1
for all i ∈ V. (65)

The numerical simulations in the next section show that the BNE strategies in (64) converge to the

(regular) Nash equilibrium strategy (65) in a finite number of steps.
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Fig. 4. Agents’ actions over time for the Cournot competition game and networks shown in Fig. 3. Each line indicates the
quantity produced for an individual at each stage. Actions converge to the Nash equilibrium action of the complete information
game in the number of steps equal to the diameter of the network.
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Fig. 5. Normed error in estimates of privates signals, ‖x−Ei,t[x]‖22, for the Cournot competition game and networks shown
in Fig. 3. Each line corresponds to an agent’s normed error in mean estimates of private signals over the time horizon. While
all of the agents learn the true values of all the private signals in line and ring networks, in the star network only the central
agent learns all of the private signals.

A. Learning in Cournot competition

The underlying effective unit profit is chosen as θ = 12$/unit. Firms observe private signals with the

additive noise term coming from standard normal distribution, i.e., εi ∼ N (0, 1). Given this setting, we

consider three benchmark networks: a line network with N = 5 firms, a star network with N = 5 firms,

and a ring network with N = 10 firms (see Fig. 3).

The quantities produced by firms over time are shown in Fig. 4 for the line (a), star (b) and ring (c)

networks. In all of the cases, we observe consensus in the units produced. Furthermore, the consensus

production a∗ is optimal; that is, firms converge to the Bayes-Nash equilibrium under complete informa-

tion (65). This implies that all of the firms learn the best estimate of θ by the convergence time T , that

is, Ei,T [θ
∣∣hi,T ] = E[θ

∣∣x] for all i ∈ V .

Figs. 5(a)–(c) show the error in estimation of private signals ‖x− Ei,t[x]‖22 for all i ∈ V and t ∈ N.

In Figs. 5(a) and 5(c), corresponding to line and ring networks, the mean square error in private signal

estimates goes to zero for all of the firms at the end of the convergence time T . On the other hand, in the
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Fig. 6. Mobile agents in a 3-dimensional coordination game. Agents observe initial noisy private signals on heading and
take-off angles. Agents revise their estimates on true heading and take-off angles and coordinate their movement angles with
each other through local observations.

star network in Fig. 5(b), except for the center firm 5, none of the other firms has zero mean square error

in private signal estimates. This means that these firms do not learn at least one of the private signals.

As we know from Fig. 4 (b), all of the firms in the star network learn the best estimate of θ given all

of the private signals. Hence, in the star network, firms only learn the sufficient statistic to estimate θ

(which is the average of the private signals) rather than learning each of the private signals individually.

Figs. 4(a)–(c) suggest that convergence is achieved in O(∆) steps where ∆ is the diameter of the

graph. In [4], it is argued that for the distributed estimation problems when the individual utility function

is equal to ui(ai, θ) = −(ai − θ)2, convergence happens in O(∆) steps for tree networks. Our results

show that the convergence rate is O(∆) not only for tree networks such as line and star networks but

also for the ring network when the utility function is quadratic and includes actions of others.

VII. COORDINATION GAME

A network of autonomous agents want to align themselves so that they move toward a goal (x∗, y∗, z∗)

on 3-dimensional space following a straight path, and at the same time maintain their initial starting

formation. When the goal (x∗, y∗, z∗) is far away, then there exists a common correct direction of

movement toward the goal characterized by the heading angle on the x − y plane φ ∈ [0◦, 180◦] and

the take-off angle on the x − z plane ψ ∈ [0◦, 180◦]. Hence, the target movement direction is given by

θ = [φ, ψ]T . Fig. 6 illustrates a set of autonomous agents on a 3-dimensional plane and their heading

and take-off angles where the x, y, z axes are depicted for agent 1.

