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ABSTRACT

We present an optimized weighted finite-state transducer

(WFST) decoder capable of online streaming and offline

batch processing of audio using Graphics Processing Units

(GPUs). The decoder is efficient in memory utilization,

input/output (I/O) bandwidth, and uses a novel Viterbi im-

plementation designed to maximize parallelism. The reduced

memory footprint allows the decoder to process significantly

larger graphs than previously possible, while optimizing I/O

increases the number of simultaneous streams supported.

GPU preprocessing of lattice segments enables intermediate

lattice results to be returned to the requestor during streaming

inference. Collectively, the proposed algorithm yields up to a

240x speedup over single core CPU decoding, and up to 40x

faster decoding than the current state-of-the-art GPU decoder,

while returning equivalent results. This decoder design en-

ables deployment of production-grade ASR models on a large

spectrum of systems, ranging from large data center servers

to low-power edge devices.

Index Terms— Automatic speech recognition, decoder,

WFST, parallel computing, edge

1. INTRODUCTION

Recent advancements in automatic speech recognition (ASR),

fueled by deep learning research in the field [1], have led

to significant quality improvements, making the technology

practical for a slew of human-computer interaction use cases

and driving demand for streaming ASR as a service. Stream-

ing ASR as a service typically requires large numbers of com-

modity servers in a datacenter. Tight latency requirements

guided work to improve inference performance of models de-

ployed in datacenters and encouraged research on supporting

inference at the edge, including low-power devices [2, 3].

Typical ASR systems comprise three primary compo-

nents: feature extraction, acoustic modeling, and language

model decoding. Historically, the computational complexity

of the acoustic model has dominated the inference execution

time, and has been the focus of a variety of optimizations,

including unusual network architectures, striding, and quan-

tization techniques [4–6].

Principal among these optimizations is offloading acous-

tic model inference to dedicated acceleration hardware, most

commonly GPUs [7]. In many cases, feature extraction and

neural acoustic models are efficient enough such that further

optimization is limited by Amdahl’s law [8]: marginal latency

improvements in previously optimized components yield neg-

ligible improvements in system latency. To begin our investi-

gation into accelerating speech recognition inference, we pro-

filed a typical lattice decode using the Kaldi speech recogni-

tion framework [9] with a pretrained model (see experiments

in Section 4), and found 94% of the wallclock time was spent

in the language model decoder when using a GPU for acoustic

model inference.

In this work, we propose a novel implementation of

weighted finite-state transducer (WFST) decoding for the

speech recognition task using GPUs and NVIDIA’s CUDA

[10] programming language. The decoder is designed as a

drop-in replacement for existing decoders, requiring no lan-

guage or acoustic model modifications. It is designed to be

maximally flexible, supporting online recognition of multiple

simultaneous audio streams and lattice generation. Care-

fully bounded memory utilization ensures adequate space

on GPU memory for large language models and coresident

acoustic models. Finally, the algorithm can scale from small

GPUs running on low-power embedded GPUs to multiple

datacenter-class GPUs running in a single server. Prior to

publication, the work has been open-sourced and is now

included with Kaldi1.

2. RELATED WORK

Originally proposed by Mohri [11], WFSTs for ASR decod-

ing have become the de facto standard when using n-gram

language models. The decode process returns the single-best

path, or alternatively an exact lattice [12] representing multi-

ple possible hypotheses for the decoded utterance. Efforts to

increase the speed of the decode and lattice generation pro-

cess have included parallel, multi-threaded CPU implementa-

tions [13] as well as hybrid on-the-fly rescoring [14].

Despite promising efforts in [13], attempts to extend pre-

vious accelerated speech decoding onto parallel processors

1https://github.com/kaldi-asr/kaldi/tree/master/src/cudadecoder

http://arxiv.org/abs/1910.10032v2
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Fig. 1. Block diagram of kernels involved in advancing de-

coding.

are relatively nascent. Initial efforts targeted hybrid rescoring

methods [15, 16] using constrained vocabularies or language

models on GPU, while offloading rescoring to CPU. General-

purpose WFST decoding on GPUs has been proposed in [17–

19], but these works do not support conditioning on acoustic

model (AM) posteriors.

