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ABSTRACT

Recent research has shown that language models have a tendency

to memorize rare or unique sequences in the training corpora which

can thus leak sensitive attributes of user data. We employ a teacher-

student framework and propose a novel approach called alternating

teaching to mitigate unintended memorization in sequential model-

ing. In our method, multiple teachers are trained on disjoint training

sets whose privacy one wishes to protect, and teachers’ predictions

supervise the training of a student model in an alternating manner at

each time step. Experiments on LibriSpeech datasets show that the

proposed method achieves superior privacy-preserving results than

other counterparts. In comparison with no prevention for unintended

memorization, the overall utility loss is small when training records

are sufficient.

Index Terms— Language modeling, unintended memorization,

knowledge distillation, automatic speech recognition

1. INTRODUCTION

Neural language models (LMs) play important roles in many natural

language processing tasks including next word prediction, machine

translation, and automatic speech recognition (ASR) [1, 2, 3, 4, 5].

They typically outperform traditional n-gram LMs with better capa-

bility of modeling long-range dependency.

State-of-the-art LMs typically involve training over large and di-

verse corpora which might contain sensitive user information, such

as addresses and credit card numbers. Recent research has showed

that such sensitive information in training datasets can be detected

and extracted in unexpected ways [6, 7, 8, 9, 10]. Particularly, LMs

are prone to unintentionally memorize rare or unique sequences of

data, and when being prompted appropriately, they will be able to

emit the memorized text verbatim [11]. This is undesirable because

such memorization violates privacy by exposing user information.

Therefore, providing privacy guarantees to LM training has become

a critical problem and it calls for advanced mitigation techniques for

unintended memorization in LMs.

In this paper, we employ a teacher-student framework and pro-

pose a novel method called alternating teaching to mitigate the is-

sue of unintended memorization in sequential modeling. In our ap-

proach, multiple teachers are trained on disjoint training data (e.g.

data from different users) whose privacy one wishes to protect , and

teachers’ predictions are utilized as soft labels to supervise the train-

ing of a student model. Unlike teacher ensemble and aggregation

methods, at each word-level time step of student model training, we

only choose one teacher to provide supervision. That is, teachers are

selected in an alternating manner through randomization or permu-

tation. Finally, only the student model is published while all teachers

are kept private.

Intuitively, in most scenarios any piece of sensitive information

is only contained in the training text of one specific user, and is thus

exposed to one teacher model. Then alternating teacher selection

at each time step breaks the semantic and linguistic connections be-

tween consecutive words in any private sequences, but is still able

to learn from common and non-sensitive word combinations that are

exposed to all teacher models. Thus, this technique can reduce the

level of memorization without appreciable loss of overall utility in

the model.

Our approach is inspired by text generation models which gener-

ate words in a sequence step-by-step and left-to-right. One promis-

ing method for addressing memorization via text generation is to use

one teacher to generate a word at each time step and the word with

its historical contexts acts as the next input for another teacher. How-

ever, this strategy is costly in computation especially when hundreds

of millions of sentences need to be generated. Under the knowledge

distillation framework, the proposed alternating teaching approach

is more efficient and scalable.

We make the following contributions: (1) introducing the new

alternating teaching based teacher-student framework for effective

mitigation of unintended memorization in LMs; (2) studying the

effect of various knowledge distillation mechanisms on alleviating

memorization, which includes the use of public training corpora

and adding random noises to teachers’ output distributions; and (3)

providing empirical results and analyses on comparing the utility

and privacy protection of various teacher-student learning based ap-

proaches.

The rest of the paper is organized as follows. We review related

work in Section 2. Section 3 describes the details of our proposed

alternating teaching method. Next, Section 4 shows the experiments

and results for LM and ASR tasks on the LibriSpeech data [12]. We

conclude in Section 5.

2. RELATED WORK

Privacy protection is becoming crucial in machine learning research.

One direction in this area is private aggregation of teacher ensembles

(PATE) [13, 14], which transfers to a student model the knowledge

of an ensemble of teacher models, with strong privacy guaranteed

by noisy aggregation and vote counts of teachers’ answers. More

recently, authors in [15] adapts PATE to text generation tasks while

satisfying differential privacy (DP) [16, 17]. Our work differs from

PATE and its variants in alternating teacher selection instead of ag-

gregation mechanisms. Moreover, we focus on the empirical mea-

surement of unintended memorization rather than DP-based privacy

analysis. Another line of research on privacy-preserving methods is

federated learning (FL) [18, 19, 20, 21]. Apart from these works,

authors in [22] explores how memorization relates to generalization

in learning.

http://arxiv.org/abs/2210.06772v1


3. METHODOLOGY

3.1. The Alternating Teaching Framework

To help mitigate unintentionally memorization in LMs, the proposed

alternating teaching framework transfers knowledge from alternating

teacher models trained on partitions of the data to a student model.

