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ABSTRACT

We introduce a neural auto-encoder that transforms the musical dy-
namic in recordings of singing voice via changes in voice level. Since
most recordings of singing voice are not annotated with voice level
we propose a means to estimate the voice level from the signal’s tim-
bre using a neural voice level estimator. We introduce the recording
factor that relates the voice level to the recorded signal power as
a proportionality constant. This unknown constant depends on the
recording conditions and the post-processing and may thus be differ-
ent for each recording (but is constant across each recording). We
provide two approaches to estimate the voice level without knowing
the recording factor. The unknown recording factor can either be
learned alongside the weights of the voice level estimator, or a special
loss function based on the scalar product can be used to only match
the contour of the recorded signal’s power. The voice level models
are used to condition a previously introduced bottleneck auto-encoder
that disentangles its input, the mel-spectrogram, from the voice level.
We evaluate the voice level models on recordings annotated with
musical dynamic and by their ability to provide useful information
to the auto-encoder. A perceptive test is carried out that evaluates
the perceived change in voice level in transformed recordings and
the synthesis quality. The perceptive test confirms that changing the
conditional input changes the perceived voice level accordingly thus
suggesting that the proposed voice level models encode information
about the true voice level.

Index Terms— Voice transformation, voice conversion, auto-
encoder, voice level

1. INTRODUCTION

Voice level is the power with which human voice is produced. For
singing, the voice level is strongly related to the musical dynamic and
therefore an important medium to carry musical expression [1]. In
music the dynamic refers to how loud an instrument is played. Singing
voice as a musical instrument inherits this quality and professional
singers can sing a continuous spectrum of dynamics by adjusting the
voice level. Similarly in speech most speakers can adapt the voice
level to various situations between speaking to a crowd of hundreds
of people in an open field and exchanging information with their
neighbour in a quiet library [2].

For both, singing and speech, not only the signal’s power changes
with the change in voice level but a wide range of voice properties as
well, such that most people can easily distinguish soft speech close
to the ear from someone shouting from far away, even though the
signal’s power might be the same at the listeners ear [3]. In fact the
perceived loudness of sounds does only marginally depend on the
signal power at the listener as our brain compensates for attenuations
due to distance to the source [3].

This work has been funded partly by the ANR project ARS (ANR-19-
CE38-0001-01). This work was performed using HPC resources from GENCI-
IDRIS (Grants 2020-AD011011378 and 2021-AD011011177).

Voice level can be derived from the intensity measured using a
calibrated sound pressure level (SPL) meter at a fixed distance to the
singer [2] and the relationship between voice level and other voice
parameters have been investigated in various studies. In [4] glottal
inverse filtering [5] is used to analyse the difference between soft,
normal and loud voice in the glottal waveform. The relationships
between open quotient, f0, lung pressure and sound pressure level
are investigated in [6]. In [2] the relationship between vocal effort
and the articulation, f0, creaky voice and formant positions is studied
and the distance between speaker and addressee is used to vary the
vocal effort / voice intensity of the participants. Special attention to
the open quotient is given by the study in [7].

These studies have paved the way for glottal pulse models [8]
which can be used to modify pulse parameters as a function of the
voice level [9, 10]. However, the practical application of these models
is limited as robustly obtaining glottal pulse parameters from voice
recordings remains challenging. In [11] voice level changes were
done by shifting the formant positions in vowels according to the
statistics computed on a singing database. Related to the voice level
in voice is the roughness as rough voice generally tents to occur in
voice with very high voice level. Rough voice is, however, a different
singing style that can happen in quiet singing as well. Some work has
been done to simulate the effect or rough voice in singing synthesis
[12, 13].

In this paper we aim to use neural networks to transform the voice
level of singing voice recordings. Based on the observations above
the voice level manifests itself heavily in the timbre. Thus it does not
suffice to simply rescale the original signal. Numerous datasets with
singing voice exist, however only a small fraction contains voice level
annotations. Therefore, in this paper we provide a method to train a
neural network to extract voice level without the need for explicitly
annotated voice level. The estimated voice level can be calibrated
using any of the recording conditions present in the database of
singing recordings as a reference condition.