The proposed work is most closely related to and im-

proves upon the first fully GPU-accelerated lattice decoder

[20], which maps token passing constructs [13] to GPU. Start-

ing from the single-threaded CPU decoder, we tailored the

algorithm to the strengths of the hardware, including avoid-

ing unnecessary synchronization and atomics, and using flat,

compact memory structures. Efficiencies realized in this im-

plementation enabled the addition of support for online de-

coding while achieving up to 40x speedups over previous ac-

celerated implementations.

3. PARALLEL VITERBI DECODING

The parallel WFST decoder generally follows the typical or-

der of operations in a serial decoder: for each frame of AM

posteriors, the decoder processes emitting arcs (those arcs

with non-null labels) conditioned on frame values, processes

any chains of non-emitting arcs, and finally performs pruning.

The proposed algorithm utilizes two disparate asynchronous

CUDA streams: one responsible for executing compute ker-

nels, and the other responsible for performing non-blocking

device to host (D2H) memory copies of lattice tokens. Using

a second stream for D2H copies makes it possible to return

intermediate results during online coding without stalling the

compute pipeline.

We eliminate many common CPU-oriented optimizations

and constraints, which are sometimes detrimental to parallel

performance. Specifically, when expanding tokens, we do not

test that new tokens are unique. It is sufficient for correct-

ness to allow duplicate tokens to persist and be cleaned later:

trading marginal extra work for reduced dependence on syn-

chronization and atomic operations. Despite further micro-

optimizations in the code, we focus this section on the unique

architectural decisions of the decoder for brevity.

3.1. Batching & Context Switching

As decoding is necessarily serial in nature (i.e. prediction

at time t depends on the state at t − 1), and individual steps

represent relatively small units of work, decoding functions

(kernels) executing on the GPU complete quickly, and per-

formance becomes constrained by kernel launch latency. By

structuring the decoder such that multiple audio streams are

processed in parallel, launch latency is hidden by longer-

running kernels (due to their increased workload).

To support efficient decoding for online recognition, we

introduce two separate mechanisms for handling simultane-

ous audio streams: channels and lanes. Lanes are roughly

equivalent to batch size in neural networks, and represent the

set of utterances or streams being actively decoded. Channels

maintain state for utterances which are not ready to continue

processing due to lack of audio or computed posteriors. The

threaded decoder that readies work for the GPU is respon-

sible for multiplexing channels (as they become ready) onto

lanes (as they become available). This scheme allows for easy

tuning to match the GPU with the model and representative

data: increase the number of lanes until diminishing returns

are reached, and set the number of channels to match the mea-

sured throughput/xRTF.

Critical to this strategy is the ability to efficiently swap

channels with lanes, which requires minimizing memory us-

age required for state tracking and optimizing layout. In prac-

tice, context switching calls complete in about 5µs per batch.

Details of the memory structure used is described in the fol-

lowing section.

3.2. Memory Layout

Maximum efficiency depends on minimizing memory usage

for state. Equally important is the layout of memory. Care-

ful consideration is taken here to ensure that data is structured

such that kernels may use coalesced accesses wherever possi-

ble.

3.2.1. Footprint

We represent the decoding FST in-memory as a set of com-

pressed sparse rows (CSRs) and additional metadata, which

we are able to efficiently traverse with direct indexing.

Given the decode WFST T = (Σ,Ω, Q,E, ...), with input

and output labels Σ and Ω, respectively, a finite set of states

Q, a finite set of transitions E (EE are emitting transitions),

we calculate its expected memory utilization, Mfst as

Mfst = 12|Q|+ 8|E|+ 4|EE | (1)

In practice, this typically equates to GPU memory used for

the FST about 1

3
of the size of the FST on disk.

GPU memory utilization of the decoder is bounded and

can be calculated with a closed-form equation based on con-

figured hyperparameters. The memory footprint, in bytes, of



the full state of the decoder, including utterances being ac-

tively decoded and those awaiting further decoding is given

in Equation 2 where α is the maximum active tokens after

pruning (max-active), nl is the maximum number of lanes,

and nc is the maximum number of channels configured.