Mobile agents have the goal of maintaining the starting formation while moving at equal speed by

coordinating their movement direction with other agents. Agents need to coordinate with the entire

population while communication is restricted to neighboring agents whose direction of movement they

can observe. In this context, agent i’s decision ai ∈ [0, 180◦] × [0, 180◦] represents the heading and

take-off angles in the direction of movement. The estimation and coordination goals of agent i can be
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represented with the following payoff

ui(ai, {aj}j∈V \i,θ) = −1− λ
2

(ai − θ)T (ai − θ)− λ

2(N − 1)

∑
j∈V \{i}

(ai − aj)
T (ai − aj). (66)

The first term is the estimation error in the true heading and take-off angles. The second term is the

coordination component that measures the discrepancy between the direction of movement and those of

other agents. λ is a constant in (0, 1) gauging the importance of estimation term with respect to the

coordination term.

The same payoff formulation can be motivated by looking at learning in organizations [30]. In an

organization, individuals share a set of common tasks and have the incentive to coordinate with other

units. Each individual receives a private piece of information about the task that needs to be performed

while only being able to share his information with whom he has a direct contact in the organization.

Note that the utility function is of the quadratic form given in (40) with vector states and vector actions.

Hence, we can use the QNG filter in Section V as summarized in Algorithm 1. As postulated in (8), the

explicit equilibrium equation for all i ∈ V is

σ∗i,t(hi,t) = (1− λ)Ei,t[θ] +
λ

N − 1

∑
j∈V \{i}

Ei,t[σ
∗
j,t(hj,t))]. (67)

In a game with complete information, the Bayes-Nash equilibrium actions of all agents coincide and

are given by

a∗i = E[θ
∣∣x]. (68)

In the next section, we show that the equilibrium actions in (67) converge to the Bayes-Nash equilibrium

with complete information as given by (68) in finite number of steps.

A. Learning in coordination games

The correct direction vector is chosen to be θ = [10◦, 20◦]T . We let λ = 0.5. The noise terms, εi are

jointly Gaussian with mean zero and covariance matrix equal to the identity matrix. Having an identity

covariance matrix implies that E[xi[1]xi[2]] = 0.

We evaluate equilibrium behavior in geometric and random networks with N = 50 agents, Figs. 7 (a)

and (b), respectively. Geometric random network is created by placing the agents randomly on a 4 meter

× 4 meter square and connecting pairs with distance less than 1 meter between them. In the random

network, any pair of agents are neighbors with probability 0.1. The geometric network in Fig. 7 (a) has

a diameter of ∆g = 5 where the random network in Fig. 7 (b) has a diameter of ∆r = 4.

February 4, 2013 DRAFT



26

0 1 2 3 4
0

1

2

3

4

meters

m
et

er
s

0 1 2 3 4
0

1

2

3

4

meters

m
et

er
s

(a) (b)

Fig. 7. Geometric (a) and random (b) networks with N = 50 agents. Agents are randomly placed on a 4 meter × 4 meter
square. There exists an edge between any pair of agents with distance less than 1 meter apart in the geometric network. In the
random network, the connection probability between any pair of agents is independent and equal to 0.1.

The direction of movement of each agent over time is depicted in Figs. 8(a)–(d). Figs. 8(a) and 8(b)

show the heading angle φi of agents in geometric and random networks, respectively. Figs. 8(c) and 8(d)

show the take-off angle ψi of agents in geometric and random networks, respectively. Fig. 8 illustrates

that agents’ movement directions converge to the best estimates in heading and take-off angles in a finite

number of steps. As a result, at the end of the convergence time T , we have Ei,t[φ
∣∣hi,T ] = E[φ

∣∣x[1]]

and Ei,t[ψ
∣∣hi,T ] = E[ψ

∣∣x[2]] for all i ∈ V . Further, convergence time is in the order of the diameter

for both of the networks. This means that agents learn the sufficient statistic to calculate best estimates

in the amount of time it takes for information to propagate through the network.

VIII. CONCLUSION

In this paper we introduced the QNG filter that agents can run locally to update their beliefs and select

equilibrium actions actions in repeated quadratic games with both information and payoff externalities.