Thus, the contributions of this work are the following. (1.) We
present an unsupervised algorithm that allows training a deep neural
network to predict the voice level without the need to create annotated
data. (2.) We use this voice level measure to train a bottleneck auto-
encoder [14, 15] to transform the voice level in recordings of singing
voice. The remaining paper is structured as follows: In Section 2 we
introduce two ways to estimate the voice level from voice recordings
where no voice level annotation exists. In Section 3 we present our
adaptions of [16] to include the voice level as a controllable parameter.
We will explain our experimental validation in Section 4 and present
and discuss the results in Section 5. Finally we will see a short
summary and an outlook in Section 6.

2. EXTRACTING VOICE LEVEL FROM AUDIO
RECORDINGS

Audio recordings are not calibrated measurements. The goal of a
recording is to produce a signal that when played on a speaker will
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create sound waves that sound like the original source. The scaling
of these signals is irrelevant as it is expected to be adjusted by the
consumer or the sound engineer that further processes the sound.
Thus, each recording has a different relationship between the source’s
power and the recorded signal’s power as microphones have different
directivities and transfer functions and the signal gain is adjusted to
minimise quantisation noise when digitalising the microphone signal.

Therefore, without explicit annotation it is impossible to infer
the voice level from an audio recording’s power. Still, if we look
at the speech production mechanism, we notice that humans cannot
increase the voice level without changing other properties of their
voice [2, 4, 6, 7]. Thus we can infer the voice level from the signal’s
timbre.

2.1. Learned recording factor

Assuming all audio files of a dataset have been recorded under the
same conditions, (same microphone, pre-gain, spatial positioning of
speaker and microphone, etc.) with the same post-processing applied
to them (in particular with same normalisation factor) we can assume
that the power contour of the recorded signal p is proportional to the
voice level l:

p = ar l (1)

with p and l being time varying sequences here and with the propor-
tionality factor ar which we shall call recording factor as it captures
the effect of the recording conditions. For multi speaker databases it
is highly likely that some of these assumptions are violated; however,
it is not unlikely that these assumptions still hold for all files of a
fixed speaker s. Therefore we get the relationship

p = asr l (2)

for all files generated by a speaker s with a different asr for each
speaker.

The speaker dependent recording factor asr can be learned along-
side the weights θ of a neural network Nθ . As we aim to learn the
voice level contour l from the spectral properties of the signal we
have to prevent the network from using the signal power. This can be
done by frame-wise normalisation thus removing the power contour
from the input.

Using an L2 error, we get the following error function

‖p− asr Nθ (n(x))‖22 (3)

with frame-wise normalisation n.
The resulting neural network Nθ allows estimating the voice

level from the normalised signal: During inference we use the same
recording factor for all recordings, in which case we can compare
the recordings as if they were made under the same recording condi-
tions. To calibrate the estimations to a specific recording we use the
recording factor of that recording.

2.2. Adaptive recording factor

The assumptions from Section 2.1 require the files from the training
dataset to be grouped by same recording conditions. This works well
if the number of speakers is small and we can be sure that the files
have not been normalised separately. However, for many databases
we don’t know what kind of post-processing has been performed
or whether the samples for a fixed speaker have been created over
multiple recording sessions with slightly different conditions. In this
case we would have to assign a different recording factor to each

file. With the previous approach this causes problems as a gradient
exists for a specific recording factor only if a sample associated with
this recording factor is present in the training batch. Thus recording
factors with a small percentage of associated files in the dataset are
learned very slowly as they are updated rarely.

For the case where we cannot group the files into a reasonable
amount of classes we propose an adaptive recording factor: Let
q := Nθ (n(x)) be the output of the neural network and p the power
curve associated with the input sample. Again, we assume (1), this
time with a different recording factor a for each training sample. Prior
to calculating the loss we choose a such that the L2 error

ea = ‖p− aq‖22 =
∑
t

(pt − aqt)2 (4)

is minimal for each training sample:

â = argmin
a

ea (5)

For a fixed pair of target and estimate (p, q) there exists an ana-
lytic optimal solution for a:

â =
p · q
‖q‖22

=

∑
t ptqt∑
τ q

2
τ

(6)

where · denotes the scalar product. Combining (4) and (6) and nor-
malising eâ by ‖p‖22 yields the scalar product loss:

escp :=
eâ

‖p‖22
= 1− (p · q)2

‖p‖22 ‖q‖
2
2

= 1− (p̄ · q)2 (7)

with x̄ := x/‖x‖ denoting the unit vector in direction of x.
With the same reasoning as before the input signal has to be

normalised to remove information of the signal energy.
To calibrate the estimation during inference to the recording

environment of a specific recording, we can calculate the recording
factor according to (6) and rescale the network output by that factor.