Our method consists of three key parts: (1) multiple teacher models,

(2) teacher selection mechanism, and (3) a student model.

3.1.1. Teacher Models

Each teacher model is an LM trained independently on a subset of

the data. The data is partitioned into disjoint subsets by users to

ensure no pair of teachers will have trained on data from the same

user. In other words, all records from any user is only included in

the training corpus of one specific teacher model.

More formally, let Dk = {Dpri

k
∪ Dpub

k
} be the training corpus

from the kth user, where Dpri

k
is a set of records with sensitive infor-

mation and Dpub

k
is a corpus without sensitive information. Then let

D = ∪K

k=1Dk be the entire training set over all users’ data. Without

the loss of generality, assuming the training set is partitioned into M
disjoint subsets by users, denote Bm = ∪md

k=(m−1)d+1Dk for each

m = 1, . . . ,M and d = [K/M ]. Thus we have D = ∪M
m=1Bm and

Bm′ ∩ Bm′′ = ∅ for any m′ 6= m′′.

The mth teacher model, denoted as fm(θm) with θm being the

weights, is trained using text set of Bm. Cross entropy (CE) loss is

usually used for LM training. Given any training example with T
words, (w1, w2, . . . , wT ) ∈ Bm, the following shows this function

at step t

LCE
t (θm) = −

∑

w∈V

1{w = wt} · log pθm(w|w1:t−1) (1)

where V is the vocabulary set and fm(θm) predicts a word w with a

probability pθm(w|w1:t−1) at step t.
Thus we obtain a set of teacher models {fm(θm)}Mm=1. Note

that any teacher is not privacy-preserving and susceptible to unin-

tended memorization since it trains on combined sets of sensitive

corpus and non-sensitive corpus.

3.1.2. Alternative Teaching Mechanism

Once all teacher LMs are trained, given any (w1, w2, . . . , wT ) ∈ D,

each teacher {fm(θm)}Mm=1 conducts the inference on it and out-

puts probability distribution pθm(·|w1:t−1) over all words in the vo-

cabulary at step t. Here, we discuss how these predictions can be

combined to provide supervisions.

One promising approach is the aggregation mechanism where at

each step, the predicted probabilities from teachers are averaged on

each word in the vocabulary. In particular, the following ensemble

teacher output is used to supervise a student model at step t

gagg(·|w1:t−1) =
1

M

M
∑

m=1

pθm(·|w1:t−1) (2)

Then a student model is trained on this aggregated output of the M
teachers, such that it learns to accurately mimic the ensemble. Intu-

itively, this aggregation strategy ensures no single teacher and thus

no single user’s dataset dictates the student’s training. This will help

alleviate any unintended memorization. However, one disadvantage

of this approach is that when the presence of some private sequence

in one specific teacher is very strong and even dominating, simply

taking the average over the probabilities of all teachers might not

be adequate to provide a full coverage and still reveal such sensitive

information to the student.

In the newly proposed alternative teaching mechanism, at each

time step we only leverage the prediction output from one teacher

rather than using all teachers’ aggregation, and alternate the choices

of teachers over different steps. This can be performed through ran-

domization or fixed permutation.

In the randomization based teacher selection, for each step t, we

randomly generate rrandom(t) ∈ {1, 2, . . . ,M} and the correspond-

ing teacher model is chosen as the supervisor. It aims to disconnect

consecutive words in private sequences but generally has no issues

in learning common and non-sensitive sequences that are present in

majority of teachers.

The randomized teacher selection happens in each step at every

batch during training. A more restricted teacher selection strategy is

through permutation but kept the chosen order fixed over the entire

training process. Specifically, let π(M) be a random permutation of

the sequence {1, 2, . . . ,M}, then the teacher index at step t, denoted

as rperm(t), is chosen as the jth element of π(M), where j = (t mod
M) if the corresponding remainder is non-zero; otherwise j = M .

The assignment of rperm(t) stays intact across different batches and

epochs.

