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Abstract

We present a longitudinal study of face recognition per-
formance on Children Longitudinal Face (CLF) dataset
containing 3, 682 face images of 919 subjects, in the age
group [2, 18] years. Each subject has at least four face im-
ages acquired over a time span of up to six years. Face com-
parison scores are obtained from (i) a state-of-the-art COTS
matcher (COTS-A), (ii) an open-source matcher (FaceNet),
and (iii) a simple sum fusion of scores obtained from COTS-
A and FaceNet matchers. To improve the performance of the
open-source FaceNet matcher for child face recognition, we
were able to fine-tune it on an independent training set of
3,294 face images of 1,119 children in the age group [3, 18]
years. Multilevel statistical models are fit to genuine com-
parison scores from the CLF dataset to determine the de-
crease in face recognition accuracy over time. Additionally,
we analyze both the verification and open-set identification
accuracies in order to evaluate state-of-the-art face recog-
nition technology for tracing and identifying children lost at
a young age as victims of child trafficking or abduction.

1. Introduction
The United Nations Convention on the Rights of the

Child defines child as “a human being below the age of
18 years unless under the law applicable to the child, ma-
jority is attained earlier” [1]. This definition is ratified by
192 of the 194 countries that are members of the United
Nations. According to the United Nations Children’s Fund
(UNICEF), nearly 2 million children under the age of 20 are
subjected to prostitution in the global sex trade. On average,
victims range from 11 to 14 years old and are expected to
survive only 7 years. The United Nations Office on Drugs
and Crime reports the percentage of child trafficking vic-
tims has risen about 25% from 2009 to 2012, where the
victims are in the age group of 1 to 18 years [2]. For every
three child victims, two are girls and one is a boy. Accord-
ing to Kolkata’s Child in Need Institute, 1, 628 kidnapped
children, in the age group of 4 to 15 years, were retrieved
from a single railway station; among these, 134 were girls

(a) (b)

Figure 1: Sharbat Gula (a) at age 12, photographed in 1984 and (b) at age
30, photographed in 2002 [14]. She was identified based on iris recogni-
tion [15].

(a) (b)

Figure 2: Saroo Breirley (a) before he went missing at age 5 and (b) after
reuniting with his biological mother at age 30 [16].

and the youngest was only four years old [3]. Of course,
these are official statistics, and do not necessarily reflect the
true numbers of child kidnapping and sex trafficking in a
population of around 1.2 billion in India.

To trace missing children, face recognition is perhaps the
primary biometric modality since parents and relatives are
more likely to have a lost child’s photographs(s) as opposed
to, say, fingerprint or iris. However, face recognition is
certainly not the only biometric modality for identification
of lost children. Sherbat Gula, first photographed by the
photographer Steve McCurry in 1984 (age 12) in a refugee
camp in Pakistan (Figure 1a), was traced at the age of 30 to
a remote part of Afghanistan where she was photographed
again (Figure 1b) in 2002 [14]. Daugman magnified the eye
regions in both the 1984 and 2002 photographs and con-
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Table 1: Related work on longitudinal study of face recognition.

Study Objective Dataset Findings

Otto et al. [4]* Influence of facial aging on different facial compo-
nents.

MORPH-II The nose is the most stable component across face
aging.

Bereta et al. [5]* Investigation of local descriptors for face recognition
in the context of age progression.

FG-NET Accuracy for local descriptors combined with Gabor
magnitudes are most stable.

Ricanek et al. [6] Face aging effects on face recognition (from infant
to adulthood).

ITWCC 24% TAR at 0.1% FAR for verification scenario.
Rank-1 identification performance is 25%.

Deb et al. [7] Analysis of rates of change in genuine scores over
time due to facial aging.

PCSO, MSP COTS matchers can verify 99% of the subjects at a
FAR of 0.01% for up to 10.5 years of elapsed time.

Best-Rowden et al. [8] Investigate the feasibility of automatic face recogni-
tion for children in the age group of 0 to 4 years.

NITL 47.93% TAR at 0.1% FAR (∆T = 6 months).

Basak et al. [9] Evaluation of multimodal biometric recognition for
children in the age group of 2 to 4 years.

CMBD 19% TAR at 0.1% FAR for a single face im-
age/subject in the gallery.