The QNG filter provides a mechanism to update beliefs in a Bayes’ way when agents’ initial prior over

the state of the world is Gaussian. We began by showing that when the prior estimates of private signals

are Gaussian with means equal to a linear combination of private signals, and the equilibrium strategies

of agents are linear combination of mean estimates of private signals, Bayesian updates of estimates

of private signals and the underlying state follow a sequential LMMSE estimator. This meant that the

estimates remain linear combinations of private signals, and hence, Gaussian. By induction, estimates

remain Gaussian for all times if equilibrium actions that are linear in mean of the estimates exist at

all the stages. Further, we derived an explicit recursion for tracking of estimates of private signals and

calculating equilibrium actions which we leverage to develop the QNG filter. We then extended the QNG

February 4, 2013 DRAFT



27

0 1 2 3 4 5
6

7

8

9

10

11

12

13

Time

A
c
ti
o

n
 v

a
lu

e
s
, 
φ

0 1 2 3 4
6

7

8

9

10

11

12

13

Time

A
c
ti
o

n
 v

a
lu

e
s
, 
φ

(a) (b)

0 1 2 3 4 5
17

18

19

20

21

22

23

Time

A
c
ti
o
n
 v

a
lu

e
s
, 
ψ

0 1 2 3 4
17

18

19

20

21

22

23

Time

A
c
ti
o

n
 v

a
lu

e
s
, 
ψ

(c) (d)

Fig. 8. Agents’ actions over time for the coordination game and networks shown in Fig. 7. Values of agents’ actions over time
for heading angle φi (top) and take-off angle ψi in geometric (left) and random (right) networks respectively. Action consensus
happens in the order of the diameter of the corresponding networks.

filter to the case when the state of the world is a vector. We exemplified the QNG filter in Cournot

competition game and coordination of mobile agents on 3-dimensional space. In the former the state of

the world, effective profit, was a scalar, whereas in the latter the state of the world was a vector including

heading and take-off angles. In both examples, the QNG filter converged to the BNE of the game in

number of steps that is equal to the order of the diameter of the network. This meant that agents learnt

the sufficient statistic of the state while not necessarily learning all the individual private signals.

APPENDIX A

PROOF OF THEOREM 1:

At time t = 0 beliefs are normal and have the form in (12). Indeed, since the only information available

to agent i at time t = 0 is the private signal xi it follows from the linear observation model in (1) that

this is the value assigned to the estimate of all private signals as well as to the estimate of the state θ,

Ei,0 [xj ] = xi for all j, Ei,0 [θ] = xi. (69)
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The elements of the matrix Li,0 = 1eTi are 1 in the ith column and 0 otherwise. Therefore, the first

expression in (69) is equivalent to the first expression in (34). Likewise, since the ith element of ei is

one with remaining elements zero, the second expression in (69) is equivalent to the second expression in

(34). As for the variances in (35), note that the initial estimate of x has error covariance matrix defined as

in (9) for t = 0. By substituting initial mean estimates inside (9) and then using the fact that eTi x = xi,

the error covariance matrix can be rewritten as

M i
xx(0) =Ei,0

[(
x− 1xi

)(
x− 1xi

)T ] (70)

From (70), we get the following by using the fact that xj − xi = εj − εi by (1),

M i
xx(0) =Ei,0

[(
ε− 1εi

)(
ε− 1εi

)T ]
. (71)

When we expand the terms in (71), we obtain the following

M i
xx(0) =Ei,0

[
εεT
]
−Ei,0

[
ε1T εi

]
−Ei,0

[
1εiε

T
]

+ 11TEi,0
[
ε2i
]

(72)

=diag(c)− ei1
T ci − 1eTi ci + 11T ci (73)

=diag(c) + ēiē
T
i ci − eie

T
i ci (74)

Since private signals are independent among agents, that is Ei,0[εkεj ] = 0 for all j ∈ V \ k and k ∈ V ,

we have Ei,0[εεT ] = diag(c), Ei,0[εεi] = eici. Using these relations and the definition of noise variance

ci = E[ε2i ], (73) follows from (72). When second and third terms are subtracted from the fourth term in

(73), we obtain the last two terms in (74). Now, observe that diag(c)− eie
T
i ci = diag(ēi)diag(c), hence

(74) can be rewritten as in (35).