In either case, let r(t) be the selected teacher index at step t,
then we write

galt(·|w1:t−1) = pθ
r(t)

(·|w1:t−1) (3)

as the predicted distribution which is used to supervise the student

model at step t.

3.1.3. Student Model

Since any training corpora are naturally labeled for LM task, the stu-

dent model, denoted by f(θ), is supervised by both the labels from

its training set and combined teachers’ outputs. Then for any se-

quence (w1, w2, . . . , wT ), the following computes the loss function

consisting of two parts

L(θ) =
T
∑

t=1

(

(1− λ) · LCE
t (θ) + λ · LKL

t (θ)
)

(4)

LCE
t (θ) : = −

∑

w∈V

1{w = wt} · log pθ(w|w1:t−1) (5)

LKL
t (θ) : = DKL(g

alt(·|w1:t−1) || pθ(·|w1:t−1)) (6)

where DKL(P ||Q) represents the Kullback–Leibler divergence be-

tween distributions P and Q, and λ is a hyperparameter which bal-

ances the two parts of LCE
t (θ) and LKL

t (θ).
The student model can be trained on any auxiliary, non-sensitive

corpora, including publicly available collections of text data. How-

ever, when such dataset is not available or the student model suffers

from utility loss due to distillation, the original set D can still be used

to train the student model. In that case, the hyperparameter λ shall

be set as 0 since D contains private information and we do not want

it is directly exposed to the student model. In that case, the student

model fully learns from combined teachers’ outputs.

3.2. The Gaussian Noise Mechanism

Building upon the alternating teaching framework described above,

random noises can be added to the outputs from teacher models so

that they can further mask the presence of private sequences and thus



make sensitive information less susceptible to leakage. We apply

the Gaussian mechanism which adds noise independently sampled

from a Gaussian distribution N (0, σ2) to each coordinate of the pre-

dicted probabilities from teachers, after which the re-normalization

over vocabulary space is needed. The hyperparameter σ governs the

strength of privacy protection. Specifically, the teacher supervision

part LKL
t (θ) in (6) can be adjusted as

DKL(s(g
alt(·|w1:t−1) +N (0, σ2)) || pθ(·|w1:t−1)) (7)

where s(·) is a normalization function over the vocabulary such that

all probabilities with added noises are truncated to non-negative and

their sum equals to 1 after normalization.

4. EXPERIMENTS

4.1. Datasets

Our experiments use the LibriSpeech data [12] and its extended text-

only corpus [23]:

• LibriSpeech ASR corpus and text transcripts. It is a corpus of

around 1000 hours of 16kHz read English audiobooks. The

dataset consists of train, validation, and test splits, which con-

tain 281K, 6K, and 6K utterances from approximately 2400

speakers, respectively;

• LibriSpeech extended text-only corpus. It is from 14500 pub-

lic domain books which contains around 40M sentences. The

dataset is only for LM training purpose.

In the next subsection, we will describe how these datasets are

augmented with “private sequences” such that we can measure the

performance of mitigating unintended memorization over different

methods.

In some portion of our experiments, we also utilize the training

dataset from Wikitext-103 [24]. This is treated as an auxiliary and

non-sensitive public corpus, on which the student LM is trained.

4.2. Canaries

To measure the level of unintended memorization in LMs, we build

on the “secret sharer” framework introduced in [8]. Specifically, ran-

dom textual sequences, called canaries, are inserted into a training

corpus, and a model trained on this corpus is then analyzed to mea-

sure the frequencies of having these canaries memorized. Here, the

canaries aim to mimic sensitive data.

The procedure of inserting canaries into LibriSpeech datasets is

described as follows:

(1) First, each record is assigned a user ID. For the LibriSpeech

ASR corpus, user ID of any utterance is just the speaker id.

For the LibriSpeech text-only corpus, we randomly shuffle all

the records, and create synthetic users where each user owns

100 records, assigned sequentially from the shuffled set;

(2) Next, we randomly pick 100 users for each of the two Lib-

riSpeech datasets. For each user, a random 5-word canary is

generated which simulates the “private sequence” from that

specific user. No canary is shared by different users. Note

that each word in any generated canary is among the vocabu-

lary set of LMs;

(3) For each generated canary, we insert it into the LibriSpeech

training corpora at a certain frequency (i.e. number of times

it is repeated). Specifically, the 100 canaries (from 100 users)

are evenly partitioned into 4 groups with canaries’ repeating

frequencies being 5%, 10%, 50%, and 100%, respectively.