This study Investigate the feasibility of automatic face recogni-
tion for children in the age group of 2 to 18 years.

CLF 90.18% TAR at 0.1% FAR (∆T = 1 year).

TAR = true accept rate; FAR = false accept rate; ∆T = time lapse between enrollment and probe image
* This study is considered cross-sectional study and not longitudinal as age group is partitioned into smaller ranges [8], [10], [11]

Table 2: Table of longitudinal face datasets.

Dataset No. of Subjects No. of Images No. Images / Subject Age Group (years) Avg. Age (years) Public1

MORPH-II [12] 13,000 55,134 2-53 (avg. 4) 16-77 42 Yes
FG-NET [13] 82 1,002 6-18 (avg. 12) 0-69 16 Yes
ITWCC [6] 304 1,705 3+ 5 mos. - 32 yrs 13 No
PCSO [7] 18,007 147,784 5-60 (avg. 8) 18-83 31 No
MSP [7] 9,572 82,450 4-48 (avg. 9) 18-78 33 No
NITL [8] 314 3,144 3-5 0-4 N/A No
CMBD [9] 106 1,060 10 2-4 N/A No
CLF (this study) 919 3,682 2-6 (avg. 4) 2-18 8 No

firmed Gula’s identity using iris recognition [15].
It is often the case that there is a huge gap (in years) be-

tween the time a child is lost and retrieved. For example, Sa-
roo Brierley2 (also known as Sheru, which stands for “lion”
in Hindi) was lost at the age of 5 from Khandwa railway sta-
tion in India, and later adopted by Australian parents, Sue
and John Brierley. Saroo was reunited with his family as
an adult, at the age of 30; his biological mother could iden-
tify him through his 5 year old pictures maintained by the
Brierleys. Figure 2 shows face images of Saroo before he
was lost and after he reunited with his biological mother. To
understand the capability of face recognition technology to
trace lost children, it is essential to systematically evaluate
the longitudinal performance of face recognition technol-
ogy on child face datasets.

While face recognition systems have improved the
recognition performance under factors such as facial pose,

1MORPH-II is available at https://ebill.uncw.edu/
C20231_ustores/web/store_main.jsp?STOREID=4 and
FG-NET is available at http://yanweifu.github.io/FG_NET_
data/index.html.

2The award-winning 2016 movie, Lion, is based on the true story of
Saroo Brierley [17].

illumination, and expression [18], [19], [20], [21], issues
of aging and longitudinal studies 3 have not received ade-
quate attention. Limited studies related to aging have in-
deed shown that (i) accuracy of face recognition degrades
with an increase in time lapse between a subject’s gallery
and probe image acquisitions [23], [4], [24], and (ii) face
recognition accuracies for older subjects are higher than
younger ones [24], [25]. To the best of our knowledge,
the largest longitudinal face datasets, consisting primarily
of face images of adults4, are PCSO, LEO, and MSP5 which
were utilized in [26] and [7]. Deb et al. [7] report that gen-
uine scores of 99.0% of the population remain above the
threshold at a FAR of 0.01% for an elapsed time of 10.5
years for a state-of-the-art COTS face matcher on both the
PCSO and MSP datasets. However, these datasets are com-
prised of subjects above the age of 18 and are not suitable
for our study which focuses on tracing missing children.

3Indeed, longitudinal studies for other biometric modalities are also
limited, See Yoon and Jain [10] for fingerprint study and Grother et al. [22]
for iris.

4All subjects are above 18 years of age.
5PCSO, LEO, and MSP are all operational face datasets and are not

available in the public domain.

https://ebill.uncw.edu/C20231_ustores/web/store_main.jsp?STOREID=4
https://ebill.uncw.edu/C20231_ustores/web/store_main.jsp?STOREID=4
http://yanweifu.github.io/FG_NET_data/index.html
http://yanweifu.github.io/FG_NET_data/index.html