3. PROPOSED VOICE LEVEL TRANSFORMATIONS

Having a method to infer the voice level from audio recordings could
be useful for many applications and in different disciplines. In this
publication we focus our attention on transforming the voice level
in singing voice. We can use a bottleneck auto-encoder [14] to
disentangle the voice level from the mel-spectrogram of singing voice
recordings. We extend the architecture of [16] to additionally include
the voice level as conditional input.

We can use this auto-encoder to validate the proposed voice level
estimator that was introduced in Section 2 and show that it really
represents the (perceived) voice level. If the transformed recordings
are perceived to have been sung with a voice level that is coherent
with the intended transformation (louder, less loud), we can conclude
that the proposed voice level estimators in fact encode the voice level.

4. EXPERIMENTS

4.1. Data

All experiments are trained on the same dataset as [16], which is a
combined dataset of CREL Research Database (SVDB) [17], NUS
sung and spoken lyrics corpus [18], from the i-Treasures Intangi-
ble Cultural Heritage dataset [19] PJS phoneme-balanced Japanese
singing-voice corpus [20], JVS-MuSiC [21], Tohoku Kiritan and
Itako singing database [22], VocalSet: A singing voice dataset [23],
as well as singing recordings from our internal singing databases used
for the IRCAM Singing Synthesizer [24] and other projects.



4.2. Architecture

We train two voice level estimators, one with the learned recording
factor from Section 2.1 (Le) and the other with the adaptive recording
factor strategy from Section 2.2 (Ad). As input to the estimators we
choose the signal’s mel-spectrograms to provide a concise represen-
tation of the spectral properties to the voice level estimators and to
match the input data to the auto-encoders that will be conditioned on
these voice level estimators. Thus we use the same analysis parame-
ters as in [16] to generate the mel-spectrograms. We experimented
with different ways to estimate the signal power including the short-
term-energy and perceptive loudness measures and found that we
achieve the best results using the loudness measure from [25].

Both networks, Leand Ad, have the same architecture. The
networks are simple convolutional feed-forward networks with 10
layers. Convolutions are 1d, treating the frequency bins as features.
The number of filters is 100 in most of the layers, except the first,
which has 80, the second to last, which has 50, and the last which has
1. The filter size is 3 in the first two layers and 1 elsewhere. With
a step size of 12.5 ms per mel-frame the voice level estimator has
thus a receptive field of 5 frames or 50 ms. The mel-spectrograms are
normalised frame-wise when fed as input to the voice level estimators.

We train the models with a batch size of 256 training samples of
80 mel-frames (or 1 s) each. The models are trained for 500 k updates
using the adam [26] optimiser (β1 = 0.9, β2 = 0.999) with an initial
learning rate of 1× 10−4. The learning rate is reduced by a factor
of 4
√

0.1 if the validation loss does not decrease for a period of 16 k
updates, with a minimum learning rate of 1× 10−6.

4.3. Auto-encoders

We train two auto-encoder configurations, one for each voice level
estimator. For the auto-encoder we use almost the same architecture
as in [16] only with the conditional input changed, as we add the
voice level to the list of conditional inputs. Thus the auto-encoders
are conditioned on the voice level, the f0 and the voiced-unvoiced
mask. We use the f0 model from [27] and the mel-inverter from [28].

4.4. Evaluation methods

Since the dataset that we used to train our models does not include
annotations for the voice level, we cannot evaluate the models directly
with a ground truth. The hypothesis of this paper is that we can
extract meaningful information from the spectral properties of the
mel-spectrogram about the perceived voice level. Thus, it suffices
to show that the information extracted by our voice level estimators
reflects the perceived voice level.