For each canary, let nu be the number of training records

in the corresponding user and pu be the repeating frequency

based on the group it belongs to, then pu · nu is the number

of records that the canary is inserted into the training corpora

of the corresponding user.

The procedure illustrated above is intended to simulate real-world

scenarios where any occurrences of user-specific unique or rare out-

of-distribution canaries are typically limited to a very small fraction

of users, but these users can exhibit either low or high usage of those

canaries [21].

Given a prefix of a canary, we use the following two techniques

to evaluate the mitigation of unintended memorization for any LM:

• Beam Search (BS). We leverage a greedy beam search to see

if the canary is included in the top 100 most-likely 5-word

continuations from the 1-word prefix of the canary;

• Random Sampling (RS). We say any canary is unintention-

ally memorized by a LM if the canary has the least perplexity

among 1000 random suffixes, given the 2-word prefix of the

canary.

In our experiments, we report the frequencies of times that the 100

generated canaries are detected by BS or RS in any LM.

4.3. Setups

With the generated canaries inserted into the two LibriSpeech train-

ing sets, LMs are trained on the text corpora with their perplexity

(PPL) measured on the test split of LibriSpeech ASR corpus. The

level of unintended memorization is evaluated using the BS and RS

techniques described above.

The LM in our experiments is LSTM based with embeddings

dimension 300, and 2 layers of 1500 hidden units. The word vocab-

ulary set is around 10K. We use Adam optimizer and early stopping

based on the validation set of LibriSpeech ASR corpus.

In our experiments, we consider the following approaches in the

comparison of utility and unintended memorization mitigation:

• The Baseline LM is directly trained on LibriSpeech data

(either ASR corpus or text-only corpus) with canaries;

• Baseline(1T) refers to the student LM with knowledge

distilled from a single teacher model. Here, both teacher and

student models are trained on LibriSpeech data with canaries;

• Agg represents the student model supervised by aggregation

based teacher ensembles. We use the notations of Agg(2T)

and Agg(5T) to denote there are 2 and 5 teachers for knowl-

edge distillation, respectively. Again, all teachers and the stu-

dent are trained on LibriSpeech corpora with canaries;

• Alt-Random and Alt-Perm are our proposed approaches

of alternating teaching with randomization and fixed permu-

tation strategies for selecting teachers per step, respectively.

In each of knowledge distillation based methods, the parameter of λ
is set to 0. In other words, the student model is only supervised by

teachers’ outputs.

On the test split of LibriSpeech ASR corpus, we also evaluate

the ASR performance, in terms of word-error-rate (WER), with the

LMs being used as second-pass rescorers on the generated 20-best

hypotheses. The ASR model is a RNN-T model with the Emformer

encoder [25], LSTM predictor, and a joiner. It has around 80 mil-

lion parameters and is trained from scratch using the train split of

LibriSpeech ASR corpus. Note that we only measures the impact on



WER when LMs are trained on LibriSpeech text-only corpus since

they will be more effective in rescoring. This is because the ASR

model does not include such text-only corpus in its model training.

4.4. Results

We first measure the performance of (student) LMs trained on the

LibriSpeech ASR corpus with canaries. All teacher models are also

trained on it. Table 1 shows the PPL results on the test split as well

as the percentage of canaries being uncovered by BS and RS tech-

niques. Here, the 100 canaries are partitioned into two categories

with low repeating frequencies and high repeating frequencies, and

we report their results separately. From the results

• In the Baseline methods, canaries are substantially mem-

orized by the LMs. Memorization is detectable even for ca-

naries that appear only a few times in the training corpus;

• It is expected to see that having more teacher models leads

to stronger mitigation of memorized canaries in all methods.

Particularly, the proposed Alt performs better than Agg, and

Alt-Perm has the fewest canaries detected;

• Degradation on PPL are observed when student models are

supervised by multiple teachers. This is expected since Lib-

riSpeech ASR corpus only contains less than 300K training

records, thus partitioning them into multiple disjoint sets for

training teacher models will cause accuracy loss due to insuf-

ficiency of training data.

Table 1. Results for LMs trained on LibriSpeech ASR corpus. PPL

and percentages of canaries detected by BS and RS are reported.

Low: group of canaries with low (5% or 10%) repeating frequencies;

High: canaries with high (50% or 100%) repeating frequencies.