Prior studies on longitudinal face recognition perfor-
mance is limited due to (i) lack of publicly available longitu-
dinal face dataset of children, and (ii) low confidence in the
accuracy of face recognition of children obtained by COTS
matchers, which are primarily trained on adult face datasets.
Best-Rowden et al. studied face recognition performance of
newborns, infants, and toddlers (ages 0 to 4 years) on 314
subjects acquired over a maximum time lapse of only one
year [8]. Their results show that state-of-the-art face recog-
nition technology has a very low True Accept Rate (TAR) of
47.93% at 0.1% False Accept Rate (FAR) for this age group
of [0, 4] years. Based on their results, Best-Rowden et al.
suggested that longitudinal study of face recognition perfor-
mance for faces enrolled at least 3 years of age or older may
be feasible. Ricanek et al. reviewed multiple face recogni-
tion algorithms on longitudinal face images from the In-the-
Wild Child Celebrity (ITWCC)6 dataset, where the average
age of subjects at enrollment is 10.2 years [6]. A verifica-
tion accuracy of 24% at 0.1% FAR was achieved, whereas
closed-set identification performance was only 25%.

To the best of our knowledge, the only two publicly
available face image datasets that include children in the
age group of 2 to 18 years are FG-NET [13] and Face-
Tracer [27]. FaceTracer has only one face image per child
and FG-NET has only 400 images of subjects below the age
of 15 years. The Cross-Age Celebrity Dataset (CACD) [28]
was collected to evaluate face recognition performance un-
der aging, but subjects younger than 10 years old are not
included in this dataset, and only 199 subjects are present
below the age of 18. Tables 1 and 2 concisely enumerate
related works and longitudinal datasets 7, respectively.

While no publicly available longitudinal datasets of chil-
dren in the age range [2, 18] years exists, we were able to
obtain such a dataset, called Children Longitudinal Face8

(CLF) consisting of 3,682 face images of 919 subjects with
an average of 4 images per subject collected over an average
time span of 4.2 years. To the best of our knowledge, CLF
is the largest longitudinal dataset in the aforementioned age
group.

Concisely, contributions of this paper are as follows:

1. Evaluate the longitudinal performance of two state-
of-the-art face recognition systems, COTS-A9 and
FaceNet10 [29], [30] and a simple sum fusion of scores
obtained from these two face matchers (referred to as

6ITWCC dataset is not in the public domain.
7Longitudinal data are repeated measurements on a collection of indi-

vidual’s sampled from a population over time. In contrast, cross-sectional
data contains a single measurement made on each individual [11].

8Due to privacy issues, CLF dataset cannot be released in the public
domain. However, for repeatability studies, interested readers can obtain
similarity scores computed using FaceNet from the authors.

9Uses a convolutional neural network for face recognition
10The open-source face matcher, FaceNet, is available at https://

github.com/davidsandberg/facenet.

Fused), on face images of children. To the best of our
knowledge, no such longitudinal study exists for chil-
dren in the age range of 2 to 18 years.

2. Formal statistical analysis of rates of change in face
comparison scores obtained from COTS-A, FaceNet,
and Fused face matchers due to covariates such as
elapsed time between enrollment and probe images,
and gender of the subjects.

3. Verification accuracy of 90.18% at 0.1% FAR is
achieved by Fused after 1 year of time lapse be-
tween enrollment and probe image, which degrades to
73.33% after 3 years of time lapse. Furthermore, Fused
has a Rank-1 identification performance of 77.86% at
1.0% FAR after 1 year of elapsed time. We estimate
that 80% of the population in the CLF dataset can be
successfully recognized at 0.1% FAR by Fused over a
gap of 2.5 years.

The paper is organized as follows. Section 2 details the
longitudinal dataset used in this study. Section 3 explains
the experiments conducted in this study and outlines find-
ings based on the experimental results. Section 4 concludes
our paper and summarizes the results.

2. Children Longitudinal Face (CLF) dataset
The Children Longitudinal Face (CLF) dataset contains

3, 682 face images of 919 children, in the age range of 2 to
18 years. Each subject has an average of 4 images acquired
over an average time lapse of 4 years (minimum time lapse
of 2 years; maximum time lapse of 7 years). Demographic
makeup of CLF dataset is comprised of 604 (66%) boys
and 315 (34%) girls. Dataset statistics are shown in Fig-
ure 5. The face images were captured with a resolution of
354×472 pixels (Figure 3). Figure 4 shows example image
acquisitions with challenging variations in i) pose, illumi-
nation and expression, ii) obstructions such as scarves, cap,
bandage, beard, and spectacles, and iii) birth marks such
as moles, cuts, distinct eye color, and scars. Due to zoom
variations, some faces occupy about only 70% of the image
while some faces cover about 50% of the total image area.