We use recordings that are labelled into different dynamics to
investigate the relationship between dynamic and the proposed voice
level estimator. Labelled data was obtained in [24] by asking a singer
to sing one note from all combinations of the dynamics pp, mp, mf, f
and ff and all French vowels on the same pitch. Thus we can create
histograms over the estimated voice level for different dynamics and
vowels. If the proposed method reflects the true voice level, lower
dynamics should correspond to lower values in voice level.

Furthermore, we claim that the proposed voice level estimate
is useful for changing how loud a phrase has been sung. Thus, if
the proposed auto-encoder indeed succeeds in changing the signals
properties in a way that it is perceived as sung with the desired
voice level, we can conclude that the proposed voice level estimators
indeed encode the voice level. To this end we asked 40 participants
in a perceptive online study to rate the perceived voice level change
of the transformed audio. Participants were presented pairs of audio

where for each pair both files were generated using one of the auto-
encoders and where in one file the voice level was changed while
for the other the voice level was kept the same. Participants were
the asked to rate which recording sounded as if it was sung with a
stronger / louder voice and could give an answer of -2, -1, 0, 1 or
2. The order within each pair and the overall order of the pairs were
randomised and the volume of each of the files was normalised to the
same average loudness according to the loudness model of [25]. In
a second test, we asked 26 participants to rate the audio samples for
their audio quality and computed a mean-opinion-score for each of
the voice level changes of both models and the ground truth reference.

The auto-encoder’s precision is evaluated by measuring the aver-
age difference between requested voice level and voice level measured
in the synthesised mel-spectrograms for various voice level changes.
The results are given in Table 1. The samples used for the perceptive
test are available on our website1.

5. RESULTS

5.1. Classification of dynamic

Figure 1 visualises the relationship between estimated voice level
of Ad and the symbolic dynamic annotation of the recordings used
for this investigation. Similar histograms are produced by model
Le. First, we observe that louder dynamics produce higher voice
level values so we can conclude that the voice level does indeed
include information about how loud a note has been sung. If we
look at the individual phonemes, we see that the dynamics create
different clusters with increasing mean though for some vowels some
dynamics have rather large overlap, e. g. for /e/ the pp and mp are
largely overlapping: This is because we see the histogram of the voice
level for each frame which naturally varies over time for the same
dynamic for instance as a side effect of vibrato. Thus while some
selected frames from different dynamics may be equally loud, the
overall notes still have different loudness and can be measured as
averages over larger durations. Furthermore, dynamics are subjective
and a matter of interpretation. It could be that this particular singer
does not make such a big difference between pp and mp for an /e/ in
terms of voice level.

Comparing the histograms from different vowels we observe that
the voice level can be very different for different phonemes under the
same dynamic. This is because not all vowels are in fact equally loud.
The vowel /a/, being an open vowel, can be sung much louder than
/u/, being a close vowel. Thus for the same dynamic we can expect
the resulting voice level to be different and it is no surprise that the
estimated voice level for /a/ is much higher than for /u/. This explains
why, if we average over all vowels, adjacent dynamics overlap —
because the variations in voice level due to the phoneme are on the
same scale as the variations due to the dynamic. Nevertheless, we
can still very clearly distinguish between loud dynamics (f, ff) and
quiet dynamics (pp, mp).

5.2. Accuracies

From Table 1 we can see that the auto-encoders can use the informa-
tion provided by the voice level estimator and successfully disentangle
the voice level from the mel-spectrograms. The auto-encoder with
adapted recording factor (AdA) performs with higher precision than
the auto-encoder with learned recording factor (LeA). This indicates
that the adapted recording factor model (Ad) is more robust than the
learned recording factor model (Le) as some of the assumptions we

1recherche.ircam.fr/anasyn/bous/aeint2022
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Fig. 1. Estimated voice level values for recordings in different
dynamics plotted for the voice level model Ad. The graphs show
smoothed relative histograms using a Gaussian kernel with σ =
0.31 dB. Only frames inside stable phonation are used, unvoiced
frames and frames close (50 ms) to a voiced / unvoiced boundary
are ignored. We show histograms for four selected vowels (out of a
total of 15 vowels in the French language) and the average over all
vowels (bottom). All graphs share the same horizontal axis. Phoneme
annotations are in X-SAMPA.

made in Section 2.1 might in fact be violated in the training dataset
which caused the voice level estimator Le to provide inconsistent
information.