Consider the variance of θ defined in (10) at time t = 0. Substituting Ei,0[θ] = xi inside (10), we have

M i
θθ(0) = Ei,0

[
(θ − xi)2

]
(75)

By the signal structure (1) with additive zero mean Gaussian term εi, we have θ−xi = −εi. As a result,

M i
θθ(0) = Ei,0[ε2i ] which is in return equal to ci. Next consider the cross-covariance between θ and x

defined in (11) at time t = 0,

M i
θx(0) =Ei,0

[(
θ −Ei,0 [θ]

)(
x−Ei,0 [x]

)T ] (76)

=Ei,0

[
(−εi)(ε− 1εi)

T
]

(77)
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The second equality follows by substitution of initial mean estimates and then using the definition of

private signals (1). Next, we multiply out the terms in (77), use independence of private signals between

agents to get (35).

The inductive hypotheses is then true at time t = 0 with the explicit initializations in (34) and (35).

Lemma 2 has already shown that if the inductive hypothesis is true at time t, it is also true at time t+ 1.

It also provided the explicit recursions in (22)-(23) and (25)-(29). Lemma 1 further shows that the action

coefficients vi,t can be computed by solving the system of linear equations in (15).

APPENDIX B

PROOF OF THEOREM 2:

At time t = 0, agents beliefs are normal and have the form in (42). Since the only information available

to agent i at time t = 0 is the private signal xi, it follows from the observation model in (38) that agent i

assigns xi as his mean estimates of the underlying parameter vector and the private signals as in (57)-(58).

Next, consider the initial error covariance matrix M i
xx(0),

M i
xx(0) = Ei,0

[
(x−Ei,0[x]) (x−Ei,0[x])T

]
(78)

= Ei,0




x[1]− 1xi[1]
...

x[N ]− 1xi[N ]




x[1]− 1xi[1]
...

x[N ]− 1xi[N ]


T
 (79)

Substituting initial mean estimates (58) in (78) and using the fact that 1eTi x[n] = 1xi[n], we get (79).

Let ε[n] := [ε1[n], . . . , εN [n]]T ∈ RN denote the noise values of agents on the nth state of the world,

then we can write each N ×N block of the matrix obtained in (79) as follows

Ei,0
[
(x[k]− 1xi[k])(x[l]− 1xi[l])

T
]

= Ei,0

[
(ε[k]− 1εi[k]) (ε[l]− 1εi[l])

T
]
. (80)

Since initial private signals of agent i are assumed to be independent of each other, that is, Ei,0[εi[k]εi[l]] =

0 for all k = 1, . . . ,m and l 6= k, (80) is zero when k 6= l. When k = l, (80) is equivalent to (71). As

a result, for the N ×N blocks at the diagonals of M i
xx(0), we obtain (59) which is similar to its scalar

counterpart given in (35). Consider the variance of θ at time t = 0. Using (57), we obtain that M i
θθ(0)

is as given in (60). The initial cross covariance can also be calculated using initial mean estimates in

(57) and (58) in a similar way.
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Given the normal prior Pi,0([θT ,xT ]) with mean estimates given by (57)-(58), the inductive hypothesis

in Lemma 3 is satisfied at time t = 0. Further, by our assumption there exists a linear equilibrium action

with weights Ui,0 that can be calculated by solving the set of equations in (44). Lemma 4 already provides

a way to propagate beliefs when agents play according to linear equilibrium strategy. Furthermore, by

Lemma 4, if the inductive hypothesis is true at time t then it is also true at time t+ 1.
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