The following criteria were used to postprocess the
dataset:

• Each subject has only one image acquisition session
• De-duplication of identities
• Date of birth for each subject was recorded at each ses-

sion. In case of a missing date of birth for a session,
we used the date of birth recorded at the time of enroll-
ment to estimate the subject’s age at the session.

3. Experiments
Performance of two state-of-the-art face recognition sys-

tems, COTS-A and FaceNet, are evaluated on Children Lon-

https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
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Figure 3: Examples of longitudinal face data of four subjects (one row per
subject), where images were acquired annually, in the CLF dataset. Age at
image acquisition (in years) is given below each image.

10 9 5 9

15 13 14 11

Figure 4: CLF dataset examples with pose, illumination and expression
variations, occlusions due to head covering, cap, bandage, beard, and sun-
glasses, and moles and scars. Age at image acquisition (in years) is given
below each image.

gitudinal Face (CLF) dataset. In addition, performance of
sum score fusion of the above two face matchers, Fused,
is also reported. FaceNet is originally trained on a pub-
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Figure 5: CLF statistics: a) number of face images per subject; b) age at
image acquisitions in years; c) enrollment age of a subject in years; d) time
span between enrollment and latest image acquisition for each subject in
years.

licly available dataset, MS-Celeb11 [31], comprising of 10
million face images of 100K celebrities. Face images in
the dataset are acquired by leveraging public search en-
gines to provide approximately 100 images per celebrity.
Face recognition accuracy of the FaceNet matcher on CLF
dataset is quite low (43.87% TAR at 0.01% FAR) because
it was trained on adult faces. To boost face recognition per-
formance, we fine-tuned FaceNet on an independent set of
3,294 face images of 1,119 children in the age group 3 to
18 years (different dataset than the CLF dataset), denoted
as Child Face Training (CFT) dataset. For both the FaceNet
models (before and after fine-tuning), feature vectors (128-
dimensional) for all face images in the CLF dataset are
extracted and face comparison scores are obtained by the
cosine-similarity metric. Genuine scores (total of 5,946
scores) are computed as all pairwise comparisons between
face images of the same subject and impostor scores are
comprised of all possible impostor comparisons (total of
3.38 million scores) in the CLF dataset. Figure 6 shows
that the performance of FaceNet is significantly improved
after fine-tuning it on the CFT dataset. FaceNet achieves
TARs of 43.87% and 57.74%, both at 0.01% FAR, with
the original model and the fine-tuned model, respectively.

11MS-Celeb dataset can be downloaded from https:
//www.microsoft.com/en-us/research/project/ms-
celeb-1m-challenge-recognizing-one-million-
celebrities-real-world

https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world
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FaceNet (after fine−tuning)

FaceNet (before fine−tuning)

Figure 6: Face recognition performance of FaceNet before and fine-tuning
on a child face training training dataset shown in red and blue, respectively.
After fine-tuning, performance is significantly improved.

Therefore, only the fine-tuned FaceNet face matcher will be
subsequently used in our study.

3.1. Verification and Identification Scenarios

For evaluating longitudinal performance of COTS-A,
FaceNet, and Fused, face images for each subject at enroll-
ment (first image acquisition) are compared to subsequent
face image acquisitions of the same subject (a total of 2,763
genuine comparison scores). Longitudinal performance is
evaluated after 1, 3, and 5 years of elapsed time since en-
rollment (∆T ). In the verification scenario, the impostor
distribution includes all possible impostor comparisons, to-
taling 3.38 million scores. Table 3 provides verification ac-
curacies at both 0.01% and 0.1% FAR values for an elapsed
time of 3 and 5 years. We find that there is a decreasing
trend in face recognition accuracy over time, which is con-
sistent with findings in prior studies [23], [4], [24]. Fused
face matcher has the best verification performance over time
(90.18% TAR at 0.1% FAR with 1 year time lapse), com-
pared to COTS-A (81.94% TAR at 0.1% FAR with 1 year
time lapse) and FaceNet (83.77% TAR at 0.1% FAR with
1 year time lapse). The improved performance of Fused
suggests that COTS-A and FaceNet matchers are comple-
mentary in nature12.