5.3. Perceptive test

Table 2 summarises the results from the perceptive test. From the
upper table we can see, that both models are able to create a noticeable
change in voice level for small changes in the target voice level. For
the auto-encoder with adaptive recording factor (AdA) we observe
that it has trouble creating convincing results for high increases in
voice level. Investigating the files that were rated in the opposite
direction we noticed that for those files the auto-encoder introduced
significant amounts of artefacts which seemed to have created the

−10dB −6dB 0dB 6dB 10dB

AdA 2.42 1.50 0.86 1.94 2.50
LeA 2.71 1.75 0.81 2.99 4.68

Table 1. Transformation precision [dB] of the auto-encoders. Errors
are calculated between target voice level (as given to the auto-encoder)
and voice level of the output (the voice level estimator applied to
the transformed mel-spectrogram) for various voice level changes.
The error is calculated on a logarithmic scale to provide meaningful
values.

Voice level −10dB −6dB 6dB 10dB

AdA −1.57± 0.32 −0.84± 0.20 0.55± 0.20 0.08± 0.32
LeA −1.29± 0.33 −0.74± 0.22 0.69± 0.18 0.83± 0.22

Quality −10dB −6dB 0dB 6dB 10dB

GT 4.64± 0.12
AdA 2.12± 0.49 3.32± 0.37 3.82± 0.25 3.55± 0.31 2.78± 0.37
LeA 2.61± 0.44 3.40± 0.39 3.80± 0.26 3.55± 0.30 3.55± 0.39

Table 2. Results of the perceptive test for relative voice level
(subjective scale from −2 to 2) and audio quality (subjective scale
from 1 to 5) with 95% confidence intervals.

opposite of the desired effect. The perceptive test suggests that the
auto-encoders have a more noticeable impact when decreasing the
voice level, which can be seen for both models and for all amounts
of change. The auto-encoder with adaptive recording factor, AdA,
seems to create a stronger effect when decreasing the voice level than
the auto-encoder with learned recording factor, LeA. For increasing
the voice level LeA seems to be better suited than AdA.

The quality ratings are given in the lower table of Table 2 For
self-reconstruction and small amounts of voice level change both
models, AdA and LeA, seem to work equally well. For large changes
in voice level the auto-encoder with learned recording factor (LeA)
outperforms the auto-encoder with adaptive recording factor (AdA)
by a margin. For increases in voice level LeA is able to hold its level
of quality even for an increase of 10 dB. On the other hand LeA
does make a larger error in Table 1. For decrease in voice level both
auto-encoder models suffer strong degradation in quality although
both models were successfully able to convince the participants that
the recordings had much less voice level. Listening to these sam-
ples reveals that the auto-encoders increase the background noise
significantly. Since our mel-inverter does not handle synthetic noise
well, the overall audio quality is poor in these cases although the
conversion itself is realistic.

From the test results we can conclude that the given auto-encoders
were able to change the perceived voice level in singing voice, and
therefore the voice level estimators capture the information about the
true voice level.

6. CONCLUSIONS

We have introduced a method to estimate the voice level from record-
ings with unknown amplification factors (recording factor). Two
variants to overcome the missing the recording factor have been pro-
posed: either by learning the unknown recording factor alongside the
weights of the neural network (Le) or by adjusting the loss function
to remove scaling and only compare the contours of the network’s
output and the associated signal power (Ad). These voice level es-
timators have been used to condition a bottleneck auto-encoder to
disentangle the voice level from mel-spectrograms. We have shown
that both models produce consistent values and can produce the effect
of changed voice level on singing recordings in most cases and with
acceptable quality.

While the proposed auto-encoders produce a noticeable change
in voice level, the audio quality is still significantly lower than real
recordings especially when increasing the voice level. Consequently
this first publication on neural voice level transformation has to be
seen as a proof-of-concept rather than a well-polished system. Im-
provements to the audio quality are required for this method to be used
in actual musical production. Nevertheless, the estimation method
for the voice level opens new ways of voice classification, analysis
and transformation.
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