Utility BS RS

Method PPL Low High Low High

Baseline 76.4 95% 100% 100% 100%

Baseline(1T) 76.0 92% 100% 100% 100%

Agg(2T) 83.8 66% 100% 100% 100%

Alt-Random(2T) 84.4 62% 100% 100% 100%

Alt-Perm(2T) 86.6 0% 0% 100% 100%

Agg(5T) 100.5 0% 32% 48% 100%

Alt-Random(5T) 101.9 0% 4% 2% 98%

Alt-Perm(5T) 107.0 0% 0% 0% 18%

Table 2 displays the results where all the teachers are trained

using LibriSpeech ASR corpus with canaries, but the student LMs

are trained on Wikitext-103 data with teachers’ supervision. The

observations on the comparison of different methods are similar to

the ones in Table 1, where Alt-Perm has the smallest number of

canaries being detected. Although the PPL results do not change

much from the ones in Table 1, we can see that training the student

models using an auxiliary and non-sensitive dataset here achieves

reduced memorization.

Next, we measure the performance of (student) LMs trained on

LibriSpeech text-only corpus with inserted canaries. The test split

of LibriSpeech ASR corpus is used for evaluating the PPL and WER

results. Seen from Table 3, the utility gaps are relatively small over

methods with different numbers of teachers, which can be explained

by the large training corpus of 40M sentences. Particularly, WERs

only differ in less than 1% comparing Agg or Altwith Baseline.

Thus, all these approaches tend to match the baseline utility while

being empirically less prone to memorization. Again, we notice that

Table 2. Results for student LMs trained on Wikitext-103; Teacher

LMs are still trained on LibriSpeech ASR corpus.

Utility BS RS

Method PPL Low High Low High

Baseline 76.4 95% 100% 100% 100%

Baseline(Wiki,1T) 76.5 92% 100% 100% 100%

Agg(Wiki,2T) 84.6 14% 48% 100% 100%

Alt-Random(Wiki,2T) 84.9 4% 30% 100% 100%

Alt-Perm(Wiki,2T) 87.9 0% 0% 94% 92%

Agg(Wiki,5T) 101.2 0% 12% 18% 98%

Alt-Random(Wiki,5T) 101.4 0% 6% 2% 88%

Alt-Perm(Wiki,5T) 108.5 0% 0% 0% 12%

Alt-Perm(5T) achieves the strongest mitigation of memorization

comparing with others, and Alt-Random(5T) obtains less mem-

orization than Agg(5T).

Table 3. Results for LMs trained on LibriSpeech text-only corpus.

Utility BS RS

Method PPL WER Low High Low High

NoLM - 6.92 - - - -

Baseline 46.9 6.59 2% 78% 38% 100%

Baseline(1T) 48.5 6.61 2% 68% 22% 98%

Agg(2T) 49.2 6.61 2% 64% 18% 94%

Alt-Random(2T) 49.4 6.62 0% 50% 12% 94%

Alt-Perm(2T) 49.4 6.62 0% 0% 14% 92%

Agg(5T) 50.5 6.64 0% 12% 4% 72%

Alt-Random(5T) 51.0 6.64 0% 0% 2% 40%

Alt-Perm(5T) 51.0 6.64 0% 0% 0% 24%

Lastly, we study the effect of adding Gaussian noises on top of

the Alt-Perm framework. Seen from the results in Table 4, the

Alt-Perm(5T) method with noise scale parameter σ = 1e−4 has

no canaries detected by BS or RS, while the WER is compromised

by around 1.5% compared with Baseline.

Table 4. Results for LMs trained on LibriSpeech text-only corpus,

with Gaussian noise mechanism being applied.

Utility BS RS

Method PPL WER Low High Low High

Alt-Perm(5T) 51.0 6.64 0% 0% 0% 24%

Alt-Perm(5T,σ = 1e−5
) 53.1 6.65 0% 0% 0% 10%

Alt-Perm(5T,σ = 1e−4
) 59.2 6.69 0% 0% 0% 0%

5. CONCLUSION

In this work, we propose the alternating teaching method to mitigate

unintended memorization in sequential modeling. With experiments

on LibriSpeech datasets, we show this approach achieves stronger

mitigation than other counterparts and significantly reduces memo-

rized sequences. Compared with the baselines without protections

for memorizing private data, the overall quality of proposed method

is not compromised when there exists sufficient training data.

Future work might include extending the proposed framework

to user-level DP-based privacy analysis.
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