Mstate = 64αnc + 544αnl + 1024nl (2)

Note that the size of the decoder state is not related to the

size of the decode graph nor the beam sizes. As such, one

can scale the decoder based on the desired number of parallel

streams or sizes of the acoustic/language model. As a con-

crete example, one could configure an edge device for a single

stream (α = 10000, nc = 1, nl = 1) and use only 5.8MB of

device memory, while a datacenter-class GPU might support

5000 simultaneous streams in realtime (α = 10000, nc =
5000, nl = 500) requiring about 5.5GB.

3.3. Load Balancing

To maximize parallelism, it is important that we generate

large numbers of threads which have approximately the same

amount of work to do. As we process each batch of frames,

we begin by performing a load-balanced expand (see Figure

1) where each outgoing arc is processed by its own thread,

generating a number of candidate tokens. The adaptive beam

is then adjusted, and used to determine which candidates are

added back to the main queue for further processing.

Another irregularity comes from the slow convergence of

non-emitting iterations, leading to an undefined number of

small iterations (i.e. long tail). Once the count of active non-

emitting tokens becomes low enough, the following iterations

will be processed by a persistent kernel until convergence. In

that persistent kernel, each utterance owns only one CUDA

Cooperative Thread Array (CTA), speeding up synchroniza-

tion and intra-thread communication.

3.4. Lattice Preprocessing

Up until the lattice processing stage in the decoder, the goal is

to discover which subset of the search space would be saved

for the current frame. Following frames build on that subset,

and any paths within that subset may be present in the final

lattice. During the discovery stage, we had to create and con-

sider (typically an order of magnitude) more tokens than the

ones we ultimately keep. Subsequently, the discovery stage

focuses on being lightweight, while postponing any expen-

sive structuring operations.

In order to generate a lattice based on these tokens, we

convert the raw tokens into a structured CSR representation.

This includes detecting tokens linked to the same FST state,

listing them in the CSR format, designing a unique represen-

tative for each FST state, and computing extra costs. This

data is then moved to the host and used to generate the fi-

nal lattice at the end of utterance. Tokens are then prepared

for the next frame by “soft-pruning” any tokens which aren’t

representative for their FST state by artificially zeroing their

out-arc degree, which can then be safely ignored by the load

balancer: avoiding exponential growth.

4. EXPERIMENTS

We focus our examination on the performance of two models

representing a wide spectrum of deployment conditions: from

LibriSpeech [21] test-clean subset evaluated with a model

tuned specifically for LibriSpeech2, to the LibriSpeech test-

other subset evaluated on the ASPiRE [22] Kaldi model3. The

former represents an ideal case of relatively easy-to-transcribe

data being processed by a well-tuned model, while the latter is

a more pathological case representing more challenging input

audio transcribed by a mismatched model. The net effect of

the matched versus mismatched conditions is that in the case

of the former, acoustic model posteriors tend to be more con-

fident and fewer paths need to be evaluated when compared

to more challenging scenarios. All experiments are performed

using a single NVIDIA Tesla V100 GPU, beam=15, lattice-

beam=8, and max-active=10000, unless otherwise specified.

4.1. Accuracy

The parallel implementation leads to expected non-determinism,

typically due to out-of-order pruning of tokens. Specifically,

the histogram pruning thresholds are somewhat arbitrary

compared to the explicit cutoff in the baseline implementa-

tion. Because of this, we see minor variations in the word

error rate (±0.02%).

Decoder
test-clean test-other

lat. den. WER OWER lat. den. WER OWER

Baseline 4.19 5.49 1.05 13.94 13.71 2.55

GPU 4.22 5.51 1.09 14.18 13.72 2.67

Table 1. Validation of lattice quality with LibriSpeech model

and test sets.

Table 1 evaluates the output lattices against lattices gen-

erated by the baseline CPU implementation. We validate that

the word error rate (WER) is within tolerable limits, as well

as the oracle word error rate (OWER). The Oracle WER is

a proxy for determining if all expected alternate paths exist

within the lattice. Finally, we measure the lattice density (lat.

den.), which is an average measure of outgoing arcs. This

confirms the produced lattices are of similar size.