In the identification scenario, we keep all 919 enrollment
images for all the subjects in the CLF dataset in the gallery
and the non-enrollment image acquisitions in the probe set.
Additionally, we included 756 subjects with one face im-
age per subject (not in the CLF dataset) in our probe set for
open-set identification, totaling 3,520 probe images. Rank-
1 and Rank-3 identification accuracies are computed at 1
and 7 years of elapsed time (Table 3b). Similar to the veri-
fication scenario, identification performance decreases with
an increase in time lapse, however, the rate of degradation in
identification accuracy over time is very low. This suggests

12The training datasets for COTS-A and FaceNet are likely different
which may account for an improved face recognition performance upon
fusing their scores.

that identification of missing children is feasible over a time
lapse of 7 years between a child’s enrollment image in the
gallery and probe image. Detection and Identification Rate
(DIR) remains stable at ranks beyond 3 for all face recog-
nition systems, which seems to suggest that if a subject is
not found within the first three ranks, it is unlikely that the
subject will be identified at a higher rank.

3.2. Multilevel Statistical Models

A longitudinal analysis of genuine scores for child face
images is necessary to understand the variation in genuine
scores over time and the impact of additional covariates,
such as gender. Time lapse between a probe and enroll-
ment image and number of image acquisitions per subject
in the CLF dataset varies from subject to subject and there-
fore, the dataset is time-unstructured and unbalanced. Mul-
tilevel statistical models are recommended for analyzing
such datasets where variations occur at different levels in
the data hierarchy. Open-set identification relies on two
tasks: verification and identification. A probe first claims
to be present in the gallery, and a pre-determined threshold
is used to accept or reject the claim using similarity scores
(verification). If the probe is accepted, the ranked list of
gallery images which match the probe with similarity scores
above the threshold are returned as the candidate list (identi-
fication). Longitudinal analysis in this section is conducted
in the verification scenario to first analyze the magnitudes
of genuine similarity scores over time and determine the
impact on the verification task of open-set identification.

Let Ni represent the total number of face image acqui-
sitions for a child i in the CLF dataset. If Ii,j is the jth

face image of child i, then Ii = {Ii,0, Ii,1, . . . Ii,Ni−1} rep-
resents the set of all Ni image acquisitions for the child
i. The set Ii is ordered with increasing age at image ac-
quisition. In other words, if AGEi,j gives the age at jth

image acquisition of child i, then AGEi,j < AGEi,k for
j = 0, 1, . . . , Ni − 2 and k = j + 1, . . . , Ni − 1. Genuine
scores are obtained by comparing a child’s enrollment im-
age (first acquisition) to every other image acquisition, to-
talingNi−1 genuine scores for each subject i in the dataset.
The time lapse between a subject’s enrollment image, Ii,0,
and a query image, Ii,j where 0 < j ≤ Ni − 1, is given by
∆Ti,j = AGEi,j − AGEi,0. Yi,j , where 0 < j ≤ Ni − 1,
represents the genuine comparison score between jth face
image acquisition and enrollment image for a child i.

Models used in this work are described using two hierar-
chical levels, similar to those described in [7], [26]. The first
level in the hierarchy, Level-1, models the changes in gen-
uine scores, Yi,j , for each subject over time (within-subject
variation), whereas, Level-2 model accounts for variation
in genuine scores across different subjects (between-subject
variation). To quantify change in standard deviations of
the genuine score distribution per year, genuine compari-



Table 3: Longitudinal performance of COTS-A, FaceNet and Fused for (a) verification and (b) open-set identification scenarios.