4.2. Speed Improvements

Table 2 reports xRTF (times faster than real time) for base-

line Kaldi single- and multi-process decoder implementa-

tions, and other GPU decoder implementations. The CPU

2Using standard Kaldi LibriSpeech recipe
3Available from http://kaldi-asr.org/models/m1

http://kaldi-asr.org/models/m1


speeds are obtained using an Intel Xeon CPU E5-2698 v4 @

2.20GHz, with 20 cores.

Across the tested configurations, the GPU decoder outper-

forms the multithreaded CPU implementation within Kaldi,

with a relative speedup ranging between 14x and 18x when

compared to a full 20-core Xeon processor. When compared

with the current state-of-the art parallel decoder [20], the pro-

posed algorithm decodes between 11x and 41x faster.

Decoder Type
ASPiRE LibriSpeech

clean other clean other

CPU Process One Best 4.4 2.9 57.2 26.0
CPU Process Lattice 3.8 2.7 53.4 29.2
CPU Socket Lattice 43.2 30.1 614.8 313.1
GPU [20] Lattice 70.9 n/a 219.9 174.6
GPU (This Work) Lattice 769.3 649.7 9 031.4 4 391.7

Table 2. Offline decoding speed (xRTF, beam=15)4.

4.3. Hyperparameters

Decoding hyperparameter selection (particularly beam) im-

pacts decoder speed. In cases with smaller beam widths, over-

subscription of threads to the GPU is reduced, enabling faster

inference. Care should be taken to choose a beam width that

is suitable for the target data and model. Figure 2 shows a

roughly log-linear decrease in decode speed as beam width

increases. The points in the graph are labeled with WER at

that operating point. Note the marginal accuracy improve-

ments despite significant increases in runtime.

LM
HCLG test-clean test-other

Size (MB) xRTF WER xRTF WER

3-gram, 3e-10 192.6 5.51 9 031.4 13.72 4 391.7
3-gram, 1e-10 467.0 4.92 9 064.5 12.54 4 386.8
3-gram 8724.0 4.02 9 161.7 10.09 4 627.4

Table 3. Comparison of FST size and WER/Speed.

Table 3 shows that significant reductions in WER may

be achieved by using larger language models. Three differ-

ent trigram language models with different pruning thresholds

(3e−10, 1e−10, and no pruning, respectively) are used with

other parameters held constant. Despite a 10x filesize dif-

ference, the decode performs faster using the large language

model likely due to reduced perplexity during decoding yield-

ing extra pruning, and subsequently improved speed.

4.4. Deployment

With fully GPU-accelerated inference, the CPU is only left

responsible for shuffling data in/out of the GPU, and com-

pleting lattice determinization if required. Because of this,

multi-GPU scaling is nearly linear. On a NVIDIA DGX-1

containing 8 V100 GPUs, 85% scaling efficiency is achieved

when using all GPUs.

4Missing data for prior GPU implementation is due to application crashes.
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GPU Class Streams (10) Streams (15) TDP

Jetson Nano Embedded 11 7 5

AGX Xavier Embedded 502 399 30

Tesla T4 Datacenter 2024 1561 70

Tesla V100 Datacenter 4117 3150 250

Table 4. Measured end-to-end realtime throughput across

suite of NVIDIA GPUs at varying beam sizes.

Table 4 demonstrates the same decoder used across the

entire current NVIDIA family of processors. In all cases, the

models are identical, and use the same hyperparameters ex-

cept for batch size. The values in the table represent the num-

ber of streams that can be decoded in realtime, and includes

feature extraction and acoustic model.

5. CONCLUSION

In this paper, we present a parallel decoder for speech recog-

nition WFST inference. The algorithm is AM and LM ag-

nostic, requiring no changes to support inference with exist-

ing models trained in the Kaldi toolkit. By implementing the

decoder such that multiple utterances are processed in paral-

lel, optimized memory management, and trading extra com-

putation for reduced synchronization, we consistently achieve

order-of-magnitude speedups when compared to the baseline

multithreaded algorithm on CPU and current state-of-the-art

GPU implementation. We further demonstrate that this work

can be used on embedded platforms without requiring any

model changes.

The implementation is now open-source as part of the

Kaldi release. Future work will evaluate adaptations for CTC

decoding as well as adding support for on-the-fly neural lan-

guage model scoring.
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