(a) TAR (%) @ FAR

Matcher ∆T = 1 year ∆T = 3 years
0.01% FAR 0.1% FAR 0.01% FAR 0.1% FAR

COTS-A 64.51 81.94 38.18 49.33
FaceNet 67.94 83.77 34.75 59.80
Fused 80.56 90.18 53.33 73.33

(b) DIR (%) at 1% FAR,

Matcher ∆T = 1 year ∆T = 7 years
Rank-1 Rank-3 Rank-1 Rank-3

COTS-A 68.49 70.65 66.89 68.59
FaceNet 55.31 55.89 51.73 52.42
Fused 77.86 79.01 75.39 76.42

Table 4: Multilevel models with different covariates

Model Level-1 Model Level-2 Model Covariates
Model BT Yij = π0i + π1i∆Ti,j + εi,j π0i = γ00 + b0i, Time lapse

π1i = γ10 + b1i
Model CGender Yij = π0i + π1i∆Ti,j + εi,j π0i = γ00 + γ01Genderi + b0i Time lapse, and gender

π1i = γ10 + γ11Genderi + b1i
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Figure 7: Results from fitting genuine scores obtained from COTS-A, FaceNet, and Fused face matchers to Model BT on the CLF dataset. The orange
band estimates the regions containing longitudinal trends for 80% of the CLF dataset population around the population-mean trend. Thresholds at 0.01%
and 0.1% FAR for all three face matchers are also plotted in red lines.

son scores are normalized such that Yi,j = (yi,j − µ) /σ,
where yi,j is the raw comparison score obtained from the
face matchers, and µ and σ are the mean and standard de-
viation of the genuine scores from all the subjects in the
dataset. The trend in genuine scores over time is modeled
as a linear function of various covariates, Xi,j ,

Yi,j = π0i + π1iXi,j + εi,j
where π0i and π1i are subject i’s intercept and slope, respec-
tively. This corresponds to our Level-1 model which models
the within-subject changes in face comparison scores over
time. Subject i’s face comparison scores can vary around
his/her trend by εi,j , the Level-1 residual variance. The
slope and intercept parameters are a combination of fixed,
γ00, γ10, and random, b0i, b1i, effects. Fixed effects are
the overall means of the population intercepts and slopes,
whereas, random effects are subject i’s deviation from the
population means. Hence, π0i and π1i. can be expanded to,

π0i = γ00 + b0i

π1i = γ10 + b1i
corresponding to the Level-2 model. Therefore, our multi-

level statistical model for the genuine score between subject
i’s enrollment and jth image is simply,

Yi,j = (γ00 + b0i) + (γ10 + b1i)Xi,j + εi,j .
The following covariates for which we have the data are
used in this study:

• ∆Ti,j : time lapse between a child i’s jth image acqui-
sition and enrollment image

• Genderi: gender of child i (0 for girl, 1 for boy)

Time lapse (∆Ti,j) affects our Level-1 model, whereas,
gender (Genderi) is time-invariant and affects between-
subject variation (Level-2) model. Table 4 describes the
models and covariates incorporated in this study.

Standardized genuine scores from COTS-A, FaceNet,
and Fused are obtained, totaling 2,763 scores. To evalu-
ate longitudinal accuracies, trends in genuine scores should
be considered in context with an impostor distribution. For
the CLF dataset, all possible impostor scores (3.38 million)
are computed to calculate the thresholds at fixed FAR val-
ues. Longitudinal trends in genuine scores affecting the
face recognition accuracies of the three face recognition



systems are evaluated at thresholds corresponding to 0.01%
and 0.1% FAR.

Multilevel statistical models are based on the assump-
tion that the residual errors are normally distributed. CLF
dataset violates this parametric assumption of normality and
therefore, non-parametric bootstrapping is performed to ob-
tain confidence intervals for the parameter estimates [10].
By sampling all the 919 subjects in the dataset with re-
placement, non-parametric bootstrapping is conducted with
1,000 bootstrap sets. The multilevel statistical models de-
scribed in Table 4 are then fit, with the LME4 package in R
using maximum likelihood estimation, to each bootstrap set
and mean parameter estimates over all 1,000 bootstraps are
computed.

3.2.1 Time Lapse ModelBT contains a covariate, ∆Ti,j ,
which describes the time lapse between between a sub-
ject’s enrollment image and probe image. The population-
mean trend, γ00, γ10, for Model BT estimates that COTS-
A, FaceNet, and Fused genuine scores decrease by 0.2234,
0.2180, and 0.2444 standard deviations per year for CLF
dataset, respectively. Therefore, genuine scores for COTS-
A, FaceNet, and Fused decrease by one full standard devia-
tion of their respective score distribution after 4.5, 4.6, and
4.1 years of time lapse.

Following the studies conducting in [7], [26], regions
containing longitudinal trends for 80%13 of the child popu-
lation are plotted using estimated changes in slope and inter-
cept parameters (σ2

0 , σ
2
1 , σ01). The regions are then used to

determine the time lapse until genuine scores for 95% and
99% of the population begin to drop below thresholds at
0.01% and 0.1% FAR. Therefore, we estimate the elapsed
time in years over which face recognition performance is
stable before a decrease in genuine scores result in false ac-
cept errors. Figure 7 suggests that genuine scores of 99%
of the population remain above the threshold at 0.01% FAR
for an elapsed time of 2.5, 2, and 2.5 years for COTS-A,
FaceNet, and Fused face matchers, respectively, on the CLF
dataset. We estimate that 80% of the population in the CLF
dataset can be successfully verified at 0.1% FAR for up
to 2.5 years, and Table 3 found that the verification accu-
racy for Fused decreased from 90.18% to 73.33% for a time
lapse of 3 years.

3.2.2 Gender We investigate whether variability in
subject-specific longitudinal trends in genuine scores can be
better explained by gender demographics. Population-mean
trends for the gender model, CGender, for all the three face
matchers have similar trends indicating that the effects of
gender on the change in genuine scores for CLF dataset over
time is matcher-independent. The average genuine scores

13Instead of analyzing at 95% and 99% confidence levels, 80% is used
because the face matchers did not achieve verification accuracies above
91% at 0.1% FAR, found in Section 3.1.

were found to be not statistically different between boys
and girls, however, the rates of change (slopes) is signifi-
cantly steeper for boys than girls. Therefore, for all three
face matchers, girls appear to be easier to recognize than
boys with higher genuine scores overall. We suspect that
the differences between boys and girls can be attributed to
changes in facial hair for boys over time and possibly later
maturity attained by boys [32].

4. Conclusions
We investigated the performance of two state-of-the-art

face recognition systems and their fusion for child face
recognition in the age group [2, 18] years to meet the grow-
ing demand for identifying missing children. We obtained
the Children Longitudinal Face (CLF) dataset containing
3,682 face images of 919 children in the age group of [2, 18]
years with an average of 4 images per subject collected
over an average time span of 4.2 years. Longitudinal per-
formance of three state-of-the-art face recognition systems,
COTS-A, FaceNet, and Fused were evaluated. To improve
FaceNet’s performance on child face images, it was fine-
tuned on a training dataset of 3,294 images of 1,119 chil-
dren (different from CLF dataset). Longitudinal accuracies
were evaluated under both verification and open-set iden-
tification scenarios. A multilevel statistical model was fit
to genuine scores for child face images that included time
lapse and gender covariates. Our contributions can be sum-
marized as follows:

• Identification of missing children is viable using cur-
rent state-of-the-art face matchers, however, improve-
ment in overall face recognition performance of chil-
dren is much desired. Face verification accuracy for a
time lapse of 1 year is high (TAR of 90.18% at 0.1%
FAR for Fused), but degrades to 73.33% TARs at 0.1%
FAR after 3 years of elapsed time between enrollment
and probe image of a child. We found that the identifi-
cation performance also decreases over time, however,
the rate of degradation in accuracy is small. Detec-
tion and Identification Rate (DIR) at a time lapse of 1
year is 79.01% at 1% FAR (Rank-3) for Fused. After
a 7 year time lapse, DIR drops to 76.42% for the same
FAR and Rank for Fused.
• We estimate that 80% of the population in the Children

Longitudinal Face dataset can be successfully recog-
nized at 0.1% FAR by COTS-A, FaceNet, and Fused
face matchers for an elapsed time of 2.5, 2, and 2.5
years, respectively.
• Differences due to gender are matcher-independent.

Rates of change in genuine scores for boys are signif-
icantly steeper than girls. With higher overall genuine
scores, girls in the CLF dataset appear to be easier to
recognize than boys.



Given the growing concerns about child labor and sex-
trafficking, it is essential that we develop and evaluate ro-
bust and accurate face recognition systems appropriate to
identify missing children. Our longitudinal study is only a
small step in this direction. We hope it will stimulate sim-
ilar studies on a larger collection of children face datasets.
A longitudinal study such as ours needs to be conducted pe-
riodically to assess current state-of-the-art in age-invariant
child face recognition.
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